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Abstract

We consider problems involving high-speed moving rigid objects in a fluid flow. Instead of a more tra-
ditional deformable mesh approach, we describe a novel fixedmesh approach which use a level set function
to implicitly track the fluid-solid interface, therefore nomesh motion or modification is required. The inter-
face boundary conditions are also captured implicitly by combining a Ghost Fluid technique with the level
set approach. This fixed mesh approach is a much more efficientthan moving mesh methods since no mesh
modification is necessary. It has a wide-spread applicability for problems with complex object motion and/or
complex geometry. It is also dimension free and relatively simple to implement relative to moving mesh ap-
proaches. The discontinuous Galerkin method (DGM) is used to discretize the Euler equations associated with
a compressible inviscid fluid.

1 Introduction

Many physical problems involve the interaction of two or more materials. Such multi-material interaction is wide
spread in fluid mechanics, biomechanics, meteorology and many other fields. Therefore, the ability to numer-
ically simulate the effects of two or more different, yet inter-related physical materials is important. Solving
multi-materials interaction problems is difficult and several open issues remain. Although different approaches
need to be applied according to the different combination ofthe multi-materials, they basically may be classified
into two general categories.

With a moving mesh method, the surfaces of rigid objects are treated as boundaries and the mesh is moved to
follow their motion. Formulations may be Lagrangian, or arbitrary Lagrangian Euleriian (ALE) [5], [6]. In con-
trast, a fixed mesh approach uses some technique to capture object surface locations, such as a volume of fluid
(VOF) [2] [3], front tracking method [30] [31] [32] [33] or level set [23], [24], [25], [21]. Each approach has its
advantages and disadvantages. With mesh moving, the objectsurfaces remain sharp and captured more precise.
However, mesh motion is difficult and costly in three dimensions. Meshes tend to become distorted and introduce
ill conditioning. Solutions must be transfered between meshes at different times and this may induce excessive
diffusion. The fixed mesh approach avoids mesh motion and is more efficient and simpler to implement, but object
surfaces are less sharp.

In this paper, problems involving motion of a high-speed rigid object in a compressible inviscid fluid are par-
ticularly interested and the thereafter discussion will befocused on this specific case. The fluid flowing around or
within an object may contribute to its movement and/or spin due to flow-induced pressure. On the other hand, the
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movement of the object will affect the fluid flow. Fluid-solidinteraction is often a transient occurrence, where the
structural motion is dynamics and varies continuously withtime.

The basic and important characteristics of these problems include both the continuous change of the computa-
tional domain with respect to time and the strong discontinuities in the fluid because of the speed of the object.

In this paper, instead of using the conventional deformablemesh approach, where the interface between the
fluid and embedded solid object is treated as a boundary and itis captured by changing the mesh, e.g. moving the
mesh, remeshing, or mesh modification. A novel fixed mesh approach is provided. In this approach, an Eulerian
mesh is created over the entire computational domain. The movement of the rigid object will cut some of the
mesh entities and introduce new boundaries inside the fluid.We use the level set technique [18], [19] to track the
interface between the rigid body and the compressible fluid,and adapt the Ghost Fluid Method (GFM) [12] to
capture the correct boundary condition implicitly at the interface. Therefore, handling the boundaries is simplified
and we have the advantage of doing a fluid calculation on the entire domain. By doing this, we can handle the
contribution of the embedded moving boundaries in the fluid without mesh modification.

The paper is organized as the following. In Section 2, the nonlinear hyperbolic conservation laws, euler equa-
tions, are introduced and corresponding Discontinuous Galerkin Finite Element numerical formulations for our
problems are provided. In Section 3, we will talk about how totrack and handle the fluid-solid interface for the
fixed mesh approach. In Section 4, several numerical examples and results are presented. At last, Conclusion in
Section 5.

2 Numerical Formulation

We consider the two-dimensional motion of a rigid object in acompressible, inviscid fluid. Fluid motion is gov-
erned by the Euler equations.
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Variables with a super-imposed arrow refer to physical vectors with two and three components, respectively in
two and three dimensions. Bold type is used for vectors in an abstractm-dimensional space, and∇ is the vector



valued divergence operator
∇ = [▽,▽, ...▽]T ,

where▽ = ( ∂
∂x
, ∂

∂y
, ∂

∂z
). Hereρ is the fluid density,v1, v2 andv3 are thex1-, x2- andx3-components of the velocity

~v, ~e1, ~e2 and~e3 are unit vectors inx1-, x2- andx3-direction,E is the total energy per unit volume,p = p(ρ, e) is
the pressure, ande is the internal energy per unit mass. The total energy is the sum of the internal energy and the
kinetic energy, i.e.,

E = ρe+
1

2
ρ(v2

1 + v2
2 + v2

3). (2)

An ideal gas also satisfies the equation of state

p = (γ − 1)ρe, where γ > 1. (3)

Consider a problem in a computational domainΩ with boundary∂Ω that has been divided into a collection ofNh

elements such that

Ω =
Nh
⋃

j=1

Ωj .

With the DGM, a weak formulation of (1) is constructed on a single elementΩj by multiplying (1) by a test
functionφ ∈ (L2(Ωj)

m, integrating the result onΩj , and using the divergence theorem to obtain

∂t(u,φ)Ωj
− (~F(u),∇ φ)Ωj

+ 〈Fn,φ〉∂Ωj
= 0, ∀φ ∈ (L2(Ωj))

m. (4)

TheL2 volume and surface inner products onΩj are defined as

(u,φ)Ωj
=

∫

Ωj

φT
uds, 〈u,φ〉∂Ωj

=

∫

∂Ωj

φT
udτ.

F
n is the normal flux which is defined asFn = ~F(u) ·~n, where~n is the unit outer normal vectorto∂Ωj . However,

with discontinuous basis,Fn is not defined on∂Ωj . In this situation, we use a numerical fluxFn(uj ,uk) that
depends on the solutionuj on Ωj anduk on the neighboring elementΩk sharing the portion of the common
boundary∂Ωjk. The numerical flux must be consistent, soFn(u,u) = ~F(u) · ~n. With such a numerical flux, the
DG formulation can be rewritten as

∂t(u,φ)Ωj
− (~F(u),∇φ)Ωj

+

nΩj
∑

k=1

〈Fn(uΩj
,uΩk

),φ〉∂Ωj
= 0 (5)

wherenΩj
is the number of faces of elementΩj . Only the normal traces have to be defined on∂Ωj and several

options are possible (see, e.g., [14] [15]). It is usual to define the trace as the solution of a Riemann problem across
∂Ωj . an exact Riemann solver is used to compute the numerical fluxes and a Barth limiter [16] is used to restrict
spurious oscillations when polynomial degreesp > 0 are used. The Barth limiter is applied on each element after
a new solution field is computed, so that the minimal and maximal value of the solution conservative variables in
one element are bounded by their mean values on neighboring elements.



3 Treating Interface

For our fixed mesh approach, the object’s surface is implicitly captured by the zero level of a level set function.
Therefore, special treament is needed to define boundary conditions that simulate the fluid-rigid object interaction.
We will talk about the level set method by which the interfaceis captured in Section 3.1, the Ghost Fluid idea to
implicitly capture the boundary conditions in Section 3.2.In Section 3.3, the detail of boundary treatment will be
discussed. in Section 3.4, we will talk about the force calculation on the rigid object induced by the fluid flow.

3.1 Level Set Method

The level set method was introduced by Osher and Sethian [17]for dynamic implicit surfaces. The basic idea
of the level set method is implicit capturing of an interfaceby using a smooth time-dependent function, the
level-set function, which represents the interface as the roots of this function. The interface motion satisfies a
time-dependent Eulerian initial value partial differential equation, and, therefore, the position of the interface with
respect to time can be updated by solving the appropriate differential equation.

In our problems, The level-set functionφ(x, t) is defined as a signed distance function in the whole computa-
tional domain at any timet. If we denote the boundary of the rigid body, i.e., the interface between the fluid and
the rigid body asB, the inside part of the rigid body asI, and the fluid asO, the level set functionφ(x, t) will
satisfy the following conditions at any timet

φ(x, t) = 0, for all (x) ∈ B,
φ(x, t) < 0, for all (x) ∈ I,
φ(x, t) > 0, for all (x) ∈ O.

(6)

Thus, the interface is captured for all time implicitly by locating the set for which functionφ vanishes. This
property is significant when the location of the interface ishard to express explicitly.

The governing equation of the level set advection is

∂φ

∂t
+ ~U · ▽φ = 0, (7)

where~U is the velocity of the level set advection, which is equal to the velocity of the interface propagation.

With the normalization|▽φ(x) = 1|, the normal to a level surface satisfies

~n(x, t) = ▽φ(x, t). (8)

We can calculate~n at a point which need not necessarily lie on the internal boundary because the level-set function
is defined on the whole computational domain and the normal function is constant along a trajectory perpendicular
to anyφ = constant surface. This is a great advantage for our calculations. It is also worth mentioning that we
do not have to define the level set function on the whole domain. Level set functions need only be defined within
a small region of the interface of the solid object and the fluid. This is important when it is hard to define a signed



distance function on the whole complex domain for a complex object.

We assume that the level set function can be expressed as an explicit function. For some problems, this may
not be true. A numerical approximation can be used in that case.

3.2 Ghost Fluid Method

Ghost Fluid Method (GFM) was first proposed by Fedkiw et al. [12] to avoid the possible oscillations at multi-
material interfaces. It is well known that under Eulerian schemes, large spurious oscillations may occur in the
pressure and velocity fields near the material interface with ordinary computational techniques. The main reason
for these non-physical oscillations is a change of the equation of state across the material interface. In [12], au-
thors introduced GFM for two-phase compressible flow in which ghost nodes are defined at every grid point in the
computational domain so that at every time moment, each gridnode contains two sets of conservative variables:
mass, momentum, and energy (or entropy) for the current fluidat this grid point, and ghost mass, ghost momen-
tum, and ghost energy (or entropy) for the other fluid. After the ghost values have been set for all grid points,
standard numerical schemes can be applied for each fluid separately. Therefore, instead of solving a two-phase
fluid flow problem, two separate one-phase fluid flow problems are solved at every time step. Then a valid solution
set for every grid point is chosen by some criteria and the invalid one is discarded. By doing this, oscillations at
multi-material interfaces are avoided without explicitlyusing interface jump conditions.

GFM not only gives a way to remove the non-physical oscillations near the interface of multi-materials, but also
provides an innovative way to handle problems involving multiphase flows. The existence of the multi-materials
interface actually introduce a boundary for each fluid, therefore proper boundary conditions should be set near
the interface for each fluid. By using GFM to define a ghost artificial fluid and to properly set the ghost values
for it, the boundary conditions can be induced automatically and implicitly. It will be looks like that no boundary
exists at all for each fluid flow. This is a big advantage because of the difficulty of applying the correct boundary
conditions on cut entities is avoided .

To apply GFM correctly, the information about interface of the multi-materials is required. The interface position
is used to set the proper ghost values and to discard the invalid values for every grid node in the computational
domain. Level set method has been used a lot and has been proved successfully for this purpose besides its own
advantages to track moving interface. By using the level setmethod, the multi-materials interface is represented
as the zero level of the level set function. The location of the interface is captured automatically by advance the
level set function to the next time step, therefore the interface does not need to be tracked explicitly. And the sign
of the level set function is used to distinguish the fluids. With the level set function to track the interface implicitly
and GFM to capture the boundary condition implicitly, the whole computational scheme becomes simple and easy
to implement. This holds true for even multi-dimension situations and for high-order time integration scheme,
particularly Runge-Kutta methods. In the work of this paper, GFM is also combined with level set method to be
benefit from those good properties.

When GFM was first introduced, it is for two-phase compressible flows problems with contact discontinuities
at the interface. Since then, it has been applied to a lot of problems, including multi-component compressible and
incompressible, viscous and inviscid flows as well as problems that couple fluid with deformable solid materials,
etc. In this paper, we extend GFM to problems involving the interaction of inviscid compressible flow and a rigid



object.

3.3 Setting the Conservative Variables for the Fluid

Due to the introduction of the level set in our DG method, the position of the surface of the object in the fluid
is represented by the zero level set. For different entitiesof the original Eulerian mesh, there are two different
possible situations according to their position with respect to the zero level set of the level set function. Case (i),
the entity is totally outside the zero level set. Case (ii), the entity is totally inside the zero level set or the entity
is cut by the zero level set. Figure 1 shows both two cases, where I represents the fluid-object interface. There,
entityΩ1 to Ω7 belong to case (ii) andΩ8 belongs to case (i). For all entities of case (i), the object in the fluid has
no direct effect on this entity, so no special operations areneeded. On the other hand, for all entities of case (ii),
a new boundary was actually produced and the proper fluid variable should be set for the ghost part of the entity
when using GFM to capture the correct boundary conditions; therefore, every entity of case (ii) is calledghost
entity. The level set enables us to locate those entities that need special treatment, even when we do not know the
position of the moving boundary in the entity. Actually, we also do not want to find it because it is complicated
and expensive to do so, especially for high order approximation and for high dimension case.

To treat the interface conditions correctly, it is important to understand the dynamics of the fluid and rigid body
motion. We can treat a rigid body moving in a fluid as a contact discontinuity because the fluid near the inter-
face will move with the velocity of the rigid body. The Rankine-Hugoniot jump conditions imply that both the
pressure and the normal velocity,

−→
V N =

−→
V · −→N , are continuous across the interface. Therefore, we must set the

values for theghost entityto enforce these two conditions. There are three kinds of state variables that need to be
set: velocity, density, energy (or pressure). Reference [12] discusses this for two-phase flow problems. We have
similar rules. Continuity should be satisfied across the interface for density, the tangential component of velocity
and pressure. At the same time, since the interface of the rigid body acts as a reflective wall boundary for the
fluid, a reflective constraint could capture the boundary condition. In the original work of [12] [13], where GFM
is designed and implemented for finite difference method on structured mesh grid. In that case, the approximated
solution of the problem is represented at grid points, and ghost values are set at every ghost grid point. After the
ghost values have been set, then finite difference scheme canbe applied directly to advance PDEs to next time
step. This is no longer true for our GFM under the Discontinuous Galerkin Finite Element Method(DGFEM). For
DGFEM, the approximated solution is represented at every mesh entity. Therefore, instead of setting ghost values
at every ghost grid point, ghost valued are set at everyghost entity. To set the ghost values for aghost entity,
every gauss point of the entity is first checked. If the level set function has negative value at a gauss point, namely
the gauss point is inside the rigid object, we call this gausspoint is aghost gauss pointof this ghost entity, and
the ghost values at this point need to be set. Otherwise, nothing need to be done for this point. For examples, in
Figure 1, allghost gauss pointsare marked as∗, all other gauss points are marked as·. To set the ghost values for
a ghost gauss pointPG inside the rigid body, we first find the reflective pointPR in the fluid with respect to the
interface and computeρR, ER, and~vR atPR. ThenρG,EG, ~vG at the ghost pointPG are setting as

ρG = ρR,

~vG = ~vT
R − ~vN

R + 2~UN
G ,

EG = ER − 1
2
ρR|~vR|2 + 1

2
ρR|~vG|2,

(9)

where~vT
R and~vN

R are the velocity components of the fluid atPR in the tangent and normal directions, respectively,
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Figure 1: Entity and zero Level Set Relationship

and~UN
G is the normal component of the velocity of the moving object at PG.

The equation of state is

E = ρe+
1

2
ρ|~V |2;

therefore, the constraint [p] = 0, where [ψ]: L2(R) → R is defined as the jump in any functionψ at positionx.
This is satisfied implicitly at the interface by setting the energy of the ghost fluid as above. Also, [~VN ]=0 because
the fluid near the rigid surface has a normal velocity component equal to~UN

G . Moreover, our choice of ghost
values gives a continuous density, energy and tangential velocity component at the interface.

After setting the ghost values for everyghost gauss pointof a ghost entity, the solution on this entity is re-
constructed byL2 projection by using the new setting values.L2 projection is a good corresponding choice to
the way of setting the ghost values because it only uses the values at the gauss points of the entity. And theL2

projection also keeps the conservation of mass, momentum, and energy.

In general, finding the reflective point is a problem, especially in the high-dimension case. However, since we
keep the level set functionφ(x) as a signed distance function, we can use its nice propertiesto overcome this
difficulty. For a given point~x1, the closest point on the interface can be approximated as

~x2 = ~x1 − φ(~x1)▽φ(~x1).



Similarly, the reflective point~x3 is
~x3 = ~x1 − 2φ(~x1)▽φ(~x1).

This approximation is straightforward even in the multi-dimensional case. This is a great advantage because we
can treat the one-, two- and three-dimensional cases with the same scheme and the numerical implementation is
simple and consistent for all cases.

It is possible that a reflective point does not belong to the computational domain of the problem. Then the
way to set ghost values at aghost pointwill fail because of not being able to find the mesh entity thatcontains this
reflective point, therefore can not get the conservative variable values at the point. For example, in Figure 2, the
reflective pointP2 of aghost gauss pointP1 falls outside of domainΩ. In this situation, the ghost values atP2 can
not be set directly. There are two possible ways to solve the difficulty. Before we talk about the details of how to
do it, Let’s give some notations.

Refer to Figure 2. LetL denote the line across pointP1 andP2. RecallΩ is the problem domain,Γ = ∂Ω
is the domain boundary. SinceP1 ∈ Ω andP2 /∈ Ω, we know

Pbdy = L ∩ Γ 6= ∅
Then we denote the close point toP1 in Pbdy by P3. ForP2, there exists a pointP4 which lies in the same part of
boundaryΓ as pointP3 and has the shortest distance toP2 from this piece of boundary. The reflective point ofP2

to the boundaryΓ is denoted byP5.

P1

P3

P2

ΓP4

P5

I
L

Figure 2: The situation for out of domain reflective point

Now we can describe the two possible ways to set the ghost values forP1.One simple way is to just use the values
atP3, instead of those atP2, to set the ghost values atP1 without considering the bounary conditions. This is a
relative easy way to realize. However, it is possible that relative large error will be introduced for some cases.

The Other way is to markP2 as a ghost point and try to set the ghost values atP2. After that, the ghost val-
ues atP1 are set by using the ghost values atP2. Setting the ghost values forP2 is depend on the boundary
conditions atP4. For example, if the boundary condition atP4 is assumed to be



• Transmitting boundary condition. The value ofP4 is used to set ghost values atP2 by just copying corre-
sponding values.

• External boundary condition. If the external boundary condition is already know atP2, then it can be applied
atP2 directly to get the ghost values atP2, otherwise, use the boundary values atP4 to set.

• Reflective boundary condition. Then pointP5 of P2 respect toP4 is used to set the ghost values atP2 by
applying reflective boundary principles. However,P5 may falls out of the computational domain or falls
into the rigid object part.

This is a more accurate way, however it is complicated and maybe time consuming for complex geometry.

To set the ghost values at aghost gauss pointPG, the conservative variable values at the corresponding reflective
pointPR are needed. This requires to find the mesh entity that containsPR. For a general mesh database, it means
a search to a linked list. Since this procedure is required for everyghost gauss pointof everyghost entity. It
will be very expensive for large mesh database and for high-order approximation. To improve the efficiency, a
dynamic octree data structure is constructed and used to search the mesh entities. The octree is a dynamic one,
therefore it will be suitable to our approach when combiningwith mesh adaptation procedure.

In the practical implementation, only those ghost entitieswithin a small distance to the surface of the rigid body,
i.e., the zero level set, need be considered. The bandwidth can be set to about 4-6 cells near the interface. This
is consistent with defining the level set function only in a small bandwidth near the surface of the rigid body. By
using this technique, the computation can be made efficient when the rigid body has a relatively large volume.

3.4 Force on the Rigid Object

When the movement of the rigid object is not prescribed, the flow has an effect on its movement. Therefore, the
force of the flow on the object must be computed. We first assumethat forces act on the centroid of the rigid
object, therefore, spin of the rigid object is ignored. Thenthe force on the rigid object is

∫

I

p · ~nds, (10)

wherep is the pressure andI is the interface.

Calculating (10) is not obvious because of the lack of an explicit expression of the surfaceI, which is only
implicitly represented as the zero level of level set functionφ, However, sinceφ has definition on the whole com-
putational domain, we can compute (10) indirectly by transfer the surface integral by a volume integral on the
domainΩ as

∫

I

p~nds =

∫

Ω

pδ(φ(x))~ndv, (11)

whereδ(x) is the Kronecker delta satisfying

∫ +∞

−∞

δ(x)g(x)dx = g(0) (12)



for any continuous functiong(x).

Let δ̂ be a smooth approximation ofδ(x) and consider
∫

I

p~nds ≈
∫

Ω

pδ̂(φ(x))~ndv. (13)

SinceΩ is the union ofNh elements

Ω =
Nh
⋃

j=1

Ωj ,

We have
∫

I

p~nds ≈
Nh
∑

j=1

∫

Ωj

pδ̂(φ(x))~ndv. (14)

One choice of̂δ is

δ̂(x) =

{

1
2ǫ

(1 + cosπx
ǫ

), if |x| < ǫ
0, if |x| > ǫ

, (15)

whereǫ is a small constant representing the bandwidth of the regionaround the interface.

With this choice ofδ̂ and the level set functionφ(x) as a signed distance function, the formula for the bound-
ary force is

∫

I

p~nds ≈
Nh
∑

j=1

∫

Ωj

1

2ǫ
(1 + cos

πφ

ǫ
)p▽φdv. (16)

Two other choices of the approximation functionδ̂ of functionδ are

δ̂(x) =
1√
2πσ

e−
x2

2σ2 (17)

and

δ̂(x) =

{

d(ǫ2 − x2)m, if |x| < ǫ
0, if |x| > ǫ

, (18)

whereσ, ǫ andm are free parameters to be set according to the problem at hand, andd depends onm. The basic
rule is that the approximation errors should be small compared to the errors in solving the PDEs. The Appendix
gives the details of the error estimation and control.

4 Examples and Results

In the numerical tests that follow, several aspects of the two approaches are considered, including different mo-
tions of the rigid body, the flexibility of the methods, and efficient implementation of the methods.



4.1 Translation of Rigid Body

Consider a uniform Mach 3 flow in a wind tunnel of unit width and4 units long. The tunnel is assumed to have
an infinite width in the direction orthogonal to the plane of the computation. The left end is an inflow boundary
and all gradients vanish at the right. Initially the wind tunnel is filled with an ideal gas withγ = 1.4, ρ = 1.0,
p = 1.0, and (v1, v2, v3) = (3

√
1.4/2, 0, 0). Gas with this density, pressure and velocity is continually fed from

the left-hand boundary. At the same time, a solid ball with radius 0.125 units is moving from right to left with
constant velocity3

√
1.4/2. Along the walls of the tunnel reflecting boundary conditions are applied. The density

field and velocity field at t = 0.1, 0.25, 0.5 and 1.6 are given inFigure 3. All calculations used a CFL=0.3.

Figure 3: Density field at t = 0.1, 0.25, 0.5, and 1.6 from top left to bottom right.

The results are qualitatively good and compare well with thecase of a fixed ball in a wind tunnel with the wind
having a speed corresponding to the sum of the speed ball and the speed of the wind.

4.2 Rotation of a Rigid Body

A rectangle of 2 units wide and 1 unit high is filled with fluid. At all four boundaries, reflective wall boundary
conditions are applied. Initially the rectangle is filled with an ideal gas withγ = 1.4, which everywhere has
ρ = 1.0, p = 1.0, and (v1, v2, v3) = (0, 0, 0). A rigid object centered at the origin rotates around its center in the
fluid in the clockwise direction. The density field at t = 0.05,0.1, 0.2 and 0.4 are shown in Figure 4.

The object rotates around its center with constant angular velocity. Since the absolute velocity at its ends is higher
than the velocity of other parts, shocks develop near two ends. The top left and top right pictures show the density
field of the fluid after the object rotates by an angle ofπ/2 andπ respectively. The bottom left picture shows the
shock is "broadcast" to the fluid and the bottom right pictureshows the interaction of shocks after reflection from
the walls.

4.3 A Example with Relative complex fluid Domain: Moving Square Object in a Tube

Consider a square object moving in a tube in they direction with velocityv2 = 330.076096 and Mach number
0.95. Initially, the fluid hasρ = 1.17478, p = 101300 and(v1, v2, v3) = (0, 0, 0). A transmission condition is
assumed for the top and bottom edges and wall condition for other surfaces. The topology of the fluid domain



Figure 4: Density field at t = 0.05, 0.1, 0.2, and 0.4 from top left to bottom right.

changes during the simulation. This is very difficult for mesh moving. However, our fixed mesh approach works
well.

The pressure field at timet = 0.25, 0.5, 0.7, 0.9 and 1.2 are shown in Figure 5.

Figure 5: Pressure field att = 0.25, 0.5, 0.7, 0.9 and 1.2 from left to right.

4.4 Adaptation Example

Combining DG and ghost fluid elements simplifies adaptivity.The rigid body has little influence on the adap-
tive procedure. As an example, consider the problem of section 5.1 with a coarser initial mesh using adaptive
h-refinement. We show the pressure field and the corresponding mesh att = 0.5 and 0.15 in the Figure 6. we see
that adaptive h-refinement is refining the mesh near the shockand at the fluid-solid interface. Because of the ghost
fluid method, adaptation is implemented inside of the rigid body. This is reasonable near the interface because of
the symmetry property near the interface and it is necessaryto capture the interface conditions correctly.



Figure 6: Pressure field (left) and corresponding mesh (right) at t = 0.5(top) and 1.5(bottom).

4.5 Comparison

We re-visit the example of the constant speed translation ofrigid ball. To verify the correctness of our fixed mesh
approach and compare it with conventional deformable mesh approaches, we solve the example by three ways.
First way just uses the fixed mesh approach of this paper; the second way uses an ALE moving mesh idea similar
to those work of Farhat [28] [29]; the third way avoids to solve the moving object problem, instead it tries to solve
a reverse problem, in which the rigid ball is assumed fixed andthe fluid moves with the relative sum speed of the
fluid and the rigid ball of the original problem. The results are compared with each other with density and the
density along the center line shown in Figure 7 at timet = 0.2.

We see that all three approaches give similar results. They capture the shock at almost the same position.
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Figure 7: Density field at t = 0.37 (top) and Density field alongthe center straight line(bottom): reverse prob-
lem(left), fixed mesh approach(middle), deformable mesh approach(right).



h ∆m
∆m

m

0.04 1.23 × 10−2 3.11 × 10−3

0.02 4.67 × 10−3 1.18 × 10−3

0.01 2.32 × 10−3 5.88 × 10−4

Table 1: Translation of Rigid Ball at t = 0.37

4.6 Conservation

We conduct some experiments concerning the conservation ofvariables. Conservation of the mass should still
hold if the corrected boundary condition is used at the interface. To simplify the process, we will apply the reflec-
tive wall conditions to all the computational boundaries for the experimental problems. Thus, neither inflow nor
outflow exists in the test problems.

For the constant speed translation example, we present results for att = 0.5 in Table 1.

In Table 1,h is the size of uniform mesh,m is the total mass in the domain at a given time.∆m is the absolute
error of the approximated mass and∆m

m
is the relative error of the mass. The conservation of the mass is verified

from both Tables because the error goes to zero when the mesh size goes to zero.

5 Conclusion

A novel approaches to solve fluid/rigid body interaction problems, fixed mesh approach, are considered from the-
oretical and numerical perspectives. Discontinuous Galerkin methods are used as the numerical method because
of its advantages in several aspects and characteristics ofour problems.

In this approach, we propose a new idea to solved fluid-rigid body interaction problems by a computationally
simple approach. By this new method, no mesh modification or mesh moving are needed. Instead, the mesh in
the computational domain can be fixed all the time. In our approach, level set technique and ghost fluid method
are used to catch and handle the problems corresponding to the interface between the fluid and solid object. This
method is efficient and it has wide-spread applicability to handle problems with complex movement or/and com-
plex geometry shape of the moving object. It is also a dimension free method with great advantage to implement
without difficulty in high dimension situation.
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Appendix

Approximation Functions of the Force on the Rigid Object and Corre-
sponding Error Estimation

Three approximation functions for the Kronecker delta function δ has been given in Section 3.4. Here the error
induced by each approximation will be discussed. The one-dimensional case will first be considered. Without



losing generality, we assume that the interface is atx = 0 and the level set functionφ(x) = x. For any functionf

Let

f0 =

∫ +∞

−∞

f(x)δ(x)dx, f̂0 =

∫ +∞

−∞

f(x)δ̂(x)dx.

The approximation̂δ(x) should have the property

∫ +∞

−∞

δ̂(x)dx = 1.

In our case, the pressurep is a piecewise polynomial and our calculation is on the element level. Therefore, we
can assume thatf(x) is a polynomial and write it as

f(x) =

n
∑

k=0

akx
k.

It is obvious thatf0 = f(0) = a0

Case (1): The approximation is

δ̂(x) =

{

1
2ǫ

(1 + cosπx
ǫ

), if |x| < ǫ
0, if |x| > ǫ .

We have
|f̂0 − f0| = | 1

2ǫ

∫ +ǫ

−ǫ
(1 + cosπφ

ǫ
)
∑n

k=0 akx
ndx− a0|

= | 1
2ǫ

∫ +ǫ

−ǫ

∑n
k=0 akx

ndx+ 1
2ǫ

∫ +ǫ

−ǫ
cosπφ

ǫ

∑n
k=0 akx

ndx

≤ | 1
2ǫ

∫

+ǫ
−ǫ

∑n
k=0 akx

ndx− a0| + | 1
2ǫ

∫

+ǫ
−ǫcos

πφ
ǫ

∑n
k=0 akx

ndx|.
By using partial integration to the second term of the above inequality, we have

|f̂0 − f0| = o(ǫ2).

Case (2): The approximation is

δ̂(x) =
1√
2πσ

e−
x2

2σ2 .

We have
|f̂0 − f0| = |

∫

+∞
−∞

1√
2πσ

e−
x2

2σ2
∑n

k=0 akx
ndx− a0|

= |
∫

+∞
−∞

1√
2πσ

e−
x2

2σ2
∑n

k=1 akx
ndx|

= o(σ2).

The deduction of the above result uses the following results:
Let

gn =

∫ +∞

−∞

xn

√
2πσ

e−
x2

2σ2 dx.



Then

gn =







1, for n = 0
0, for n = 1
(n− 1)σ2gn−2, for n ≥ 2 .

Case (3): The approximation function is

δ̂(x) =

{

0, if |x| > ǫ
d(ǫ2 − x2)p, if |x| ≤ ǫ .

hered is a constant and

d =
Γ(p+ 3/2)

ǫ2p+1
√
πΓ(p+ 1)

.

For this approximation function ofδ(x), it can also be verified that it is a positive function inCp−1
0 (R) and satisfies

( integration= 1). In this case, we have

|f̂0 − f0| = |
∫ +ǫ

−ǫ
d(ǫ2 − x2)p

∑n
k=0 akx

ndx− a0|
= |

∫ +ǫ

−ǫ
d(ǫ2 − x2)p

∑n
k=1 akx

ndx|
= o(ǫ2).

by using the fact that:
∫ +ǫ

−ǫ
xnd(ǫ2 − x2)pdx = cn

ǫnΓ(p+3/2)

Γ(p+ n+3

2
)

= o(ǫn).

cn is a constant only depend onn.

Now consider the higher dimensional case. The integral we want to find is
∫

I

fds =

∫

Ω

fδdΩ,

with I ∈ Rn−1 andΩ ∈ Rn.

With the approximation function̂δ(x), the integration is

I1 =

∫

Ω

f(x)δ̂(φ(x))dx, x ∈ Rn.

Noticing that the function̂δ(x) vanishes quickly away from the interfaceI. We can approximateI1 as

I2 =

∫

V

f(x)δ̂(φ(x))dx, x ∈ Rn.



hereV = I × [−ǫ, ǫ]

RewriteI2 as

I2 =

∫

I

∫ ǫ

−ǫ

f(x)δ̂(φ(x)).

and noticing that the projection of the polynomialf(x) on [−ǫ, ǫ] is also a polynomial.

Therefore, we still have the conclusion as in the 1D case because the internal integration is exactly what we
discussed in 1D case.


