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Abstract

This paper presents a stabilized finite element method for the three dimensional computation of incompressible bub-

ble dynamics using a level set method. The interface between the two phases is resolved using the level set approach

developed by Sethian [Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999], Sussman

et al. [J. Comput. Phys. 114 (1994) 146], and Sussman et al. [J. Comput. Phys. 148 (1999) 81–124]. In this approach

the interface is represented as a zero level set of a smooth function. The streamline-upwind/Petrov–Galerkin method

was used to discretize the governing flow and level set equations. The continuum surface force (CSF) model proposed

by Brackbill et al. [J. Comput. Phys. 100 (1992) 335–354] was applied in order to account for surface tension effects. To

restrict the interface from moving while re-distancing, an improved re-distancing scheme proposed in the finite differ-

ence context [J. Comput. Phys. 148 (1999) 81–124] is adapted for finite element discretization. This enables us to accu-

rately compute the flows with large density and viscosity differences, as well as surface tension. The capability of the

resultant algorithm is demonstrated with two and three dimensional numerical examples of a single bubble rising

through a quiescent liquid, and two bubble coalescence.
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1. Introduction

The development of efficient algorithms to understand the hydrodynamics of multi-phase flow systems

is one of the most pressing engineering challenges facing chemical, petrochemical, nuclear, combustion

and biological industries today. Owing to the advances in numerical methods and as well as in computa-
tional hardware performance, numerical experiments have become increasingly popular in the study of

complex multi-fluid systems. There are various numerical methods that are available in literature to com-

pute multi-phase flows. They are often used to understand fundamental processes involving bubble

dynamics. In the study of bubble dynamics, the understanding of the behavior of a bubble rising through

a liquid is an important problem. Indeed this important two-phase flow phenomena has been extensively

studied.

The buoyancy driven motion of a bubble in a viscous liquid is normally accompanied by the deformation

of the bubble. Three dimensional studies of this phenomena become complex due to the effect of free
boundaries, significant density and viscosity differences and the effect of surface tension. Various experi-

mental studies have been performed to address this problem. Observations by Hartunian and Sears [5],

Walters and Davidson [6], Grace [7], and Bhaga and Weber [8] are important experimental studies in liter-

ature. Similarly, there exists various numerical techniques. Existing computational methods used to solve

multiphase flow problems, have their own advantages and disadvantages. In all multiphase numerical

methods, the essential ingredients are an efficient technique to solve the phasic flow fields, and an accurate

strategy to keep track of the interface. Various techniques are available for solving the governing partial

differential equations (PDEs) of basic flow, namely Finite Difference methods (FDM), Finite Volume meth-
ods (FVM), and Finite Element methods (FEM). We have chosen the finite element method for it�s ease of
treatment of complex geometries. Also the method can be readily improved to perform efficient computa-

tions with adaptive remeshing.

Over the last several decades, finite element methods have grown in popularity; particularly stabilized

finite element methods are vastly applied for fluid dynamics applications. Starting with the SUPG method

of Brooks and Hughes [9] through the work of Hughes et al. [10] on the Galerkin/least squares (GLS) method

and up to recent work on multi-scale methods of Hughes [11] and the related work on residual-free bubbles

by Russo [12] and Brezzi et al. [13], a number of stabilized FEM formulations have been proposed. A key
feature of stabilized methods is that they have been proven to be stable and to attain optimal convergence

rates with respect to the interpolation error (e.g, see Franca and Frey [14], and Hughes et al. [10]). In the

present work, a stabilized finite element method is employed for computing both flow, and interface

motion.

In multi-phase flow simulations, when it comes to the resolving of interface motion, two types of meth-

ods are employed, namely, interface tracking, or interface capturing methods [15]. The interface/front

tracking techniques use a deforming mesh or grid which conforms to the interface, or explicitly tracks

the interface (e.g. marker particles). Examples are front tracking methods [16], boundary integral methods
[17], arbitrary Lagrangian–Eulerian (ALE) methods [18], and deforming space-time finite element formu-

lations [19,20]. An advantage of front tracking methods is that they are accurate with comparatively lower

mesh resolution. Also, they are efficient for rigid moving boundaries. However, the algorithms have to be

modified to reconnect, or disconnect the interfaces separating the various fluids. In addition, significant re-

meshing is needed to prevent the so-called marker particles (which track the interface) from coming to-

gether at points of large curvature. On the other hand, in interface capturing methods, an auxiliary function

defined on the fixed domain describes the interface. The interface capturing methods are very robust with

wide range of applicability, however they require higher mesh resolution. Examples are volume of fluid
methods (VOF) [21], phase field methods, front capturing methods, and level set methods [1–3]. Volume

of fluid methods are based on solving the conservation law for the volume fraction and they have excellent

conservation properties within each phase. However, in VOF method it is difficult to calculate the curvature
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of the interface from the computed volume fractions. Although the level set method does not possess the

same inherent conservation properties as volume of fluid methods or front tracking techniques, the strength

of this method lies in it�s ability to efficiently represent an arbitrarily complex interface very accurately,

thereby allowing the computation of flows with surface tension and rapidly changing topology.

In the literature, Li et al. [22] studied the deformation of the three dimensional bubble using a modified
VOF method with finite difference discretization. Sussman et al. [2] presented a level set approach to study

the same problem, again using a finite difference approximation. Barth and Sethian [23] developed a finite

element Petrov–Galerkin scheme for the level set equations on triangulated domains. The present work ex-

tends the aforementioned works to present a stabilized three dimensional, finite element approach using the

level set method for solving two-phase incompressible bubbly flows.

The outline of this paper is as follows. We first present the governing equations in Section 2. Then we

introduce the level set method. Section 3 describes the finite element formulations for solving the incom-

pressible equations of motion, which are discretized in space using a stabilized finite element method to ob-
tain a nonlinear system of coupled ordinary differential equations. Additionally, in this section we present

the finite element solution technique for solving both the level set and the re-distancing equations, which

also includes a strategy to restrict the interface from moving during re-distancing. Section 4 presents the

results and discussion and Section 5 presents conclusions and suggestions for future work.
2. Governing equations

When both phases of the flow can be considered incompressible, and as well as immiscible, the governing

equations for the flow are the well known equations of motion represented as (see [24] for more detail on

notation):
qð _ui þ ujui;jÞ ¼ �p;i þ sij;j þ fi; ð1Þ

ui;i ¼ 0: ð2Þ

The density and the viscosity are simply convected by the fluid velocity. The variables are: the velocity ui,

the pressure p, the density q. Constitutive laws relate the stress tensor, sij, to the deviatoric portion of the

strain, Sd
ij ¼ Sij � 1

3
Skkdij, through a molecular viscosity, l. For an incompressible flow, from (2) the diver-

gence of the flow is zero, hence the stress tensor is simply the symmetric strain rate tensor. Hence
sij ¼ lðui;j þ uj;iÞ: ð3Þ

Finally f is a volumetric source term, such as gravity and the interfacial force resulting from the surface

tension. The representation of the surface tension surface force as a body force applied on the interface

is dealt with in Section 2.2 in detail. Density and viscosity are considered constant along the stream lines.

Further, we assume that the density and viscosity are constant in each phase and they vary only across the

interface. Hence, their variation could be governed by a single smooth function, namely the level set func-

tion, which is discussed in detail in Section 2.1.

2.1. The level set method

The level set approach represents the free surface as a zero level set of a smooth function, and simulta-

neously maintains a level set function, which by definition is the signed distance from the interface. Hence,

instead of explicitly tracking the interface, we implicitly ‘‘capture’’ the interface within a field which is inter-

polated with finite element basis functions like any other state variable (e.g, pressure, velocity, temperature).

As mentioned in [2], conventional conservative methods suffer with excessive numerical diffusion which
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smears the sharpness of the front. The level set function is typically a smooth (Lipschitz continuous) function,

denoted here as /, which eliminates the difficulties that conventional conservative schemes incur.

Probably the most important advantage of level set methods is that the interfaces can merge or break-up

with ease. Furthermore, the level set formulation generalizes easily to three dimensions. The actual location of

the interface is never computed, since the interface is embedded as a particular level set in a fixed domain.
In our formulations, a smooth level set function, /, is used to track the interface between the gas phase

and the liquid phase. The interface, C 0, is the zero level set of /:
C0 ¼ fxj/ðx; tÞ ¼ 0g: ð4Þ

The level set function is considered to be positive in the liquid phase and negative in the gas phase. Hence

we have,
/ðx; tÞ ¼
> 0 if x 2 the liquid

¼ 0 if x 2 C0

< 0 if x 2 the gas

8><>:
9>=>;: ð5Þ
Therefore, we initialize / to be the signed normal distance from the interface. Since the interface moves

with the fluid, the evolution of / is governed by a transport equation:
/;t þ ui/;i ¼ 0: ð6Þ
As discussed in Section 3.1, this additional advection equation for the level set scalar is solved in a manner

similar to the equations of motion. The physical properties of the fluid in each phase are calculated as a

function of / as:
qð/Þ ¼ q1Hð/Þ þ q2ð1� Hð/ÞÞ; ð7Þ

and similarly,
lð/Þ ¼ l1Hð/Þ þ l2ð1� Hð/ÞÞ; ð8Þ

where H(/) is the Heaviside function given by
Hð/Þ ¼

0 if / < 0

1

2
if / ¼ 0

1 if / > 0

8>>><>>>:
9>>>=>>>;: ð9Þ
2.1.1. Interface thickness

Use of the Heaviside function described above leads to poor results due to the assumed zero thickness of

the interface. Instead, we can use an alternative description of the interface as proposed by [2,16,3]. Numer-

ically, they substitute a smoothed Heaviside function H�(/) for the sharp Heaviside function H(/). The
smooth Heaviside function is defined as [3]:
H �ð/Þ ¼

0 if / < ��

1

2
1þ /

�
þ 1

p
sin

p/
�

� �� �
if j/j 6 �

1 if / > �

8>>><>>>:
9>>>=>>>;; ð10Þ
where / represents the signed normal distance to the interface. The 1
2
contour of the sharp Heaviside func-

tion H(/) creates jagged or staircase contours on any discrete mesh of spacing Dx. However, by giving the

interface a thickness of � = aDx, where a > 1, sharp changes across the interface are smoothed.
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2.1.2. Re-initialization or re-distancing of level sets

In the formulation describe above, the interface will have a uniform thickness so long as / is maintained

as a distance function. However, under the evolution of Eq. (6), the level sets that are adjacent to the zero

level set may move with velocities different than that of the zero level set. Therefore, the / distance field gets

distorted. Thus, one must re-initialize the level set function on regular intervals in order to rebuild/maintain
the signed distance function. There are several ways to accomplish this re-distancing. We have followed the

technique introduced by Sussman et al. [2]. Its virtue is that the level set function can be re-initialized with-

out explicitly finding the zero level set. The idea is to solve the partial differential equation
od
osd

¼ Sð/Þð1� jd ;ijÞ; ð11Þ
where
Sð/Þ ¼
�1 if / < 0

0 if / ¼ 0

1 if / > 0

8><>:
9>=>;; ð12Þ
d(x, 0) = /(x, t) and sd is a pseudo time. Given any initial data for /, solving this equation to steady state

provides the distance field / with the property j$/j = 1, since convergence occurs when the right hand side

of (11) is zero. Note that the sign function S(/) controls the flow of information. If / is negative, informa-

tion flows one way, and if / is positive, information flows the other way. The net effect is to re-distance the

level sets on either side of the zero level set. Furthermore, instead of the sharp sign function we use the

smooth sign function defined as
Sð/Þ ¼ 2ðH �ð/Þ � 1=2Þ: ð13Þ

The steady solutions of (11) are distance functions. In addition, since S(0) = 0, then d(x,sd) has the same

zero level set as /(x, t). Note, that this equation is relaxed in pseudo-time sd which is not related to the phys-

ical time t. Hence we only need to solve (11) for sd = 0 � � � � · v, because the level set function re-initialization

is required only near the interface. The definition of the v is obvious if we re-write the (11) as
od
osd

þ vid ;i ¼ Sð/Þ; ð14Þ
where
vi ¼ Sð/Þ d ;i

jd ;ij
: ð15Þ
Eq. (14) is a non-linear hyperbolic equation with the characteristics pointing away from the interface in the

direction of the normals (both directions). The strategy, which was adopted in the present study was to per-

form this re-distancing operation at the end of each time step.

2.2. Modeling of surface tension

For many fluid flow problems, interfacial motion induced by surface tension may play a significant role.
The surfaces tension force is a result of the uneven molecular forces of attraction experienced by fluid mole-

cules near the interface. Surface tension creates a microscopic, localized surface force that exerts itself in

both tangential and normal directions. We use the continuum approach proposed by Brackbill et al. [4]

in order to represent the surface tension force as a body force. This model represents surface tension as

a continuous three dimensional effect across an interface, rather than as a boundary value condition at

the interface. The resulting body force due to surface tension can be written as
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f ¼ � jð/ÞrH �ð/Þ
W

; ð16Þ
where j(/) is the curvature defined as
jð/Þ ¼ r � r/
jr/j

� �
ð17Þ
and W is the Weber number given by
W ¼ q1LU
2

r
: ð18Þ
The surface tension term and local inter-facial curvature are easily represented in terms of the level set func-

tion. As the level set function in our formulations is a signed distance from the interface, the curvature can

be accurately computed from the level set function. However, the calculation of curvature involves the sec-

ond order derivatives. Since we are using piecewise-linear basis functions, these second derivatives are zero

on the element interior. Hence, the piecewise-constant gradients are reconstructed to be continuous using
L2 projection, and then the second order derivatives are evaluated by differentiating the reconstructed gra-

dient. This procedure is described in detail by Jansen et al. [25]. The form of the surface tension force as a

body force used here is due to Chang et al. [26].
3. Finite element discretization of the incompressible equations of motion

To derive the finite element discretization of the weak form of the equations of motion (1) and (2), we
first introduce the discrete weight and solution function spaces. Let X � RN represent the closure of the

physical spatial domain (i.e. X [ C where C is the boundary) in N dimensions; where only N = 3 is consid-

ered here. The boundary is decomposed into portions with natural boundary conditions, Ch, and essential

boundary conditions, Cg, i.e., C = Cg [ Ch. In addition, H1(X) represents the usual Sobolev space of func-

tions with square-integrable values and derivatives on X.
Subsequently X is discretized into nel finite elements, Xe. With this, we can define the discrete trial solu-

tion and weight spaces for the semi-discrete formulation as:
Sk
h ¼ fvjvð�; tÞ 2 H 1ðXÞN ; t 2 ½0; T �; vjx2Xe

2 PkðXeÞN ; vð�; tÞ ¼ g on Cgg; ð19Þ

W k
h ¼ fwjwð�; tÞ 2 H 1ðXÞN ; t 2 ½0; T �;wjx2Xe

2 PkðXeÞN ;wð�; tÞ ¼ 0 on Cgg; ð20Þ

Pk
h ¼ fpjpð�; tÞ 2 H 1ðXÞ; t 2 ½0; T �; pjx2Xe

2 PkðXeÞg; ð21Þ
where PkðXeÞ is the space of all polynomials defined on Xe, complete to order k P 1. Let us emphasize that
the local approximation space, PkðXeÞ, is same for both the velocity and pressure variables. This is possible

due to the stabilized nature of the formulation to be introduced below. These spaces represent discrete sub-

spaces of the spaces in which the weak form is defined.

The stabilized formulation used in the present work is based on the formulation described by Taylor

et al. [27]. Given the spaces defined above, we first present the semi-discrete Galerkin finite element formu-

lation applied to the weak form of (1) as:

Find u 2 Sk
h and p 2 Pk

h such that
BGðwi; q; ui; pÞ ¼ 0; ð22Þ
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BGðwi; q; ui; pÞ ¼
Z
X
fwið _ui þ ujui;j � fiÞ þ wi;jð�pdij þ sijÞ � q;iuigdx

þ
Z
Ch

fwiðpdin � sinÞ þ qungds ð23Þ
for all w 2 W k
h and q 2 Pk

h. The boundary integral term arises from the integration by parts and is only

carried out over the portion of the domain without essential boundary conditions.

Since the Galerkin method is unstable for the equal-order interpolations given above, we add additional
stabilization terms: Find u 2 Sk

h and p 2 Pk
h such that,
Bðwi; q; ui; pÞ ¼ 0; ð24Þ

Bðwi; q; ui; pÞ ¼ BGðwi; q; ui; pÞ þ
Xnel
e¼1

Z
Xe

fsMðujwi;j þ q;iÞLi þ sCwi;iuj;jgdx

þ
Xnel
e¼1

Z
Xe

fwiu
D
jui;j þ �su

D
jwi;ju

D
kui;kgdx ð25Þ
for all w 2 W k
h and q 2 Pk

h. For simplicity, we have used Li to represent the residual of the ith momentum

equation,
Li ¼ _ui þ ujui;j þ p;i � sij;j � fi: ð26Þ
The second line in the stabilized formulation, (25), represents the typical stabilization added to the Galerkin

formulation for the incompressible set of equations (e.g. Franca and Frey [14]). The description of the indi-

vidual terms and the stabilization parameters for continuity and momentum are discussed in detail by

Whiting and Jansen [24]. The same reference also provides the remaining flow discretization details.
3.1. Finite element formulation for the level set method

Eqs. (6) and (11) can be represented by a single scalar advection equation of the form
h;t þ aih;i ¼ S: ð27Þ

In case of the level set equation, h = /, a = u and the forcing function S is zero. On the other hand, in the

case of re-distancing equation, h = d, a = v, and S is given by (13). This section presents the general finite

element formulation for the scalar advection equation, (27). The solution strategy for solving this equation

is similar to that used for the equations of motion, as discussed in Section 3.
Again, the spatial discretization is performed using the finite element method, and the finite element

approximation spaces, namely the solution and the weight function space, are as defined in Section 3. In

keeping with the approach of the finite element method described above, we write (6) in the residual form.

To derive the weak form of residual form, (6) is multiplied by a smooth weighting function w belonging to a

space of functions w 2 Wh (the scalar counterpart of the vector space defined in Section 3). The product is

then integrated over a spatial domain. As the equation is solved in the convective form, we do not integrate

by parts thus there are no boundary integrals. The resulting weak form is: find h 2 Hh (the scalar solution

space) such that,
Z
X
ðwh;t þ waih;i � wSÞdXþ

Xnel
e¼1

Z
Xe

fcLT
wsðh;t þ aih;i � SÞgdx ¼ 0 ð28Þ
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for all w 2 Wh. Here s is the stabilization parameter defined as
s ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=Dt2 þ c2uigijuj

q ; ð29Þ
where C, c1, and c2 are defined based on the one-dimensional, linear advection-diffusion equation using a

linear finite element basis and gij = nk,ink,j is the covariant metric tensor related to the mapping from global

to element coordinates. Note that by replacing cLT
by cLadv

(for the scalar equation cLadv
¼ ai o

oxi
), we ob-

tain the SUPG (Streamline Upwind Petrov–Galerkin) stabilization [9]. Next, the weight functions (w), the
solution variable (h), and it�s time derivative (h,t) are expanded in terms of linear basis functions. The inte-

grals are then evaluated using Gauss quadrature resulting in a system of ordinary differential equations

which can be written as
M _h ¼ NðhÞ. ð30Þ

The system of ODE�s (linear, when h = /, and non-linear when h = d) is converted to an algebraic system by
introducing a time integrator (generalized alpha for h = /, and backward Euler for h = d). Then, the two

coupled systems (flow and scalar) are iterated in a staggered manner until convergence is achieved. The

algorithm can be described as follows:

Staggered flow-level set solution:

• Three discrete equations

– Flow equations (25)

– Scalar advection equation (28)
– Scalar advection equation with forcing function to restore distance field (28)

loop over the number of time steps

loop over the nonlinear iteration loop
solve flow equations

advance the level sets

end of the loop over nonlinear iterations
relax the distance field

end of the loop over time steps
3.1.1. Redistancing—volume constraint

During the above described staggered iteration of solving flow equations and level set equation, the

interface is convected with the local flow speed, which, as mentioned before distorts the distance function.

As discussed earlier, this distance function is restored by the solution of (14) via a finite element discreti-
zation as discussed in Section 3.1. During this re-distancing step, additional care is taken to restrict the

interface from moving. To constrain the interface, we implemented the strategy proposed by Sussman

et al. [2] for the finite difference method. The principle behind the constraint calculations is to enforce

the volume occupied by each phase in an element to remain constant, when the re-distance step is applied.

The volume in each element can be defined as
V k ¼
Z
Xe
HðdkÞdXe; ð31Þ
where H is the Heaviside function as given by (9), and dk is the distance field at the kth iteration of redis-

tancing in pseudo time, that is at sk. Since, we want to impose the constraint that the volume should not

change, we should have Vk = V0. In other words we can write
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V k � V 0 � ðsk � s0Þ
Z
Xe

dH 0
�ðd0Þ
ds

dXe �
Z

Xe
H 0

�ðd0Þðdd � d0ÞdXe ¼ 0; ð32Þ
where,
H 0
�ðdÞ ¼

0 if jdj > �

1

2

1

�
þ 1

�
cos

pd
�

� �� �
if jdj 6 �

8><>:
9>=>;: ð33Þ
Hence, to minimize the volume variation, the current values of the level set function, denoted as ~d
k
, are

projected onto new values, denoted by dk, which satisfy:
Z
Xe
H 0

�ðd
0Þðdk � d0ÞdXe ¼ 0: ð34Þ
It is assumed that the new distance field dk has the form,
dk ¼ ~d
k þ kXeðsk � s0ÞH 0

�ðd0Þ; ð35Þ

where kXe is assumed to be constant in Xe, and is given by,
kXe ¼
�
Z
Xe
H 0

�ðd
0Þ

~d
k � d0

sk � s0

 !
dXe

Z
Xe
ðH 0

�ðd0ÞÞ2 dXe
: ð36Þ
In the current algorithm the integrals for estimating k in (36) are evaluated at the element level and are

projected onto the global nodes by L2 projection. The details of this projection is described in [25]. Then

(35) is solved to obtain the constrained re-distanced level set function. This step is applied after each re-dis-
tancing iteration of the level set field.
4. Numerical results and discussion

4.1. Simple advection of a cylindrical bubble

To demonstrate the ability of the algorithm, a simple test problem of advecting a cylindrical bubble through
a rectangular domain was considered. The liquid is flowing with a constant uniform velocity of 1 m/s in the ver-

tical direction. The buoyancy force is not activated.Hence the bubble should simply advect through the domain

with the velocity of the liquid. The domain and the initial position of the bubble are shown in Fig. 1. The dimen-

sions of the computational domain are�2.0 6 x 6 2.0,�2.0 6 y 6 8.0, and 0 6 z 6 1 and the mesh consists of

640 hexahedral elements (16 · 40 · 1). Periodic boundary conditions are applied in x- and z-directions. A uni-

form velocity of 1m/s is specified at the inlet and a constant pressure boundary condition is applied at the exit of

the domain. The bubble radius is 1.25 m, and the bubble location is such that the bottom of the bubble is posi-

tioned at�1.25 m. A uniform velocity of 1 m/s and zero pressure is imposed as an initial guess throughout the
domain. A step size of 0.25 s is used for the simulation, which corresponds to a Courant number of 1.0. The

motion of the bubble through the domain is shown in Fig. 2. Clearly the bubble is advected with the fluid velo-

city of 1 m/s and also the shape of the bubble is preserved along with the conservation of the volume of the bub-

ble. It should be noted that formulations that utilize a discontinuous scalar are unable to convect the interface

without any oscillations or distortions, on such a coarse mesh.



Fig. 1. The computational domain and bubble position at t = 0.
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4.2. Two dimensional simulation of buoyant bubble motion at a medium Reynolds number

The rise and the deformation of a two dimensional gas bubble in an otherwise stationary liquid con-

tained in a vertical, rectangular container is investigated using the level set method incorporating surface

tension forces.

The density of the water and air were taken to be, 1000 kg/m3, and 1.226 kg/m3, respectively, which gives

a density ratio of approximately 1000. The viscosity of liquid phase is taken as 3.5e�1 kg/ms, and the vis-
cosity of the air to be, 3.58e�3 kg/ms, so that the viscosity ratio between the two phases is approximately

100. The domain width is 0.1 m and the domain length is 0.5 m. The position of the bubble is shown in Fig.

3. The initial radius of the 2-D bubble was 2.5 cm. With the above parameters, if we define the Reynolds

number as, Re ¼ ð2RbÞ3=2
ffiffi
g

p
qc

lc
, and Bond Number as, Bo ¼ 4qcgR

2

r then Re = 100, and Bo = 200. Grace [7] pre-

sented a diagram showing the effect of fluid properties and the equivalent bubble diameter on the shape and

the terminal velocity of an isolated bubble. According to their experiments for the parameters chosen above

(Eótvos number, Eo = Bo = 200, Morton number, M = Bo3/Re4 = 0.08), formation of a skirted bubble was

reported. The mesh used in simulations consists of 100 · 500 · 1 elements, and a periodic boundary condi-

tion was imposed in z direction. On the side planes, the normal component of the velocity (x-directional
velocity) is specified as zero, and a zero traction was also imposed. A constant pressure boundary condition



Fig. 2. Bubble position at various time instants.
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was prescribed at the outflow, and a zero velocity was assigned on the bottom of the container. The initial

guess for pressure is that of the hydrostatic head.

When the bubble begins to rise, due to the buoyancy force acting on the bubble, the pressure gradient at

the lower surface of the bubble is higher than on the top surface. The vortex sheet which develops at the
surface has a rotation (Fig. 4) which induces the motion of a jet of water that pushes into bubble from

below. This phenomena is captured within the numerical simulations presented in Figs. 4 and 5. These

are the solutions at the time instances of t = 0.05 and t = 0.15, respectively. At this stage, the liquid jet does

not effect the liquid above the bubble. The velocity of the upper surface of the bubble in comparison to the

rest of the bubble is low resulting in bubble distortion. With time, the water jet from the bottom further

pushes the bubble, which, causes the lower interface to move more towards the upper cap of the bubble

(Fig. 6), forming a so-called skirted bubble. Eventually the liquid jet pinches off the bubble and shreds sa-

tellite bubbles as shown in Fig. 6. This result is consistent with the findings of Delnoij et al. [28] who also
observed the formation of skirted bubbles and shredding of satellite bubbles. Walter and Davidson [6] also

observed the detachment of two small bubbles at the lower extremities of the main bubble, during the rise of

two dimensional bubbles. The solutions obtained from this method are also in good agreement with the

Sussman et al. [2], who carried out simulations at the same Reynolds and Bond number. In the simulations

presented here, actual piercing of the bubble did not occur due to the relatively low Reynolds number. As seen

in Fig. 6 for a low Reynolds number, the liquid jet below the bubble is not strong enough to pierce causing

the bubble instead to rise as a cap. Due to the redistancing strategy adopted, the level sets remains a distance

function despite the change in bubble topology. The advantage of the levels sets is also demonstrated as the
shredded bubble�s motion was predicted without altering the algorithm. However, resolving the shredded

bubbles completely requires much higher resolution, thus the interest in future work on adaptivity.



Fig. 3. The bubble position at t = 0.
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4.3. Effect of fluid viscosity on buoyant spherical bubble motion

To further demonstrate the capability of the algorithm, a three-dimensional simulation of the motion

of the bubble was performed. Starting from a perfectly spherical 3-D bubble which was initially at rest,

buoyancy induced motion of the bubble is studied by tracking the interface using the level set method.

The fluid viscosity plays an important role in determining the involved bubble dynamics, thus manifesting

the change in the shape of the bubble. Hence the effect of Reynolds number on the bubble motion is an

interesting phenomena to study. We consider two cases, one with a low Reynolds number of 10, and the

other case with Re = 100.
For the three dimensional simulations presented in this section, the domain is a rectangular box with a

length of 6.48 m, and the width and thickness of the box is 2.07 m. The calculations are performed on a

50 · 150 · 50 hexahedral elements mesh. Initially the bubble of 0.5 m radius is positioned at 0.7 m from

the bottom of the box. The initial position of the bubble is shown in the Fig. 7(a). All of the surfaces

are modeled as slip walls. Initially the fluid is at rest, hence a zero velocity is imposed throughout the do-

main, where as pressure is initialized to that of the hydrostatic head.

4.3.1. Formation of a cap bubble at low Reynolds number

To investigate the viscous effects on the bubble motion, a Reynolds number of 10 and a Bond number of

5 is chosen. The ratio of density of the liquid to gas is 40, and the ratio of the viscosities is also chosen as 40.

From the parameters it is clear that this is a flow with high viscosity and surface tension. Again, the results



Fig. 4. Evolution of rising buoyant bubble at t = 0.05.

S. Nagrath et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4565–4587 4577
are in good agreement with the experimental findings of Grace [7]. For the chosen parameters (Eo = 5,

M = 0.0125), the experiments resulted in the formation of a spherical cap bubble.

Fig. 7 presents the bubble shape at different time instants obtained from simulations. Initially, the bubble

rises to form an elliptical shape bubble as shown in Fig. 7(b) (t = 0.0625 s) due to the pressure gradient be-

tween the upper and the lower surfaces of the bubble. The bottom view at the same time instant (Fig. 7(c))

shows the slight roll up of the lower surface. As the time progress, the liquid jet below the bubble pushesthe

lower surface further as shown in Fig. 7(d) and (e). Fig. 8(a) presents the contours of the vertical velocity at

time t = 1.25 s on a xy-plane through the center of the domain. As seen in the figure, the upper surface trav-
els faster than the lower and also, the bottom surface gets much flatter giving the bubble a spherical cap

shape 7. Further in time, as shown in Figs. 7(f,g) and 8(b), the upper surface deforms more into the cap,

as the tip of the top surface travels fast compared to the rest of the bubble. The jet from the bottom is

not strong enough, and hence gets decelerated due to the viscous and surface tension forces as shown in

Fig. 8(c). Also from the figure we can see that the jet speed is more diffused and hence making the bubble

to broaden slightly. The bubble then continues to rise as spherical cap bubble (Figs. 7(h), 8(d)).

4.3.2. Formation of a toroidal bubble at high Reynolds number

In this section, we consider a high Reynolds number of 100, and a Bond number of 50 (compared to

Section 4.3.1) to study how the bubble shape can be affected by varying (decreasing in this case) the viscous

and surface tension effects. Both the density and the viscosity ratios are chosen to be 80 (similar to the

parameters presented in [22]). The initial conditions are similar to that of in Section 4.3.1. Fig. 9 presents

the shape of the bubble at various time instants, and Fig. 10 display the bubble interface on a xy-plane cut

through the domain, along with the velocity vectors.

As described earlier the liquid jet from the bottom tries to push the lower surface of the bubble (Fig.

10(a)), which can also be seen in Fig. 10(b). The deformation of the bubble from sphere to elliptic cap



Fig. 6. Evolution of rising buoyant bubble at t = 0.3.

Fig. 5. Evolution of rising buoyant bubble at t = 0.15.
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Fig. 7. Rise of the spherical bubble at low Reynolds number: (a) t = 0, (b,c) t = 0.625, (d,e) t = 1.25, (f,g) t = 1.875, (h,i) t = 2.5.
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Fig. 8. Vertical velocity contours shown on the xy-plane (low Re): (a) t = 1.25, (b) t = 1.875, (c) t = 2.5, (d) t = 3.75.
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due to the jet can be seen in Fig. 9(b). As the time progress the jet gets much stronger, and rolls the bottom

interface further as seen in Figs. 9(d) and 10(c). Fig. 9(e) shows the further deformation of the bubble at

t = 0.5 s. At this instant of time the impinging jet from the bottom can be seen in Fig. 10(d). As the velocity

along the axis of the bubble is higher as compared to the rest, and also the top surface of the bubble trav-
eling faster, the bubble assumes a bell shape (Fig. 9(e)). We can see from the Fig. 9(e) that, although the

liquid pushes the bottom surface closer to the top, it does not yet pierce the top surface. Further in time

at t = 0.625 s, the jet finally pierces the top surface and detaches it from the rest of the bubble. This can

be seen in Fig. 9(f). The bottom view of the same presented in Fig. 9(g) shows clearly the part of the inter-

face detaching from the rest of the bubble. This can also be seen in the two dimensional view presented in

Fig. 10(e). Eventually at time t = 0.75 s, the jet penetrates the liquid bubble and lower surface pierces the

top surface completely, which can be seen clearly in Fig. 9(f). Thus the formation of a toroidal bubble is

complete as seen from the bottom view of the bubble in Fig. 9(f). The vorticity in the bubble surface is
transferred to circulation about this annular toroidal bubble (Fig. 10(e)). The observations made in this sec-

tion are in good agreement with the features of three dimensional bubbles reported from the experiments of

Walters et al. [6]. Similar numerical results were reported by Li et al. [22].

4.4. Three dimensional simulation of two bubble coalescence

To demonstrate the capability of the algorithm in computing interface singularities such as merging and

reconnection, we consider the interaction of two bubbles of the same density under the influence of a buoy-
ancy force. The domain is a unit cube, and the initial position of the bubbles is shown in Fig. 11. The upper

bubble is of radius 0.15 and is centered at (0.5, 0.6). The lower bubble is centered at (0.5, 0.35) with a radius

of 0.1. The non-dimensional fluid density inside the bubbles is 1.0, where as the fluid density outside the

bubbles is 10.0. The viscosity of the fluid inside the two bubbles is 0.00025, and the viscosity of the fluid

outside the bubbles is 0.0005. The effect of surface tension was not considered here. Initially the fluid is

at rest. Periodic boundary conditions are applied in all the three directions. A gravitational force is applied

in the vertically downward direction. The body force was adjusted such that the net momentum flux



Fig. 9. Rise of the spherical bubble at high Reynolds number: (a) t = 0; (b,c) t = 0.25, (d) t = 0.375, (e) t = 0.5, (f,g) t = 0.625, (h,i)

t = 0.75.
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Fig. 10. Change in the shape of the interface displayed on a xy-plane along with velocity vectors: (a) t = 0.125, (b) t = 0.25,

(c) t = 0.375, (d) t = 0.5, (e) t = 0.625, (f) t = 0.75.

Fig. 11. Initial position of the bubbles.
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through the boundaries of the domain was zero. In order to achieve this, an additional force term defined

by q0g, was subtracted from the original body force term, where q0 = aqb + (1�a)qf is the mean density, and

a ¼
PNb

i¼1pd
3
i =6L

3 is the void fraction, Nb is the number of bubbles (here Nb = 2) and di is the diameter of the

ith bubble, and L is the length of the cubic domain. This additional term prevents the uniform vertical

acceleration of the whole flow field and allows for periodic boundary conditions to be used. This term is
analogous to the pressure gradient generated by the base of the container, which balances the total grav-

itational force on the fluid. We have chosen a uniform mesh of 80 · 80 · 80 hexahedral elements.

As the bubbles are lighter than the surrounding fluid, they will rise with time. Fig. 12 shows the position

of the bubbles at t = 0.05, the dimensionless time. Fig. 13 displays the contours of speed at which the bub-

bles travel on a xy-plane cut through the center of the domain. We can see from the figure that the bottom

interface of the bubbles travels faster compared to the front. However the second bubble, which is in the

wake of the larger bubble, tries to move fast from the front too. As the time evolves, the upward moving jet

produced by the lower bubble not only affects the larger bubble transients, but also dictates the shape of the
smaller bubble as shown in the Fig. 14. This jet creates opposite signed vorticity fields in the wake of the

large bubble as shown in Fig. 15. From the pressure contours displayed on a xy-plane (at time t = 0.10), one

can observe that the lower pressure field behind the large bubble causes a strong flow on the bottom portion
Fig. 12. Position of the bubbles at t = 0.05.

Fig. 13. Contours of speed on a cut plane at t = 0.05.



Fig. 14. Position of the bubbles at t = 0.10.

Fig. 15. Position of the bubbles at t = 0.10 along with the contours of pressure on a cut plane.

Fig. 16. About to merge bubbles at t = 0.15.
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Fig. 17. A different view of the bubbles which are about to merge at t = 0.15.

Fig. 18. The interface of about to merge bubbles on a cut plane at t = 0.15.

Fig. 19. Merged bubbles at t = 0.22.

S. Nagrath et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4565–4587 4585
of the large bubble and as well affecting the front portion of the smaller bubble following the larger bubble.

One can see a similar wake at the bottom of the smaller bubble too. Figs. 14 and 15 clearly shows also the

narrowing of the smaller bubble in the process. At time t = 0.15 (Fig. 16), the front portion of the small

bubble almost catches up with the bottom portion of the larger bubble. Also the vorticity created at the

bottom of the larger bubble causes the bubble to roll up as shown in Fig. 17. The incipient merging of

the interfaces is seen more clearly in Fig. 18, in which a plane (xy) is cut through the domain. Fig. 19 shows

the merged bubbles at t = 0.27. Fig. 20 depicts the interfaces on a plane clearly showing the merged inter-

faces and also some of the entrained heavier fluid inside the incident new bubble.



Fig. 20. The interface of merged bubbles on a cut plane at t = 0.22.
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5. Conclusions

In summary, we have applied the stabilized finite element formulation along with the level set method to

evaluate two-phase incompressible flows in two and three dimensions. The formulation derived is purely

Eulerian, and no explicit tracking of the interface is required. The interface is readily obtained by locating
the zero level set of the level set field. The robustness of the method to compute the flows with the large

density and viscosity differences is demonstrated. The surfaces tension forces were also accounted for in

the simulations. The re-distancing strategy allows the distance field to be maintained and assures mass con-

servation. The two- and the three- dimensional results clearly show the ability of the method to handle the

bubble coalescence and breakup. The future work should focus on extracting the advantage of FEM by

evaluating two-phase flows in complex geometries with the an efficient adaptive meshing strategy. The sim-

ulations presented in Section 4.4 will certainly benefit from adaptive remeshing to resolve the merging inter-

faces more efficiently.
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