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Abstract

We consider problems involving high-speed moving rigidecks in a fluid flow. Instead of a more tra-
ditional deformable mesh approach, we describe a novel fixesh approach which use a level set function
to implicitly track the fluid-solid interface, therefore moesh motion or modification is required. The inter-
face boundary conditions are also captured implicitly bynbiming a Ghost Fluid technique with the level
set approach. This fixed mesh approach is a much more effitientmoving mesh methods since no mesh
modification is necessary. It has a wide-spread appli¢gtidr problems with complex object motion and/or
complex geometry. It is also dimension free and relativatypde to implement relative to moving mesh ap-
proaches. The discontinuous Galerkin method (DGM) is ugdlistretize the Euler equations associated with
a compressible inviscid fluid.

1 Introduction

Many physical problems involve the interaction of two or maraterials. Such multi-material interaction is wide
spread in fluid mechanics, biomechanics, meteorology and/rather fields. Therefore, the ability to numer-
ically simulate the effects of two or more different, yetantelated physical materials is important. Solving
multi-materials interaction problems is difficult and selepen issues remain. Although different approaches
need to be applied according to the different combinatiatheimulti-materials, they basically may be classified
into two general categories.

With a moving mesh method, the surfaces of rigid objects r@a&té¢d as boundaries and the mesh is moved to
follow their motion. Formulations may be Lagrangian, oriadsy Lagrangian Euleriian (ALE) [5], [6]. In con-
trast, a fixed mesh approach uses some technique to capjet strface locations, such as a volume of fluid
(VOF) [2] [3], front tracking method [30] [31] [32] [33] or kel set [23], [24], [25], [21]. Each approach has its
advantages and disadvantages. With mesh moving, the ahjdates remain sharp and captured more precise.
However, mesh motion is difficult and costly in three dimensi. Meshes tend to become distorted and introduce
ill conditioning. Solutions must be transfered between massat different times and this may induce excessive
diffusion. The fixed mesh approach avoids mesh motion anais eifficient and simpler to implement, but object
surfaces are less sharp.

In this paper, problems involving motion of a high-speeddrigbject in a compressible inviscid fluid are par-
ticularly interested and the thereafter discussion willdmised on this specific case. The fluid flowing around or
within an object may contribute to its movement and/or spie t flow-induced pressure. On the other hand, the



movement of the object will affect the fluid flow. Fluid-soliateraction is often a transient occurrence, where the
structural motion is dynamics and varies continuously witie.

The basic and important characteristics of these probleciade both the continuous change of the computa-
tional domain with respect to time and the strong discotiiesiin the fluid because of the speed of the object.

In this paper, instead of using the conventional deformafbésh approach, where the interface between the
fluid and embedded solid object is treated as a boundary @daptured by changing the mesh, e.g. moving the
mesh, remeshing, or mesh modification. A novel fixed meshaagapris provided. In this approach, an Eulerian
mesh is created over the entire computational domain. Theement of the rigid object will cut some of the
mesh entities and introduce new boundaries inside the Meuse the level set technique [18], [19] to track the
interface between the rigid body and the compressible fand, adapt the Ghost Fluid Method (GFM) [12] to
capture the correct boundary condition implicitly at thieinface. Therefore, handling the boundaries is simplified
and we have the advantage of doing a fluid calculation on thieeestomain. By doing this, we can handle the
contribution of the embedded moving boundaries in the fluttieut mesh modification.

The paper is organized as the following. In Section 2, thdinear hyperbolic conservation laws, euler equa-
tions, are introduced and corresponding Discontinuougi®al Finite Element numerical formulations for our
problems are provided. In Section 3, we will talk about howréek and handle the fluid-solid interface for the
fixed mesh approach. In Section 4, several numerical exanaple results are presented. At last, Conclusion in
Section 5.

2 Numerical Formulation

We consider the two-dimensional motion of a rigid object icoapressible, inviscid fluid. Fluid motion is gov-
erned by the Euler equations.
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Variables with a super-imposed arrow refer to physical mextwvith two and three components, respectively in
two and three dimensions. Bold type is used for vectors inbstractm-dimensional space, ard is the vector



valued divergence operator
V=[v,v,..v,

wherev = (£, a%, 2). Herep s the fluid densityy;, v, andvs are ther;-, z,- andzs-components of the velocity
U, €1, €5 andéy are unit vectors i -, zo- andxs-direction, £ is the total energy per unit volumg,= p(p, e) is
the pressure, andis the internal energy per unit mass. The total energy isuhedf the internal energy and the
kinetic energyj, i.e.,
1
E:pe+§p(v%+v§+v§). 2)
An ideal gas also satisfies the equation of state

p=(y—1)pe, Where v > 1. (3)

Consider a problem in a computational dom@iwith boundaryo) that has been divided into a collection/gf,
elements such that

Np,
0= Q.

j=1
With the DGM, a weak formulation of (1) is constructed on ag&nelement?; by multiplying (1) by a test
function¢g € (L*(Q;)™, integrating the result of?;, and using the divergence theorem to obtain

0w, d)o, — (F(w),V @), + (F", dag, =0, Vo € (L* ()" (4)

The L, volume and surface inner products @nare defined as

(.80, = [ OTuds,  (n.ln, = [ oTuir

09,

F" is the normal flux which is defined &' = F(u) - i7, wherefi is the unit outer normal vectortf);. However,
with discontinuous basid,, is not defined ord(2;. In this situation, we use a numerical fli (u;, u;) that
depends on the solutiom; on €2; andu, on the neighboring elemefit, sharing the portion of the common
boundaryof2,,. The numerical flux must be consistent, Bg(u, u) = F(u) - 7. With such a numerical flux, the
DG formulation can be rewritten as

neg .
QJ
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k=1

whereng; is the number of faces of elemeq. Only the normal traces have to be defineddéty and several
options are possible (see, e.g., [14] [15]). Itis usual findethe trace as the solution of a Riemann problem across
09);. an exact Riemann solver is used to compute the numericaslard a Barth limiter [16] is used to restrict
spurious oscillations when polynomial degrees 0 are used. The Barth limiter is applied on each element after
a new solution field is computed, so that the minimal and makiralue of the solution conservative variables in
one element are bounded by their mean values on neighbdemgasts.



3 Treating Interface

For our fixed mesh approach, the object’s surface is impficaptured by the zero level of a level set function.
Therefore, special treament is needed to define boundadjtamrs that simulate the fluid-rigid object interaction.

We will talk about the level set method by which the interfeaeaptured in Section 3.1, the Ghost Fluid idea to
implicitly capture the boundary conditions in Section 3r2Section 3.3, the detail of boundary treatment will be
discussed. in Section 3.4, we will talk about the force dakoon on the rigid object induced by the fluid flow.

3.1 Level Set Method

The level set method was introduced by Osher and Sethianf¢t dynamic implicit surfaces. The basic idea
of the level set method is implicit capturing of an interfdme using a smooth time-dependent function, the
level-set function, which represents the interface as tlogsrof this function. The interface motion satisfies a
time-dependent Eulerian initial value partial differahgquation, and, therefore, the position of the interfaite w
respect to time can be updated by solving the appropridirdiftial equation.

In our problems, The level-set functiefi{z, ¢) is defined as a signed distance function in the whole computa-
tional domain at any time If we denote the boundary of the rigid body, i.e., the irdeef between the fluid and
the rigid body asB, the inside part of the rigid body ds and the fluid a%), the level set functio(x, t) will
satisfy the following conditions at any tinte

¢(x,t) =0, forall(x) € B,
o(x,t) <0, forall(x) €I, (6)
¢(z,t) >0, forall(z)eO.

Thus, the interface is captured for all time implicitly bychding the set for which functiop vanishes. This
property is significant when the location of the interfackasd to express explicitly.

The governing equation of the level set advection is

0 -
5 tU-v6=0, (7)

wherel is the velocity of the level set advection, which is equah® Yelocity of the interface propagation.

With the normalizationv¢(x) = 1|, the normal to a level surface satisfies

n(x,t) = Vo(z,t). (8)

We can calculat@ at a point which need not necessarily lie on the internal damnbecause the level-set function
is defined on the whole computational domain and the nornmation is constant along a trajectory perpendicular
to any¢ = constant surface. This is a great advantage for our calculations. dtso worth mentioning that we
do not have to define the level set function on the whole donagwel set functions need only be defined within
a small region of the interface of the solid object and thalflTihis is important when it is hard to define a signed



distance function on the whole complex domain for a complgrd.

We assume that the level set function can be expressed agbaitéunction. For some problems, this may
not be true. A numerical approximation can be used in tha.cas

3.2 Ghost Fluid Method

Ghost Fluid Method (GFM) was first proposed by Fedkiw et a2] b avoid the possible oscillations at multi-
material interfaces. It is well known that under Euleriahesoes, large spurious oscillations may occur in the
pressure and velocity fields near the material interfack witlinary computational techniques. The main reason
for these non-physical oscillations is a change of the eguiaif state across the material interface. In [12], au-
thors introduced GFM for two-phase compressible flow in Wwiyhost nodes are defined at every grid pointin the
computational domain so that at every time moment, eachngril contains two sets of conservative variables:
mass, momentum, and energy (or entropy) for the current #iuidis grid point, and ghost mass, ghost momen-
tum, and ghost energy (or entropy) for the other fluid. Aftex ghost values have been set for all grid points,
standard numerical schemes can be applied for each fluidadelya Therefore, instead of solving a two-phase
fluid flow problem, two separate one-phase fluid flow problerasalved at every time step. Then a valid solution
set for every grid point is chosen by some criteria and thalidwone is discarded. By doing this, oscillations at
multi-material interfaces are avoided without expliciliying interface jump conditions.

GFM not only gives a way to remove the non-physical oscdlaginear the interface of multi-materials, but also
provides an innovative way to handle problems involvingtiphlase flows. The existence of the multi-materials
interface actually introduce a boundary for each fluid, ¢feme proper boundary conditions should be set near
the interface for each fluid. By using GFM to define a ghosfieidi fluid and to properly set the ghost values
for it, the boundary conditions can be induced automaticaild implicitly. It will be looks like that no boundary
exists at all for each fluid flow. This is a big advantage beeaighe difficulty of applying the correct boundary
conditions on cut entities is avoided .

To apply GFM correctly, the information about interface loé multi-materials is required. The interface position
is used to set the proper ghost values and to discard thednxadles for every grid node in the computational
domain. Level set method has been used a lot and has beer musaessfully for this purpose besides its own
advantages to track moving interface. By using the levehsgthod, the multi-materials interface is represented
as the zero level of the level set function. The location efititerface is captured automatically by advance the
level set function to the next time step, therefore the fater does not need to be tracked explicitly. And the sign
of the level set function is used to distinguish the fluidstiiie level set function to track the interface implicitly
and GFM to capture the boundary condition implicitly, theolhcomputational scheme becomes simple and easy
to implement. This holds true for even multi-dimension aitons and for high-order time integration scheme,
particularly Runge-Kutta methods. In the work of this pag&M is also combined with level set method to be
benefit from those good properties.

When GFM was first introduced, it is for two-phase comprdssilows problems with contact discontinuities
at the interface. Since then, it has been applied to a lotaiflpms, including multi-component compressible and
incompressible, viscous and inviscid flows as well as proBléhat couple fluid with deformable solid materials,
etc. In this paper, we extend GFM to problems involving thernaction of inviscid compressible flow and a rigid



object.

3.3 Setting the Conservative Variables for the Fluid

Due to the introduction of the level set in our DG method, tbsifion of the surface of the object in the fluid
is represented by the zero level set. For different entdfebe original Eulerian mesh, there are two different
possible situations according to their position with respe the zero level set of the level set function. Cage (
the entity is totally outside the zero level set. Casg the entity is totally inside the zero level set or the gntit
is cut by the zero level set. Figure 1 shows both two casestenhepresents the fluid-object interface. There,
entity (21 to 27 belong to casei{) and()8 belongs to case). For all entities of case), the object in the fluid has
no direct effect on this entity, so no special operationn@eded. On the other hand, for all entities of cage (

a new boundary was actually produced and the proper fluidbigrshould be set for the ghost part of the entity
when using GFM to capture the correct boundary conditidmeretfore, every entity of casé&) is calledghost
entity. The level set enables us to locate those entities that npesibs treatment, even when we do not know the
position of the moving boundary in the entity. Actually, weado not want to find it because it is complicated
and expensive to do so, especially for high order approxanaind for high dimension case.

To treat the interface conditions correctly, it is impottemunderstand the dynamics of the fluid and rigid body
motion. We can treat a rigid body moving in a fluid as a contatahtinuity because the fluid near the inter-
face will move with the veIOC|ty of the rlgld body. The Rank&hiHugoniot jump conditions imply that both the

pressure and the normal velocmy,N —V. N are continuous across the interface. Therefore, we muitee
values for theghost entityto enforce these two conditions. There are three kinds t¢ staiables that need to be
set: velocity, density, energy (or pressure). Referen2gdiscusses this for two-phase flow problems. We have
similar rules. Continuity should be satisfied across therfate for density, the tangential component of velocity
and pressure. At the same time, since the interface of tie bigdy acts as a reflective wall boundary for the
fluid, a reflective constraint could capture the boundarydd@gam. In the original work of [12] [13], where GFM

is designed and implemented for finite difference methodiauttired mesh grid. In that case, the approximated
solution of the problem is represented at grid points, arabgtalues are set at every ghost grid point. After the
ghost values have been set, then finite difference schembecapplied directly to advance PDEs to next time
step. This is no longer true for our GFM under the DiscontusiGalerkin Finite Element Method(DGFEM). For
DGFEM, the approximated solution is represented at eveshraatity. Therefore, instead of setting ghost values
at every ghost grid point, ghost valued are set at egéigst entity To set the ghost values forghost entity
every gauss point of the entity is first checked. If the lee¢lfigsnction has negative value at a gauss point, namely
the gauss point is inside the rigid object, we call this gquaat is aghost gauss pointf this ghost entity and

the ghost values at this point need to be set. Otherwiseimptieed to be done for this point. For examples, in
Figure 1, allghost gauss poinire marked as, all other gauss points are marked a$o set the ghost values for
aghost gauss poinky inside the rigid body, we first find the reflective poift in the fluid with respect to the
interface and computer, Er, anduy at Pg. Thenpq, Eq, v at the ghost poinP; are setting as

pPc = PR,
Eq = Egr-— /)R|UR\ +2/)R|17G|2,

wherev}, andv® are the velocity components of the fluidzas in the tangent and normal directions, respectively,



Figure 1: Entity and zero Level Set Relationship

and(?év is the normal component of the velocity of the moving objed®a

The equation of state is
1 =2
E = pe+plV];

therefore, the constrainp] = 0, where §)]: L*(R) — R is defined as the jump in any functianat positionz.
This is satisfied implicitly at the interface by setting tmergy of the ghost fluid as above. Alsdﬁ\ﬂzo because
the fluid near the rigid surface has a normal velocity compoegual toﬁg. Moreover, our choice of ghost
values gives a continuous density, energy and tangent@titiecomponent at the interface.

After setting the ghost values for eveghost gauss poinbf a ghost entity the solution on this entity is re-
constructed by, projection by using the new setting values; projection is a good corresponding choice to
the way of setting the ghost values because it only uses thes/at the gauss points of the entity. And the
projection also keeps the conservation of mass, momentare@ergy.

In general, finding the reflective point is a problem, esgbcia the high-dimension case. However, since we
keep the level set function(z) as a signed distance function, we can use its nice propeatiesercome this
difficulty. For a given pointr;, the closest point on the interface can be approximated as

Uy = 71 — ¢(T1)Vo(T1).



Similarly, the reflective point is

Ty =T — 20(71)Vo(d).
This approximation is straightforward even in the multindinsional case. This is a great advantage because we
can treat the one-, two- and three-dimensional cases wetedme scheme and the numerical implementation is
simple and consistent for all cases.

It is possible that a reflective point does not belong to thematational domain of the problem. Then the
way to set ghost values atghost poinwill fail because of not being able to find the mesh entity ttattains this
reflective point, therefore can not get the conservativealbée values at the point. For example, in Figure 2, the
reflective pointP, of aghost gauss poin®; falls outside of domaifi. In this situation, the ghost values/t can

not be set directly. There are two possible ways to solve iffieudty. Before we talk about the details of how to
do it, Let’s give some notations.

Refer to Figure 2. Lef denote the line across poity and . Recall() is the problem domain] = 02
is the domain boundary. Sindg € Q andP, ¢ (), we know
By =LNT #£0

Then we denote the close point& in P, by Ps. For P, there exists a poin®, which lies in the same part of
boundaryl” as pointP; and has the shortest distanceofrom this piece of boundary. The reflective point/f
to the boundary' is denoted byP.

P4

P1

Figure 2: The situation for out of domain reflective point

Now we can describe the two possible ways to set the ghostsédu P, .One simple way is to just use the values
at P, instead of those aP,, to set the ghost values & without considering the bounary conditions. This is a
relative easy way to realize. However, it is possible thitnee large error will be introduced for some cases.

The Other way is to marl, as a ghost point and try to set the ghost valuegsat After that, the ghost val-
ues atP; are set by using the ghost values/at Setting the ghost values fdt, is depend on the boundary
conditions atP,. For example, if the boundary condition/t is assumed to be



e Transmitting boundary condition. The value Bf is used to set ghost values &t by just copying corre-
sponding values.

e External boundary condition. If the external boundary d¢bon is already know aP,, then it can be applied
at P, directly to get the ghost values Bf, otherwise, use the boundary valueg’ato set.

e Reflective boundary condition. Then poiRt of P, respect taP, is used to set the ghost valuesiatby
applying reflective boundary principles. Howevé¥, may falls out of the computational domain or falls
into the rigid object part.

This is a more accurate way, however it is complicated andoméiyne consuming for complex geometry.

To set the ghost values aggaost gauss poinP;, the conservative variable values at the correspondingctefé
point Pr are needed. This requires to find the mesh entity that cankginFor a general mesh database, it means
a search to a linked list. Since this procedure is requirecvery ghost gauss poinf everyghost entity It

will be very expensive for large mesh database and for higleroapproximation. To improve the efficiency, a
dynamic octree data structure is constructed and used tohsdee mesh entities. The octree is a dynamic one,
therefore it will be suitable to our approach when combiniritly mesh adaptation procedure.

In the practical implementation, only those ghost entivwihin a small distance to the surface of the rigid body,
i.e., the zero level set, need be considered. The bandwadittbe set to about 4-6 cells near the interface. This
is consistent with defining the level set function only in aafirbandwidth near the surface of the rigid body. By
using this technique, the computation can be made efficiaetmhe rigid body has a relatively large volume.

3.4 Force on the Rigid Object

When the movement of the rigid object is not prescribed, the flas an effect on its movement. Therefore, the
force of the flow on the object must be computed. We first assilnaieforces act on the centroid of the rigid
object, therefore, spin of the rigid object is ignored. Thiemforce on the rigid object is

/p - nds, (20)
1
wherep is the pressure andis the interface.

Calculating (10) is not obvious because of the lack of aniexpmxpression of the surfacg which is only
implicitly represented as the zero level of level set fumtt), However, since> has definition on the whole com-
putational domain, we can compute (10) indirectly by trangiie surface integral by a volume integral on the
domains? as

/Ipﬁds = /Qpé(gzﬁ(x))ﬁdv, (12)

whered(z) is the Kronecker delta satisfying

/ " 5()g(w)dz = g(0) (12)

oo



for any continuous function(z).

Let é be a smooth approximation 6fz) and consider

/ piids ~ / 6 (6())iidv. (13)
I Q
Sincef? is the union ofV;, elements
N
Q= Lj Q;,
j=1
We have
Np,
/ piids =) / po(o(x))fdv. (14)
I j=1 7%
One choice of is Y it
- =—(1+cos™), if |[z| <e¢
_ 2e e/’
o) = { 0. i o] > ¢ ° (15)

wheree is a small constant representing the bandwidth of the regioand the interface.

With this choice ofs and the level set function(z) as a signed distance function, the formula for the bound-
ary force is

N 1 )
/Ipnds ~ Z /Q i(l + cos?)pvmlv. (16)
J=17%5
Two other choices of the approximation functi®of functiond are
. 1 o2
o(x) = e 202 (17)
2mo

e (@ — )7, it
- d(e —z=)™, if |z] <€
6@):{ 0, if || >¢€”’ (18)

whereo, e andm are free parameters to be set according to the problem at Aadd depends om:. The basic
rule is that the approximation errors should be small coegbéo the errors in solving the PDEs. The Appendix
gives the details of the error estimation and control.

4 Examples and Results

In the numerical tests that follow, several aspects of thedpproaches are considered, including different mo-
tions of the rigid body, the flexibility of the methods, anfi@ént implementation of the methods.



4.1 Translation of Rigid Body

Consider a uniform Mach 3 flow in a wind tunnel of unit width ahdnits long. The tunnel is assumed to have
an infinite width in the direction orthogonal to the plane o tomputation. The left end is an inflow boundary
and all gradients vanish at the right. Initially the wind mehis filled with an ideal gas with = 1.4, p = 1.0,

p = 1.0, and @1, v2, v3) = (3v/1.4/2, 0, 0). Gas with this density, pressure and velocity is coraily fed from
the left-hand boundary. At the same time, a solid ball witiua 0.125 units is moving from right to left with
constant velocity+/1.4/2. Along the walls of the tunnel reflecting boundary conditi@ne applied. The density
field and velocity field att = 0.1, 0.25, 0.5 and 1.6 are giveRigure 3. All calculations used a CFL=0.3.

Figure 3: Density field att = 0.1, 0.25, 0.5, and 1.6 from tdptebottom right.

The results are qualitatively good and compare well withdase of a fixed ball in a wind tunnel with the wind
having a speed corresponding to the sum of the speed balharsheed of the wind.

4.2 Rotation of a Rigid Body

A rectangle of 2 units wide and 1 unit high is filled with fluid.t All four boundaries, reflective wall boundary
conditions are applied. Initially the rectangle is filledtkven ideal gas withy = 1.4, which everywhere has
p=1.0,p=1.0,and @1, v2, v3) = (0, 0, 0). A rigid object centered at the origin rotatesusuaits center in the
fluid in the clockwise direction. The density field at t = 0.051, 0.2 and 0.4 are shown in Figure 4.

The object rotates around its center with constant angelacity. Since the absolute velocity at its ends is higher
than the velocity of other parts, shocks develop near twas .efide top left and top right pictures show the density
field of the fluid after the object rotates by an anglerg? andr respectively. The bottom left picture shows the

shock is "broadcast" to the fluid and the bottom right picglvews the interaction of shocks after reflection from
the walls.

4.3 A Example with Relative complex fluid Domain: Moving Squae Object in a Tube

Consider a square object moving in a tube in ghdirection with velocityv, = 330.076096 and Mach number
0.95. Initially, the fluid hag = 1.17478, p = 101300 and (vy, v2,v3) = (0,0,0). A transmission condition is
assumed for the top and bottom edges and wall condition feeraurfaces. The topology of the fluid domain



Figure 4: Density field at t = 0.05, 0.1, 0.2, and 0.4 from tdptebottom right.

changes during the simulation. This is very difficult for m&soving. However, our fixed mesh approach works
well.

The pressure field at time= 0.25, 0.5, 0.7, 0.9 and 1.2 are shown in Figure 5.

Figure 5: Pressure field at= 0.25, 0.5, 0.7, 0.9 and 1.2 from left to right.

4.4 Adaptation Example

Combining DG and ghost fluid elements simplifies adaptivitie rigid body has little influence on the adap-
tive procedure. As an example, consider the problem of @e&il with a coarser initial mesh using adaptive
h-refinement. We show the pressure field and the corresppnaish at = 0.5 and 0.15 in the Figure 6. we see
that adaptive h-refinement is refining the mesh near the shrattlat the fluid-solid interface. Because of the ghost
fluid method, adaptation is implemented inside of the righdyo This is reasonable near the interface because of
the symmetry property near the interface and it is necessargpture the interface conditions correctly.



Figure 6: Pressure field (left) and corresponding meshtjragtt = 0.5(top) and 1.5(bottom).

4.5 Comparison

We re-visit the example of the constant speed translatioigiaf ball. To verify the correctness of our fixed mesh
approach and compare it with conventional deformable mpphoaches, we solve the example by three ways.
First way just uses the fixed mesh approach of this papergit@nsl way uses an ALE moving mesh idea similar
to those work of Farhat [28] [29]; the third way avoids to sottie moving object problem, instead it tries to solve
a reverse problem, in which the rigid ball is assumed fixedthadluid moves with the relative sum speed of the
fluid and the rigid ball of the original problem. The resulte @ompared with each other with density and the
density along the center line shown in Figure 7 at tinre0.2.

We see that all three approaches give similar results. Taptuoe the shock at almost the same position.

- —

45¢ 45F 45F

Density

Figure 7: Density field at t = 0.37 (top) and Density field aldhg center straight line(bottom): reverse prob-
lem(left), fixed mesh approach(middle), deformable megh@ach(right).



h Am AT’”
0.04 1.23 x 1072 3.11 x 1073
0.02 4.67 x 1073 1.18 x 1073
0.01 2.32 x 1073 5.88 x 107*

Table 1: Translation of Rigid Ball at t = 0.37

4.6 Conservation

We conduct some experiments concerning the conservativarables. Conservation of the mass should still
hold if the corrected boundary condition is used at the fater. To simplify the process, we will apply the reflec-
tive wall conditions to all the computational boundariestfte experimental problems. Thus, neither inflow nor
outflow exists in the test problems.

For the constant speed translation example, we preserisrésuatt = 0.5 in Table 1.

In Table 1,% is the size of uniform meshy is the total mass in the domain at a given timen is the absolute
error of the approximated mass aﬁn;@ is the relative error of the mass. The conservation of thesrisagerified
from both Tables because the error goes to zero when the nzesoes to zero.

5 Conclusion

A novel approaches to solve fluid/rigid body interactionlpems, fixed mesh approach, are considered from the-
oretical and numerical perspectives. Discontinuous ®alenethods are used as the numerical method because
of its advantages in several aspects and characteristag @roblems.

In this approach, we propose a new idea to solved fluid-rigidybinteraction problems by a computationally
simple approach. By this new method, no mesh modificationeshmmoving are needed. Instead, the mesh in
the computational domain can be fixed all the time. In our aggh, level set technique and ghost fluid method
are used to catch and handle the problems corresponding totérface between the fluid and solid object. This
method is efficient and it has wide-spread applicabilitydadie problems with complex movement or/and com-
plex geometry shape of the moving object. It is also a dinensee method with great advantage to implement
without difficulty in high dimension situation.
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Appendix

Approximation Functions of the Force on the Rigid Object and Corre-
sponding Error Estimation

Three approximation functions for the Kronecker delta tfionco has been given in Section 3.4. Here the error
induced by each approximation will be discussed. The omesdsional case will first be considered. Without



losing generality, we assume that the interface is-at0 and the level set functiop(z) = . For any functionf

Let
+00 too

fo= f@)d(z)dz,  fo= G )0(x)da

The approximatiorﬁ(a:) should have the property

/ﬁm&xﬂle.

o0

In our case, the pressupds a piecewise polynomial and our calculation is on the eldrtesel. Therefore, we
can assume that(x) is a polynomial and write it as

x) = Z apz®.
k=0
It is obvious thatf, = f(0) = ao

Case (1): The approximation is

R =(1+ cos™), if |z| <e
— 2¢ e /7
ox) = { 0, if |[x| > €

We have

| fo — fol \%f (14 cos™2) S0 Oakx dx—ao\
‘%f—HZk o akr"dr + £ [ cos™ Zk Oakx "dx
|5

e papadr — ao\ + | [ Treos™ SO0 agadal.

IA

By using partial integration to the second term of the aboeguality, we have

|fo— fol = o(€).
Case (2): The approximation is
(o) = —p—e
xTr) = e 2
V2mo
We have
\fo—fol =1)%2 21me 207 Zk o ez dx — ag|
22
=|[*2 ;me 207 S, agx™dx|
= o(c?).

The deduction of the above result uses the following results
Let

Feo z" _ a2
e 202dzx.

n =
o 2ro



Then
1, forn =0
gn=1{ 0O, forn=1
(n—1)0%g,_a, forn > 2

Case (3): The approximation function is

o]0, if |z > ¢
o) = { d(e? — 22, if |2] < e

hered is a constant and
I'(p+3/2)

T al(p+ 1)

For this approximation function @f(z), it can also be verified that it is a positive functior(ifi ' (R) and satisfies
(integration= 1). In this case, we have

|f0 — fo| =1 f_+: d(e* — )Py ) agx"dr — ag
= | [Td(e? — 22)P S apatda

€

= o(e?)
by using the fact that:
+e n e
[Tfad(e — a?)Pde = C"r(p(iiJ%éz))
= o(e").

¢, 1S a constant only depend on

Now consider the higher dimensional case. The integral we wefind is

/I fds = /Q £5d9,

With the approximation function(z), the integration is

with 7 € R andQ) € R".

I = / F@)6(6(x))de, e R
Q
Noticing that the function (x) vanishes quickly away from the interfa¢eWe can approximaté as

I, = /V F@)8(6(x))dr, @€ R



hereV =1 x [—e¢, ¢
Rewritel, as .
L= [ [ @it
IJ—e
and noticing that the projection of the polynomfdl) on[—¢, €] is also a polynomial.

Therefore, we still have the conclusion as in the 1D caseusecthe internal integration is exactly what we
discussed in 1D case.



