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Introduction. The dynamics of polymer chains are
now generally very well understood in the pioneering
frameworks of the Rouse model for short chains, and
the reptation model for longer chains.1-5 While these
theories yield well-known expressions for the variation
of the diffusivity D and viscosity η with the chain length
N, an open question is the chain length at which one
crosses over from Rouse-like behavior to reptation. This
length, termed the entanglement length, Ne, is relatively
easy to estimate experimentally, but has been hard to
access in a simulation due to the fact that, up until
recently, there was no satisfactory definition of an
entanglement.6,7

In numerical studies, most estimates of the entangle-
ment length involve conducting simulations and exam-
ining dynamic quantities, such as the frequency de-
pendent storage modulus. Extensive work has been done
by Kremer and Grest8 to identify the onset of chain
entanglement, with somewhat mixed results. Examina-
tion of the chain length dependence of chain diffusion
yields a cross over from the Rouse scaling (N-1) to
reptation scaling (N-2) behavior in the vicinity of chains
of length 35. In contrast, estimates of storage modulus
from nonequilibrium molecular dynamics simulations
yield an entanglement chain length in the vicinity of
80.

We approach this problem with the tools of equilib-
rium molecular dynamics (MD).9 Equilibrium stress
fluctuations which result naturally from these simula-
tions directly provide estimates of the viscosity through
the Green-Kubo equation, as suggested by Smith et
al.10 The storage and loss modulus are also computed
from the stress autocorrelation function, and the hints
of a plateau are seen in the storage modulus. The
plateau is the strongest indication of onset of reptation
dynamics, and is seen for chain lengths of 80 and higher.
Estimates of the entanglement length Ne, provide a
number closer to 30, consistent with the first estimate
provided by Kremer and Grest.

Simulation Model and Methods. The MD simula-
tion employs a standard chain model. Interaction be-
tween nonbonded monomers are described by a shifted,
purely repulsive Lennard-Jones (LJ) potential: U(r) )
4ε[(σ/r)12 - (σ/r)6] + ε for r < 21/6σ, and U(r) ) 0 for r >
21/6σ. Adjacent bonded monomers interact via a stiff
FENE potential, in the form of VFENE ) - k(R0

2/2) ln(1

- (r/R0)2), which constrains the distance between adja-
cent monomers to about 1σ (we use the same param-
eters for the FENE potential as Grest and Kremer in
refs 5 and 8). We performed constant volume simula-
tions of monodisperse polymer melts of varying chain
lengths, and will focus our attention on the crossover
regime, specifically N ) 20, 40, 80 and 120, respectively.
In a typical simulation we use a total of 2400 monomers
embedded in the periodic simulation box, of size 14.1σ
in each direction, which corresponds to the reduced
segment density of F* ) 0.85. In a few simulations we
have doubled the number of monomers, and for the
longest chain system, N ) 120, this corresponds to
increasing the number of chains from 20 to 40. Since
the properties deduced from the simulation were inde-
pendent of system size even for these relatively small
systems, we conclude that our results only have minor
finite size effects. We will report all quantities in terms
of reduced units, which are defined at the end of the
paper.

We conduct MD simulations using a fifth order Gear
algorithm in the microcanonical ensemble with a δt )
0.001t* ensuring energy conservation to within 0.5%
over the whole constant energy simulation run. The
starting structures for our runs were constructed by
gradually squeezing semidilute solutions to a final
density of 0.85 over ∼10 million MD steps at the reduced
temperature, T* ) 1. These structures were further run
at constant temperature, for an additional 10 million
steps to obtain a starting configuration for the constant
energy run. After the structure preparation and equili-
bration, we followed with the constant energy simula-
tion for a minimum of 50 million MD steps for N ) 20,
up to 300 million MD steps for N ) 120. The reduced
temperature exhibited small (several percent) fluctua-
tions around unity since we did not couple our simula-
tions to a heat bath.

It is important to check our simulation results for
finite-size effects. Kremer and Grest suggest that for
these chain lengths a minimum number of 20 chains is
required to avoid such effects. Our systems contain 2400
monomers, i.e., 20 chains for N ) 120. In Table 1 below
we have tabulated various quantities like the end-to-
end vector and diffusivity, for all the chain lengths. In
particular, the diffusivity, D, changed from 0.0012 to
0.0011, when the system size was doubled from 2400
to 4800 monomers. Since D is typically the most
sensitive to finite size effects, and since these D values
closely track the results of Kremer and Grest,5 we
conclude that our system sizes are large enough.

To check for equilibration we use the autocorrela-
tion function of the end-to-end vector of the chains,4
〈rend(t)rend(0)〉/〈rend

2〉, where rend(t) denotes the end-to-end
distance vector at time t. A similar autocorrelation
function can also be defined for the root-mean-square
radius of gyration. Both of these autocorrelation func-
tions showed an exponential decay, from which the
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Table 1. a

N ) 20 N ) 40 N ) 80 N ) 120

〈Re
2〉 (σ2) 29.2 62.6 127.5 195.1

D (σ2τ-1) 0.02 0.0074 0.0023 0.0012
a Re is the average end-to-end vector magnitude. D is the

diffusivity.
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equilibration time of these properties is readily obtained.
Figure 1 shows that, as expected, the relaxation time
of the end-to-end distance vector increases with increas-
ing chain length. The trends from the end-to-end vector
and stress relaxation seem to be different for N ) 20,
but the two curves track each other for all longer chains.

Calculation of the zero shear rate viscosity using
the Green-Kubo formula requires the stress auto-
correlation function (acf). The stress acfs are plotted in
Figure 2. We calculate the stresses through the use of
the atomic virial defined as σij ) (1/V)[- nkBTδij +
∑R(rR

-1U′R(rR)rRirRj)]. where σij is the stress for atom pair
ij. The first term is the kinetic energy contribution while
the second term accounts for all bonded and nonbonded
interactions (R is thus a summation over all atom pairs
in the system). Comparison of our approach with exist-
ing literature (see Figure 3) suggests that our methodol-
ogy is accurate for the calculation of transport proper-
ties. The acfs of the three off-diagonal elements of the
stress tensor are expected to be equivalent due to the

isotropy of the system, and hence these are averaged
to improve their signal. Even after several hundred
million simulation steps, the resulting correlation func-
tions are found to be noisy. The most common procedure
for noise reduction in stochastic processes is averaging
over several independent data sets. However, we found
that beyond a certain threshold, additional averaging
does not reduce the noise. The signal at this point is
still very noisy, which indicates that the intrinsic noise
level in the system is very high. We suspect the noise
arises from numerical precision issues, at the small
magnitudes of the stress correlation function, especially
at long times. So a running average was performed. This
average for each time t, was defined as the average from
0.9t to 1.1t. This procedure preserves the fine features
of the correlation function at short times and at the
same time significantly reduces the noise at large times.
Additionally, since the data for the two different system
sizes for N ) 120 were found to superpose we addition-
ally averaged them to improve the signal-to-noise
concerns.

Results. In Figure 2 (inset) we see that the stress
acf has short time, oscillatory behavior. This is at-
tributed primarily to the rapid fluctuations of the stiff
bond potential. The long time behavior arises from the
Rouse like dynamics of the single chain and any chain-
chain interactions. In particular, the intermediate time
scale behavior of the stress acf is consistent with the
Rouse model scaling, t-1/2, while the long time decay is
exponential, with a time constant characterizing the
longest stress relaxation time in the system. It is clear
that the longest relaxation time from the stress auto-
correlation function (see Figure 1) follows the same
power law scaling with N as the end-to-end vector
relaxation time at least for N g 40. However, surpris-
ingly, the stress relaxation time is about an order of
magnitude smaller than the end-to-end distance relax-
ation time. This result may be a consequence of the fact
that the end-to-end acf only decays to zero when the
orientations trudecorrelate in space (i.e., both in mag-
nitude and orientation), while the stress correlation
function is related to only that fraction of stress that
has remained unrelaxed. We conclude that orientational
decorrelation may be too restrictive a requirement for
stress relaxation.

The viscosity is obtained using the Green-Kubo
relationship: η0 ) (V/kBT)∫0

+∞〈sxy(t)σxy(0)〉 dt. It is plot-
ted as a function of N in Figure 3. Our results are in
good agreement with the data from Kroger and Hess11

who performed NEMD simulations over a range of
strain rates, and extrapolated to the zero shear limit.
However, it should be noted that their system had a
density, F* ) 0.84, while the density of our system is F*
) 0.85. Note that the viscosity appears to vary linearly
with N for N e 100, while the N ) 120 simulation has
a distinctly larger viscosity. On this basis one might
argue that the first dynamic manifestations of entangle-
ment are only felt for N > 100: we shall discuss this
point further below.

The stress acf is also used to generate the complex,
frequency-dependent modulus of the melt. The relation
between the moduli and the stress acf is

Figure 1. Relaxation time from the stress relaxation and end-
to-end vector relaxation as a function of chain length.

Figure 2. Stress autocorrelation function of the total stress.
We stress that the intermediate time behavior of this function
corresponds to a t-1/2 scaling expected from the Rouse model
(dark line), while the long time decay is well described by an
exponential. Inset shows the initial part showing the short
time scale fluctuations arising from bond interactions.

Figure 3. Plot of viscosity as a function of chain length. The
line is a best fit to the viscosity for all N e 100.

G*(ω) ) G′(ω) + iG′′(ω) )

iω V
kBT∫0

+∞
e-iωt〈σxy(t)σxy(0)〉 dt (1)
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We plot G′(ω) and G′′(ω), the storage and loss modulus,
respectively, as a function of reduced frequency, ω*, in
Figure 4. Both moduli were obtained via a numerical
integration of the acfs, which have been smoothed by
the running average procedure described above. For N
g 80, we find that G′(ω) shows evidence for an entangle-
ment plateau, a result which is even clearer for the N
) 120. The plateau modulus for N ) 120 is found to be
GN

0 ) 0.03. The entanglement chain length can then be
estimated from the theory of rubber elasticity: Ne,p )
(FkBT/GN

0 ). We find Ne,p ) 28. This number is close to
the value of 32 obtained by Kremer and Grest from
diffusion coefficient and also the relaxation times of the
melts.5,8 However, NEMD simulations report a much
higher value for the Ne ≈ 80, but Kremer and Grest
suggest that these higher numbers might only be
obtained for much longer chains. Previous experimental
results of Richter,12 using neutron spin-echo studies
of the dynamic structure factor, report an Ne ) 30. The
precise definition of the entanglement length is thus
unresolved, and we argue that this matter can be
addressed only by conducting equilibrium simulations
on truly long chains.

Discussion. Two issues bear more discussion. First,
the two different estimates for the entanglement mo-
lecular weight obtained from our simulations and those
of Kremer and Grest need to be reconciled. Second, we
need to understand why the viscosity appears to vary
linearly with chain length even in the regime where the
chains are clearly longer than the entanglement thresh-
old.

To understand the second point, we decompose the
viscosity into three components: (i) the early time
oscillatory contribution; (ii) the Rouse contribution
where the stress relaxation varies inversely with the
square root of time; (iii) the exponential contribution
that governs the longest relaxation time of the stress

acf. Figure 5 shows these three contributions as a
function of chain length. We find that the contribution
from the first section is small and independent of N as
expected, because it comes from the bond vibrations and
is hence independent of chain length. The Rouse con-
tribution to the viscosity varies linearly with N, again,
as expected for short chains. But its percentage contri-
bution to the total viscosity decreases, since the contri-
bution from the longest relaxation time increases strongly
with N. Note that the Rouse contribution appears to
plateau above N ) 40, clearly signaling the addition of
extra mechanisms to the dynamics, beyond simple
Rouse. This is consistent with our estimate of an
entanglement length of 28, and also with the notion that
chain motion is only Rouse like between entanglement
points. The steep scaling of viscosity, beyond the linear
regime, clearly comes from the terminal drop-off region.
Even though the contribution from the longest relax-
ation time increases strongly with N, it only becomes
comparable to the Rouse contribution at a chain length
of N ) 80. Thus, even though the chains are com-
pletely out of the Rouse regime and in the entangled
region by that chain length, one still has to go to much
higher chain lengths before the viscosity scaling with
chain length is perceptibly different from the Rouse
scaling.

Next we focus on resolving the apparent discrepan-
cies between the different simulation estimates of
the entanglement chain length. First, our estimates of
the entanglement length are consistent with those
derived from the crossover of the diffusion scaling from
the Rouse regime to reptation reported previously by
Kremer and Grest.8 Since these estimates are derived
from relatively short chain lengths, it is reassuring that
they agree. In contrast, the simulations of Grest and
Kremer yield estimates for the elastic modulus of truly
long chains (N > 350) which are about a factor of 2-3
smaller than our plateau values. Consequently, Kremer
and Grest find larger values for the entanglement
length. While these results would suggest that a very
strong finite chain size effect is in play here, as has been
conjectured by Kremer and Grest,8 experimental results
suggest that the plateau modulus, if anything, increases
with increasing chain length. On this basis, we conjec-
ture that our estimate is an underestimate rather than
overestimate the value of the plateau for longer chains.13

We point to the fact that the Kremer-Grest estimates
were from simulations where the melt is initially
stretched by a large amount and then allowed to relax
to equilibrium. It is unclear to us if these results yield
the zero shear storage modulus corresponding to the
entanglement plateau or if these estimates correspond
to the shear thinning regime. If these simulations were

Figure 4. Storage and loss modulii as a function of reduced
frequency for different chain length melts.

Figure 5. Different contributions to the viscosity as discussed
in the text.
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in the shear thinning regime, as might be expected from
the simulation of Kroger and Hess,12 then the resulting
elastic plateau moduli would be too small, thus resulting
in high estimates of the entanglement chain length.
With all these points, it is appropriate to conclude that
the numerical value of entanglement length is only
known to certainty to within a factor of 2: more
conclusive equilibrium MD simulations for much longer
chains are necessary, and are currently being conducted,
to unequivocally resolve these issues.

Conclusions. We have conducted equilibrium MD
simulations to determine the stress relaxation of poly-
mer melts in the crossover regime between Rouse and
reptation, and find that the storage modulus and the
stress autocorrelation function appear to show signa-
tures consistent with reptation dynamics, especially for
chains longer than N ) 80. We estimate an entangle-
ment chain length of 28 from the value of the storage
modulus plateau, which is consistent with previous
estimates from equilibrium chain diffusion simulations
and experiment, but not with more recent nonequilib-
rium simulations of Kremer and Grest. The entangle-
ment length is thus only known to within a factor of 2.
A surprising result, which is potentially important for
the simulation of the mechanical properties of polymer
melts, is that the longest relaxation time for the stress
acf is several times smaller than those estimated from
acf of structural quantities, such as the end-to-end
distance acf.
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Nomenclature
length parameter: σ
well depth in LJ interaction:ε
reduced time: t* ) t/τ; τ ) σxm/ε
reduced temperature: T* ) (kBT/ε)
reduced density:F* ) 0.85 ) Fσ3

reduced viscosity:η* ) η/kBTσ-3τ
reduced stress correlation: 〈σ*xy(τ)σ*xy(0)〉 ) 〈σxy(τ)σxy(0)〉/

kBTσ-3

reduced plateau modulus: GN
0 ) GN/kBTσ-3

reduced frequency: ω* ) ωτ
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