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Abstract

Here we investigate the roles of physical and numerical subgrid-scale modeling. The subgrid-scales are represented

by a physical large-eddy simulation model, namely the popular dynamic Smagorinsky model (or simply dynamic

model), as well as by a numerical model in the form of the well-known streamline upwind/Petrov–Galerkin stabilization

for finite element discretizations of advection–diffusion systems. The latter is not a physical model, as its purpose is to

provide sufficient algorithmic dissipation for a stable, consistent, and convergent numerical method. We study the inter-

action between the physical and numerical models by analyzing energy dissipation associated to the two. Based on this

study, a modification to the dynamic model is proposed as a way to discount the numerical method�s algorithmic dis-

sipation from the total subgrid-scale dissipation. The modified dynamic model is shown to be successful in simulations

of turbulent channel flow.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The classical Galerkin method for the incompressible Navier–Stokes equations is well-known to be

unstable in the advective dominated limit, as discussed in [3]. A second instability can occur for certain
interpolation combinations of the velocity and pressure which violate the so-called Babus̆ka–Brezzi
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condition. In Refs. [3,9] among others, streamline upwind/Petrov–Galerkin (SUPG) stabilization has been

shown to remedy these instabilities through the addition of numerical diffusion along streamlines. In [8] and

more recently in [4], the origins of such stabilized methods are brought to light, being interpreted as sub-

grid-scale (SGS) numerical models which account for the effect of small scales, unresolvable by the discre-

tization, on the resolvable large scales. More precisely, as discussed in [1], stabilization can be thought of as
the enrichment of the finite dimensional space underlying the discretization (which can only represent scales

larger than a certain size) through the addition of a higher order function, the so called residual-free bubble.

In large-eddy simulation (LES) of turbulent flows, a spatial filter is applied to the Navier–Stokes equa-

tions with the purpose of filtering out small scales and thereby allowing coarser discretizations to solve for

the large (resolved) scales governed by the filtered equations. The filtering operation splits a field into fil-

tered and residual components, and furthermore, in the case of the filtered Navier–Stokes equations, this

operation generates an unknown residual stress tensor reflecting the effect of the residual scales on the fil-

tered scales. In practice, the discretization (in our case the SUPG method) assumes the role of the spatial
filter, thus the residual component of the original field can be regarded as the subgrid component and the

residual stress can be regarded as the subgrid stress. The latter has traditionally been referred to as the SGS

stress. Given that the SGS stress is unknown, it must be represented through an SGS model. To that extent,

we will use the dynamic coefficient Smagorinsky model (dynamic model), developed in [5] and [15].

It is clear from the previous interpretations that although motivated by different needs, subgrid-scale

models in LES and stabilization operators in otherwise unstable classical Galerkin discretizations share

similar purposes. Both aim at representing the effect of unresolved small scales on resolved large scales

by introducing proper dissipative mechanisms. The phrase ‘‘proper dissipative mechanisms’’ deserves spe-
cial attention. In the case of stabilized methods, artificial energy dissipation is introduced for the purpose of

achieving a stable, consistent and convergent discretization, thereby making the stabilization operator

strictly grid dependent. In the case of LES, dissipation is introduced not to provide stability but to model

the cascading transfer of energy that occurs between large and small scales in a turbulent flow. As viewed in

[21] and later noted in [20], although the physical SGS model can be effected by numerical issues, in prin-

ciple it should be independent of the numerical method. The effectiveness of the physical model should be

based solely on how well it describes the residual stress. For example, the dynamic mixed model developed

in [29] and references within is well known to be superior to the classic dynamic model because the modeled
residual stress is better aligned with the true residual stress which can be measured through direct numerical

simulation.

There are differing viewpoints on the role of numerical dissipation in LES. The simplest is that grid spac-

ing should be chosen sufficiently small so that numerical dissipation is negligible compared to physical dis-

sipation. In the variational multi-scale approach to LES in [10], the roles of numerical and physical

dissipation are hypothesized. In the previous work, the substitution of numerical dissipation (applied to

the smallest resolvable scales) by physical dissipation is considered. The remark is made that physical dis-

sipation could be sufficient to stabilize the smaller resolvable scales, but artificial dissipation is still required
to stabilize the larger resolvable scales. The authors in [10] conjecture that ideally, artificial, numerical dis-

sipation should not greatly degrade or interfere with the behavior of the physical model. However, it is

noted that tuning of parameters associated to numerical dissipation might be required to produce the de-

sired energy transfer between the larger and smaller resolved scales. In principle, this should not be the case.

The opposite viewpoint, advocated by Boris et al. [2], is that no explicit physical SGS model is required if

an appropriate method providing sufficient, proper numerical dissipation is used. Boris et al. refer to this

approach as monotone integrated large-eddy simulation (MILES). In addition to the works cited by Boris

et al., other works using the MILES approach are [24,14,19]. The main advantage of the MILES approach
is that the effort required to develop physical SGS models is eliminated. However, physical modeling and

the numerics are inseparably intertwined. For a given LES, results depend on the numerical method and on

the grid used, as it is not possible to refine the grid to obtain grid-independent solutions. Refining the grid in
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search of grid-independence would lead to a DNS, no longer LES. Furthermore, not all numerical methods

are suited for the MILES approach. The SUPG method used here is not, as is shown in [26].

There have been some researchers that have tried to understand the behavior of the physical SGS

model in the presence of numerical dissipation. In Ref. [18], the effect of artificial dissipation on the

physical SGS model is investigated by tracking the dynamic model�s eddy viscosity when dissipative
and non-dissipative discretizations are used. The influence of the model increases when the non-dissipative

solver is used instead of the dissipative solver, suggesting that the model is robust enough to adjust for

numerical diffusion.

Given the unavoidable coupling between the physics and the numerics, in this work we explore the inter-

action between physical and numerical subgrid-scale models by tracking the physical model dissipation, as

well as our own definition of numerical dissipation due to SUPG stabilization. It is seen that for low Reyn-

olds number channel flow simulations on relatively coarse grids, which lead to numerical dissipation on the

same order but still smaller than physical model dissipation, numerical dissipation does play a role. It will
be shown that the model does not adjust well enough in the presence of changing numerical dissipation,

contrary to previous belief. To this end, we will introduce a correction to the model, which will serve essen-

tially as a coupling between the model and stabilization at the energy dissipation level. This coupling will

lead to a model independent of the amount of numerical subgrid-scale energy dissipation present in the

simulations performed here, as it should be in principle. To date, this is the first attempt at physical mode-

ling of the subgrid-scale stress taking into account the presence of numerical dissipation.
2. Mathematical preliminaries

2.1. The filtered incompressible Navier–Stokes equations

In LES, the large-scale quantities are resolved and the small-scale quantities are modeled. The large-scale

quantities are defined by a low-pass filtering operation given as
�f ðxÞ ¼
Z

G Dðx; yÞf ðyÞdy; ð1Þ
where G D is the filter kernel and the integration is extended over the entire domain. Filters of small support

with size on the order of D are used, thus, the previous integral is essentially a local weighted average of the

original function about the point y = x. The original function f(x) is decomposed into a resolved or filtered

component (�f ðxÞ) and a lost residual component characterized by scales on the order of the filter width D.

If the kernel G D is homogeneous, the filtering operation commutes with differentiation. Hence, applica-

tion of a homogeneous filter to the Navier–Stokes equations, renders the continuity and momentum equa-

tions (the latter in conservation form) as
�ui;i ¼ 0

�ui;t þ ð�ui�ujÞ;j ¼ �P ;i þ ðsm
ij � sijÞ;j;

ð2Þ
respectively, where �ui is the ith component of the filtered velocity, P is the filtered pressure divided by con-

stant density q, and sm
ij is the filtered viscous stress tensor given by
sm
ij ¼ mð�ui;j þ �uj;iÞ: ð3Þ
Here m = l/q is the kinematic viscosity, where l is the molecular viscosity. The summation convention

(implying a sum on repeated indices) is used in the previous expressions and will be used throughout this

work.
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In addition to the filtered viscous stress, the filtered equations also have a residual or SGS stress defined

as
sij ¼ uiuj � �ui�uj; ð4Þ
generated by the filtering operation and reflecting the effect of the filtered-out residual scales on the resolved
scales. The trace of the residual stress is absorbed into the filtered pressure and the deviatoric portion is

modeled.

Given a model for the SGS stress, the equations in (2) are solved for the resolved velocity and pressure.

In practice, the filtering operation applied to the original (unfiltered) Navier–Stokes equations is not ap-

plied before hand. It is defined by the discretization which serves as a filter because it can not resolve all

of the scales present in a turbulent flow, unless the grid is refined enough. This is precisely why the filter

with kernel G D, used to obtain the filtered equations, is often referred to as the grid filter.

2.2. The SGS dynamic model

In this work we focus on the dynamic formulation of the Smagorinsky eddy viscosity (mT) model [23].

The Smagorinsky model expresses the deviatoric part of the SGS stress as
sdij ¼ sij �
1

3
skkdij ¼ �2 ðCsDÞ2 j �S j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

eddy viscosity

Sij; ð5Þ
where D is the width of the grid filter, Cs the Smagorinsky constant, Sij ¼ ð�ui;j þ �uj;iÞ=2 the filtered strain-

rate tensor, and j S j¼ ð2SijSijÞ1=2
is its norm. In the formulation of [5] and [15], the model coefficient is com-

puted dynamically as
ðCsDÞ2 ¼ 1

2

hLijMiji
hMklMkli

; ð6Þ
where
Lij ¼ c�ui�uj � b�uib�uj; ð7Þ
and
Mij ¼ dj S j S ij � a j bS j bSij: ð8Þ
Application of a homogeneous low-pass test filter is denoted with an over-hat, b	. The angle brackets in (6)

denote averaging in spatial homogeneous directions as means of preventing instabilities due to potential

negative values of the model coefficient. Finally, a is a parameter denoting the filter width ratio, related

to the width of the test and grid filters. In our simulations, we compute this ratio based on the standard

deviation of the test filters used as a way to define the filter width. We take the filter width ratio as simply

the test filter width divided by the mesh size. Extensive discussions on the filter width ratio and how to com-

pute test filter widths are given in [27] and [16].
2.3. Resolved kinetic energy

To study the effect of the physical SGS dynamic model and its interaction with numerical dissipation,

dissipation due to the physical SGS stress is of importance. To that extent, we consider the transport equa-

tion for the resolved energy k ¼ �ui�ui=2, found by dotting the filtered momentum equation in (2) with the

velocity vector:
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_k þ ð�ujkÞ;j ¼ ð��ujP þ �uism
ij � �uisdijÞ;j � sm

ijSij þ sdijSij; ð9Þ
where P is the filtered pressure divided by density plus a term containing the trace of the SGS stress. The

divergence terms in the right hand side of (9) serve to re-distribute the resolved kinetic energy. The other

terms in the right hand side of (9) may represent a loss or gain of resolved kinetic energy. For example, if

the term sdijSij (the last term in (9)) is negative, the subgrid-scales remove energy from the resolved ones,

often referred to as forward scatter or dissipation. On the other hand, if this term is positive, the sub-

grid-scales give energy to the resolved ones, often referred to as backscatter. In the dynamic model consid-

ered here, the majority of instances the eddy viscosity is positive due to averaging of the numerator and

denominator in the model coefficient in (6), resulting in
sdijSij ¼ �2mT SijSij < 0; ð10Þ
thus only forward scatter or dissipation. In (10) we have used the fact that the trace-free residual stress ten-

sor is expressed through the Smagorinsky model as sdij ¼ �2mT Sij. The eddy viscosity mT is obtained dynam-

ically as mT ¼ ðCsDÞ2 j S j. Herein we refer to �2mT SijSij as the physical SGS energy dissipation, traditionally

referred to as simply SGS dissipation. This is a misnomer given that in some instances numerical dissipation

is also a type of SGS dissipation, such as is the case with the SUPG method.

2.4. Weak form—finite element discretization with the SUPG method

Next, we proceed with the stabilized finite element discretization of the weak form of the modeled, fil-

tered Navier–Stokes equations (the filtered continuity (first) equation in (2) and the filtered momentum

equation in (2)). First, we introduce the discrete weight and solution function spaces that are used. Let

X 
 RN represent the closure of the physical spatial domain, X [ C, in N dimensions; only N = 3 is consid-

ered. The boundary, C, is decomposed into portions with natural boundary conditions, Ch, and essential

boundary conditions, Cg, i.e., C = Cg [ Ch. In addition, H1(X) represents the usual Sobolev space of func-
tions with square-integrable values and derivatives on X (see Hughes [11]).

Subsequently X is discretized into nel finite elements, Xe, where Xe denotes the closure of finite element

e. With this, we can define the discrete trial solution and weight spaces for the semi-discrete formulation

as
Sp
h ¼ fv j vð	; tÞ 2 H 1ðXÞN ; t 2 ½0; T �; vjx2Xe

2 PpðXeÞN ; vð	; tÞ ¼ g on Cgg;

W p
h ¼ fw j wð	; tÞ 2 H 1ðXÞN ; t 2 ½0; T �;wjx2Xe

2 PpðXeÞN ;wð	; tÞ ¼ 0 on Cgg;

Pp
h ¼ fp j pð	; tÞ 2 H 1ðXÞ; t 2 ½0; T �; pjx2Xe

2 PpðXeÞg;

ð11Þ
where PpðXeÞ is the piecewise polynomial space, complete to order p, defined on Xe. In this work we will

perform simulations with piecewise tri-linear basis functions, restricting to p = 1. Let us emphasize that

the local approximation space, PpðXeÞ, is the same for both the velocity and pressure variables. This is pos-

sible due to the stabilized nature of the formulation to be introduced below. These spaces represent discrete

subspaces of the spaces in which the weak form is defined.
The stabilized formulation used in the present work is an alternative to that described in [25] and fur-

thermore used in [28] with great success. The authors in the previous two references work with the advective

form of the incompressible equations. Here we will work with the conservative form of these equations for

reasons to become apparent in the next sub-section.

The current weak formulation of the conservative form of the incompressible, modeled, filtered equa-

tions proceeds as follows. Given the spaces previously defined, we first present the semi-discrete Galerkin

finite element formulation applied to the weak form of the modeled, filtered equations as:
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Find u 2 Sp
h and P 2 Pp

h such that
BGðwi; q; ui; P Þ ¼ 0

BGðwi; q; ui; P Þ ¼
Z

X
fwi _ui þ wi;jð�uiuj � Pdij þ s�ijÞ � q;iuigdxþ

Z
Ch

fwiðuiun þ Pdin � s�inÞ þ qungds

ð12Þ

for all w 2 W p

h and q 2 Pp
h. Note that the stress s�ij is given as the viscous stress plus the modeled deviatoric

component of the residual stress:
s�ij ¼ sm
ij � sdij ¼ 2ðm þ mT ÞSij: ð13Þ
The bar notation denoting resolved variables ð�ui; PÞ has been omitted for simplicity. The boundary integral

term arises from the integration by parts and is only carried out over the portion of the domain without

essential boundary conditions. Since the Galerkin method is unstable for the equal-order interpolations

given above, we add additional stabilization terms which yields:

Find u 2 Sp
h and P 2 Pp

h such that
Bðwi; q; ui; P Þ ¼ 0

Bðwi; q; ui; P Þ ¼ BGðwi; q; ui; PÞ þ
Xnel
e¼1

Z
~Xe
fwi;jsMðujLi þ uiLjÞ þ q;isMLi þ sCwi;iuj;jgdx

ð14Þ
for all w 2 W p
h and q 2 Pp

h. Symbol eXe denotes element interiors, excluding their closure. We have used Li

to represent the residual of the ith momentum equation,
Li ¼ _ui þ ðuiujÞ;j þ P ;i � s�ij;j ð15Þ
The second line in the stabilized formulation, (14), represents streamline upwind/Petrov–Galerkin (SUPG)
stabilization added to the Galerkin formulation of the compressible equations in conservation variables in

the incompressible limit. As is shown in [6], this limit of the compressible equations in conservation vari-

ables (q,u,etot) under a change of variables to (p,u,T) is well-defined, leading to a conservative incompress-

ible formulation. Variables etot and T are total energy and temperature, respectively.

The stabilization parameters for continuity and momentum are defined as given in [25],
sM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c1=DtÞ2 þ uigijuj þ c2ðm þ mT Þ2gijgij

q ; ð16Þ

sC ¼ 1=sM
trðgijÞ

: ð17Þ
where c2 is obtained based on the one-dimensional, linear advection–diffusion equation using a linear finite
element basis and gij = nk,ink,j is the covariant metric tensor related to the mapping from global to element

coordinates. The constant c1 (associated to the temporal influence on the stabilization) is obtained by consid-

ering the local gradient in element space-time coordinate systems, as is done in [22]. However, for the purely

spatial coordinate system used in our semi-discrete formulation, this constant is not well-defined. In this work

we will study the dependence of simulation results on stabilization by varying c1. Specifically, we will use c1 as

a parameter with which we will control dissipation due to stabilization making it weaker or stronger.

2.5. Numerical dissipation

Of importance in this section will be the numerical dissipation due to the SUPG stabilization, presented

in the previous sub-section. Not much emphasis has been placed on this topic in past literature, and fur-



A.E. Tejada-Martı́nez, K.E. Jansen / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1225–1248 1231
thermore, this is the first time (to the best of our knowledge) that a dissipation due to stabilization has been

defined. Consider the filtered momentum equation in (2) where the term ½sm
ij � sdij�;j appears in the right hand

side. In terms of molecular and eddy viscosities, this term can be expressed as
½sm
ij � sdij�;j ¼ ½2mSij � ð�2mT SijÞ�;j: ð18Þ
In deriving the weak form of the filtered equations, the previous term is brought to the left hand side and

dotted by a weight function. The resulting term is integrated by parts resulting in a term of the form

wi;jf2mT Sijg in the integrand of the integral equation in (12). This can be seen by inserting s�ij in (13) into

the second line in (12). Note that in the Galerkin weak form in (12) the over-bar notation in ð�ui; PÞ has been

dropped for simplicity. The SUPG advection stabilization term of the integrand in (14) is of the form
wi;jfsSUPG

ij g, where
sSUPG
ij ¼ sMð�ujLi þ �uiLjÞ; ð19Þ
and Li is given in (15). Again, the over-bar notation has been dropped in (15). Thus, analogous to physical

SGS energy dissipation defined in Section 2.3 as �2mT SijSij, we define SUPG (numerical) dissipation as

�sSUPG
ij Sij. We would like to work with positive quantities, thus we denote
�SGS ¼ 2mT SijSij and �SUPG ¼ sSUPG
ij Sij ð20Þ
as physical SGS dissipation and SUPG dissipation, respectively. To summarize, the definition of SUPG dis-

sipation is motivated by looking at the Galerkin and SUPG terms of the weak formulation in (12) and (14),

respectively. After integration by parts is performed while deriving the weak form, the stress s�ij is multiplied

by the gradient of the weight function which leads it to appear in the same form as the SUPG tensor sSUPG
ij .

It is important to note that by considering the incompressible limit of the compressible stabilized formula-

tion (leading to an incompressible formulation in conservative form), as discussed earlier, we are led to a

symmetric SUPG tensor, a property also shared by s�ij. If we had considered SUPG stabilization for the
incompressible formulation in the advective form as is done in [25] and [28], our SUPG tensor and thereby

our SUPG dissipation would have been more complicated to define due to the presence of extra stabiliza-

tion terms.

A formal representation of numerical dissipation can be obtained by replacing wi with ui, taking ui as

zero over the entire boundary, and letting q be a constant in the weak form of the filtered equations in

(12) and (14). In that case we obtain an equation for the resolved kinetic energy:
Z
X
f _k þ ð�ujkÞ;jgdx ¼

Z
X
fð��ujP þ �uism

ij � �uisdijÞ;j � sm
ijSij þ sdijSijgdx

�
Xnel
n¼1

Z
~Xe
ðsSUPG

ij Sij þ sC�ui;i�uj;jÞdx: ð21Þ
In obtaining (21), we have integrated by parts the advection and pressure terms as well as the viscous and

SGS stress terms. The SUPG term was not integrated by parts, and has simply been re-expressed using the

fact that sSUPG
ij �ui;j ¼ sSUPG

ij Sij due to the symmetry of sSUPG
ij and the non-symmetry of �ui;j (i.e. �ui;j 6¼ �uj;i). No-

tice that the integrands in (21) are exactly the terms in (9) except for an additional elemental quantity due to

SUPG stabilization: sSUPG
ij Sij þ sC�ui;i�uj;j. The first term, sSUPG

ij Sij, is what earlier we denoted as SUPG dis-

sipation. More precisely, this is dissipation due to SUPG advection stabilization. The second term,

sC�ui;i�uj;j, is dissipation due to SUPG continuity stabilization. For the wall-bounded turbulence problems

studied here, this dissipation is negligible compared to the dissipation due to advection stabilization prima-
rily because the latter is proportional to both the streamwise velocity and the wall-normal gradient of the

streamwise velocity appearing in Sij:
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sSUPG
ij Sij ¼ sMð�ujLi þ �uiLjÞSij: ð22Þ
Regions far from walls have large freestream velocity while regions near walls have high wall-normal gra-
dients of the velocity. Dissipation due to continuity stabilization is proportional to neither of these two,

hence dissipation due to advection stabilization is dominant in all regions. In our computations we have

observed that dissipation due to advection stabilization is 100 times or more greater than dissipation

due to continuity stabilization, thus, the latter can be neglected from the overall SUPG dissipation. Herein

we will consider SUPG dissipation due to advection stabilization only (i.e. �SUPG ¼ sSUPG
ij Sij).

Furthermore, recalling that sdij ¼ �2mT Sij and inserting it into (21), we can denote 2mT SijSij as subgrid-

scale (SGS), physical dissipation as was done before. Substituting explicitly we see that (21) can be thought

of as an integral statement of (9) plus numerical dissipation due to stabilization, viz.
Z
X
f _k þ ð�ujkÞ;jgdx ¼

Z
X
fð��ujP þ �uism

ij � �uisdijÞ;j � �MOL � �SGSgdx�
Xnel
n¼1

Z
~Xe
�SUPG dx ð23Þ
where �MOL ¼ sm
ij Sij. Note that if we apply the divergence theorem we see that
Z

X
f _k þ �MOL þ �SGSgdxþ

Xnel
n¼1

Z
~Xe
�SUPG dxþ

Z
C
f�ujk þ �ujP þ �uism

ij � �uisdijgnj ds ¼ 0; ð24Þ
where nj is the jth scalar component of the unit normal vector to the boundary C. If we have zero velocity

boundary conditions on C then
Z
X
f _k þ �MOL þ �SGSgdxþ

Xnel
n¼1

Z
~Xe
�SUPG dx ¼ 0 ð25Þ
from which we observe the three mechanisms of resolved kinetic energy decay: molecular, modeled and
numerical. Most flows of interest do have some boundaries with non-zero velocities which provide a global

production mechanism to the resolved kinetic energy.
3. Numerical results

In this section we will present simulation results of turbulent channel flow between parallel plates using

the semi-discrete formulation previously introduced with piecewise tri-linear basis functions. Time integra-
tion is performed using the generalized-alpha method in [12].

The geometry of the problem, as sketched in Fig. 1, is composed of no-slip walls at y = ±h and perio-

dicity in the spanwise (z-) and streamwise (x-)directions. Thus, the spanwise and streamwise directions

are considered spatially homogeneous and the numerator and denominator in the dynamic model coeffi-

cient in (6) can be averaged over these directions. Most of the quantities presented throughout this work

will be averaged over these homogeneous directions as well as in time, given that the flow is steady (homo-

geneous) in the temporal mean.

Simulations with Reynolds numbers, Res, (based on the friction velocity, us, and the channel half-width,
h) at 180 and 395 were chosen for the purpose of having the benchmark direct numerical simulation results

in [13] and [17] for comparison. By Dean�s suggested correlation, as given in [13], Res = 180 corresponds to

a bulk Reynolds number, Re, based on the bulk velocity and channel half-width of 2800. Similarly,

Res = 395 corresponds to Re = 6800.

For the Res = 180 channel, Lx = 4ph and Lz = (4/3)ph. The domain is represented by a hexahedral grid

with 33 vertices in the streamwise (x-) and spanwise (z-)directions and 65 vertices in the direction normal to

the walls (the y-direction). For the Res = 395 channel, Lx = 2ph and Lz = ph. In this case, the hexahedral
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Fig. 1. Sketch of domain for channel flows.
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grid has 33 vertices in the streamwise direction, 49 vertices in the spanwise direction and 65 vertices in the

direction normal to the walls. For both channels, a stretching function is employed in the y-direction such

that the first vertex off the wall is set at Dy+ = usDy/m = 1 away from the wall, where y is non-dimensional-

ized by h, and m = 1/Re. The Res = 180 channel simulations were made with a constant time step at 0.1 and

the 395 channel simulations with a constant time step at 0.05. These time steps were chosen to satisfy the

Courant, Friedrichs, Lewy (CFL) condition and maintain temporal accuracy.

3.1. Weak and strong dynamic models

As discussed earlier, we aim to vary the strength of SUPG stabilization through the parameter associated

with the temporal portion of the intrinsic time scale sM. We also aim to vary the strength of the dynamic

model. To that extent, we change the width of the test filter used in the dynamic model computation.

Although we do not go into much detail on these test filters, it turns out that if the width of the test filter

is sufficiently large, the influence of the dynamic model away from the core turbulence, approaching the

walls, is weaker, as shown in [26]. Thus, the wider the test filter, the weaker the model. We use two

three-dimensional test filters referred to as the standard filter and as the wide filter. The standard filter is
obtained by approximating the generalized box filter (a filter that takes on the value of one over the volume

of the elements surrounding a given node for the very same elements and zero outside of this collection of

elements, details discussed in [27]) while the wide filter is obtained by approximating the generalized box

filter applied twice. The standard filter will be referred to as S1 and the wide filter as W1, given that both fil-

ters are obtained with one-point Gaussian quadrature approximation of the generalized box filter. The filter

width ratio parameter appearing in the dynamic model in (8) is taken as a = 3 when filter S1 is used and is

taken as a = 9 when filter W1 is used. A complete description of these filters and how to compute their

widths is given [27].

3.2. A modification to the dynamic model based on SUPG

In this section we will present simulation results with the wall-resolved channel flow at Rs = 180. Our

goal is to understand the behavior of the dynamic model (physical) SGS dissipation in the presence of

SUPG (numerical) dissipation and vice-versa. We begin by looking at Fig. 2, where we show the compo-

nents of the SUPG tensor, sSUPG
ij , averaged over spatially homogeneous directions and over time for simu-

lations with different combinations of SUPG stabilization and dynamic model. We present the four
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non-zero (in the mean) components of the SUPG tensor. Notice that sSUPG
11 and sSUPG

12 are dominant over
sSUPG

22 and sSUPG
33 . Although not shown, all components are symmetric about the channel centerline at

y/h = 0, except for sSUPG
12 , which is anti-symmetric.

The influence of the SUPG stabilization decreases as constant c1 is increased, as expected from looking

at the expression for sM in (16). We also change the strength of the dynamic model by changing the width of

the test filter. From Fig. 2, we see that by switching the dynamic model from strong to weak while leaving c1

unchanged, the peaks of the SUPG tensors increase in magnitude to account for lack of physical SGS en-

ergy dissipation. SUPG stabilization seems to be at least partially adjusting to the strength of the model.

The previous conclusions can be drawn as well from Fig. 3a, where we show SUPG dissipation in wall
units. Note that for the first five planes of vertices off the walls, SUPG dissipation is negative. In Fig. 3b

we see that the weaker model near the wall gives rise to smaller physical SGS dissipation in this region.

Of great importance, as seen in Fig. 3b, is that keeping the model fixed and changing the influence of

SUPG stabilization by varying c1 between 16 and 64, does not seem to effect physical SGS dissipation

by much. However, looking at Fig. 4, we see that actually there is some adjustment of the eddy viscosity

when keeping the model fixed and varying the SUPG strength. A strong SUPG gives rise to a lower eddy

viscosity. The reason for this can be explained by first recalling the eddy viscosity as
mT ¼ ðCsDÞ2 j S j: ð26Þ

A strong SUPG leads to a less energetic flow due to higher numerical dissipation. In turn, a less energetic

flow leads to lower values of the norm of the filtered strain-rate tensor (j S j), appearing in (26), thus a lower

eddy viscosity. However, this adjustment of the physical model to a stronger SUPG is not enough as
evinced by the time history of the force exerted by the flow on the channel walls, shown in Fig. 5a. In this

figure we see that increasing SUPG, slightly decreases the wall force. Although the physical SGS model
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weakens to account for the stronger SUPG stabilization, this adjustment is not enough to keep the mean

wall force the same between both simulations. The reason for this is that even though there is an adjustment

of the eddy viscosity through the filtered strain-rate tensor, there is hardly any adjustment at all by the

physical model coefficient ðCsDÞ2
, as seen in Fig. 6. A possible reason for the non-adjusting nature of

the physical model is that the model coefficient is computed based on sampling larger resolved components

of the flow than those believed to be affected by SUPG stabilization. Changing SUPG stabilization does not

greatly affect the larger resolved components used in computing the model coefficient, consequently leaving
it relatively unchanged.

As mentioned earlier, the wide filter W1, leads to lower values of the dynamic model coefficient, which

reflects through much higher wall forces due to a more energetic flow. This can be seen by comparing the
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solid curves in Fig. 5a and 5b. Here, SUPG is not able to adjust enough so as to keep the forces the same

between the two cases.

Here, we aim to modify the physical model such that at least when keeping the filter fixed and changing

the SUPG strength, the model can adjust enough to retain nearly the same mean wall force which, from
experience, is a global indicator of the total dissipation. If we presume the dynamic model to be capable

of predicting the correct level of dissipation then it makes sense to define a correction which ‘‘discounts’’
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the dissipation present in the numerical method. We propose to account for SUPG stabilization in the

physical SGS dynamic model at the energy dissipation level by setting the new, corrected physical SGS dis-

sipation to be
��SGS ¼ �SGS � �SUPG � 2mT SijSij � sSUPG
ij Sij: ð27Þ
The previous corrected physical SGS dissipation implies a corrected eddy viscosity (m�T ), thus a corrected

dynamic model coefficient ðCsDÞ�2
. The corrected eddy viscosity and model coefficient are related as
��SGS ¼ 2m�T SijSij ¼ 2ðCsDÞ�2 j S j SijSij; ð28Þ

where the first equality follows from our definition of physical SGS dissipation in (20), and the second

equality follows from the modeled eddy viscosity in (26). Recalling the corrected physical SGS dissipation

in (27) and making use of the fact that j Sj2 ¼ 2SijSij, we can solve for the corrected dynamic model coef-

ficient from (28) as
ðCsDÞ�2 ¼ ��SGS

j Sj3
¼

2mT SijSij � sSUPG
ij Sij

j Sj3
: ð29Þ
In terms of the original model coefficient, ðCsDÞ2
we have
ðCsDÞ�2 ¼ ��SGS

j Sj3
¼

ðCsDÞ2 j Sj3 � sSUPG
ij Sij

j Sj3
: ð30Þ
An alternate interpretation of this approach is obtained by dividing (30) by ðCsDÞ2
to obtain a ‘‘correction

factor’’, /, for ðCsDÞ2
(and thus mT), viz.
/ ¼ ðCsDÞ�2

ðCsDÞ2
¼ 1 �

sSUPG
ij Sij

ðCsDÞ2 j Sj3
¼ 1 � �SUPG

�SGS

: ð31Þ
For stability purposes, the numerator and denominator in (29) or (30) are averaged over spatially homo-

geneous directions of the flow, analogous to the averaging performed for the uncorrected, classical dynamic

model coefficient. In practice, if the spatially averaged SUPG dissipation is negative, such as is the case for

the first few planes off the walls, the SUPG correction is not made and the classical dynamic model is left

unmodified. The corrected eddy viscosity is obtained as
m�T ¼ ðCsDÞ�2 j S j: ð32Þ

In view of this corrected eddy viscosity, the reader might be led to think that we are changing the partial

differential equations we are solving to account for the numerical method. However, we note that by mod-

ifying the eddy viscosity, we are not changing the partial differential equations in ways different than any
other model change/choice would. We are simply modifying the classical model approximating the subgrid-

scale (residual) stress present in the filtered Navier–Stokes equations. There are different reasons for chang-

ing or modifying the model approximating the subgrid-scale stress. Historically, changes or modifications

to the Smagorinsky model have been made to better account for the physics of the turbulence. Here we

have proposed a modification to better account for the numerical aspect of the solution, insuring that

the aggregate behavior is more faithfully modeled.

Furthermore, our modification to the eddy viscosity of the dynamic model retains the residual structure

of the equations because it is strictly dependent on the amount of SUPG stabilization. As the numerical
solution becomes more accurate, SUPG stabilization vanishes; consequently, our modification vanishes

as well. The corrected model coefficient in (29) leading to the corrected eddy viscosity in (32) is motivated

from the result that the uncorrected dynamic model does not seem to be aware of numerical dissipation,
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mostly due to an unaffected model coefficient. In the case were �SUPG � �SGS, the correction to the SGS

physical dissipation becomes negligible (which can be seen by inspecting (31)), essentially leading to the

usual dynamic model. However, if these two dissipations are of the same order, the modification has a

stronger impact. Regardless of the difference between physical SGS and numerical SUPG dissipations,

the total subgrid dissipation will always be due to the physical SGS model alone and not due to SUPG since
total subgrid dissipation ¼ ��SGS þ �SUPG ¼ �SGS: ð33Þ

This can be seen by substituting ��SGS given by the first equality in (27) into (33). Hence, as a result of the

modification in (27), SUPG stabilization is used for stabilization purposes only. This is a desirable feature

since in principle, numerical dissipation should not interfere with subgrid dissipation meant to be provided

by the physical SGS model only.

Other ways of accounting for the presence of SUPG stabilization can be studied. For example, one may

consider the SUPG tensor sSUPG
ij as a true (physical) stress and include it as an extra SGS stress in the der-

ivation of the dynamic model. However, from a physical point of view this is not appropriate because the

components of sSUPG
ij do not behave like those of a true (physical) stress. For example, the components of

sSUPG
ij change sign throughout the lower part of the channel (see Fig. 2), uncharacteristic of a true stress.

Furthermore, it is also worth pointing out that many researchers have tested the Smagorinsky model using

direct numerical simulation databases (see Ref. [7] and references within). All have indicated that the model

does not possess high correlation with the exact SGS stress, but possesses high correlation with the diver-

gence of the exact SGS stress and an even much better correlation with the exact SGS energy dissipation.

This may suggest one reason why it is more appropriate to account for SUPG stabilization based on energy
dissipation rather than on stress.
4. Turbulent channel LES with the SUPG-modified dynamic model

In the up-coming sub-sections we will see the effect of the corrected or modified dynamic model coeffi-

cient in (30) on simulation results of wall-resolved turbulent channel flow. Specifically, we will study the

effect of SUPG correction in three cases distinguished by the difference between SUPG and SGS dissipa-
tion. In the first case, we will study SUPG correction in the Res = 180 channel with the dynamic models

using filter S1. In the second case we perform simulations of the Res = 180 with the models using filter

W1. In the second case, with filter W1, the difference between peak SGS dissipation and SUPG dissipation

is less than in first case with filter S1. In the third case, we perform simulations of an Res = 395 channel flow

with dynamic models using filter S1. For this case the peak difference in SGS and SUPG dissipations is

slightly greater than in the first case. It will be seen than when the difference between peak SGS and SUPG

dissipations is low, the model correction introduced in (27) can play an important role.

4.1. Channel flow at Res = 180 with strong model

Here we study cases in the channel at Res = 180 for which the corrected and non-corrected dynamic

models are computed using filter S1 under different strengths of the SUPG stabilization. We begin by look-

ing at Fig. 7. Comparing the curves with c1 = 64, we see that when SUPG correction is employed, the mag-

nitude of the components of the SUPG tensor are higher due to the reduction of the dynamic model

coefficient. In other words, the magnitude of the components of the SUPG tensor increase due to a more

energetic flow resulting from a lower eddy viscosity given by a corrected dynamic model. This is more
noticeable in the case of strong SUPG dissipation (when c1 = 16). Furthermore, the adjustment of the

model due to a change in SUPG strength is much more pronounced as seen in the plots of SGS energy dis-

sipations and viscosities in Figs. 8b and 9, respectively.
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As expected, the SUPG correction introduces lesser changes in the cases for which SUPG is weak cor-

responding to c1 = 64. The reason for this is that when c1 = 64, �SUPG is much smaller than when c1 = 16,

hence it does not affect ��SUPG in (27) as much. This can be clearly seen by comparing mean wall forces (Fig.

10) and SGS dissipations (Fig. 8b) in the corrected and uncorrected model cases under weak SUPG.

In Fig. 10 we plot time histories of the forces on the channel walls with and without SUPG correction.

Notice that when the dynamic model does not have SUPG correction, corresponding to Fig. 10a, the peaks
and troughs of the force recorded with c1 = 16 are lower than those of the force with c1 = 64. The relative

difference between the two mean forces, defined as (fhigh � flow)/flow, is 3%. In this case, as c1 goes from 16 to

64, SUPG dissipation decreases while SGS dissipation remains nominally the same, giving rise to a more

energetic flow, and consequently a higher wall force. When the dynamic model does have SUPG correction,

corresponding to Fig. 10b, the model adjusts to the change in SUPG stabilization, giving rise to more sim-

ilar force histories for which the relative mean difference is 1%.

4.2. Channel flow at Res = 180 with weak model

In this sub-section we study cases in the channel at Res = 180 for which the corrected and non-corrected

dynamic model are computed using wide filter W1 under different strengths of the SUPG stabilization.

Looking at Fig. 11 we see that once again the magnitude of the components of the SUPG tensor increase

due to a more energetic flow resulting from a lower eddy viscosity given by a corrected dynamic model. This

is more noticeable in the case of strong SUPG dissipation (when c1 = 16). Furthermore, with SUPG cor-

rection the adjustment of the model due to a change in SUPG strength is greater as seen in the plots of

SGS energy dissipations and viscosities in Figs. 12b and 13, respectively. Similar to the case presented in
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the previous sub-section, the SUPG correction introduces lesser changes in the cases for which SUPG is

weak corresponding to c1 = 64.

In Fig. 14 we plot wall force histories for when the model is corrected and uncorrected. Once again, the
uncorrected model leads to a lower mean force when the SUPG stabilization is increased. On the other

hand, the corrected model keeps the mean wall force constant under changes of SUPG strength. Prior

to SUPG correction, the relative mean difference in the forces is 6 percent, and after SUPG correction

the difference is negligible.
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It is important to note that for the cases considered in this sub-section that have strong SUPG stabili-

zation, the peak SGS dissipation is approximately two times greater than the peak SUPG dissipation. In the

previous sub-section, for the case of strong stabilization, the peak SGS dissipation is approximately five

times greater than the peak SUPG dissipation. In the scenario of relatively small difference between the

strengths of SGS and SUPG dissipations, the dynamic model correction is seen to have a greater impact

on the results than in cases when the maximum difference between SGS and SUPG dissipations is greater.

This can be seen by comparing the mean wall force between the corrected and uncorrected models under

high difference between maximum SGS and SUPG dissipations (Fig. 10) and under low difference between
these two (Fig. 14). In Fig. 10, the difference in the force histories caused by changing the SUPG strength is

less pronounced than in Fig. 14. Thus, having a corrected dynamic model proves to be more significant in

cases were the SGS and the SUPG dissipations are of comparable size.

Next, in Figs. 15–17 we compare mean streamwise velocity, root-mean-square (rms) of velocity fluctu-

ations and Reynolds stress between strong and weak dynamic models with and without SUPG correction.

For all cases SUPG dissipation is strong at c1 = 16. In the case of the weak dynamic model, which uses filter

W1, the SUPG correction introduces greater changes, especially in terms of mean streamwise velocity and

Reynolds stress component hu01u02i. This is due to the small difference between SGS and SUPG energy dis-
sipation. From these figures we can clearly say that the dynamic model with SUPG correction using test

filter W1 is the top performer, which can be directly attributed to its better approximation of the mean wall

force.

4.3. Channel flow at Res = 395 with strong model

As the Reynolds number increases, more is required from the SGS and the SUPG models. In this section

we consider turbulent channel flow at Res = 395 with the dynamic model using filter S1. By Dean�s suggested
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correlation, as given in [13], Res = 395 corresponds to a bulk Reynolds number, Re, based on the bulk veloc-
ity and channel half-width of 6800. Referring back to Fig. 1c, for this problem Lx = 2ph and Lz = ph. Here,

the domain is split by 33 vertices in the streamwise direction, 49 vertices in the spanwise direction and 65

vertices in the direction normal to the walls. Similar to the wall-resolved channel flow at Res = 180, a hyper-
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Fig. 14. (a) Wall forces without SUPG correction on the top and (b) wall forces with SUPG correction on the bottom. In all cases the

model was computed with filter W1. (—): c1 = 16; (- - -): c1 = 64.
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bolic stretching function is employed in the y-direction such that the first vertex off the wall is set at a distance

Dy+ = usD y/m = 1 away from the wall, where y is non-dimensionalized by h, and m = 1/Re.
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rms of fluctuations in the DNS in [13].
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Due to the more energetic nature of this flow compared to the flow at Res = 180, the dynamic model is

expected to cause stronger SGS dissipations. SUPG dissipation is also greater in the current flow compared

to the Res = 180 case. With an uncorrected model, the maximum SGS dissipation is approximately five and

one-half times greater than then maximum SUPG dissipation. This difference is slightly greater than that
studied in sub-section 6.3.1, in which the factor was approximately five. Given previous results, one would

expect for the corrected dynamic model to impact results less than it did in earlier simulations.
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In Figs. 18 and 19, we plot the SUPG tensor and dissipations due to SGS and SUPG. Looking at the
SGS dissipation, the corrected dynamic model does not adjust as much as in earlier cases. This is further

evinced by looking at the mean forces in Fig. 20. As seen in this figure, the mean forces in the uncorrected

model cases do not differ by much (especially in the last third of the simulations) as the strength of SUPG

stabilization is changed. Over the last third of the simulations, the mean forces differ by less than 2 percent.

The SUPG corrected dynamic model brings them even closer.

The same trends observed in the Res = 180 channel simulations were observed for the Res = 395 chan-

nel simulations in terms of mean velocity, root mean square velocity, and the Reynolds stress. The

improvement brought about by the modified dynamic model in terms of these quantities is hardly notice-
able, which is why we do not include these results here. As discussed earlier, the minimal improvement

brought by the modified dynamic model in the Res = 395 cases was expected because, by construction,

the modification becomes negligible for cases where the ratio of physical dissipation to SUPG (numerical)

dissipation is high.
5. Final remarks

In this article we have presented a modification to the Smagorinsky dynamic subgrid-scale stress model

for the purpose of allowing the model to adjust itself in the presence of varying numerical dissipation due to

SUPG stabilization. The success of the SUPG modification was shown on LES of turbulent channel flows

with Reynolds numbers, Res, of 180 and 395. It was concluded that for cases when the maximum difference

between SGS and SUPG dissipation is low, the modification to the model plays an important role in allow-

ing the model to adjust properly under different amounts of SUPG dissipation. In cases were this difference
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is large, SUPG dissipation does not have a strong impact on results and the modification to the model be-

comes almost negligible. It was seen that in all cases, the correction made the simulations less sensitive to

even large changes to the size of the stabilization parameters.
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