
Dynamic Simulation of Multibody Systems Using a New
State-Time Methodology

Kurt S. Anderson∗ and Mojtaba Oghbaei†

Department of Mechanical, Aerospace, and Nuclear Engineering
Rensselaer Polytechnic Institute, Troy, NY 12180-3590 USA

Multibody System Dynamics, Accepted for Publication

Abstract

This paper presents a new methodology demonstrating the feasibility and advantages of a state-time
formulation for dynamic simulation of complex multibody systems which shows potential advantages
for exploiting massively parallel computing resources. This formulation allows time to be discretized
and parameterized so that it can be treated as a variable in a manner similar to the system state
variables. As a consequence of such a state-time discretization scheme, the system of governing
equations yields to a set of loosely coupled linear-quadratic algebraic equations that is well-suited
in structure for some families of nonlinear algebraic equations solvers. The goal of this work is to
develop efficient multibody dynamics algorithm that is extremely scalable and better able to fully
exploit anticipated immensely parallel computing machines (tera flop, pecta flop and beyond) made
available to it.

Keyword

Multibody dynamics, State-time formulation, Scalable algorithm, Parallel computing

Nomenclature

B : Typical body B with its mass center B∗
�FkA : kth applied force acting on the body B
�fmC : mth unknown constraint force acting on the body B

�rkA : kth position vector from B∗ to application point of �FkA

�rB∗jm : mthposition vector from B∗ to application point (joint) of �fmC

�Tl : lth applied concentrated moment acting on the body B

∗Associate Professor, anderk5@rpi.edu
†Doctoral Student, oghbam@rpi.edu

1

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

N : Newtonian reference frame
��I

B/B∗

: Inertia dyadic of body B with respect to B∗
N�ωB : Absolute angular velocity of body B
N �αB : Absolute angular acceleration of body B
εijk : The standard indicial cyclic permutation operator
�xB : Absolute displacement vector of B∗
NωB× : Angular velocity cross product matrix
C = NCB : Direction cosine matrix from the local frame B to N
ψi(t) and ϕj(t) : ith and jth members of families of C1 and C0 continuous shape functions, respectively

1 Introduction

Multibody systems (MBS) are defined as a collection of interconnected rigid and/or flexible bodies
that can move relative to one another as permitted by their connecting joints. Physical systems that
might be modelled as such are often called MBS and are pervasive in modern society. Consequently,
multibody dynamics, as a discipline describing the dynamic behavior of such systems, plays a major
role in the design and operation of such systems, and is enjoying broad, yet ever increasing diversity
and frequency of application.

In general, the effective cost of simulation-based engineering consists of: i) The engineer’s
time to build the simulation model/code; ii) The cost associated with verifying and validating the
model/simulation code; iii) The time required to run the necessary simulations (case studies); and
iv) The cost associated with the subsequent analysis of the simulation results. To be effective,
simulation-based engineering should significantly reduce the time and cost associated with design,
construction, and testing of engineering systems. Such modelling and simulation capability, can thus
greatly reduce the need for expensive prototyping and testing, as well as facilitate the control of
the system. In many situations, fast and accurate modelling and simulation may be indispensable.
Indeed, for many systems desired prototyping and testing may not even be a possibility and/or fast,
accurate modelling for control, or operator/hardware in the loop testing may be required.

A variety of formulations and dynamic simulation algorithms have been developed by individuals
that are sufficiently general to handle a wide range of MBS. However, the computational cost asso-
ciated with many of these algorithms is considerable, thus limiting the extent to which they might
be applied. This has driven the effort by many to develop more efficient (e.g. faster) formulations.
These efforts first focused on serial processing alone with attention given to reducing the overall
computational cost by clever (lower cost) manipulations and algebraic procedures. Later, as parallel
computing resources became more available, researchers began to think about improving simulation
speed and reducing turnaround time by producing parallel MBS algorithms. But these initial parallel
attempts proved disappointing. For example, using a then state of the art parallel computing system
and special parallel algorithms [1] [2] [3], the simulation of a controlled 30-second slew maneuver
for a >160 flexible-body mode multibody model of a single solar array wing of the international
space station was performed. The model of the space station had undesirably low fidelity, yet the
simulation required on the order of 4 days of CPU time to complete. On a far simpler problem,
Schwertassek [4] simulated the response of an off-road vehicle to a simple steering maneuver. The
simulation used a parallel low order Residual algorithm on an eight-processor Transputer parallel
processing system. The very modest 10 body, 18 joint, eight closed loop vehicle model required ∼

2

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

8.4 seconds for the simulation of a 5-second steering maneuver. Chung and Haug [5] realized only a
factor of ∼ 4 speedup in the simulation of an HMMWV using an 8 processor shared memory Alliant
FX/8 and ‘static’ scheduling. A similar computational challenge and performance gains can be found
in the field of biomechanics in [6]. The fact with these examples as well as the other most MBS ap-
plications is that the number of generalized coordinates used to describe the system is many orders
of magnitude smaller than the number of temporal steps needed for a desired simulation. Thus these
methods all show very limited speedup (reduced simulation turn-around) due to parallelization.

Examples of such undesirable simulation costs/time may be found in many branches of science
and engineering including but not limited to dynamic systems, material modelling, flow modelling,
combustion process, biomechanical systems, etc. This point was emphasized and repeated as an
intrinsic problem at the SCaLeS workshop, held (7/03) in Washington D.C. [7] and in literature
dealing with dynamic systems simulation. Three decades of MBS efforts and applications have
demonstrated that there is and always will be considerably more formidable systems one wishes to
model and analyze that can be treated using the most current tools and computing resources. Hence,
it is essential that algorithms be developed and improved so that any gains in computing resources
are fully exploited, enhanced and multiplied.

The major drawback of almost all contemporary multibody algorithms is that they are inherently
sequential in time. Due to this characteristic, the focus of virtually all MBS formulations has been
to reduce the cost per temporal integration step. In a parallel computing context, the effort has been
to parallelize the governing dynamical equations spatially over the current temporal integration step.
Parallel implementation of these formulations in most MBS applications is hobbled by sequential
bottlenecks, and thus the use of additional processors beyond a very modest number will not increase
the speed of the analysis in a significant way unless these sequential bottlenecks can be reduced. By
comparison, parallelizing the simulation and all related analysis both spatially and temporally would
result in a drastic increase in the number of coarse grain calculations that may be distributed over
all the available processors.

Thus it is the prime objective of the research, proposed in this paper, to formulate a new multi-
body dynamic algorithm which may serve as an effective tool in the design and simulation of such
systems. The algorithm presented in this paper provides the potential to yield significantly reduced
simulation turnaround time achieved through its ability to better exploit massively parallel comput-
ing resources (e.g. IBM/Sandia Blue Gene [8] and beyond). The methodology is markedly distinct
from the other traditional dynamics analysis and simulation methods, as well as prior attempts in
using state-time approaches for dynamical systems, in terms of not being so limited to sequential
(time stepping) solution, and extendability to complex systems.

2 State-Time vs. Traditional State Dynamic Formulations

Initially, the majority of multibody systems dynamics researchers tended to utilize either a Newton-
Euler formulation, Lagrange’s method or a combination thereof. However, due to some computa-
tional disadvantages associated with these schemes, dynamic analysis techniques based on what are
broadly termed velocity space projection methods began to appear and have played a major, if not
dominant, role in contemporary multibody dynamics work. Much effort has also been expended by
investigators to develop algorithms with the aim of improving simulation turnaround. Such algo-
rithms first strove for generality with little, if any, attention been paid to computational cost and
speed. Then, once acceptable generality was achieved, greater emphasis was placed on improving

3

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

simulation speed most often by reducing the underlying computational cost. Of these formulations,
the so-called ‘Order-n’ or O(n) algorithms have excelled for systems involving many generalized
coordinates n, and relatively few additional geometric and motion constraints m. However, the
development of such algorithms had largely been oriented towards application on purely sequential-
architecture computer systems with relatively modest attention being directed to parallel computing
issues. Jain [9] presents a survey of many of these O(n) algorithms.

With the advent of parallel computing, researchers began to rethink the use of previously de-
veloped dynamic simulation procedures, and how the benefits of concurrent processing might be
realized. This effort was pioneered by Kasahara et. al. [10] and followed by many investigators.
Some of the highlights of these parallel multibody dynamics algorithms can be found in [11]- [19].
The focus of virtually all theses formulations has been to solve for the system state derivatives at
the current time step in the most efficient parallel manner. The key point is that all calculations are
only parallel within the given integration (time) step and the simulation must sequentially march
forward from the current time step to the next, and then the parallel computations may be repeated.

These algorithms have resulted in a significant, but less than desired performance gains in sim-
ulation turnaround, which arise as a consequence of Amdahl’s Law [20] and the fact that exchange
of information between processors of a parallel processing system comes with a cost. Very roughly
to put, Amdahl’s Law states that the time required to run a computer calculation in parallel is
asymptotically limited by the time required to perform the sequential portions of the calculation:

SP =
TS

TP
=

1

f + (1−f)
NP

+ NP ·TComm
TS

, (1)

where SP is the speedup, f is the fraction of the operations which must be performed sequentially
in the given formulation; NP is the number of processors used in the parallel calculation; TComm

is the time required for an inter-processor communication with a single processor; TP is the time
required to perform the calculation in parallel; and TS is the time required to perform the calculation
sequentially. From Equation (1) it is clear that computation speedup can be adversely dominated
by sequential bottlenecks and inter-processor communication costs.

Because many aspects of these dynamic formulations (particularly the low order formulations)
have significant inherently sequential (causal) calculations, parallel implementation of these formu-
lations are hobbled by sequential bottlenecks. Additionally, in most MBS applications to date the
temporal domain of interest is far greater in scope than the spatial domain (e.g. # time steps �
spatial variables). As there will generally be extremely many temporally integration steps needed
to perform a desirable simulation, proceeding in this fashion will result in a fraction of sequential
operations that are far greater than desired.

What is desired is to reformulate the equations of motion and temporal integrations such that
time as well as the spatial variables is treated in an all encompassing manner. The proposed state-
time dynamics formulation would allow the equations of motion to be parallelized temporally as well
as spatially. This would have two advantages; First, the system of equations may now be coarse
grain parallelized to a far greater degree. This will allow an increased number of processors NP ,
which can be effectively utilized. Secondly, this would significantly reduce the fraction of sequential
operations and thus increase speedup (reduced turnaround).

The idea of discretizing equations in time domain, generally known as space-time formulations, is
not a new concept. Initial investigations on space-time finite element formulation were proposed by

4

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

Argyris et al. [21] and Fried [22] in the late 60s. These works were not initially paid much attention
because of the enormous demands for the size of main storage needed. However, the advancement
of MIMD-parallel computers, and modern iterative solvers with multilevel strategy, initiated a re-
vival for such approaches. These advances have made it possible to utilize some attractive features
of simultaneous space-time discretization. Dynamics community have also considered this type of
approach in regard to various applications such as structural dynamics, nonlinear vibrations, inverse
dynamics of flexible robots, gate analysis, and optimal control problem for converting problems from
infinite dimension to finite dimension. Some of the related works can be found in [23]- [29]. These
prior time-parameterization methods often produced highly nonlinear and coupled sets of equations,
thus limiting their tractability with complex systems. To the authors’ knowledge none of these prior
time-parameterization efforts have been performed with the intent of developing a general multibody
formulation which may more fully exploit future massively parallel computing resources.

3 The New State-Time Methodology

Briefly, formulating the problem in the proposed state-time method is achieved by writing the vari-
ational form of the governing equations and then applying the Galerkin approximation using poly-
nomial interpolating functions. It should be noted that the use of collocation methods for time
discretization is another possibility. However, in these methods the approximating function (usually
a polynomial) is required to satisfy the given equations at some collocation points and the error con-
trol criteria can only be applied on the set of function approximated values on the boundaries of the
integration steps. But there are some advantages of using the weak form of the governing equations
of motion in the proposed scheme which are: first, it enables the use of lower order shape functions
to approximate state variables; second, it allows dealing with a priori known impulsive forces in a
more convenient way; and third, it provides the means for stabilizing the error over the entire time
step in a minimum energy sense. As indicated above, it is desirable to formulate the problem in
such a way that it is not limited to a largely sequential temporal marching scheme. This can be
accomplished by treating the time appearing within the equations of motion as a variable in much
the same manner as having been done on the spatial coordinates by the finite element community.

In this section, formal derivation of state-time equations is given for a unit temporal element.
Mapping these equations into the physical temporal domain where the initial and final time could
be arbitrarily t0 and tf , as well as using them in an assembly operation are trivial tasks that are not
referred to in this article. For the purpose of generating an associated system of equations which
provide the least coupling and lowest level of nonlinearity, as well as the greatest degree of coarse
grain parallelism, a Newton-Euler approach is taken. As a result of this approach, all orientation,
position and velocity variables, as well as kinematic constraint forces will be parameterized in time
producing an associated set of state-time variables. These variables appear in the associated state-
time equations, and are the unknowns which are to be solved for. Below, it is shown how to produce
the state-time representation of each of the Euler’s equation, the generalized form of Newton’s 2nd

Law, Poisson’s kinematical equations and geometric constraint equations for a typical body within
a multibody system.

5

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

3.1 State-Time Consideration of the Euler’s Equation

Euler’s equation for the rotational motion of an arbitrary body B can be written as

∑
�M

B/B∗ =
∑

k

�rkA × �FkA+
∑
m

�rB∗jm
× �fmC+

∑
l

⇀

T l = ��I

B/B∗
· N �αB + N�ωB × ��I

B/B∗
· N�ωB (2)

or for simplicity, in indicial form

εijh rkj Cph Fkp + εijs rmj Cnk fmn + Cqi Tq = Iij αj + εijt ωj Itl ωl (3)

In the above equations let us consider
αi = ω̇i = q̈i (4)

where q exists mathematically, but not necessarily physically. Applying weighted residual method
on equation (3) and then integration by part results in

∫ 1

0
{εijh rkj Cph Fkp + εijs rmj Cnkfmn + Cqi Tq} Ẽdt −

Iij

(
q̇jẼ

∣∣∣1
0
−

∫ 1

0
q̇j

˙̃Edt

)
− εijtItl

∫ 1

0
q̇j q̇l Ẽdt = 0 (5)

Note that capital letters with tilde sign denote to the weighting functions and the barred quantities
refer to the state-time variables. By defining the following parameterized relations in time

qj = qjuψu(t) ; Cph = Cphxψx(t)
fmn = fmnt

ϕt(t) ; Ẽ = Erψr(t)

}
(6)

the Galerkin approximation of equation (5) after simplification may be written as

Cphx ·
{

εijh rkj Fkp

∫ 1

0
ψx(t) · ψr(t)dt

}
+ Cqiy ·

{
Tq

∫ 1

0
ψy(t) · ψr(t)dt

}
+

Cnsw · fmnt
·
{

εijs rmj

∫ 1

0
ψw(t) · ϕt(t) · ψr(t)dt

}
−

Iij

{[
qju

ψ̇u(1) · ψr(1) − ωj(0) · ψr(0)
]
− qju

∫ 1

0
ψ̇u(t) · ψ̇r(t)dt

}
−

qju
· qlv ·

{
εijt Itl

∫ 1

0
ψ̇u(t) · ψ̇v(t) · ψr(t)dt

}
= 0 (7)

This is the state-time representation of the Euler’s equation which in general constitutes 3 ·
k · ne nonlinear algebraic equations and 9 · k · ne + 3 · m · (p · ne + 1) + 3 · k · ne unknown state-
time variables. ne represents the number of temporal elements and m is the number of geometric
constraints. Also, k and p denote to the order of the shape functions associated with spatial and
force variables respectively, and in general are different so that the Babuška-Brezzi condition [30] is
satisfied.

6

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

3.2 State-Time Consideration of the Generalization of Newton’s 2nd Law

In the Newton’s 2nd Law as stated below, it is assumed that all active forces included in �F are
known. However, in many cases some of these constituent forces might be functions of the state of
the system, e.g. the spring force or viscous force. In such situations, we can still apply the same
discretization scheme on these state-dependent forces.

�FB +
∑
m

�fmC = mB �̈xB (8)

where �FB =
∑

k
�FB

kA is the resultant of applied (state dependent) forces and �fmC are the unknown
constraint forces. For simplicity, we neglect the superscript B in the subsequent equations. Following
a similar scheme as described above, the Galerkin approximation of equation (8), results in

{
xijψ̇j(1) · ψ̇r(1) − ẋi(0) · ψ̇r(0)

}
− xij

∫ 1

0
ψ̇j(t) · ψ̇r(t)dt −

1
m

{
Fi

∫ 1

0
ψr(t)dt +

∑
m

[
fmk ·

∫ 1

0
ϕk(t) · ψk(t)dt

]}
= 0 i = 1, 2, 3 (9)

Equations (9) are the state-time representation of Newton’s 2nd Law which constitutes 3 ·k ·ne linear
algebraic equations and introduces 3 · k · ne additional unknown state-time variables pertaining to
translational DOF of the body B.

3.3 State-Time Consideration of the Poisson’s Kinematical Equations

In the spatial dynamics of MBS, the components may undergo large translational and rotational
motions. To define the configuration of each body with respect to neighboring reference frame, it is
convenient to assign a reference frame to each body.

One of the most widely used parameterization in describing reference frame orientations are
the use of three independent orientation angles (of which Euler’s angles are a subset). A three
parameter set is attractive since it has the same number of parameters as there are rotational DOF
for a body. A disadvantage of this representation is that no three-parameter set can be both global
and nonsingular [31]. Additionally, this type of parameterization is not considered in the context of
state-time formulation because the resulting equations would become highly coupled in an undesirable
nonlinear fashion.

To be both nonsingular and global, more than three parameters are required to set up the basis
vector transformation matrix. Euler’s parameters are a set of four parameters that are well suited
for computation and have been used in several general-purpose multibody programs since they do
not suffer from singularity. Unfortunately, the kinematical differential equations associated with
Euler’s parameters are individually quadratic in the system variables. This results in final state-time
equations that would be cubic in state-time variables. Hence, these parameters also yield a level of
coupling and nonlinearity in the subsequent calculations that is not desirable from the viewpoint of
this research.

An alternate way of describing the three dimensional rotations in MBS dynamics is the direct use
of direction cosines as rotation parameters. For all the above mentioned reasons, we have realized
that if the equations of motion are written intelligently, this form of rotation representation results
in the set of algebraic equations that are quadratic in state-time variables, with the lowest level

7

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

of coupling. If these direction cosines are used directly as state variables, then the kinematical
differential equations, which relate the time derivative of the transformation matrix to the angular
velocity vector of the body are Poisson’s equations given by

N Ċ
B

= NCB ·
[
NωB

×
]
B

(10)

or in indicial form
Ċil = −εmlk ωk Cim (11)

Applying the weighted residual and substituting the approximation relations yields

Ciln ·
∫ 1

0
ψ̇n(t)ψr(t)dt + Cimj ·

{
εmlk qkp

∫ 1

0
ψ̇p(t) · ψj(t) · ψr(t)dt

}
= 0 (12)

Equations (12) are the state-time representation of Poisson’s equations which constitutes 9 · k · ne

quadratic algebraic equations and there is no additional unknown state-time variable introduced by
them.

3.4 State-Time Consideration of the Geometric Constraint Equations

Consider the body B with m neighbors as illustrated in Figure 1

N

∗B

1
2

i

m

B
Bx

1x
2x

ix

mx

ijBr ∗

ijir ∗
ij

∗1
∗2

∗i

∗m

2j1j

mj

Figure 1: A multibody system in tree structure

For each joint Ji we can write the algebraic constraint relationship

xB + NCB rB∗ji
= xi + NCi ri∗ji

vel. level−→ ẋB + N Ċ
B

rB∗ji
= ẋi + N Ċ

i
ri∗ji

(13)

Applying the weighted residual method on each of these equations gives
∫ 1

0

{
ẋB + N Ċ

B
rB∗ji

}
G̃idt =

∫ 1

0

{
ẋi + N Ċ

i
ri∗ji

}
G̃idt i = 1, 2, ...,m (14)

8

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

The Galerkin approximation of equations (14) after parameterization in time may be written as

xBtj

∫ 1

0
ψ̇j(t) · ϕz(t)dt + NC

B
tkm

∫ 1

0
rB∗jikψ̇m(t) · ϕz(t)dt −

xits

∫ 1

0
ψ̇s(t) · ϕz(t)dt + NC

i
tln

∫ 1

0
ri∗ji lψ̇n(t) · ϕz(t)dt = 0 i = 1, 2, ..., m (15)

Equations (15) are the state-time representation of geometric constraint equations. Before counting
the number of new equations and independent unknowns due to these equations, let us first look at
the correspondent Euler’s equation, generalization of the Newton’s 2nd law, and Poisson’s equation
associated with each of the attached bodies. In a similar manner as elaborated for body B, we can
find the number of new equations and unknowns introduced by each of these equations for these
bodies. At the end, after counting the number of independent equations and unknowns pertaining to
the state-time representation of the common geometric constraint equations, the number of algebraic
state-time equations and unknowns for the entire system are determined to be

15 k ne (m + 1) + 3m (p ne + 1) (16)

The resulting nonlinear algebraic system of equations, though large in dimension, is sparse and
exhibiting principally quadratic nonlinearity, enabling parallel iterative solution techniques to be
used effectively. In the following section, the state-time scheme is implemented on a planar double
pendulum system and the associated results have been illustrated.

4 Example Application - Planar Double Pendulum

The double pendulum, as depicted in Figure 2, is a simple mechanical system that exhibits complex
dynamic behavior. In this section, we have presented the results of a 5 second simulation based on
the state-time formulation and the MATLAB ODE45 solver, which are superimposed on the same
plots for better comparison.

x

y

1q

2q

111 ,, lIm

222 ,, lIm

1q

2q

yf1

xf1

xf2

yf2

gm1

gm2

Figure 2: Planar Double Pendulum

Dynamical equations using the Newton-Euler’s formulation are consisted of seven equations and
seven unknowns per each body. In an effort to preserve space, the governing equations are presented
only for representative body 1, and are given in Equations (17). It is noted that even though Cq and
Sq or x and y can be simply found from q, for the reasons explained in section 3 they are treated

9

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

as independent variables. The following system of equations is a prototype of a mixed problem [30],
where both constraint forces fx and fy as algebraic variables and spatial coordinates q, x, y, Cq and
Sq as differentiated variables are present as unknowns.

Euler′s equation : I1 q̈1 + (f1x + f2x)
l1
2

Cq1 + (f1y + f2y)
l1
2

Sq1 = 0

Newton′s 2nd Law :

{
m1ẍ1 = f1x − f2x

m1ÿ1 = f1y − f2y − m1g

Poisson′s equation :

{
Ċq1 = −q̇1 Sq1 (Cq1 = cos(q1))
Ṡq1 = q̇1 Cq1 (Sq1 = sin(q1))

(17)

kinematic constraints :

{
ẋ1 = l1

2 q̇1 Cq1

ẏ1 = l1
2 q̇1 Sq1

If the linear and quadratic Lagrange shape functions (�ϕ(t) and �ψ(t)) are used to interpolate
constraint forces and spatial variables, respectively, and then the state-time representation of the
system of Equations (17). This results in a set of 14 quadratic-linear algebraic equations and 14
state-time variables per each temporal element.

State-Time representation of Euler’s Equations
∫ 1

0

[
I1 q̈1 + (f1x + f2x)

l1
2

Cq1 + (f1y + f2y)
l1
2

Sq1

]
Q̃(t)dt = 0 →

I1

[
q̇1(t) Q̃(t)

∣∣∣1
0
−

∫ 1

0

q̇1(t)
˙̃Q(t)dt

]
+

l1
2

∫ 1

0

[(f1x + f2x)Cq1 + (f1y + f2y) Sq1] Q̃(t)dt = 0

q1(t) = q̄1α ψα(t) ; Cq1(t) = C̄q1γ ψγ(t) ; f1x(t) = f̄1xη ψη(t) ; Q̃(t) = Q̃β ψβ(t)

⇒ I1

[
q̇1(t) ψβ |10 − q̄1α

∫ 1

0

ψ̇α ψ̇βdt

]
+

l1
2

[
(f̄1xη

+ f̄2xη
) C̄q1γ

+ (f̄1yη
+ f̄2yη

) S̄q1γ

] ∫ 1

0

ψη ψγ ψβdt = 0

α , γ = 1, 2, 3 ; η , β = 1, 2 (18)

State-Time representation of Newton’s 2nd law in the x-direction
∫ 1

0

[m1 ẍ1 − (f1x − f2x)] X̃(t)dt = 0 →

x1(t) = x̄1δ
ψδ(t) ; f1x(t) = f̄1xη ψη(t) ; X̃(t) = X̃β ψβ(t)

⇒ m1

[
ẋ1(t)ψβ |10 − x̄1δ

∫ 1

0

ψ̇δ ψ̇βdt

]
− (f̄1xη

− f̄2xη
)

∫ 1

0

ϕη ψβdt = 0

δ = 1, 2, 3 ; η , β = 1, 2 (19)

and similarly in y direction

m1

[
ẏ1(t) ψβ |10 − ȳ1δ

∫ 1

0

ψ̇δ ψ̇βdt

]
− (f̄1yη − f̄2yη)

∫ 1

0

ϕη ψβdt + m1g

∫ 1

0

ψβdt = 0

δ = 1, 2, 3 ; η , β = 1, 2 (20)

10

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

State-Time representation of the first Poisson’s equation
∫ 1

0

[
Ċq1 + q̇1 Sq1

]
P̃ (t)dt = 0 ⇒ C̄q1γ

∫ 1

0

ψ̇γdt + q̄1α
S1qγ

∫ 1

0

ψ̇α ψγ ψβdt = 0

Cq1(t) = C̄q1γ
ψγ(t) ; P̃ (t) = P̃β ψβ(t)

α, γ = 1, 2, 3 ; β = 1, 2 (21)

and for the second Poisson’s equation

S̄qγ

∫ 1

0

ψ̇γdt − q̄α Cqγ

∫ 1

0

ψ̇α ψγ ψβdt = 0 (22)

Finally, the state-time representation of the kinematic constraints may be similarly written as
∫ 1

0

[
xδψ̇δdt − l q̄α Cqγ ψ̇α ψγ

]
ϕηdt = 0 (23)

∫ 1

0

[
yδψ̇δdt − l q̄α Sqγ ψ̇α ψγ

]
ϕηdt = 0 (24)

The parameters used for this simulation are m1 = 1 kg, l1 = 0.8 m, θ10 = 1 rad, ω10 = 1 rad/sec,
m2 = 0.5 kg, l2 = 1 m, θ20 = 1.2 rad, ω20 = −1 rad/sec, and g = 2 m/sec2. The plots given in Figure
3 show a 5 sec simulation of this system using 64 temporal elements. using linear/quadratic Lagrange
shape functions to interpolate constraint forces and the spatial variables, respectively. Since for this
system m = 4 (considering both pendulums), k = 2, p = 1, ne = 64, the state-time representation of
the entire system of equations results in a system of 28 + 24 · 63 = 1540 quadratic-linear algebraic
equations and 1540 state-time variables.

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Solution curve based on the ST sol. & ODE45 solver: q
1
 vs. t, n

e
=64

t (sec)

q 1 (
ra

d)

ODE45 Sol.
State-Time Solution

(a) Angular displacement, q1 vs. t

0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Solution curve based on the ST sol. & ODE45 solver: q
2
 vs. t, n

e
=64

t (sec)

q 2 (
ra

d)

ODE45 Sol.
State-Time Solution

(b) Angular displacement, q2 vs. t

11

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

0 1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution curve based on the ST sol. & ODE45 solver: cos(q
1
) vs. t, n

e
=64

t (sec)

C
q 1

ODE45 Sol.
State-Time Solution

(c) Cq1 vs. t

0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Solution curve based on the ST sol. & ODE45 solver: cos(q
2
) vs. t, n

e
=64

t (sec)

C
q 2

ODE45 Sol.
State-Time Solution

(d) Cq2 vs. t

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Solution curve based on the ST sol. & ODE45 solver: sin(q
1
) vs. t, n

e
=64

t (sec)

S
q 1

ODE45 Sol.
State-Time Solution

(e) Sq1 vs. t

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Solution curve based on the ST sol. & ODE45 solver: sin(q
2
) vs. t, n

e
=64

t (sec)

S
q 2

ODE45 Sol.
State-Time Solution

(f) Sq2 vs. t

0 1 2 3 4 5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Solution curve based on the ST sol. & ODE45 solver: x
1
 vs. t, n

e
=64

t (sec)

x 1 (
m

)

ODE45 Sol.
State-Time Solution

(g) Position of the mass center, x1 vs. t

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

Solution curve based on the ST sol. & ODE45 solver: x
2
 vs. t, n

e
=64

t (sec)

x 2 (
m

)

ODE45 Sol.
State-Time Solution

(h) Position of the mass center, x2 vs. t

Figure 4 shows the sparse low-bandwidth structure of the tangent matrix A associated with the

12

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

0 1 2 3 4 5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

Solution curve based on the ST sol. & ODE45 solver: y
1
 vs. t, n

e
=64

t (sec)

y 1 (
m

)
ODE45 Sol.
State-Time Solution

(i) Position of the mass center, y1 vs. t

0 1 2 3 4 5
-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Solution curve based on the ST sol. & ODE45 solver: y
2
 vs. t, n

e
=64

t (sec)

y 2 (
m

)

ODE45 Sol.
State-Time Solution

(j) Position of the mass center, y2 vs. t

0 1 2 3 4 5
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Solution curve based on the ST sol. & ODE45 solver: f
1x

 vs. t, n
e
=64

t (sec)

f 1x
 (

N
)

ODE45 Sol.
State-Time Solution

(k) Constraint force, f1x vs. t

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Solution curve based on the ST sol. & ODE45 solver: f
2x

 vs. t, n
e
=64

t (sec)

f 2x
 (N

)

ODE45 Sol.
State-Time Solution

(l) Constraint force, f2x vs. t

Newton-method solution of the set of nonlinear algebraic state-time equations for the above example.
These equations have resulted in a highly desirable structure, namely a hybrid linear-quadratic system
of loosely coupled equations in spatial and force variables with only nearest neighbor coupling in the
temporal elements, enabling parallel iterative solution techniques to be used effectively.

Figure 5 illustrates how the accuracy of solution is improved as the number of temporal elements
are increased within the time period considered. A comment needs to be made here on the order
of accuracy of the method. Since we have selected quadratic shape functions to interpolate the
spatial variables and linear approximation for the constraint forces, it is expected that a super-linear
order of accuracy is acheived for the computation given above. This result is manifested in figure 5.
Similarly, super-quadratic order of accuracy is anticipated if a combination of cubic and quadratic
interpolating functions are used for the spatial variables and constraint forces, respectively.

Table 1 shows the numerical values of the results given in Figure 5 for more convenient reference.
Here, we mean the error as the L2 norm of the area encapsulated between the solution curves from
the state-time scheme and ODE45 solver.

13

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

Solution curve based on the ST sol. & ODE45 solver: f
1y

 vs. t, n
e
=64

t (sec)

f 1y
 (

N
)

ODE45 Sol.
State-Time Solution

(m) Constraint force, f1y vs. t

0 1 2 3 4 5
0

1

2

3

4

5

6

Solution curve based on the ST sol. & ODE45 solver: f
2y

 vs. t, n
e
=64

t (sec)

f 2y
 (

N
)

ODE45 Sol.
State-Time Solution

(n) Constraint force, f2y vs. t

Figure 3: Simulation results of the planar double pendulum

Figure 4: Sparse structure of the tangent
matrix

100 101 102
10-4

10-3

10-2

10-1

100

n
e

L 2 n
or

m
 o

f t
he

 e
rr

or

L
2
 norm of the error vs. Number of temporal elements n

e

Average slope over the
specified effective range:
s = 1.76

Figure 5: Accuracy improvement vs.
number of temporal elements

Table 1: Accuracy improvement vs. number of temporal elements

Number of temporal elements (n) 1 2 4 8 16 32 64
L2 norm of the error 0.9038 0.3502 0.1273 0.0272 0.0062 0.0024 0.0008

5 Selection of Initial Guess

When running the implementation cases, a set of randomized initial iterates was also used to check
for the robustness of the method. Some of these quantities were selected without considering some
governing relations present in the system, for instance the orthonormality property of direction cosine
matrix. As a rule, the more accurate the initial guess is, the less number of iterations that will be

14

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

required for the Newton’s scheme to converge. The number of required iterations for convergence
of the method can be expected to keep increasing if a finer element size and longer simulation are
desired. Having the initial position- and velocity-level data and the governing constraint equations
are advantageous and can greatly help to achieve a high quality initial guess for the other unknown
state-time variables. Thus it is critically important that such a task is done at first in order to run
the state-time algorithm more efficiently.

Stochastic optimization algorithms like Genetic Algorithm (GA) have proven to be effective in
searching enormous solution spaces efficiently. They can be used as a tool in quickly and efficiently
exploring the likely candidates in the solution space to find a high quality initial guess for the
state-time algorithm. As the goal of this work is on parallelism, an efficient parallelizable domain
approximation strategy using genetic crossover [32] may be adopted in performing such a task as
a preprocessing step for the state-time simulation. It is already shown that such techniques, when
adopted on parallel machines, are extremely rapid without any need for decomposing the equations
or calculating differentiations.

6 Conclusion

In summary, a traditional dynamic simulation treatment involving n generalized coordinates and m
independent constraints will result in a system of O(n + m) differential algebraic equations. These
equations must be repeatedly solved at each time step for the system state derivatives, which are
then temporally integrated. The results from current integration step are then used to update the
system state and the process repeats as the simulation marches sequentially through temporal in-
tegration steps. These time steps often reflect the finest governing time scales within the system
at the instant under consideration, and as such, reduce simulation speed because all state variables
are integrated as dictated by these scales. Such drawbacks cause unavoidable computational cost
for the entire simulation as well as the major issue of lack of scalability in time. The proposed
methodology demonstrates great promise for improved speedup which can be achieved by circum-
venting the shortcomings of the recent algorithms. For instance, the dynamic behavior of a real
life application, namely a 6 degree-of-freedom laser-powered lightcraft [33], is currently being inves-
tigated using the proposed method. Due to high spin and precession rates which are necessary to
preserve flight stability, more than 105 temporal elements or time steps are required to properly
model the lightcraft dynamics. The simulation turnaround that one can achieve through parallel
state dynamics algorithms is theoretically Tsimulation = Nsteps · O(log2 n) = 105 O(log2 6) ∼ O(105).
By comparison, if one has sufficiently many processors (with ideal communication) available, then
the state-time approach would offer the possibility of reducing simulation turnaround time into
Tsimulation = O(log2 Nelements) + O(log2 n′) = O(log2 105) + O(log2 26) ∼ O(20). Additionally, what
makes this work distinct from the other space-time formulations that have been applied in a wide
range of applications, is that all those implementations tend to result in a dense, highly nonlinear and
heavily coupled structure that makes solution difficult, if not intractable. The state-time formulation
presented here, which shows the capability of scaling up both spatially and temporally, results in a
large dimension, lightly coupled, linear-quadratic system of equations offering a drastic increase in
the number of coarse grain calculations that can be distributed over all the available processors of
the parallel computing machine.

15

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

Acknowledgement

Support for this work has been provided by National Science Foundation (NSF) under the Award
No. CMS-0219734 and is gratefully appreciated.

References

[1] S. S. Lee, “Symbolic Generation of Equations of Motion for Dynamics/Control Simulation of
Large Flexible Multibody Space Systems” PhD thesis, University of California, Los Angeles,
1988

[2] K. S. Anderson, “Recursive Derivation of Explicit Equations of Motion for Efficient Dy-
namic/Control Simulation of Large Multibody Systems” PhD thesis, Stanford University, 1990

[3] R. Gluck, “A Custom Architecture Parallel Processing System for Space Station” Technical
Report EML-003, TRW Space and Technology Group, Redondo Beach, CA, May 1989

[4] R. Schwertassek, “Reduction of Multibody Simulation Time by Appropriate Formulation of the
Dynamics System Equations” In M. F. O. Pereira and J. A. C. Ambrosio, editors, Computer-
Aided Analysis of Rigid and Flexible Mechanical Systems, NATO ASI, pages 447-482, Kluwer
Academic Press, 1994

[5] S. Chung and E. J. Haug, “Real-time Simulation of Multibody Dynamics on Shared Memory
Multiprocessors” J of Dynamic Systems, Measurement and Control, 115:628-637, Dec. 1993

[6] F. C. Anderson, J. M. Ziegler, and M. G. Pandy, “Numerical Computation of Optimal Controls
for Large-Scale Musculoskeletal Systems” Advances in Bioengineering, 26:519-522, 1993

[7] “Science Case for Large-scale Simulation”, June 24 & 25, 2003, Washington D.C., U.S.A,
http://www.pnl.gov/scales/

[8] F. Allen, G. Almasi, et al., “Blue gene: A vision for protein science using a pectaflop supercom-
puter”, IBM Systems Journal, 40(2):310-327, 2001

[9] A. Jain, “Unified formulation of dynamics for serial rigid multibody systems” Journal of Guid-
ance, Control, and Dynamics, 14(3):531-542, May-Jun. 1991

[10] H. Kasahara, H. Fujii, and M. Iwata, “Parallel processing of robot motion simulation” In Pro-
ceedings IFAC 10th World Conference, 1987

[11] D.S. Bae, J. G. Kuhl, and E. J. Haug, “A recursive formation for constrained mechanical system
dynamics: Part III, Parallel processing implementation” Mechanisms, Structures, and Machines,
16:249-269, 1988

[12] A. Fijany and A. K. Bejczy, “Techniques for parallel computation of mechanical manipulator
dynamics, part II Forward Dynamics” Advances in Robotic Systems and Control, Vol. 40, pp.
357-410, Academic Press, March 1991

[13] I. Sharf, and G. M. T. D’Eleuterio, “An iterative approach to multibody simulation dynamics
suitable for parallel implementation” Journal of Dynamic Systems, Measurement and Control,
115:730-735, Dec. 1993

16

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

[14] A. Fijany and A. K. Bejczy, “Parallel computation of forward dynamics of manipulators” NASA
Technical Brief, Report NPO-18706 12, NASA Jet Propulsion Laboratory, Item # 82 1993

[15] K. S. Anderson, “Efficient modeling of constrained multibody systems for application with
parallel computation” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 73, No. 6,
pp. 935-939, 1993

[16] A. Fijany, I. Sharf, and G. M. T. D’Eleuterio. Parallel O(log n) algorithms for computation of
manipulator forward dynamics. IEEE Transactions on Robotics and Automation, 11(3):389-400,
1995

[17] K. S. Anderson and S. Duan, “A highly parallelizable low-order algorithm for dynamics of multi-
rigid-body systems: Part I, chain systems” Mathematical and Computer Modeling, 30: 193-215,
1999

[18] R. Featherstone, “A divide-and-conquer articulated body algorithm for parallel O(log2 n) cal-
culation of rigid body dynamics, Part 1: Basic algorithm” International Journal of Robotics
Research, 18(9):867-875, Sep. 1999

[19] J. H. Critchley and K. S. Anderson, “A Parallel Logarithmic Order Algorithm for General
Multibody System Dynamics”, Accepted for publication in Multibody System Dynamics Jour-
nal, 2004

[20] Almassi, G. S. and Gotlieb, A., Highly Parallel Computing, Benjamin-Cummings, Menlo Park,
CA, 2nd edition, 1994.

[21] J. H. Argyris and D. W. Scharpf, “Finite elements in time and space” Journal of Royal Aero-
nautical Society, 73: 1041-1044, 1969

[22] I. Fried, “Finite element analysis of time-dependent phenomena” American Institute of Aero-
nautics and Astronautics Journal, 7: 1170-1173, 1969

[23] D. H. Hodges and R. R. Bless, “Weak Hamiltonian finite element method for optimal control
problems” J. of Guidance, Control and Dyn. 14: 148-156, 1992

[24] M. Borri and C. Bottasso, “Petrov-Galerkin Finite Elements in Time for Rigid-Body Dynamics”
J. of Guidance, Control and Dyn. 17(5): 1061-1067, 1994

[25] O. P. Agrawal and V. R. Sonti, “Modelling of stochastic dynamic systems using Hamilton’s law
of varying action” J. of Sound and Vibration, 192: 399-412, 1996

[26] A. R. Atilgan, D. H. Hodges, M. A. Ozbek and W. Zhou, “Space-time mixed finite elements for
rods” J. of Sound and Vibration, 192(3): 731-739, 1996

[27] S. Lee and Y. Kim, “Time domain finite element method for inverse problem of aircraft maneu-
vers” Journal of Guidance, Control, and Dynamics 20: 97-103, 1997

[28] D. L. Kunz, “Multibody System Analysis Based on Hamilton’s Weak Principle” 42nd Structures,
Structural Dynamics and Materials Conference and Exhibit, AIAA 2001-1296, Seattle, WA, 16-
19 April 2001

[29] J. Suk and Y. Kim, “Modelling of vibrating systems using time-domain finite element method”
J. of Sound and Vibration, 254(3): 503-521, 2002

17

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

[30] T. J. R. Hughes, “The finite element method, Linear static and dynamic finite element analysis”
Dover Publications Inc., New York, 1987

[31] P. C. Hughes, “Spacecraft attitude dynamics” Wiley, 1986

[32] K. S. Anderson and Y. Hsu, “Domain Approximation and Deterministic Progression in Genetic
Crossover” Engineering Optimization, 33: 683-706, 2001

[33] L.N. Myrabo, “World Record Flights of Beam-Riding Rocket Lightcraft: Demonstration of
‘Disruptive’ Propulsion Technology” AIAA Paper N. 2001-3798, 37th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, Salt Lake City, Utah, USA, July 2001

18

Multibody System Dynamics. Vol. 14, pp. 61-80, 2005.

