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Comment on ‘‘Model for Heat Conduction in Nano-
fluids’’

In a recent Letter, Kumar et al. [1] introduced a model
for heat conduction in nanofluids (liquid suspensions of
nanosized particles) that was capable of describing experi-
mental results on thermal conductivity of nanofluids. The
model was built in two steps. In the first step, a static
problem (immobile particles) was considered in which
the total heat flux was a sum of heat conduction by the
liquid and particles. In the second step, the effective ther-
mal conductivity of nanoparticles was calculated in terms
of their Brownian motion and the kinetic theory of heat
flow. The authors claimed that the resulting formula for the
thermal conductivity, using parameters consistent with
reasonable physical assumptions, quantitatively described
the experimental data.

In this Comment we point out that the treatment of the
Brownian motion by the authors of the Letter requires an
unphysical assumption about the nanoparticle mean free
path and thus overestimates the contribution of Brownian
motion to heat flow by several orders of magnitude, thus
invalidating the physical justification for the proposed
model.

According to the kinetic theory of heat flow, in agree-
ment with Eq. (9) and the last paragraph on page 3 of the
Letter [1], the contribution of Brownian motion of nano-
particles to the thermal conductivity, �p, is given by [2]

�p �
1
3nl�cp; (1)

where n is the number particle density, l is the particle
mean free path, � is the average velocity, and cp is the heat
capacity per particle. In the estimate of �p the authors of
the Letter [1] use the velocity that is the ratio of the particle
size to time of the diffusive motion over which the particle
moves by its size. However, to reach high values of �p the
authors estimate the mean free path l to be of the order of
1 cm. This assumption is not only unphysical but also
inconsistent with the authors reasoning, since the elemen-
tary treatment of the diffusive motion leads to the diffusion
constant D being proportional to l�. For internal consis-
tency, with the authors’ definition of the velocity, the mean
free path should be equal to the particle size. Considering
that the particle size is �10 nm, the effective �p would be
6 orders of magnitude smaller than estimated by the au-
thors, thus effectively irrelevant for the heat transport
characteristics.

A similar conclusion is reached with a more rigorous
treatment of the problem not involving a scale-dependent
definition of velocity, and consequently the mean free path.
We start with the Langevin equation describing nanopar-
ticle motion [3]:

m
d�
dt
� �6��R�� ��t�: (2)

Equation (2) describes a particle of radius R and mass m
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moving in a fluid of viscosity � under the influence of the
Stokes drag force,�6��R�, and a stochastic force, ��t�. A
simple analysis of Eq. (2) leads to a characteristic relaxa-
tion time, � � m=6��R, over which the particle moves in
a deterministic manner. The mean free path is then

l � �� �
m�

6��R
; (3)

where the equipartition of energy gives thermal velocity
� �

���������������
3kT=m

p
, where k is Boltzmann’s constant. We note

this velocity is scale independent; this is in contrast to the
scale-dependent velocity used by Kumar et al. [1]. By
combining Eqs. (1) and (3) and the thermal velocity for-
mula, the thermal conductivity due to particle motion can
be expressed as

�p �
nkTcp
6��R

�
"ckT
6��R

: (4)

The last equality in Eq. (4) originates from the fact that the
heat capacity per particle cp is equal to the product of the
particle volume and the volumetric heat capacity, c; thus,
ncp is simply equal to "c, where " is the particle volume
fraction in the nanofluid.

We can estimate a typical value of �p, assuming a 1%
volume fraction of R � 5� 10�9 m gold nanoparticles in
water suspension at T � 300 K, and the volumetric heat
capacity of gold, c � 130 J=kg K� 19 300 kg=m3 �
2:5� 106 J=m3 K. With these values, Eq. (4) gives �p �
1:1� 10�6 W=m K. A similar estimate can be obtained
within the treatment by Kumar et al., but with consistent
values of the mean free path. This value is approximately 6
orders of magnitude smaller than the thermal conductivity
of pure water (�0:6 W=m K) and therefore has no observ-
able effects on thermal transport.
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