
FMDB: FLEXIBLE DISTRIBUTED MESH DATABASE
FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

By

Eunyoung Seegyoung Seol

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Mark S. Shephard, Thesis Adviser

David R. Musser, Thesis Adviser

Boleslaw K. Szymanski, Member

Kenneth E. Jansen, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2005
(For Graduation August 2005)

FMDB: FLEXIBLE DISTRIBUTED MESH DATABASE
FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

By

Eunyoung Seegyoung Seol

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Mark S. Shephard, Thesis Adviser

David R. Musser, Thesis Adviser

Boleslaw K. Szymanski, Member

Kenneth E. Jansen, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2005
(For Graduation August 2005)

c© Copyright 2005

by

Eunyoung Seegyoung Seol

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ALGORITHMS . xii

ACKNOWLEDGMENT . xiii

ABSTRACT . xv

1. INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Organization . 3

1.3 Nomenclature . 4

2. RELATED INVESTIGATIONS . 6

2.1 Overview of Geometry-based Analysis Environment 6

2.1.1 Geometric model . 6

2.1.2 Attribute . 7

2.1.3 Mesh . 8

2.1.4 Field . 8

2.2 General Topology-Based Mesh Data Structure 9

2.2.1 Topological entities . 9

2.2.2 Geometric classification . 10

2.2.3 Adjacencies . 10

2.3 Mesh Representation Options . 12

2.3.1 Criteria . 12

2.3.2 Minimum sufficient representation 13

2.3.3 Examples of mesh representation options 15

2.4 Analysis of Mesh Representation Options 16

2.4.1 Storage cost . 17

2.4.2 Computational cost . 20

2.5 Historic Review . 24

iii

3. FLEXIBLE MESH DATA STRUCTURE . 27

3.1 Mesh Representation Matrix . 27

3.2 Design of a Flexible Mesh Data Structure 29

3.2.1 Step 1: Union the user-requested representation with the minimum
sufficient representation . 29

3.2.2 Step 2: Optimize the representation 30

3.2.3 Step 3: Shape mesh data structure via setting mesh operators 32

3.3 The Dynamic Mesh Usage Monitor (DMUM) 33

4. PARALLEL MESH DATA STRUCTURE: A PARTITION MODEL 35

4.1 Historic Review . 35

4.2 Distributed Mesh Representation . 37

4.2.1 Definitions and properties . 37

4.2.2 Functional requirements of distributed meshes 39

4.3 A Partition Model . 40

4.3.1 Definitions . 41

4.3.2 Building a partition model . 42

4.4 Algorithm of Mesh Migration with Full Complete Representations 44

4.4.1 Step 1: Preparation . 48

4.4.2 Step 2: Determine residence partition 48

4.4.3 Step 3: Determine partition classification and entities to remove . . 50

4.4.4 Step 4: Exchange entities and update remote copies 50

4.4.5 Step 5: Remove unnecessary entities 53

4.4.6 Step 6: Update entity ownership . 53

5. FLEXIBLE DISTRIBUTED MESH DATA STRUCTURE 54

5.1 Representational Requirements of Flexible Distributed Mesh Data Structure 54

5.1.1 Efficient interior entity restoration 55

5.1.2 Neighboring partition objects . 56

5.2 Algorithm of Mesh Migration with Flexible Representations 58

5.2.1 Step A: Collect neighboring partition objects 60

5.2.2 Step B: Restore downward entities 60

5.2.3 Step 1: Preparation . 62

5.2.4 Step 2: Determine residence partition 63

5.2.5 Step 3: Determine partition classification and entities to remove . . 63

5.2.6 Step 4: Exchange entities and update remote copies 65

5.2.7 Step 5: Remove unnecessary entities 65

iv

5.2.8 Step 6: Update entity ownership . 65

5.2.9 Step C: Restore mesh representation 66

5.3 Summary . 66

6. IMPLEMENTATION . 69

6.1 Design/Implementation of Classes . 69

6.1.1 Mesh . 69

6.1.2 Mesh entity . 71

6.1.3 Partition model . 73

6.1.4 Partition model entity . 74

6.2 Flexible Mesh Data Structure . 74

6.3 Parallel Functionalities . 76

6.3.1 Parallel services . 76

6.3.2 Efficient communications: Autopack 77

6.3.3 Generic data communicator . 79

6.3.4 Parallel mesh I/O . 83
6.3.4.1 Parallel mesh exporting: storing partition model 84
6.3.4.2 Parallel mesh importing: recovering partition model 84
6.3.4.3 Parallel mesh importing: recovering partition boundary links 85

6.4 Dynamic Mesh Load Balancing . 86

6.4.1 Design of the load balancing procedure 86

6.4.2 User interface: Zoltan callbacks . 88

7. PERFORMANCE RESULTS . 91

7.1 Storage Efficiency with Flexibility . 91

7.2 Overhead of Function Pointers . 93

7.3 Efficiency of Mesh Migration . 94

8. APPLICATIONS . 97

8.1 Parallel Anisotropic 3D Mesh Adaptation 97

8.1.1 Parallelizing mesh modification procedures 97

8.1.2 Experiments . 98

8.2 Adaptive Loop for Accelerator Design . 100

8.3 Parallel Discontinuous Galerkin Method . 104

8.3.1 A double sedov explosion simulation 105

9. CLOSING REMARKS . 108

9.1 Research Contributions . 108

9.2 Future Directions . 109

v

LITERATURE CITED . 111

APPENDICES . 118

A. ALGORITHMS OF MESH OPERATORS WITH GREEDY ADJACENCY . . . 118

B. ALGORITHMS OF MESH OPERATORS WITH CIRCULAR ADJACENCY . . 126

C. ALGORITHMS OF MESH OPERATORS WITH ONE-LEVEL ADJACENCY . 136

D. ALGORITHMS OF MESH OPERATORS WITH COMPLETE MINIMUM SUF-
FICIENT . 143

vi

LIST OF TABLES

2.1 Four categories of mesh representations . 15

2.2 Storage requirement for 1 million tetrahedral mesh (MB) 20

2.3 Storage decrease for 1 million tetrahedral mesh (%) 20

2.4 Run time of basic statements . 21

2.5 Run time of 22 mesh operators . 23

4.1 Contents of vector entitiesToUpdate after Step 1 48

4.2 Residence partition(s) of M0
1 and M1

4 by steps 50

4.3 Contents of vector entitiesToRemove after Step 3 50

6.1 Partition model entities recovered from a mesh file 85

6.2 Mesh entities recovered on a partition from mesh file 85

7.1 Example meshes used in FMDB performance tests 91

7.2 Storage cost for 3D meshes (MB) . 92

7.3 Relative storage cost for 3D meshes . 93

7.4 Run time of mesh migration . 96

8.1 Relative storage cost with DG applications . 104

vii

LIST OF FIGURES

1.1 Bearing: geometric model and mesh . 1

2.1 The relationship between components of the geometry-based analysis envi-
ronment . 6

2.2 Example of manifold and non-manifold models 7

2.3 Example geometry-based problem definition 7

2.4 Representation of a field defined over a mesh 8

2.5 Example of simple model and mesh showing their association via geometric
classification . 10

2.6 Vertex and face order on a region . 11

2.7 Edge order on a region . 11

2.8 Edge order on a face . 11

2.9 12 adjacencies possible in the mesh representation 12

2.10 Adjacency graph of the MSR . 14

2.11 Example of 3D mesh representations . 16

2.12 Average number of entities and adjacencies in tetrahedral/hexahedral meshes 17

3.1 MRM’s of 2D mesh representation . 28

3.2 MRM’s of 3D mesh representation . 28

3.3 Example of 3D MRM union . 30

3.4 Example of 3D MRM optimization . 31

3.5 Example of adjacency needs . 32

3.6 The relationship between mesh applications, FMDB and DMUM 33

3.7 Example of MRM’s generated by DMUM . 34

4.1 Distributed mesh on three partitions . 37

4.2 Example 3D mesh distributed on 3 partitions 38

4.3 Hierarchy of domain decomposition . 40

4.4 Distributed mesh and its association with the partition model via partition
classifications . 42

viii

4.5 Example of 2D mesh migration . 45

5.1 Example 2D mesh with the MSR . 54

5.2 3D MRM adjustment (1 of 2) . 55

5.3 3D MRM adjustment (2 of 2) . 58

5.4 Example of 3D MRM adjustment for parallel 58

5.5 Steps of 2D mesh migration with the MSR . 59

5.6 Example MRM for 3D manifold model . 64

6.1 Class diagram of mMesh . 70

6.2 Class diagram of mEntity . 71

6.3 Example of user-requested representation . 75

6.4 Parallel mesh I/O . 83

6.5 Simple 2D distributed mesh on 3 partitions and its partition model 84

6.6 Mesh file dumped from a partition . 85

6.7 Key steps of parallel automated adaptive analysis 87

6.8 Example of 2D mesh load balancing: (left) partition objects are tagged with
their destination pids (right) mesh after load balancing 88

7.1 Mesh representation used in performance tests 92

8.1 Parallel mesh adaptation I . 99

8.2 Parallel mesh adaptation II . 99

8.3 Parallel mesh adaptation III . 100

8.4 Framework of adaptive loop for accelerator design 101

8.5 MRM’s for SLAC adaptive loop . 101

8.6 Parallel adaptive loop for SLAC I . 102

8.7 Mesh and wall-loss distribution for 3 adaptive steps 103

8.8 Parallel adaptive loop for SLAC II . 103

8.9 Isosurface of pressure evolution in the domain at various time steps 105

8.10 Isopressure distribution and the associated anisotropic adapted mesh 106

8.11 Final adapted partitioned mesh with double Sedov explosion simulation . . . 106

ix

LIST OF ALGORITHMS

2.1 M createV(x, y, z) . 22

4.1 M buildPModel . 43

4.2 M migrate . 47

4.3 M setResidencePartition . 49

4.4 M exchangeEnts . 51

5.1 createDownAdjacency URR . 56

5.2 createUpAdjacency URR . 57

5.3 M migrate URR . 61

5.4 M buildAdj URR . 61

5.5 M setResidencePartition URR . 62

5.6 M exchangeEnts URR . 63

5.7 M destroyAdj URR . 64

6.1 Pseudo-code of communications between partitions using Autopack 78

7.1 Test program of the mesh migration procedure 95

A.1 Greedy adjacency: E exist(M0
i , M0

j) . 118

A.2 Greedy adjacency: F exist(M0
i , M0

j , M0
k) 118

A.3 Greedy adjacency: F exist(M1
i , M1

j , M1
k) 119

A.4 Greedy adjacency: R exist(M0
i , M0

j , M0
k , M0

l) 119

A.5 Greedy adjacency: M createE(M0
i , M0

j) . 120

A.6 Greedy adjacency: M createF(M0
i , M0

j , M0
k) 120

A.7 Greedy adjacency: M createF(M1
i , M1

j , M1
k , dir[3]) 121

A.8 Greedy adjacency: M createR(M0
i , M0

j , M0
k , M0

l) 122

A.9 Greedy adjacency: M createR(M2
i , M2

j , M2
k , M2

l) 123

A.10 E commonVertex(M1
i , M1

j) . 124

A.11 F commonVertex(M2
i , M2

j , M2
k) . 124

A.12 F commonEdge(M2
i , M2

j) . 125

B.1 Circular adjacency: V edges(M0
i) . 126

B.2 Circular adjacency: V faces(M0
i) . 127

B.3 Circular adjacency: E faces(M0
i) . 127

B.4 Circular adjacency: E regions(M0
i) . 128

B.5 Circular adjacency: F vertices(M2
i) . 128

x

B.6 Circular adjacency: F regions(M2
i) . 129

B.7 Circular adjacency: R vertices(M0
i) . 129

B.8 Circular adjacency: R edges(M0
i) . 130

B.9 Circular adjacency: E exist(M0
i , M0

j) . 130

B.10 Circular adjacency: F exist(M0
i , M0

j , M0
k) 131

B.11 Circular adjacency: F exist(M2
i , M2

j , M2
k) 131

B.12 Circular adjacency: R exist(M0
i , M0

j , M0
k , M0

l) 132

B.13 Circular adjacency: M createE(M0
i , M0

j) 132

B.14 Circular adjacency: M createF(M0
i , M0

j , M0
k) 133

B.15 Circular adjacency: M createF(M1
i , M1

j , M1
k , dir[3]) 134

B.16 Circular adjacency: M createR(M0
i , M0

j , M0
k , M0

l) 135

B.17 Circular adjacency: M createR(M2
i , M2

j , M2
k , M2

l) 135

C.1 One-Level adjacency: V faces(M0
i) . 136

C.2 One-Level adjacency: V faces(M0
i) with MARK 137

C.3 One-Level adjacency: V region(M0
i) . 137

C.4 One-Level adjacency: V region(M0
i) with MARK 138

C.5 One-Level adjacency: E regions(M0
i) . 138

C.6 One-Level adjacency: E regions(M0
i) with MARK 139

C.7 One-Level adjacency: F exist(M0
i , M0

j , M0
k) 139

C.8 One-Level adjacency: R exist(M0
i , M0

j , M0
k , M0

l) 140

C.9 One-Level adjacency: M createF(M0
i , M0

j , M0
k) 140

C.10 One-Level adjacency: M createF(M1
i , M1

j , M1
k , dir[3]) 141

C.11 One-Level adjacency: M createR(M0
i , M0

j , M0
k , M0

l) 142

C.12 One-Level adjacency: M createR(M2
i , M2

j , M2
k , M2

l) 142

D.1 Complete MSR: V edges(M0
i) . 144

D.2 Complete MSR: V faces(M0
i) . 145

D.3 Complete MSR: E faces(M0
i) . 145

D.4 Complete MSR: E regions(M0
i) . 146

D.5 Complete MSR: F edges(M2
i) . 146

D.6 Complete MSR: F regions(M2
i) . 147

D.7 Complete MSR: R edges(M3
i) . 147

D.8 Complete MSR: R faces(M3
i) . 148

D.9 Complete MSR: F exist(M1
i , M1

j , M1
k) . 148

xi

D.10 Complete MSR: M createF(M0
i , M0

j , M0
k) 149

D.11 Complete MSR: M createF(M1
i , M1

j , M1
k , dir[3]) 150

D.12 Complete MSR: M createR(M0
i , M0

j , M0
k , M0

l) 151

D.13 Complete MSR: M createR(M2
i , M2

j , M2
k , M2

l) 151

xii

ACKNOWLEDGMENT

First, I would like to give special thank to my mentor, Dr. Mark S. Shephard, for his

support and insightful guidance throughout my doctoral research work. He has lightened

my tough way to accomplish the degree with computational science & engineering which

was entirely new to me before I met him. I am grateful to Dr. David R. Musser for his

invaluable technical advice and courses. I have learned a lot from him about advanced

programming techniques and the importance of programming with concepts and philoso-

phy. I thank Dr. Boleslaw K. Szymanski and Dr. Kenneth E. Janson for their time and

effort to serve on my committee and reviewing this dissertation. I know I have been very

fortunate to work closely with these prominent figures during my stay at Rensselaer. I am

truly grateful to all my committee for their brilliance, help, support, and encouragement

which led to my professional as well as personal development. Without their guidance and

patience, this thesis would not be possible.

I express my gratitude to the great SCOREC people, Dr. Ottmar Klaas, Dr. Jean-

François Remacle, Dr. Xiangrong Li, Dr. Nicolas Chevaugeon, Dr. Frédéric Alauzet,

Dr. Andrew C. Bauer, Jie Wan, Xiaojuan Luo, Mohan Nuggehally, Onkar Osahni and

Christophe Dupre, Dinesh Godavarty, Dr. Luzhong Yin, whom I had the pleasure of

discussing with, learning from, and sharing friendship and joy each and every day. I thank

Dr. Xiangrong Li for many fruitful discussions. I also thank Dr. Frédéric Alauzet for

providing me parallel DG simulations.

Most of all, I thank my respectable parents, Ilsoon Lee and Insoo Seol, for letting me

stand up on their shoulders. For their whole lives, they have shown personally the answer

to what is true love and heartily support. I also thank my parents-in-law, Hwasook Lee and

Soonjung Kwon, and my brothers, Dongchun and Dongjae Seol for their encouragement

and understanding. Last but greatest, I thank my 3 great men. My wonderful husband,

Dr. Yongchai Kwon, has been so supportive with his heartily understanding that a married

woman can have a dream and furthermore can make the dream come true. My lovely,

but sometimes naughty, two little men, Danny and Austin, have been so much patient

for their greedy mommy since their birth. I must admit that my husband, Danny and

Austin have given up so many ordinary things compared to other men and kids who have

home-staying wife and mother. I would not be where I am today without love, support

and understanding of all my family members.

xiii

This work is supported by the US Department of Energy’s Scientific Discovery

through Advanced Computing (SciDAC) program as part of the Terascale Simulation

Tools and Technology (TSTT) center. The author greatly appreciates the financial support

from this agency.

xiv

ABSTRACT

A mesh is piece-wise decomposition of the space/time domain where used by numerical

simulation procedures. The data structure of the mesh strongly influences the overall

performance of the simulations since it is an infrastructure executing underneath providing

all needed mesh-based operations. From a fact that the flexibility of a mesh data structure

comes from the levels of mesh entities and adjacencies present, and by the needs of a

distributed mesh data structure operates in a scalable manner, this thesis focused on

the development of a Flexible distributed Mesh DataBase (FMDB) capable of shaping

its representation based on the specific needs of the application that efficiently supports

parallel adaptive analysis in a parallel computing environment.

In order to properly maintain the needed representation even with mesh modifica-

tion, the mesh entity creation/deletion operators are declared as function objects, initially

undetermined. Once the needed representation is provided, they are dynamically set to

the proper operators. The needed representation can be provided to the mesh database

either by the user explicitly or by running the Dynamic Mesh Usage Monitor, which mon-

itors mesh usage of the application and provides an appropriate representation. For the

purpose of supporting distributed meshes on parallel computers, a partition model has

been developed. The partition model is located between the partitioned mesh and the ge-

ometric model to represent mesh partitioning and support the mesh-based inter-partition

operations.

Performance results of the FMDB well demonstrate its efficiency and scalability.

Compared to the one-level fixed representation, a decrease in storage obtained with flexible

reduced representations is 6−79%. The migration procedure with reduced representations

outperforms full representations as the number of entities to migrate or the number of

partitions increases. The FMDB is embedded in SCOREC simulation packages effectively

supporting parallel automated adaptive analyses.

xv

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Computer-aided design and simulation have been an important tool for industry

and scientific research for a wide range of problems. Three dimensional modeler systems,

for example ParasolidTM [28], ACISTM [91], Pro/EngineerTM [68], have matured and can

provide complex geometry definitions from a single machinery part to the whole product

assembly. Simulation systems perform various analysis governed by partial differential

equations that mathematically describe the physical phenomenon of interest [37, 103].

The finite element method is a powerful tool for solving partial differential equations

on complex geometry domains [37, 103]. It is a double discretization process in which the

geometric domain is discretized into a set of piecewise components and the equations to

be solved are discretized over these individual piecewise components [86]. In the first step

of the double discretization, a mesh is a geometric domain decomposition over which the

simulation is to be run. Figure 1.1 illustrates a sample of a geometric model and a mesh

of it.

The general topology-based spatial mesh representation consists of 0 to 3D topo-

logical entities and connectivity between them (adjacencies). A mesh data structure is a

toolbox that provides the information required by the applications that create and/or use

the mesh data. The data structure of the mesh strongly influences the overall performance

of the simulations.

Figure 1.1: Bearing: geometric model and mesh

1

2

From the fact that the particular mesh-based application has its own needs of the

level of entities and adjacencies, the effective mesh data structure is one that provides

mesh entities and adjacencies needed by the mesh-based application. Clearly, the design

of good mesh data structure is highly dependent on the application for which it is used.

Generally, there are 3 approaches in designing a mesh data structure.

• Ad-hoc mesh data structure shaped to the specific application [10, 16, 36, 39, 52,

53, 54, 61, 69, 71, 90].

• Fixed general mesh representation [6, 13, 20, 66, 83, 89, 94, 100].

• Flexible mesh representation that is capable of shaping its representation dynami-

cally based on the needs of the application [32, 75, 76, 92].

It is not possible to design a single mesh data structure that is the most compact and

the most efficient and meets the needs of all applications. Therefore the usual approach

was to use a mesh data structure that was needed for the specific application (the first

approach). Some specific data structures have been published for the specific parts of nu-

merical analysis, such as mesh generation [10, 65, 54], mesh adaptation [16, 65, 39, 61, 71]

and the solution process [36], however a mesh data structure specific to the application

lacks extendibility and reusability. As the needs of applications became more complex

and the users wanted easy software extendibility for new applications, the general mesh

data structure that works with reasonable efficiency in most operations of the applications

was taken (the second approach). But the general mesh data structure has disadvantage

of inefficiency in some cases as well as typically requiring more storage. This inevitably

leads to the consideration that mesh data structure must be flexible enough to easily

switch between various representations for different phase of an application and build the

custom mesh representation based on a meaningful criteria for achieving a good compro-

mise between the storage and computation costs, optimized for the particular application

(the third approach). A flexible mesh data structure is one that is capable of supporting

representation options based on the needs of the application [32, 75, 92].

As for the first trial of a flexible mesh data structure, the Algorithm Oriented

Mesh Database (AOMD) [75] has been proposed and extended to support distributed

meshes [76], however it was not fully implemented for the support of all mesh needs. The

AOMD did not fully address algorithmic complexity, efficiency or software engineering

practices. The goal of the work presented in this thesis was the design, algorithmic analysis

3

and effective implementation of a complete flexible distributed mesh data management

system including efficient mesh manipulation algorithms that satisfy the specific needs of

applications on distributed domain as well as providing the best efficiency both in memory

requirements and computational cost. Particularly, given:

• any mesh with manifold/non-manifold1 domain;

• any user-requested or application-needed mesh representation option;

develop a distributed mesh data structure that is able to shape the mesh representation

dynamically based on the mesh representation needs for the purpose of efficiently support-

ing parallel automated adaptive simulations, called Flexible distributed Mesh DataBase

(FMDB).

1.2 Organization

Chapter 2 introduces general topology-based mesh data structures, compares vari-

ous mesh representation options and presents a historic review of mesh data structures.

Chapter 3 describes the design of the flexibility in the FMDB that can shape its structure

dynamically based on the user requested representation. To shape the FMDB, the needed

mesh representation should be provided for each application. Since it is not always pos-

sible to know the needed representation in advance, the Dynamic Mesh Usage Monitor

(DMUM) was developed to inform the software of the representational requests made. The

needed representation can be provided either by the user explicitly or by the output of the

DMUM. Chapter 4 introduces the design of distributed meshes and provides definitions,

properties and algorithms of a partition model. The partition model is an intermediary

model located between the mesh and the geometric model to support mesh partitioning

and mesh-level parallel operations through inter-partition communication links. Chap-

ter 5 presents the mesh migration procedure with the flexible mesh representations to

extend flexibility to distributed meshes. Chapter 6 discusses the software aspects of the

FMDB in terms of programming elements utilized and the design of each component of

the system, and Chapter 7 provides performance results. Chapter 8 presents applications

of the FMDB, and demonstrates scalability of it with parallel mesh adaptation. Chapter

9 concludes this thesis by summarizing the contributions and discussing the future work.
1For definition and examples, see references [58, 101]

4

For the readers interested in various mesh representation options in detail, Appen-

dices A through D follow with the mesh algorithms of four representation options and

their computational efficiency.

1.3 Nomenclature

V the model, V ∈ {G, P , M} where G signifies the geometric model, P

signifies the partition model, and M signifies the mesh model.

{V {V d}} a set of topological entities of dimension d in model V .

V d
i the ith entity of dimension d in model V . Shorthand for V {V d}i, d = 0

for a vertex, d = 1 for an edge, d = 2 for a face, and d = 3 for a region.

In topology, edges, faces, and regions are bounded by the lower order

entities.

{∂(V d
i)} a set of entities on the boundary of V d

i .

{V d
i {V q}} the set of entities of dimension q in model V that are adjacent to V d

i .

V d
i {V q}i the ith entity in the set of entities of dimension q in model V that are

adjacent to V d
i .

Udi
i < V

dj

j classification indicating the unique association of entity Udi
i with entity

V
dj

j , di ≤ dj , where U , V ∈ {G, P , M} and U is lower than V in terms

of a hierarchy of domain decomposition.

P[Md
i] a set of partition id(s) where entity Md

i exists.

Ni the number of entities of dimension i in the mesh. Shorthand for

|{M{M i}}|. N0, N1, N2, N3 are, respectively, the number of vertices,

edges, faces, regions in the mesh.

R mesh representation matrix.

5

Examples

{M{M2}} the set of all the faces in the mesh.

{M1
3 {M3}} a set of mesh regions adjacent to mesh edge M1

3 .

M3
1 {M1}2 the 2nd edge adjacent to mesh region M3

1 .

CHAPTER 2

RELATED INVESTIGATIONS

In a geometry-based analysis environment, mesh data structures house the discretization

of the domain, a mesh, and provide the mesh-level services to applications. This chapter

presents the basics of a mesh data structure including functional requirements, the analysis

of various mesh representation options, and a historic review.

2.1 Overview of Geometry-based Analysis Environment

The structures used to support the problem definition, the discretization of the

model and their interactions are central to mesh-based analysis methods like finite element

and finite volumes. The geometry-based analysis environment consists of four parts: the

geometric model which houses the topological and shape description of the domain of

the problem, attributes describing the rest of information needed to define and solve the

problem, the mesh which describes the discretized representation of the domain used by

the analysis method, and fields which describe the distribution of solution tensors over

the mesh entities [5, 86, 89]. Figure 2.1 represents the general interactions between the

four components.

2.1.1 Geometric model

The most common geometric representation is a boundary representation. A general

representation of general non-manifold domains is the Radial Edge Data Structure [101,

102]. Non-manifold models are common in engineering analyses. Simply speaking, non-

manifold models consist of general combinations of solids, surfaces, and wires. Figure 2.2

Geometric
Model

Attributes

Mesh

Field

Figure 2.1: The relationship between components of the geometry-based anal-
ysis environment [5]

6

7

Figure 2.2: Example of (left) manifold and (right) non-manifold models

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: probelm definition
name: ...

Geometric
Model

A

A

A

A

A

u = 0

g

f = f(z)

Case

Attributes

Information Nodes

Figure 2.3: Example geometry-based problem definition [5]

illustrates examples of manifold and non-manifold model.

In the boundary representation, the model is a hierarchy of topological entities called

regions, shells, faces, loops, edges, vertices, and in case of non-manifold models, use entities

for vertices, edges, loops, and faces. The data structure implementing the geometric model

supports operations to find the various model entities that make up a model, information

about which model entities are adjacent to a given entity, operations relating to perform

geometric shape queries, and queries about what attributes are associated with model

entities.

2.1.2 Attribute

In addition to geometric model, the definition of a problem requires other infor-

mation that describes material properties, loads and boundary conditions, etc. These

are described in terms of tensor-valued attributes and may vary in both space and time.

8

Mesh

Field 1 = {Interpolation 1,
Interpolation 2, ... }

Interpolation 2

Interpolation 1

Figure 2.4: Representation of a field defined over a mesh [5]

Attributes are meaningful only when applied to a geometric model entity.

Figure 2.3 illustrates an example of a problem definition. The problem being mod-

eled is a dam subjected to loads due to gravity and due to the water behind the dam.

There is a set of attribute information nodes that are all under the attribute case for the

problem definition. When this case is associated with the geometric model, attributes

are created and attached to the individual model entities on which they act [5, 89]. The

attributes are indicated by triangles with A’s inside of them.

2.1.3 Mesh

A mesh is a geometric discretization of a domain. With restrictions on the mesh

entity topology [6], a mesh is represented with a hierarchy of regions, faces, edges and

vertices. Each mesh entity maintain a relation, called geometric classification [6, 85], to

the model entity that it was created to partially represent. Geometric classification allows

an understanding of which attributes (e.g. boundary conditions or material properties) are

related to the mesh entities and the how the solution relates back to the original problem

description, and is critical in mesh generation and adaptation [5, 6, 85, 86]. The detailed

discussions on the mesh is presented in §2.2.

2.1.4 Field

A field describes the variation of solution tensors over the mesh entities discretizing

one or more entities in a geometric model. The spatial variation of the field is defined in

terms of mesh level distribution functions [5, 86]. Figure 2.4 demonstrates the concept of

a field written in terms of C0 interpolating distribution functions.

9

2.2 General Topology-Based Mesh Data Structure

The mesh consists of a collection of mesh entities of controlled size, shape, and

distribution. The relationships of the entities defining the mesh are well described by

topological adjacencies, which form a graph of the mesh. A critical capability needed

by automated, adaptive geometry-based analysis procedures is to manipulate the mesh

of the analysis domain. A mesh data structure is a toolbox that provides the mesh-level

services to the applications that create/use the mesh data. The differing needs of the

applications dictate that the database be able to answer to the needed queries about the

mesh. The three functional requirements of a general topology-based mesh data structure

are: topological entities, geometric classification, and adjacencies between entities [6].

2.2.1 Topological entities

Topology provides an unambiguous, shape-independent abstraction of the mesh.

With reasonable restrictions on the topology, a mesh is represented with only the basic 0

to d dimensional topological entities, where d is the dimension of the domain of the interest.

The full set of mesh entities in 3D is {{M{M0}}, {M{M1}}, {M{M2}}, {M{M3}}}, where

{M{Md}}, d = 0, 1, 2, 3, are, respectively, the set of vertices, edges, faces, and regions.

Mesh edges, faces, and regions are bounded by the lower order mesh entities.

Restrictions on the topology of a mesh are:

• Regions and faces have no interior holes.

• Each entity of order d in a mesh, Md
i , may use a particular entity of lower order, p,

Mp
j , p < d, at most once.

• For any entity Md
i , there is the unique set of entities of order d − 1, {Md

i {Md−1}}

that are on the boundary of Md
i . (Note, based on mesh entity classification, it is

possible to relax this restriction in the case of equal order classification [6])

The first restriction means that regions may be represented by one shell of faces that

bounds them, and faces may be represented by one loop of edges that bounds them. The

second restriction allows the orientation of an entity to be defined in terms of its boundary

entities without introduction of use entities. The third restriction means that an interior

entity is uniquely specified by its bounding entities.

10

1
3G

1
1G

1
2G1

4G

0
1G 0

2G

0
3G0

4G

2
1G 1

4G

1
1G

0
2G

1
2G

1
3G

0
1G

0
3G0

4G

Figure 2.5: Example of simple model(left) and mesh(right) showing their as-
sociation via geometric classification [89]

2.2.2 Geometric classification

The linkage of the mesh to the geometric model is critical for mesh generation and

adaptation procedures since it allows the specification of analysis attributes in terms of

the original geometric model, the proper approximation of the geometry during mesh

adaptation and supports direct links to the geometric shape information of the original

domain need to improve geometric approximation and useful in p-version element integra-

tion [5, 6, 85, 86].

The unique association of a mesh entity of dimension di, Mdi
i , to the geometric model

entity of dimension dj , G
dj

j , di ≤ dj , on which it lies is termed geometric classification,

and is denoted Mdi
i < G

dj

j , where the classification symbol, <, indicates that the left hand

entity, or a set of entities, is classified on the right hand entity. In Figure 2.5, a mesh of

simple square model with entities labeled is shown with arrows indicating the classification

of the mesh entities onto the model entities. All of the interior mesh faces, mesh edges,

and mesh vertices are classified on the model face G2
1.

2.2.3 Adjacencies

Adjacencies describe how mesh entities connect to each other. For an entity of

dimension d, first-order adjacency returns all of the mesh entities of dimension q, which

are on the closure of the entity for a downward adjacency (d > q), or for which the entity

is part of the closure for an upward adjacency (d < q). For denoting specific downward

first-order adjacent entity, Md
i {M q}j , the ordering conventions can be used to enforce the

order. Figure 2.6, 2.7, and 2.8 illustrate a common canonical order of bounding entities.

Figure 2.9 is an adjacency graph that depicts 12 first-order adjacencies possible in the

11

Face 1

0

1

2

3

(Bottom)
Face 0

Face 3
(Back)

Face 2
0

2
3

4

67

5

1

Face 0

Face 1
Face 2

Face 3

Face 4

Face 5

1

20

4

Face 1

Face 4 Face 3

Face 2

Face 0

0

1

2

5

4

3

Face 0

Face 1

Face 2

Face 3
Face 4

Figure 2.6: Vertex and face order on a region [89]

7
3

5

0 1

3

2

4
5

0 1

2
3

4 5 6

0
1

2

4

6
7

8

0

13
28

5

6

7

9
10

11

4

Figure 2.7: Edge order on a region [89]

V4

V1 V2

V3

E2

E3

E4

E1E1

E2

V3

V1 V2

E3

Figure 2.8: Edge order on a face [89]

12

Edge

Region

Face

Vertex

Figure 2.9: 12 adjacencies possible in the mesh representation [31]

mesh data structure where a solid box and a solid arrow denote, respectively, explicitly

stored level of entities and explicitly stored adjacencies from outgoing level to incoming

level.

For an entity of dimension d, second-order adjacencies describe all the mesh entities

of dimension q that share any adjacent entities of dimension b, where d 6= b and b 6= q.

Second-order adjacencies can be derived from first-order adjacencies.

Examples of adjacency requests include: for a given face, the regions on either side

of the face (first-order upward); the vertices bounding the face (first-order downward);

and the faces that share any vertex with a given face (second-order).

2.3 Mesh Representation Options

Depending on the levels of entities and adjacencies explicitly stored in the represen-

tation, there are many options in the design of the mesh data structure.

2.3.1 Criteria

The mesh representation can be categorized with two criteria, resulting in 4 different

groups.

• Full vs. reduced

If a mesh representation stores all 0 to d level entities explicitly, it is a full repre-

sentation, otherwise, it is a reduced representation.

• Complete vs. incomplete

Mesh data structures can be differentiated based on the cost of adjacency retrieval.

13

o Data structures for which all adjacencies can be obtained by one of instant

access, construction and traversal in O(1) time.

o Data structures for which all adjacencies can be obtained, but one or more

adjacency requires time which is a function of mesh size.

o Data structures of which adjacencies cannot be obtainable.

Completeness of adjacency indicates the ability of a mesh representation to provide

any type of adjacencies requested without involving an operation dependent on the

mesh size such as the global mesh search or mesh traversal. Regardless of full or

reduced, if all adjacency information is obtainable in O(1) time (the first circle), the

representation is complete, otherwise it is incomplete.

The general topology-based mesh data structures must satisfy completeness of ad-

jacencies to support adaptive analysis efficiently. It doesn’t necessarily mean that all d

level entities and adjacencies need be explicitly stored in the representation. There are

many representation options in the design of general topology-based mesh data structure.

2.3.2 Minimum sufficient representation

This work is built on the hypotheses of the AOMD. The hypotheses used in the

AOMD are:

1. Any mesh entity of dimension higher than zero can be described by a set of mesh

entities of any lower dimension.

2. Two entities are the same if they have the same vertices.

3. Predefined order of downward adjacencies are used.

The first hypothesis means that entities are represented using at least one set of

entities of any lower dimension. Regions may be defined with faces, edges or vertices,

faces may be defined with edges or vertices, and edges are defined with vertices. From

this, it is always possible to obtain mesh entities’ vertices. Vertices are atomic entities,

thus, to be able to differentiate vertices, unique id’s are assigned to vertices and the vertex

id is used in the entity equality operator. The second hypothesis means that two mesh

entities are comparable for equality based on vertex id’s even though their representations

are different. For example, two regions, one defined by edges and the other defined by

14

2G j

1G j

Vertex

Region

Face

Edge

Figure 2.10: Adjacency graph of the MSR

faces, are always comparable in the AOMD. The third hypothesis, the predefined ordering

of {Md{Mp}}, p < d, (Figure 2.6, 2.7, and 2.8), enforces uniqueness in restoring non-

existing mesh entities and adjacencies.

Based on the hypotheses, the AOMD identified a minimum set of mesh entities and

adjacencies needed to be able to construct all entities with their 12 adjacencies and geo-

metric classification without losing any information about the mesh, called the minimum

sufficient representation (MSR). The MSR consists of all mesh entities equally classified

on the equal dimension model entity and all vertices, that is {M{M0}}; {M{M1}} clas-

sified on model edges; {M{M2}} classified on model faces; and {M{M3}} classified on

model regions. All the vertices are present in the representation but, only ones classi-

fied on model vertices require classification information. For the remaining vertices, their

geometric classification can be unknown.

With the MSR, mesh entities of dimension greater than 0 are defined with vertices

since all faces and edges are not available for entity definition. Adjacency {M2
i {M0}}

and {M1
i {M0}} are maintained only for equally classified faces and edges. Figure 2.10

depicts the adjacency graph of the MSR. In the adjacency graph, a dotted box denotes

that among entities of the level, only equally classified ones are explicitly stored, and a

dotted arrow denotes that adjacencies from an outgoing level to an incoming level are

maintained only for the stored entities. In Figure 2.10, the boxes for faces and edges, and

the lines for adjacency {M2{M0}} and {M1{M0}} are dotted since non-equally classified

faces and edges are omitted and adjacencies {M2{M0}} and {M1{M0}} are maintained

only for the existing faces and edges.

15

Table 2.1: Four categories of mesh representations
full reduced

complete (a), (b), (c) (e)
incomplete (d) (f), MSR

2.3.3 Examples of mesh representation options

The representation given in Figure 2.9 is the greedy representation where all d levels

of entities and all possible 12 adjacencies are stored. Figure 2.11 illustrates adjacency

graphs of six additional 3D mesh representation options.

Representation (a) is the circular adjacency representation that stores downward

adjacencies from each entity to the entity one dimension lower and stores adjacencies

from the vertices up to the highest-order entities that are using them (in a 3D manifold

mesh, this would be the mesh regions) [6]. The adjacency graph of the circular adjacency

representation has been simplified to be a manifold mesh. In case of non-manifold, vertices

can point to mesh faces and mesh edges, respectively, classified on model faces and model

edges. For simplicity of explanation, we discuss the simpler version. Representation (b)

is the one-level adjacency representation that maintains adjacencies between entities one

dimension apart [6]. Representation (e) is the complete minimum sufficient representation

that stores the minimum sufficient representation plus upward adjacencies from vertices to

their bounding entities of level > 0 [13]. Representation (f) is the classic mesh connectivity

structure that describes the mesh only in terms of elements and nodes, and also has been

used for several finite element applications [6]. Although the classic mesh data structure

is sufficient for the fixed finite element analysis codes, it is incomplete and is therefore

inadequate for a full range of procedures of an adaptive analysis due to lack of general

topological information and information relating the mesh back to the original geometric

model.

Mesh representation can be grouped in four categories based on their properties

between full vs. reduced and complete vs. incomplete. In Figure 2.11, (a) to (c) are full

and complete due to all 0 to d levels of entities exist and the 12 adjacencies are obtainable

in O(1) time either by direct access or local traversal, (d) is full and incomplete since it

requires mesh level global search or traversal to get proper adjacencies, (e) is reduced and

complete, and (f) and the MSR are reduced and incomplete. (See Table 2.1)

16

Edge

Region

Face

Vertex

1
iG

2
iGFace

Region

Vertex

Edge

Region

Face

Vertex

Edge

Region

Face

Vertex

Edge

Region

Face

Vertex

Region

Vertex

(e)

(a) (c) (b)

(d) (f)

Edge

Figure 2.11: Example of 3D mesh representations

2.4 Analysis of Mesh Representation Options

Important factors in designing a mesh data structure are storage and computational

efficiency, which are mainly dominated by the entities and adjacencies present in the mesh

representation. The analysis of mesh data structures of various representations suggests

how the mesh representation option and intelligent mesh algorithms are important to

achieve efficiency with mesh applications.

In [6], Beall and Shephard presented three different implementation options in terms

of mesh representation and compared efficiency of each option based on storage require-

ment and computational efficiency. Garimella [31] also presented the comparison among

different mesh representations, from six complete to four reduced ones based on storage

requirement and computational efficiency of adjacency retrieval. The analysis presented

in this section uses a tool devised for evaluating efficiency of mesh data structures which

is more extensive and precise in a fact that the analysis is based on 22 primary mesh oper-

ators and object-oriented programming paradigm [24, 82] where each entity’s information

is stored in the entity as internal members.

17

N0Edge (7)

N0Face (12)

N0Region (5)

N0Vertex ()

4 2

3 5

6

4

3

23

5

2 3514

(a)

N0Vertex ()

N0Region ()

N0Face (3)

N0Edge (3)

2 5

8

12
6

4 4

2 64 12

8

(b)

Figure 2.12: Average number of entities and adjacencies [6, 31]: (a) tetrahe-
dral mesh (b) hexahedral mesh

For the purpose of analyzing various mesh representation options, it is necessary to

know the average number of entities and adjacencies in the mesh. Figure 2.12 presents

the relative number of mesh entities of different dimension to the number of vertices and

the average size of 12 adjacency sets, respectively, of tetrahedral and hexahedral meshes.

In the figures, the number in parentheses in any box represents the number of entities of

that type in a mesh expressed in terms of the number of vertices in the mesh, N0. Also

the number by the each edge connecting two different types of mesh entities (representing

{Md
i {M q}}), is the average |{Md

i {M q}}| in the mesh.

For quantifying performance of a mesh data structure, two measurements, storage

cost and computational cost in terms of the number of atomic operation steps are used.

2.4.1 Storage cost

The memory usage of a mesh data structure is computed with the following equa-

tion [31, 75].

Storage(M) =
3∑

d=0

Nd∑
i=1

Storage(Md
i)

=
3∑

d=0

Nd∑
i=1

(Sent + the number of adjacencies stored at Md
i × Sadj)

=
3∑

d=0

Nd∑
i=1

(Sent +
3,q 6=d∑
q=0

| {Md
i {M q}} | ×Sadj)

(2.1)

18

where Ni is the number of mesh entities of dimension i, i = 0, 1, 2, 3, Sent is the amount of

memory each mesh entity uses (in the FMDB, at least, this includes identifier, dimension,

geometrical classification), Sadj is the amount of memory each adjacency uses (it is ex-

cluded from the memory usage of the mesh entity itself), and, |{Md
i {M q}}| is the number

of adjacent entities {Md
i {M q}} explicitly stored in the mesh data structure

For example, for a tetrahedral mesh that has a region which is bounded by 4 vertices

and bi-directional adjacencies between vertices and a region ({M0
i {M3}}, {M3

i {M0}}),

the memory requirement is:

Storage(M) = (Sent + 4Sadj) /∗ storage for a region ∗/

+ 4(Sent + Sadj) /∗ 4 × storage for a vertices ∗/

= 5Sent + 8Sadj

(2.2)

Based on the mesh statistics in Figure 2.12 and Equation 2.1, the storage require-

ments for various mesh representations are computed as the following:

• Greedy adjacency representation

Storage(M) = N0(Sent + (14 + 35 + 23)× Sadj) + N1(Sent + (2 + 5 + 5)× Sadj)

+ N2(Sent + (3 + 3 + 2)× Sadj) + N3(Sent + (4 + 6 + 4)× Sadj)

= (N0 + N1 + N2 + N3)× Sent + (92N0 + 12N1 + 8N2 + 14N3)× Sadj

= (N0 + 7N0 + 12N0 + 5N0)× Sent

+ (92N0 + 12 · 7N0 + 8 · 12N0 + 14 · 5N0)× Sadj

= 25N0Sent + 342N0Sadj

(2.3)

• Circular adjacency representation

Storage(M) = N0(Sent + 23Sadj) + N1(Sent + 2Sadj) + N2(Sent + 3Sadj) + N3(Sent

+ 4Sadj)

= (N0 + N1 + N2 + N3)× Sent + (23N0 + 2N1 + 3N2 + 4N3)× Sadj

= (N0 + 7N0 + 12N0 + 5N0)× Sent

+ (23N0 + 2 · 7N0 + 3 · 12N0 + 4 · 5N0)× Sadj

= 25N0Sent + 93N0Sadj

(2.4)

19

• One-level adjacency representation

Storage(M) = N0(Sent + 14Sadj) + N1(Sent + (2 + 5)× Sadj)

+ N2(Sent + (3 + 2)× Sadj) + N3(Sent + 4Sadj)

= (N0 + N1 + N2 + N3)× Sent + (14N0 + 7N1 + 6N2 + 4N3)× Sadj

= (N0 + 7N0 + 12N0 + 5N0)× Sent

+ (14N0 + 7 · 7N0 + 6 · 12N0 + 4 · 5N0)× Sadj

= 25N0Sent + 155N0Sadj

(2.5)

• Reduced representations

The exact amount of storage requirement varies depending on the mesh due to the

number of boundary edges and faces vary.

Consider one million tetrahedral mesh and Sent and Sadj are, respectively, 70 and 4 bytes.

The mesh consists of 55,600 faces classified on model faces among total 2,083,475 faces

and 1,435 edges classified on model edges among 1,264,707 edges, and 193,932 vertices.

Storage(M) = N0 · Sent + N1(Sent + 2× Sadj)

+ N2(Sent + 3× Sadj) + N3(Sent + 4× Sadj)

= (N0 + N1 + N2 + N3)× Sent + (2N1 + 3N2 + 4N3)× Sadj

= (193, 932 + 1, 435 + 55, 600 + 1, 000, 000)× Sent

+ (2, 870 + 166, 800 + 4, 000, 000)× Sadj

= 1, 250, 967 · Sent + 4, 169, 670 · Sadj

= 104.24 MB

(2.6)

Storage(M) = N0(Sent + 23× Sadj) + N1(Sent + 2× 2× Sadj)

+ N2(Sent + 2× 3× Sadj) + N3(Sent + 4× Sadj)

= (N0 + N1 + N2 + N3)× Sent + (23N0 + 4N1 + 6N2 + 4N3)× Sadj

= (193, 932 + 1, 435 + 55, 600 + 1, 000, 000)× Sent

+ (4, 460, 436 + 5, 740 + 333, 600 + 4, 000, 000)× Sadj

= 1, 250, 967 · Sent + 8, 799, 776 · Sadj

= 122.75 MB

(2.7)

20

Table 2.2: Storage requirement for 1 million tetrahedral mesh (MB)
representation memory

MSR 96.4
complete MSR 116.4

one level 420.7

Table 2.3: Storage decrease for 1 million tetrahedral mesh (%)
representation by equation by experiment

MSR 75.29 77.08
complete MSR 70.90 72.32

Storage(M) = N0 · (Sent + 14× Sadj) + N1(Sent + 7× Sadj)

+ N2(Sent + 5× Sadj) + N3(Sent + 4× Sadj)

= (N0 + N1 + N2 + N3)× Sent + (14N0 + 7N1 + 5N2 + 4N3)× Sadj

= (193, 932 + 1, 264, 707 + 2, 083, 475 + 1, 000, 000)× Sent

+ (14 · 193, 932 + 7 · 1, 264, 707 + 5 · 2, 083, 475 + 4 · 1, 000, 000)× Sadj

= 4, 542, 114 · Sent + 25, 985, 372 · Sadj

= 421.89 MB

(2.8)

For the example mesh, the storage requirement for the MSR and the complete MSR

is, respectively, 104.24 MB (Equation 2.6) and 122.75 MB (Equation 2.7) by computation

while the storage with one-level adjacency representation is 421.89 MB (Equation 2.8).

Table 2.2 shows the actual storage requirements for the example mesh.

Decrease in memory consumption using flexible representations compared to the

fixed one-level mesh representation can be computed with Equation 2.9. Table 2.3 shows

the decrease of memory cost of the MSR and the complete MSR compared to the one-level

representation.

Storage decrease from flexibility = 100− (
memory for user-requested rep.

memory for one-level rep.
)× 100 (%)

(2.9)

2.4.2 Computational cost

Computational efficiency of mesh data structure refers to the execution time for

manipulating mesh entities including create/delete entities and obtaining mesh entities’

21

Table 2.4: Run time of basic statements
Operator Explanation # step

CREATE A create an object A 1
PUT(container, A) write data A to container 1

PUT UNIQ(container, A) write data A uniquely to container (size n) lg n+2
GET(A) retrieve data A from storage 1
IF (cond) condition 1
A ← B assignment 1

FIND(container, A) search data A from container (size n) lg n
RETURN return to the caller 1

MARK(Md
i , tag id, data) attach data to Md

i with tag id 2
UNMARK(Md

i , tag id) remove data attached to Md
i with tag id 2

MARKED(Md
i , tag id) return true Md

i has attached data with tag id 2

adjacency relations, which varies for different mesh representations.

In analyzing the various mesh operators in terms of computational efficiency, we use

run-time of an algorithm, denoted as Time, which is the number of primitive operations

or steps executed as a unit of measuring the time costs. For convenience, we define the

notion of step a constant amount of time required to execute each line of pseudo code in

the algorithm, which is as machine independent as possible [19].

Table 2.4 presents the run time cost in the number of steps of basic statements

used in mesh operators. According to the complexity of generic search algorithms in

the STL [84], we assume the run time of search algorithm, FIND, to be lg n for the

container of size n. PUT UNIQ writes data into a container uniquely involving search

(lg n), condition check(1), and write(1), thus its run time is lg n+2. Note the statement

RETURN performs at most once throughout a mesh operator. The statements MARK,

UNMARK, and MARKED are used for associating arbitrary data to the entity with

arbitrary user-defined unique tag id. They also can be used in marking/unmarking entity

for specific purpose. In the analysis, the run time for changing attached data to an entity

or checking if the data is attached to the entity is taken as 2; 1 for accessing space reserved

for tag id and 1 for either changing value or getting it.

The run time can be provided in an asymptotic notation with respect to the size

of mesh implying the run time of operator as a function of mesh size, which should be

prohibited for the efficient data structure.

The 22 basic mesh operators that are frequently used in support of automated

adaptive analysis are the following.

22

Data : x, y, z coordinates
Result: Create a vertex V
begin

CREATE a vertex M0
i ; /∗ 1 step ∗/

PUT({M{M0}}, M0
i); /∗ 1 step ∗/

coordinates ← (x,y,z); /∗ 1 step ∗/
RETURN M0

i ; /∗ 1 step ∗/
end

/∗ Time= 1+1+1+1 = 4 ∗/

Algorithm 2.1: M createV(x, y, z)

1. V edges(M0
i): for a given vertex M0

i , return {M0
i {M1}}.

2. V faces(M0
i): for a given vertex M0

i , return {M0
i {M2}}.

3. V regions(M0
i): for a given vertex M0

i , return {M0
i {M3}}.

4. E vertices(M1
i): for a given edge M1

i , return {M1
i {M0}}.

5. E faces(M1
i): for a given edge M1

i , return {M1
i {M2}}.

6. E regions(M1
i): for a given edge M1

i , return {M1
i {M3}}.

7. F vertices(M2
i): for a given face M2

i , return {M2
i {M0}}.

8. F edges(M2
i): for a given face M2

i , return {M2
i {M1}}.

9. F regions(M2
i): for a given face M2

i , return {M2
i {M3}}.

10. R vertices(M3
i): for a given region M3

i , return {M3
i {M0}}.

11. R edges(M3
i): for a given region M3

i , return {M3
i {M1}}.

12. R faces(M3
i): for a given region M3

i , return {M3
i {M2}}.

13. E exist(M0
i , M0

j): return an edge bounded by M0
i and M0

j if exists.

14. F exist(M0
i , M0

j , M0
k): return a face bounded by M0

i , M0
j , and M0

k if exists.

15. F exist(M1
i , M1

j , M1
k): return a face bounded by M1

i , M1
j , and M1

k if exists.

16. R exist(M0
i , M0

j , M0
k , M0

l): return a region bounded by M0
i , M0

j , M0
k and M0

l if

exists.

17. M createV(x, y, z): create a vertex with given coordinates x, y, z. (Algorithm 2.1).

18. M createE(M0
i , M0

j): create an edge bounded by given 2 vertices.

19. M createF(M0
i , M0

j , M0
k): create a face bounded by given 3 vertices.

20. M createF(M1
i , M1

j , M1
k): create a face bounded by given 3 edges.

23

Table 2.5: Run time of 22 mesh operators of four complete representations
operator greedy circular one level complete MSR
V edges 14 584 (B.1) 14 14,362 (D.1)
V faces 35 1871 (B.2) 548 (C.1) 14,291 (D.2)
V regions 23 23 1020 (C.3) 23
E vertices 2 2 2 2
E faces 5 941 (B.3) 5 49,372 (D.3)
E regions 5 455 (B.4) 53 (C.5) 27,142 (D.4)
F vertices 3 10 (B.5) 10 (B.5) 3
F edges 3 3 3 291 (D.5)
F regions 2 235 (B.6) 2 40,784 (D.6)
R vertices 4 17 (B.7) 17 (B.7) 4
R edges 6 9 (B.8) 9 (B.8) 582 (D.7)
R faces 4 4 4 584 (D.8)
E exist(M0

i ,M0
j) 71 (A.1) 641 (B.9) 71 (A.1) 71 (A.1)

F exist(M0
i ,M0

j ,M0
k) 106 (A.2) 1647 (B.10) 140 (C.7) 106 (A.2)

F exist(M1
i ,M1

j ,M1
k) 47 (A.3) 982 (B.11) 47 (A.3) 117 (D.9)

R exist(M0
i ,M0

j ,M0
k ,M0

l) 125 (A.4) 766 (B.12) 544 (C.8) 125 (A.4)
M createV 4 4 4 4
M createE 16 (A.5) 5 (B.13) 16 (A.5) 6 (A.5)
M createF(M0

i ,M0
j ,M0

k) 256 (A.6) 1929 (B.14) 231 (C.9) 27 (D.10)
M createF(M1

i ,M1
j ,M1

k) 50 (A.7) 9 (B.15) 21 (C.10) 33 (D.11)
M createR(M0

i ,M0
j ,M0

k ,M0
l) 703 (A.8) 6627 (B.16) 579 (C.11) 33 (D.12)

M createR(M2
i ,M2

j ,M2
k ,M2

l) 201 (A.9) 7 (B.17) 19 (C.12) 46 (D.13)
TOTAL 1,685 16,771 3,359 148,008

21. M createR(M0
i , M0

j , M0
k , M0

k): create a region bounded by given 4 vertices.

22. M createR(M2
i , M2

j , M2
k , M2

k): create a region bounded by given 4 faces.

The run time of vertex creation operator, M createV (Algorithm 2.1), is 4 regardless

of the mesh representation options. For the comparison purpose, we analyze various mesh

representation options in terms of the run time of 22 mesh operators in steps only with a

tetrahedral mesh. The run time of 22 mesh operators in 4 complete mesh representations

are summarized in Table 2.5.

If Md
i stores n entities of dimension q in {Md

i {M q}} explicitly, the run time of

operator inquiring {Md
i {M q}} is n steps. Thus, for the adjacency operator on directly

stored adjacencies, their run time is obviously the number of the adjacencies stored. For

example, E regions(M1
i) in complete mesh representation takes 23 steps due to direct

storage access. For the operators of which algorithm is not straightforward, their algo-

rithms are described in Appendix A (greedy representation), B (circular representation),

24

C (one-level representation) and D (complete MSR). In case of the complete MSR, the cost

of adjacency operators requesting interior levels (for example, V edges, V faces, E faces,

F edges, R edges, and R faces) is computed based on implicit entities not stored in the

representation.

2.5 Historic Review

The particular mesh-based application has its own need of the level of entities and

adjacencies. It is not possible to design a single mesh data structure that is the most

compact and the most efficient, and meets the needs of all applications. Clearly, the

design of good mesh data structure is highly dependent on the application for which it is

used. The usual approach in designing a mesh data structure is to tailor the mesh data

structure to the specific application [10, 16, 36, 39, 52, 53, 54, 61, 69, 71, 90]. For example.

the mesh data structure of references [52] and [53] stores only a minimal representation

consisting of elements (regions in 3D) and nodes (or vertices). In a 3D mesh, GRUMMP

[65] stores vertices, faces, and regions. Reference [9] stores vertices, edges and regions.

However, a mesh data structure tailored to the specific application gains little ac-

ceptance to be used in most mesh-based applications due to lack of extendibility and

reusability. The general topology-based mesh data structure works with reasonable effi-

ciency in most operations of the applications [6, 13, 20, 66, 83, 89, 94, 100].

Waltz [100] presented a general mesh data structure with an assumption that the

mesh consists of a set of nodes, elements (regions in 3D), and a set of nodes on the boundary

of the domain. The other mesh information is described as derived data structures. In a

3D mesh, for each element, the data structure stores a set of faces bounding the element

and a set of the neighboring elements adjacent to any of the faces of the element. An

empty set of neighboring elements is used to recognize a face on the boundary on the

domain.

Celes et al. [13] took an approach that has modified reduced representation to pro-

vide memory efficiency while ensuring consistency of implicit entities by having oriented

topological entities. The oriented topological entities represent the use of face, edge, or

a vertex by an element without imposing any additional storage by representing them

implicitly. It presented a compact general mesh data structure with reduced but complete

representation with augmented data structures and additional computations.

Based on the work in [5, 6, 20, 66, 94], MeshSimTM [89] were presented to effi-

25

ciently support tools and techniques for geometry-based analysis. MeshSimTM was ex-

tended to PMeshSimTM to be operable on parallel computers. For the memory efficiency,

MeshSimTM and PMeshSimTM allow the user to choose between full vs. reduced represen-

tation through the different mesh data stored in the mesh file. The mesh without curving

can be loaded with the reduced representation from the mesh file, which is generated with

the reduced representation.

Although the general mesh data structure works with reasonable efficiency in most

operations of the applications, the analysis of mesh representation options given in §2.4

clearly demonstrates a few caveats of the general mesh database with fixed mesh repre-

sentations such as a prohibitive cost of storage space in case of full representations and

ensuring the efficiency and consistency of implicit entities in case of reduced represen-

tations. In case of the applications that need only elements and nodes, for example,

Lagrangian finite elements, Hierarchic finite elements, Discontinuous Monomials finite el-

ements or Infinite finite elements, smoothing, etc., maintaining complete representations

results in wasting resources [31, 75]. This inevitably leads to the consideration that the

mesh data structure must be flexible enough to switch between various representations

for different phase of an application and build the custom mesh representation based on

a meaningful criteria for achieving efficiency both in the storage and computational cost

by being optimized for a particular application [32, 75, 92].

The AOMD [75] supports the flexibility in the mesh representation stored by build-

ing the requested representation on the fly using a mesh operator that creates or deletes

entities and adjacencies of a specific level through mesh traversal and search, which is

obviously not efficient.

MOAB [92] also provides the flexibility in the mesh representation, but in a different

manner from the AOMD. The flexible mesh representation of MOAB is controlled not by

the mesh database, but by the mesh entities and adjacencies stored in the mesh file.

Based on investigation of the efficiency of mesh representation options in reference

[31], Garimella presented a flexible mesh infrastructure named MSTK [32]. MSTK allows

the user to switch the representation only from a set of mesh representation options avail-

able to choose. It also provides flexibility in specifying geometric classification information,

allowing the user to specify if the geometric classification is stored or not.

Even though all of AOMD, MOAB and MSTK are classified into flexible mesh

databases, the definition of flexibility is different from each other. In terms of AOMD,

26

a flexible mesh database is the one that is able to change its mesh data stored in the

representation dynamically based on the user’s request. In case of MOAB, the flexibility

means an ability to load (resp. save) the mesh with different mesh representations from

(resp. to) the mesh file. The flexibility of mesh representations with MSTK is limited

to a predefined set of mesh representations available in the MSTK. The FMDB defines a

flexible mesh database as the one that is able to shape its mesh data structure, both of

data and operators, dynamically based on the user’s representation needs to maintain the

mesh data correct even with mesh modification, for example, entity creation/deletion and

migration between processors in parallel.

A review of distributed mesh data structures, such as libMesh [52], PMDB [20, 66],

Selwood [83], etc., is presented in §4.1.

CHAPTER 3

FLEXIBLE MESH DATA STRUCTURE

This chapter discusses the design of the flexibility in the FMDB which enables the mesh

database to shape its structure based on the representational needs.

The issues to be considered for the flexible mesh data structure are:

• how to describe the mesh representation needs,

• how to provide the user-requested representation at a minimum cost,

• how to keep the user-requested representation correct even with mesh modification

such as mesh entity creation/deletion and mesh migration in parallel, and

• how to proceed when the user doesn’t know the necessary mesh representation for

the application.

To represent mesh representation in need, we devised mesh representation matrix,

shortly called MRM (§3.1). The MRM provided by the user is then optimized to provide

the needed representation at a minimum cost (§3.2). In order to keep the user-requested

representation correct even with mesh modification, the mesh entity creation/deletion op-

erators are declared as function pointers, and initially undetermined (§3.2). Once the

user-requested representation is provided, the mesh entity creation/deletion operators are

set to the proper ones dynamically to maintain the needed representation. For the cases

when the needed mesh representation is not known in advance, the Dynamic Mesh Us-

age Monitor (DMUM) was developed (§3.3). DMUM collects mesh usage statistics in

terms of the levels of entities and adjacencies needed by the application and provides the

information for use in setting the appropriate representation in the FMDB.

3.1 Mesh Representation Matrix

The user requested mesh representation is provided to the mesh database in the

form of a 4 × 4 matrix, called Mesh Representation Matrix (MRM). The matrix used in

reference [75] to describe a mesh representation has been extended to be able to represent

the equally classified mesh entities and adjacencies available only for the stored entities.

Definition 5.1 Mesh Representation Matrix (MRM)

A 4 × 4 matrix R of which diagonal element Ri,i is equal to 1 if mesh entities of

27

28

Edge

Face

Vertex

Edge

Face

Vertex

2G j

1G j

Vertex

Face

Edge

1 0 1 0
1 1 0 0
0 1 1 0
0 0 0 0

1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 0

1 0 0 0
− − 0 0
1 0 1 0
0 0 0 0

circular one level MSR

Figure 3.1: MRM’s of 2D mesh representation

Edge

Region

Face

Vertex

Edge

Region

Face

Vertex

2G j

1G j

Vertex

Region

Face

Edge

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

1 0 0 0
− − 0 0
− 0 − 0
1 0 0 1

circular one level MSR

Figure 3.2: MRM’s of 3D mesh representation

dimension i are present in the representation, is equal to − if only entities of the

same order as the geometric model entities they are classified on are stored, and is

equal to 0 if not stored. Non-diagonal element Ri,j of R is equal to 1 if Ri,i = Rj,j

= 1 and {M i{M j}} is present, is equal to − if {M i{M j}} is present only for stored

{M{M i}} and {M{M j}}, and is equal to 0 if the adjacency is not stored at all.

i 6= j and 0 ≤ i, j ≤ 3.

Figure 3.1 and 3.2 give, respectively, 2D and 3D MRM’s of the 3 representations;

circular, one-level and minimum sufficient representation. In the adjacency graph of 3D

29

MSR given in Figure 3.2, R0,0, R3,3, and R3,0 are 1 since all the vertices, regions and

adjacency {M3{M0}} are present in the representation. R1,1 and R2,2 are − due to only

edges classified on model edges and faces classified on model faces are present. R1,0 and

R2,0 are − since the downward adjacencies {M1{M0}} and {M2{M0}} are stored only

for present edges and faces. The remaining Ri,j , i 6= j, is 0.

3.2 Design of a Flexible Mesh Data Structure

Based on the three hypotheses of the AOMD (§2.3), this section presents a new

method to design a flexible mesh data structure that efficiently supports adaptive analysis.

The requirements of the flexible mesh data structure are:

• The user-requested representation should be properly maintained even with mesh

modification such as entity creation/deletion and mesh migration.

• Restoration of implicit entities should produce valid entities in every aspect such as

geometrical classification and vertex ordering.

• Any mesh operators, except mesh loading/exporting and query to unrequested ad-

jacencies, should be effective without involving global mesh level search or traversal

to ensure efficiency and scalability in parallel.

To meet the requirements, the mesh database is designed to shape its data structure

dynamically by setting mesh modification operators to the proper ones that keep the

requested representation correct. Shaping mesh data structure is performed in three steps:

3.2.1 Step 1: Union the user-requested representation with the minimum

sufficient representation

First, union of the user-requested representation with the MSR is performed since

the MSR is the minimal representation to be stored in the mesh with no information loss.

For two MRM’s, R1 and R2, the union operation is performed on each pair of R1
i,j and

R2
i,j , i, j = 0, 1, 2, 3, where union of R1

i,j and R2
i,j returns the maximum of R1

i,j and R2
i,j ,

1 > − > 0.

Figure 3.3 depicts examples of 3D MRM union. By union, Ra, Rd, and Rg are,

respectively, modified to Rb, Re and Rh. In case of Rd, Rd
1,1 and Rd

1,0 are set to − to

store edges classified on model edges with their bounding vertices. Rd
3,0 and Rd

2,0 are,

respectively, set to 1 and − since regions and faces are defined in terms of vertices in the

30

user representation after union

Case 1 : Ra =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 Rb =

1 0 0 0
1 − 0 0
− 0 − 0
1 0 0 1

Case 2 : Rd =

1 0 1 1
0 0 0 0
0 0 1 1
0 0 1 1

 Re =

1 0 1 1
− − 0 0
− 0 1 1
1 0 1 1

Case 3 : Rg =

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 Rh =

1 0 0 0
− 1 1 0
− 1 1 0
1 0 0 1

Figure 3.3: Example of 3D MRM union

MSR. In case of Rg, Rg
0,0 and Rg

3,3 are set to 1 to store vertices and regions. Rg
1,0 and

Rg
2,0 are set to − and Rg

3,0 is set to 1 to store adjacent vertices of edges, faces and regions.

3.2.2 Step 2: Optimize the representation

The second step optimizes the MRM in order to provide the optimal representation

that satisfies the user requested representation at the minimum memory cost. Optimizing

the MRM is different depending on the dimension of a mesh. Optimization is performed

in multiple sub-steps as the following:

2.1 Correct MRM

The first sub-step corrects the MRM to be consistent in terms of entity existence

and adjacency request. If Ri,j = 1 but any of Ri,i and Rj,j is not 1, Ri,j is corrected

to −. If Ri,j = − and both Ri,i and Rj,j are 1, Ri,j is corrected to 1.

2.2 Determine the level of bounding entities

By the hypotheses of the AOMD, a face can be created by vertices or edges, and a

region can be created with vertices, edges or faces. However, to maintain the needed

adjacencies efficiently, it is desirable to determine the level of bounding entities for

face and region definition, and create face and region only with pre-determined level

of entities. For example, for a representation that requires adjacencies {M2{M3}}

and {M3{M2}}, creating a region with faces is more effective than creating a region

with vertices in terms of updating adjacencies between regions and faces. Thus

31

representation after union after optimization

Case 1 : Rb =

1 0 0 0
1 − 0 0
− 0 − 0
1 0 0 1

 Rc =

1 0 0 0
− − 0 0
− 0 − 0
1 0 0 1

Case 2 : Re =

1 0 1 1
− − 0 0
− 0 1 1
1 0 1 1

 Rf =

1 0 1 0
− − 0 0
1 0 1 1
0 0 1 1

Case 3 : Rh =

1 0 0 0
− 1 1 0
− 1 1 0
1 0 0 1

 Ri =

1 0 0 0
1 1 1 0
0 1 1 0
0 0 1 1

Figure 3.4: Example of 3D MRM optimization

the second step determines the level of bounding entities in face/region creation to

expedite the adjacency update.

Note restricting the lower level of entities for face/region creation doesn’t necessarily

mean that creating face/region with other lower level of entities is not supported. It

does mean creating a face/region with a non-preferred level of entities will involve

more effort to update desired adjacencies.

2.3 Suppress unnecessary adjacencies

The third step removes unnecessary adjacencies which are effectively obtainable by

local traversal to save the storage. For instance, consider R1,2, R1,3 and R2,3 are

equal to 1. Then R1,3 is suppressed to 0 since {M1{M3}} can be effectively obtained

by traversing {M1{M2}} and {M2{M3}}. This step can be turned off by the user

in case that the user doesn’t want local traversal for specific adjacency queries.

Figure 3.4 depicts examples of 3D MRM optimization. By optimization, Rb
1,0 is

corrected to − since Rb
1,1 is not 1. Re

2,0 is corrected to 1 since both Re
0,0 and Re

2,2 are

1. Re
0,3 and Re

3,0 are set to 0 since they are obtainable, respectively, by {M0{M2}{M3}}

and {M3{M2}{M0}}. In case of Rh, first, Rh
1,0 and Rh

2,0 are corrected to 1 since all Rh
i,i,

i = 0, 1, 2, are 1. Then, Rh
2,0 and Rh

3,0 are set to 0, and Rh
3,2 is set to 1. Regions and faces

with Rc are determined to create with vertices. Regions with Rf and Ri are determined

to create with faces. Faces with Rf (resp. Ri) are determined to create with vertices

(resp. edges).

32

Mq

Md

Mp

Figure 3.5: Example of adjacency needs

3.2.3 Step 3: Shape mesh data structure via setting mesh operators

This step shapes the mesh data structure based on the mesh representation.

To keep the user-requested adjacency even with mesh modification efficient and

correct, the needed adjacencies should be updated on the fly at the moment when the

mesh entities are created or deleted. For example, suppose an application that requests

adjacency {M0{M2}}. In order to keep {M0{M2}}, face creation must be followed by

adding M2
i into {M0

i {M2}}, and face deletion must be followed by deleting M2
i from

{M0
i {M2}}, for each M0

i ∈ {∂(M2
i)}. Obviously, by doing this, the representation is kept

correct even with mesh modification.

In the new approach, we shape the mesh data structure by setting the mesh operators

that create or delete the mesh entities to the proper ones in order to preserve the user-

requested representation. Unlike the previous method taken in reference [75], shaping the

representations using dynamic setting of mesh operators doesn’t involve any mesh size

operation such as search and traversal, and maintains a valid representation under all

mesh level operations. The operators which involve mesh entity creation/deletion during

operation must work differently depending on the representation. These operators are

mesh entity creation, mesh entity deletion, mesh load, and mesh migration. The mesh

migration procedure with flexible mesh representations will be covered in Chapter 5.

Consider the adjacency request given in Figure 3.5 where {Md{Mp}} and {Md{M q}}

are requested, p < d < q. The following are the rules for determining mesh entity cre-

ation/deletion operators which are declared as function pointers:

1. when Md
i is created, {Md

i {Mp}} is stored for each Mp
i ∈ {∂(Md

i)}.

2. when M q
i is created, {Md

i {M q}} is stored for each Md
i ∈ {∂(M q

i)}.

33

Mesh
Application FMDB

DMUM

Monitoring Mesh Usage

Optimal Mesh Representation Information
(Mesh Representation Matrix)

Figure 3.6: The relationship between mesh applications, FMDB and DMUM

3. when Md
i is deleted, {Md

i {Mp}} doesn’t need to be explicitly updated.

4. when M q
i is deleted, {Md

i {M q}} is updated for each Md
i ∈ {∂(M q

i)} to remove M q
i .

Rule 1 means that when Md
i is created, Mp

i is added to the downward adjacency

{Md
i {Mp}} for each Mp

i ∈ {∂(V d
i)}. Rule 2 means that when M q

i is created, M q
i is added

to the upward adjacency {Md
i {M q}} for each Md

i ∈ {∂(M q
i)}. In the object-oriented

paradigm where a mesh entity stores its adjacency information as the member data of the

entity [5, 24, 82], the downward adjacency {Md
i {Mp}} is removed automatically when Md

i

is deleted. Thus, Rule 3 means that when Md
i is deleted, the downward adjacencies of

Md
i don’t need to be removed explicitly. However, when M q

i is deleted, M q
i is not deleted

from the upward adjacency of {Md
i {M q}} stored in Md

i for each Md
i ∈ {∂(M q

i)}. Rule 4

means, when M q
i is removed, M q

i should be removed explicitly from all the stored upward

adjacency {Md
i {M q}} for each Md

i ∈ {∂(M q
i)}.

3.3 The Dynamic Mesh Usage Monitor (DMUM)

It is not always possible to know the user requested representation of the application

in advance. Sometimes, the exact needs of the mesh representation is not known with-

out running the application. For instance, when the application manipulates the mesh

through the DOE SciDAC [81] Terascale Simulation Tools and Technologies (TSTT)’s

mesh interface [95], which enables the application to use several different mesh databases

via language-interoperability provided by SIDL-Babel [14], it’s not possible to provide the

needed representation to the mesh database. For those cases, the Dynamic Mesh Usage

Monitor (DMUM) was developed to provide the needed mesh representation of the specific

application to the FMDB. The needed mesh representation can be provided either by the

user explicitly or the output of the DMUM.

34

0 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

(a) 2D Rayleigh Taylor (b) 2D riemann (c) 3D riemann (d) 3D sedov

instabilities explosion
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 0 0 1
0 0 0 0
0 0 1 1
1 0 1 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

(e) 3D mesh (f) 3D error (g) 2D coordinate-based (h) 3D graph-based
adaptation estimation load balancing load balancing

Figure 3.7: Example of MRM’s generated by DMUM

Figure 3.6 illustrates the relationship between a mesh application, the FMDB and

the DMUM. The DMUM monitors mesh usage of the application in terms of the levels of

entities and adjacencies used and produces the needed representation in the form of the

MRM. The output of the DMUM is used by the FMDB to shape its data structure to the

optimal that meets the specific needs of the application.

The operation of the DMUM is performed with the following main functions:

• startMonitoring(M): This function starts the dynamic monitoring. The monitor-

ing module starts to collect the information about the levels of mesh entities and

adjacencies manipulated by the application.

• pauseMonitoring(M): This function pauses monitoring. With resumeMonitoring,

it enables the partial monitoring.

• resumeMonitoring(M): This function resumes monitoring.

• stopMonitoring(M): This function stops the dynamic monitoring.

Figure 3.7 shows examples of mesh representation matrix generated by the DMUM

with various DG [30, 74, 77, 78] applications (a-d), 3D mesh adaptation [48, 49, 50, 51]

(e), 3D mesh error estimation with ZZ-SPR [104] (f) and the mesh load balancing [20]

procedure with manifold model (g, h). The 3D mesh adaptation procedure requires all d

levels of entities with 12 adjacencies.

CHAPTER 4

PARALLEL MESH DATA STRUCTURE: A PARTITION MODEL

This chapter presents the historic review of distributed mesh data structures published

to data and discusses the design of distributed mesh data structure in the FMDB with

an assumption of full, complete mesh representation. Finally, the algorithm for migrating

mesh entities between partitions is presented.

4.1 Historic Review

A distributed mesh data structure is an infrastructure executing underneath pro-

viding all parallel mesh-based operations needed to support parallel adaptive analysis. An

efficient and scalable distributed mesh data structure is mandatory to achieve performance

since it strongly influences the overall performance of adaptive mesh-based simulations. In

addition to the general mesh-based operations [6], such as mesh entity creation/deletion,

adjacency and geometric classification, iterators, arbitrary attachable data to mesh enti-

ties, etc., the distributed mesh data structure must support (i) efficient communication

between entities duplicated over multiple processors, (ii) migration of mesh entities be-

tween processors, and (iii) dynamic load balancing.

Papers have been published on the issues of parallel adaptive analysis including

parallel mesh generation [22, 23, 44, 45, 65, 79, 96], dynamic mesh load balancing tech-

niques [17, 20, 25, 94, 99], and data structure and algorithms for parallel structured [4,

42, 57, 69] or unstructured mesh adaptation [21, 52, 65, 64, 66, 70, 76, 83].

Parashar and Browne presented a distributed mesh data structure for parallel non-

conforming h-refinement called DAGH (Distributed Adaptive Grid Hierarchy) [69]. DAGH

represents a mesh with grid hierarchy. In case of a distributed grid, inter-grid operations

are performed locally on each processor without involving any communication or syn-

chronization due to the mesh refinement is non-conforming. The mesh load balancing is

performed by varying granularity of the DAGH blocks.

LibMesh [52] is a distributed mesh data structure developed at the university of

Texas in order to support parallel finite element simulations with refinement. It opted

the classic element-node data structure supporting only h- uniform refinement and serial

mesh partitioning for initial distribution.

Reference [9] presented a distributed mesh data structure to support parallel adap-

35

36

tive numerical computation based on refinement and coarsening [64]. A mesh data consists

of vertices, edges and regions with a linked list data structure and maintains the shared

processor lists for entities on partition boundaries through the message passing. Global

identifiers are assigned to every entity, thus, all data structure are updated to contain

consistent global information during adaptation. The provided the owning processor of

shared entities which is randomly selected and the dynamic mesh load balancing with

ParMETIS [40].

In reference [83], Selwood and Berzins presented a general distributed mesh data

structure that supports parallel mesh refinement and de-refinement. It represents a mesh

with all d level mesh entities and adjacencies, and provides dynamic load balancing with

the Zoltan [80] library. In order to be aware of the part of the mesh which is distributed

on other processors, the pointers to the adjacent tetrahedral that are on other processors

are kept for each processor.

Reference [20, 66] presented a general distributed mesh data structure called PMDB

(Parallel Mesh DataBase), which was capable of supporting parallel adaptive simulations.

In PMDB, the data related to mesh partitioning were kept at the mesh entity level and

the inter-processor links were managed by doubly-linked structures. These structures pro-

vided query routines such as processor adjacency, lists of entities on partition boundaries,

and update operators such as insertion and deletion of these entities. An owning parti-

tion update rule which lets the processor owning a shared entity on partition boundary

to collect and inform the updated links to the processors holding these entities was pre-

sented. The owning processor of an entity on the partition boundary was determined to

the processor with minimum processor id. In reference [94], PMDB was enhanced with

addition of RPM (Rensselaer Partition Model) that represents heterogeneous processor

and network of workstations, or some combination of these for the purpose of improving

performance by accounting for resources of parallel computers.

Most of distributed mesh data structures published to date are data structure shaped

to specific mesh applications [9, 52, 65, 69], support only part of adaptive analysis such as

refinement step [4, 52, 57, 69, 70], or is able to handle only manifold meshes [9, 65, 52, 57,

69, 70, 76, 83, 89, 94]. The development of the general distributed mesh data structure

to efficiently support parallel adaptive analysis procedures including the solvers and the

adaptation procedures is not trivial due to data structure complexity, the nature of the

mesh with general non-manifold models, the consistantly evolving nature in the mesh as

37

P1 P2

P0

M0
1

boundary
partition

M1
j

Figure 4.1: Distributed mesh on three partitions P0, P1 and P2 [76]

it is adapted, and the needs for dynamic load balancing.

4.2 Distributed Mesh Representation

4.2.1 Definitions and properties

A distributed mesh is a mesh divided into partitions for distribution over a set of

processors for specific reasons, for example, parallel computation.

Definition 4.1 Partition

A partition Pi consists of the set of mesh entities assigned to ith processor. For each

partition, a unique partition id can be given.

Each partition will be treated as a serial mesh with the addition of mesh partition

boundaries to describe groups of mesh entities that are on inter-partition boundaries.

Mesh entities on partition boundaries are duplicated on all partitions on which they are

used in adjacency relations. Mesh entities not on the partition boundary exist on only

one partition. Figure 4.1 depicts a mesh that is distributed on 3 partitions. Vertex M0
1 is

common to three partitions and on each partition, several mesh edges like M1
j are common

to two partitions. The dashed lines are partition boundaries that consist of mesh vertices

and edges duplicated on multiple partitions.

In order to simply denote the partition(s) that a mesh entity resides, we define an

operator P.

Definition 4.2 Residence partition operator P[Md
i]

An operator that returns a set of partition id(s) where Md
i exists.

38

1P

5
2M

6
2M

4
2M

2
1M

4
1M

5
1M

2
2M

1
2M

1
0M

6
1M

3
2M

1
3M

2
3M

3
1M

7
2M

1
1M 2P

0P

(back)

Figure 4.2: Example 3D mesh distributed on 3 partitions

Definition 4.3 Residence partition equation of Md
i

If {Md
i {M q}} = ∅, d < q, P[Md

i] = {p} where p is the id of a partition where Md
i

exists. Otherwise, P[Md
i] = ∪ P[M q

j | Md
i ∈ {∂(M q

j)}].

For any entity Md
i not on the boundary of any higher order mesh entities and on

partition p, P[Md
i] returns {p} since when the entity is not on the boundary of any

other mesh entities of higher order, its residence partition is determined simply to be the

partition where it resides. If entity Md
i is on the boundary of other higher order mesh

entities, Md
i is duplicated on multiple partitions depending on the residence partitions of

its bounding entities since Md
i exists wherever a mesh entity it bounds exists. Therefore,

the residence partition(s) of Md
i is the union of residence partitions of all entities that it

bounds. For a mesh topology where the entities of order d > 0 are bounded by entities

of order d − 1, P[Md
i] is determined to be {p} if {Md

i {M
d+1
k }} = ∅. Otherwise, P[Md

i]

is ∪ P[Md+1
k | Md

i ∈ {∂(Md+1
k)}]. For instance, for the 3D mesh depicted in Figure 4.2,

where M3
1 and M2

1 are on P0, M3
2 and M2

2 are on P1 and M1
1 is on P2, residence partition

ids of M0
1 are {P0, P1, P2} since the union of residence partitions of its bounding edges,

{M1
1 , M1

2 , M1
3 , M1

4 , M1
5 , M1

6 }, are {P0, P1, P2}.

To migrate mesh entities to other partitions, the destination partition id’s of mesh

entities must be specified before moving the mesh entities. The resident partition equation

implies that once the destination partition id of a Md
i that is not on the boundary of any

other mesh entities is set, the other entities needed to migrate are determined by the

entities it bounds. Thus, a mesh entity that is not on the boundary of any higher order

39

mesh entities is the basic unit to assign the destination partition id in the mesh migration

procedure.

Definition 4.4 Partition object

The basic unit to which a destination partition id is assigned. The full set of partition

objects is the set of mesh entities that are not part of the boundary of any higher

order mesh entities. In a 3D mesh, this includes all mesh regions, the mesh faces

not bounded by any mesh regions, the mesh edges not bounded by any mesh faces,

and mesh vertices not bounded by any mesh edges.

In case of a manifold model, partition objects are all mesh regions in 3D and all

mesh faces in 2D. In case of a non-manifold model, the careful lookup for entities not being

bounded is required over the entities of one specific dimension. For example, partition

objects of the mesh in Figure 4.2 are M1
1 , M2

1 , M2
2 , M3

1 , and M3
2 .

4.2.2 Functional requirements of distributed meshes

Functional requirements of the mesh data structure for supporting mesh operations

on distributed meshes are:

• Communication links: Mesh entities on the partition boundaries (shortly, partition

boundary entities) must be aware of where they are duplicated.

Definition 4.5 Remote partition

Non-self partition2 where a mesh entity is duplicated.

Definition 4.6 Remote copy

The memory location of a mesh entity duplicated on remote partition p.

In parallel adaptive analysis, the mesh and its partitioning can change thousands of

time during the simulation. Therefore, at the mesh functionality level, an efficient

mechanism to update the mesh partitioning and keep the links between partitions

updated are mandatory to achieve scalability.

• Entity ownership: For entities on partition boundaries, it is beneficial to assign a

specific copy as the owner of the others and let the owner be in charge of com-

munication or computation between the copies. There are 2 common strategies in

determining the owning partition of partition boundary entities.
2A partition which is not the current local partition

40

Figure 4.3: Hierarchy of domain decomposition: geometry model, partition
model, and distributed mesh on 4 processors

– Static entity ownership: The owning partition of a partition boundary entity is

always fixed to Pi regardless of mesh partitioning [66, 94]. It has been observed

that the static entity ownership produces mesh load imbalance in adaptive

analysis.

– Dynamic entity ownership: The owning partition of the partition boundary

entity is dynamically specified, for example, reference [9] assigns a random

number.

For the dynamic entity ownership, there can be several options in determining own-

ing processor of mesh entities. With the FMDB, the entity ownership is determined based

on the rule of the poor-to-rich ownership, which assigns the poorest partition to the owner

of entity, where the poorest partition is the partition that has the least number of partition

objects among residence partitions of the entity. With this scheme, mesh load balance is

kept during adaptive mesh simulations since the local mesh migration procedure performed

during mesh adaptation to gain the necessary entities for a specific mesh modification op-

erator [1, 21] always migrates entities to poor partitions improving the overall performance

of the parallel simulation.

4.3 A Partition Model

To meet the goals and functionalities of distributed meshes, a partition model has

been developed between the mesh and the geometric model. As illustrated in Figure 4.3,

the partition model can be viewed as a part of hierarchical domain decomposition. Its

purpose is to represent mesh partitioning in topology and support mesh-level parallel

operations through inter-partition boundary links with ease.

41

The specific implementation is the parallel extension of the FMDB, such that stan-

dard FMDB entities and adjacencies are used on processors only with the addition of the

partition entity information needed to support all operations across multiple processors.

4.3.1 Definitions

The partition model introduces a set of topological entities that represents the col-

lections of mesh entities based on their location with respect to the partitioning. Grouping

mesh entities to define a partition entity can be done with multiple criteria based on the

level of functionalities and needs of distributed meshes.

At a minimum, residence partition must be a criterion to be able to support the inter-

partition communications. Connectivity between entities is also desirable for a criterion to

support operations quickly and can be used optionally. Two mesh entities are connected if

they are on the same partition and reachable via adjacency operations. The connectivity

is expensive but useful in representing separate chunks in a partition. It enables diagnoses

of the quality of mesh partitioning immediately at the partition model level. In our

implementation, for the efficiency purpose, only residence partition is used for the criterion.

Definition 4.7 defines the partition model entity based on the residence partition criterion.

Definition 4.7 Partition (model) entity

A topological entity in the partition model, P d
i , which represents a group of mesh

entities of dimension d, that have the same P. Each partition model entity is

uniquely determined by P.

Each partition model entity stores dimension, id, residence partition(s), and the

owning partition. From a mesh entity level, by keeping proper relation to the partition

model entity, all needed services to represent mesh partitioning and support inter-partition

communications are easily supported.

Definition 4.8 Partition classification

The unique association of mesh topological entities of dimension di, Mdi
i , to the

topological entity of the partition model of dimension dj , P
dj

j where di ≤ dj , on

which it lies is termed partition classification and is denoted Mdi
i < P

dj

j .

Definition 4.9 Reverse partition classification

For each partition entity, the set of equal order mesh entities classified on that entity

42

2
1P

2
2P

1
1P

2
3P

3
3P

3
2P

0P 1P

3
1P

2P

1
1P

3
1P

3
2P2

1P

2
2P 2

3P

3
3P

P0 P1

P2

(a) distributed mesh (b) partition model

Figure 4.4: Distributed mesh and its association with the partition model via
partition classifications

defines the reverse partition classification for the partition model entity. The reverse

partition classification is denoted as RC(P d
j) = {Md

i | Md
i < P d

j }.

Figure 4.4 illustrates a 3D distributed mesh with mesh entities labeled with arrows

indicating the partition classification of the entities onto the partition model entities and

its associated partition model. The mesh vertices and edges on the thick black lines are

classified on partition edge P 1
1 . The mesh vertices, edges and faces on the shaded planes

are classified on the partition faces pointed with each arrow. The remaining mesh entities

are non-partition boundary entities, therefore they are classified on the partition regions.

Note the reverse classification returns only the same order mesh entities. The reverse

partition classification of P 1
1 returns mesh edges located on the thick black lines, and

the reverse partition classification of partition face P 2
i returns mesh faces on the shaded

planes.

4.3.2 Building a partition model

When the partition model entities are uniquely defined with the two criteria of res-

idence partition and connectivity between entities, the following rules govern the creation

of a corresponding partition model and specify the partition classification of mesh entities:

1. High-to-low mesh entity traversal : The partition classification is set from high order

to low order entity (resident partition equation).

43

2. Inheritance-first : If Md
i ∈ {∂(M q

j)} and P[Md
i] = P[M q

j], Md
i inherits the partition

classification from M q
j as a subset of the partitions it is on.

3. Connectivity-second : If Md
i and Md

j are connected and P[Md
i] = P[Md

j], Md
i and

Md
j are classified on the same partition entity.

4. Partition entity creation-last : If neither of rule 2 nor 3 applies for Md
i , a new parti-

tion entity P d
j is created.

Data : a distributed mesh M
Result: build a partition model and set its association with M

begin
/∗ high-to-low order mesh entity traversal ∗/
for d ← 3 to 0 do

for each Md
i ∈ {M{Md}} do

/∗ inheritance-first ∗/
for each Md+1

j ∈ {Md
i {Md+1}} do

if P[Md
i] = P[Md+1

j]
set partition classification of Md

i to P q
k where Md

i < P q
k ;

GOTO A;
endif

endfor
/∗ connectivity-second ∗/
for each Md

j connected with Md
i do

if P[Md
i] = P[Md

j]
set partition classification of Md

i to P q
k where Md

j < P q
k ;

GOTO A;
endif

endfor
/∗ new partition entity creation-last ∗/
create a new partition entity P d

k ;
set partition classification of Md

i to P d
k ;

A:
endfor

endfor
end

Algorithm 4.1: M buildPModel(M)

Rule 2 means if the residence partitions of Md
i is identical to those of its bounding

entity of higher order, M q
j , it is classified on the partition entity that M q

j is classified

on. For example, in Figure 4.4(a), any mesh faces, edges and vertices that are not on

the shaded planes nor on the thick black lines are classified on the partition region by

inheriting partition classification from the regions it bounds. Note multiple inheritance

44

produces unique partition classification. For instance, internal mesh faces on partition

P0 which are not on the shaded planes can inherit partition classification from any of its

bounding regions. However, the derived partition classification will always be P 3
1 regardless

of the region it was derived from. Rule 3 is applied when Rule 2 is not satisfied. Rule 3

means if residence partitions of Md
i and Md

j are the same and they are connected, Md
i is

classified on the same partition entity where Md
j classified on. When neither Rule 2 nor

Rule 3 is satisfied, Rule 4 applies, thus the new partition entity of dimension d is created

for the partition classification of entity Md
i .

Based on the rules, Algorithm 4.1 is the pseudo code that builds a partition model

from a distributed mesh. For each mesh entity, Md
i , where d is decreasing from 3 to 0, it

checks if there is any one-level upward adjacent entity, Md+1
j , of which residence partitions

are the same as those of Md
i . If such a Md+1

j exists, it sets the partition classification of

Md
i to that of Md+1

j and proceeds to the next entity. Otherwise, it checks if there is an

entity Md
j which is reachable from Md

i via adjacencies and of which residence partitions

are identical to those of Md
i . If such a Md

j is found, it sets the partition classification of

Md
i to that of Md

j and proceeds to the next entity. Otherwise, it creates a partition model

entity, P d
k , with residence partitions of Md

i and set the partition classification of Md
i to

P d
k .

4.4 Algorithm of Mesh Migration with Full Complete Representations

The mesh migration procedure migrates mesh entities from partition to partition.

It is performed frequently in parallel adaptive analysis to re-gain mesh load balance, to

obtain the mesh entities needed for mesh modification operators or to distribute a mesh

into partitions. An efficient mesh migration algorithm with minimum resources (memory

and time) and parallel operations designed to maintain the mesh load balance throughout

the computation are important factors for high performance in parallel adaptive mesh-

based simulations. The mesh migration algorithm described in this section is based on full

complete mesh representations. It will be modified to work with the flexible mesh data

structure in Chapter 5.

Figure 4.5(a) and (b) illustrate the 2D partitioned mesh and its associated partition

model to be used as for the example of mesh migration throughout this section. In

Figure 4.5(a), the partition classification of entities on the partition boundaries is denoted

with the lines of the same pattern in Figure 4.5(b). For instance, M0
1 and M1

4 are classified

45

1
2M

2
1M

5
1M2

0M

1
1M

3
0M

7
1M 6

0M

4
2M

2
2M

3
2M

6
1M

3
1M

9
1M

8
2M

P0

P2

P1

14
1M

8
0M

15
1M

7
0M10

1M

5
2M

11
1M

12
1M

6
2M

7
2M

16
1M

M1
0

M4
1

5
0M

M13
1

M0
9

M1
8

M0
4

2
2P

1
2P

3
2P

P1

P0

P2

P 3
1

1
0P

P 2
1

P 1
1

(a) initial mesh (b) partition model of (a)

5
2M

6
2M

3
2M

4
2M

2
2M

8
2M

7
2M

1
2M

P3

2P

1P

P0

2
2P

4
2P

3
2P

1P

2P

P3

2P 0 P 5
1

P 3
1

P 4
1

(c) mesh during migration (d) partition model updated based on the
new partition topology

3
2M

4
2M

2
2M

5
2M

6
2M

1
2M

8
2M

7
2M

P2

P1

P3

M1

M0
5

4

M1
4

M9
1

M0
6

M12
1 M0

8

2
2P

4
2P

3
2P

P1

P2

P3

P 5
1

P 0
2

P

P 3
1

1
4

(e) final mesh (e) final partition model with ownership

Figure 4.5: Example of 2D mesh migration

46

on P 1
1 , and depicted with the dashed lines as P 1

1 . In Figure 4.5(b). the owning partition

of a partition model edge (resp. vertex) is illustrated with thickness (resp. size) of lines

(resp. circles). For example, the owning partition of partition vertex P 0
1 is P0 since P0

has the least number of partition objects among 3 residence partitions of P 0
1 . Therefore

P 0
1 on P0 is depicted with a bigger-sized circle than P 0

1 on P1 or P2 implying that P0 is

the owning partition of P 0
1 .

The input of the mesh migration procedure is a list of partition objects to migrate

and their destination partition ids, called, for simplicity, POsToMove. For the example

mesh in Figure 4.5(a), we assume that the input of the mesh migration procedure is

<(M2
1 ,2), (M2

7 ,3), (M2
8 ,3)>; M2

1 will migrate to P2 and M2
7 and M2

8 will migrate to P3.

Partition P3 is currently empty.

The overall procedure for mesh migration is the following:

1. Given the POsToMove, collect entities to process and clear partitioning data (P

and partition classification) of them.

2. Determine residence partition(s).

3. Update the partition classification and collect entities to remove.

4. Exchange entities and update remote copies.

5. Remove unnecessary entities.

6. Update the owning partition of partition model entities.

Given list of partition objects to migrate, the first procedure collects the entities of

which partitioning-related data (i.e. P, the partition classification, and remote copies) will

be updated after migration. After computing P of the entities, the partition classification

is updated to reflect a new updated partition model. The entities to remove from the local

partition are determined and collected based on P. After migrating needed entities to

their destination partitions, remote copy information of the partition boundary entities are

updated and the entities collected to remove are deleted from the local partition. Finally,

the owning partition of partition model entities is updated based on the new partitioning

topology. Algorithm 4.2 is the pseudo code of the mesh migration procedure.

47

Data : M , POsToMove

Result: migrate partition objects in POsToMove

begin
/∗ STEP 1: collect entities to process and clear partitioning data. See
§4.4.1 ∗/
for each Md

i ∈ POsToMove do
insert Md

i into entitiesToUpdate[d];
reset partition classification and P;
for each M q

j ∈ {∂(Md
i)} do

insert M q
j into entitiesToUpdate[q];

reset partition classification and P;
endfor

endfor
/∗ STEP 2: determine residence partition. See §4.4.2 ∗/
M setResidencePartition(POsToMove, entitiesToUpdate[q]);
/∗ STEP 3: update partition classification and collect entities to remove.
See §4.4.3 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToUpdate[d] do

determine partition classification;
if Plocal /∈ P[Md

i]
insert Md

i into entitiesToRemove[d];
endif

endfor
endfor
/∗ STEP 4: exchange entities. See §4.4.4 ∗/
for d ← 0 to 3 do

M exchangeEnts(entitiesToUpdate[d]);
endfor
/∗ STEP 5: remove unnecessary entities. See §4.4.5 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToRemove[d] do

if Md
i is on partition boundary

remove copies of Md
i on other partitions;

endif
remove Md

i ;
endfor

endfor
/∗ STEP 6: update ownership. See §4.4.6 ∗/
for each P d

i in P do
owning partition of P d

i ← the poorest partition among P[P d
i];

endfor
end

Algorithm 4.2: M migrate(M , POsToMove)

48

Table 4.1: Contents of vector entitiesToUpdate after Step 1
P0 P1 P2

entititesToUpdate[0] M0
1 , M0

4 , M0
5 M0

1 , M0
5 , M0

6 , M0
9 M0

4 , M0
5 , M0

8 , M0
9

entititesToUpdate[1] M1
3 , M1

4 , M1
8 M1

4 , M1
9 , M1

13, M1
14 M1

8 , M1
12, M1

13, M1
16

entititesToUpdate[2] M2
1 M2

8 M2
7

4.4.1 Step 1: Preparation

Step 1 collects mesh entities of which internal data needs to be updated based on the

new partitioning topology. Internal data to be updated include the partition classification,

P, remote partitions and remote copies. The entities collected are:

• Md
i ∈ POsToMove.

• For each Md
i , all downward entities M q

j ∈ {∂(Md
i)}, q < d, and their remote copies

on remote partitions.

The mesh migration algorithm works only on those entities. The remaining entities

are not affected by migration, thus must not be considered nor touched. The entities col-

lected for the update are maintained in vector entitiesToUpdate where entitiesToUpdate[i]

contains the entities of dimension i, i = 0, 1, 2, 3. With a single program multiple data

paradigm [67] in parallel, each partition maintains the separate entitiesToUpdate[i] with

different contents.

For the example 2D mesh given in Figure 4.5(a), the contents of entitiesToUp-

date is given in Table 4.1. Only entities listed in Table 4.1 will be affected by migra-

tion in terms of their location and partitioning-related internal data. entitiesToUpdate[2]

contains the mesh faces to be migrated from each partition. entitiesToUpdate[1] con-

tains the mesh edges which bound any mesh face in entitiesToUpdate[2] and their remote

copies. entitiesToUpdate[0] contains the mesh vertices that bound any mesh edge in enti-

tiesToUpdate[1] and their remote copies. The partition classification and P of entities in

entitiesToUpdate are cleared for further update.

4.4.2 Step 2: Determine residence partition

Step 2 determines P of the entities in entitiesToUpdate. The pseudo-code is given

in Algorithm 4.3. In Step 2.1, according to the resident partition equation, for each pair

of partition object and its destination partition id p in POsToMove, p is added to P

of the partition object and its all downward entities. Note a non-partition object entity

49

Data : M , POsToMove

Result: determine P of entities in entitiesToUpdate
begin

/∗ STEP 2.1: set P of entities in entitiesToUpdate through downward
adjacency of partition objects in POsToMove ∗/
for each pair (Md

i , p) ∈ POsToMove do
P[Md

i] ← {p};
for each M q

j ∈ {∂(Md
i)} do

P[M q
j] ← P[M q

j] ∪ {p};
endfor

endfor
/∗ STEP 2.2: determine if an entity will exist on the local partition after
migration ∗/
for d ← 0 to 2 do

for each Md
i ∈ entitiesToUpdate[d] do

if Md
i is a partition object

continue; // proceed to the next Md
i

endif
for each M q

j , Md
i ∈ {∂(M q

j)} do
if M q

j will stay on Plocal

P[Md
i] ← P[Md

i] ∪ {Plocal};
break; // exit for loop

endif
endfor

endfor
endfor
/∗ STEP 2.3: unify P of partition boundary entities ∗/
Do one round of communication to exchange P of partition boundary
entities in entitiesToUpdate;

end

Algorithm 4.3: M setResidencePartition(POsToMove, entitiesToUpdate)

in entitiesToUpdate must exist on the current local partition even after migration if it

is on the boundary of other partition object which will not be migrated. For notational

simplicity, we denote a local partition of an entity where the entity is currently located

Plocal. Step 2.2 determines if a non-partition object entity will exist on Plocal after migra-

tion by checking if there’s any adjacent partition object to stay on Plocal. One round of

communication is performed in Step 2.3 to exchange P of the partition boundary entities

to unify them between remote copies. Table 4.2 gives P of M0
1 and M1

4 on each partition

by steps.

50

Table 4.2: Residence partition(s) of M0
1 and M1

4 by steps
step P[M0

1]@P0 P[M0
1]@P1 P[M0

1]@P2 P[M1
4]@P0 P[M1

4]@P1

before 2.1 ∅ ∅ ∅ ∅ ∅
after 2.1 {2} ∅ {3} {2} ∅
after 2.2 {2} {1} {3} {2} {1}
after 2.3 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2} {1, 2}

Table 4.3: Contents of vector entitiesToRemove after Step 3
P0 P1 P2

entititesToRemove[0] M0
1 , M0

4 , M0
5 M0

9 M0
9

entititesToRemove[1] M1
3 , M1

4 , M1
8 M1

13, M1
14 M1

13, M1
16

entititesToRemove[2] M2
1 M2

8 M2
7

4.4.3 Step 3: Determine partition classification and entities to remove

Based on P computed in Step 2, Step 3 determines the partition classification of the

entities in entitiesToUpdate. Based on the new partitioning topology after migration, a new

partition model is constructed while the partition classification is updated. Figure 4.5(d)

is the partition model updated based on the new partition topology.

Based on P, the entities to remove from the local partition are collected and

stored in vector entitiesToRemove, where entitiesToRemove[i] stores entities of dimen-

sion i, i = 0, 1, 2, 3. An entity is determined to remove from its local partition if P of

the entity doesn’t contain the local partition id, Plocal. Table 4.3 gives the contents of

entitiesToRemove of each partition.

4.4.4 Step 4: Exchange entities and update remote copies

Since an entity of dimension > 0 is bounded by lower dimension entities, mesh enti-

ties are exchanged from low to high dimension. Step 4 exchanges entities from dimension

0 to 3, and creates entities on the destination partitions. Note that the partition classifi-

cation and P of the entities were already updated in Step 2 and Step 3 according to the

new partitioning topology. However, the remote copies are not up-to-date. The remote

copies of the entities created on the destination partitions are updated in this step after

exchanging entities. The remote copies of the entities removed from the local partitions are

updated in Step 5. Algorithm 4.4 is the pseudo-code that exchanges the entities contained

in entitiesToUpdate[d].

• Step 4.1 sends the messages to destination partitions to create new mesh entities.

Suppose entity Md
i duplicated on several partitions and need to be migrated to

51

Data : entitiesToUpdate[d]
Result: create entities on the destination partitions and update remote copies
begin

/∗ STEP 4.1: send a message to the destination partitions ∗/
for each Md

i ∈ entitiesToUpdate[d] do
if Plocal 6= minimum partition id where Md

i exists
continue;

endif
for each partition id Pi ∈ P[Md

i] do
if Md

i exists on partition Pi (i.e. Md
i has remote copy of Pi)

continue;
endif
send message A (address of Md

i on Plocal, information of Md
i) to

Pi;
endfor

endfor
/∗ STEP 4.2: create a new entity and send the new entity information to
the broadcaster ∗/
while Pi receives message A (address of Md

i on Pbc, information of Md
i)

from Pbc do
create Md

i with the information of Md
i ;

if Md
i 6= partition object

send message B (address of Md
i on Pbc, address of Md

i created) to
Pbc;

endif
end
/∗ STEP 4.3: the broadcaster sends the new entity information ∗/
while Pbc receives message B (address of Md

i on Pbc, address of Md
i on

Pi) from Pi do
Md

i ← entity located in the address of Md
i on Pbc;

for each remote copy of Md
i on remote partition Premote do

send message C (address of Md
i on Premote, address of Md

i on Pi,
Pi) to Premote;

endfor
Md

i saves the address of Md
i on Pi as for the remote copy on Pi;

end
/∗ STEP 4.4: update remote copy information ∗/
while Premote receives message C (address of Md

i on Premote, address of
Md

i on Pi, Pi) from Pbc do
Md

i ← entity located in the address of Md
i on Premote;

Md
i saves the address of Md

i on Pi as for the remote copy on Pi;
end

end

Algorithm 4.4: M exchangeEnts(entitiesToUpdate[d])

52

Pi. In order to reduce the communications between partitions, only one partition

sends the message to Pi to create Md
i . The partition to send the message to create

Md
i is the partition of the minimum partition id among residence partitions of Md

i .

The partition that sends messages to create a new entity is called the broadcaster,

denoted as Pbc. The broadcaster is in charge of creating as well as updating of Md
i

over all partitions. For instance, among 3 copies of vertex M0
5 in Figure 4.5(a), P0

will be the broadcaster of M0
5 since its partition id is the minimum among P[M0

5].

The arrows in Figure 4.5(c) show the broadcasters of the entities to migrate. In

addition, before sending a message to Pi, Md
i is checked if it already exists on Pi

and ignored if exists. The purpose of sending only non-existing mesh entity is to

avoid mesh-level global search on the destination partition before entity creation.

For each Md
i to migrate, Pbc of Md

i sends a message composed of the address of Md
i

on Pbc and the information of Md
i necessary for entity creation, which consists of

the following:

– unique vertex id (if vertex)

– entity shape information

– required entity adjacencies

– geometric classification information

– residence partition(s) for setting partition classification

– remote copy information

For instance, to create M0
5 on P3, P0 sends a message composed of the address of

M0
5 on P0 and information of M0

5 including its P (i.e., P1, P2, and P3) and remote

copy information of M0
5 stored on P0 (i.e. the address of M0

5 on P2 and the address

of M0
5 on P3).

• For the message received on Pi from Pbc (sent in Step 4.1), a new entity Md
i is

created on Pi. If the new entity Md
i created is not a partition object, its address

should be sent to back to the sender (Md
i on Pbc) for the update of communication

links. The message to be sent back to Pbc is composed of the address of Md
i on Pbc

and the address of new Md
i created on Pi. For example, after M0

5 is created on P3,

the message composed of the address of M0
5 on P0 and the address of M0

5 on P3 is

sent back to P0.

53

• In Step 4.3, the message received on Pbc from Pi (sent in Step 4.2) are sent to the

remote copies of Md
i on Premote and the address of Md

i on Pi is saved as the remote

copy of Md
i . The messages sent are received in Step 4.4 and used to save the address

of Md
i on Pi on all the remaining remote partitions of Md

i . For instance, M0
5 on P0

sends the message composed of the address of M0
5 on P3 and P3 to M0

5 on P1 and

M0
5 on P2.

• For the message received on Premote from Pbc (sent in Step 4.3), Step 4.4 updates

the remote copy of Md
i on Premote to include the address of Md

i on Pi. For instance,

when M0
5 ’s on P1 and P2 receive the message composed of the address of M0

5 on P3

and P3, they add it to their remote copy.

4.4.5 Step 5: Remove unnecessary entities

Step 5 removes unnecessary mesh entities collected in Step 3 which will be no longer

used on the local partition. If the mesh entity to remove is on the partition boundary, it

also must be removed from other partitions where it is kept as for remote copies through

one round of communication. As for the opposite direction of entity creation, entities are

removed from high to low dimension.

4.4.6 Step 6: Update entity ownership

Step 6 updates the owning partition of the partition model entities based on the

poor-to-rich partition ownership rule. The partition model given in the right of Fig-

ure 4.5(e) is the final partition model with ownership.

CHAPTER 5

FLEXIBLE DISTRIBUTED MESH DATA STRUCTURE

This chapter describes the extension of the flexible mesh data structure (Chapter 3) to

distributed meshes (Chapter 4) to support flexible mesh representations in parallel. The

algorithm of the mesh migration procedure with flexible mesh representations is discussed.

5.1 Representational Requirements of Flexible Distributed Mesh Data

Structure

To support flexible mesh representations with distributed meshes, the mesh migra-

tion procedure must migrate the needed mesh entities regardless of mesh representation

options while keeping requested mesh representation correct and updating the partition

model and communication links based on new mesh partitioning. Figure 5.1(a) is an

example 2D mesh with the minimum sufficient representation where all interior edges

are reduced. The reduced edges are denoted with the dotted lines. Figure 5.1(b) is the

partitioned mesh over 3 partitions with the MSR, where the only interior edges not on

the partition boundaries are reduced. After migration, the interior edges on the parti-

tion boundaries must be restored in order to represent partitioning topology and support

communication links between partitions.

To support mesh migration regardless of mesh representation options, an important

question is what is a minimum set of entities and adjacencies necessary for migration. By

the analysis of the mesh migration procedure in §4.4, the representational requirements

P0

P0 P2

P1

(a) serial mesh (b) partitioned mesh

Figure 5.1: Example 2D mesh with the MSR

54

55

1 0 0 0
− − 0 0
− 0 − 0
1 0 0 1

1 − − 0
− − 0 0
− 0 − 0
1 0 0 1

(a) input MRM (b) 1st MRM adjustment for parallel

Figure 5.2: 3D MRM adjustment (1 of 2)

for flexible distributed meshes are the following:

• For each partition object Md
i , downward adjacent entities ∈ {∂(Md

i)}.

• For each downward adjacent entity of Md
i , Mp

j ,

– other partition objects adjacent to Mp
j , and

– remote copies.

Other partition objects adjacent to Mp
j are necessary in setting P of Mp

j to check

if it will be existing on the local partition even after migration (See Algorithm 4.3).

The representational requirements must be satisfied regardless of representation options

to perform migration. In case that the user-requested representation doesn’t satisfy the

requirements, the representation is adjusted to meet the representational requirements to

support mesh migration.

5.1.1 Efficient interior entity restoration

To provide communication links between entities on the partition boundaries and

represent partitioning topology, non-existing internal mesh entities must be resurrected if

they are located on the partition boundaries after migration. For a reduced representation,

checking existence of downward entities in entity restoration can be efficiently done in

O(1) time by maintaining {M0{Md}} for each reduced level d. Therefore, to support

efficient downward entity restoration, the first MRM adjustment is to modify the MRM

to maintain {M0{Md}} for each reduced level d. For instance, for the 3D user-requested

representation given in Figure 5.2(a) which is the MSR, R0,1 and R0,2 are set to − as seen

in Figure 5.2(b). By maintaining the upward adjacencies {M0{M1}} and {M0{M2}} for

existing edges and faces, obtaining {M3
i {M1}} and {M3

i {M2}} is done in a constant time

either by local searching or restoration. See Algorithm D.7 and D.8 for the analysis of

operators that return adjacent edges/faces of a region with a reduced representation.

56

Data : M , Md
i , p, where d > p

Result: construct downward adjacency {Md
i {Mp}}

begin
down template sz ← predefined size of |{Md

i {Mp}}|;
/∗ repeat |{Md

i {Mp}}| times ∗/
for var ← 0 to down template sz-1 do

M0
i · · · M0

k ← vertices to be in {Mp
var{M0}} based on ordering

templates; /∗ see Appendix D ∗/
/∗ check existence of edge/face (Algorithm A.1 and A.2) ∗/
Mp

var ← E exist or F exist(M0
i · · · M0

k); /∗ O(1) ∗/
if Mp

var = NULL /∗ Mp
var is not found in M ∗/

/∗ create an interior edge/face (Algorithm A.5/D.10) ∗/
Mp

j ← M createE or M createF (M0
i · · · M0

k); /∗ O(1) ∗/
Md

i {Mp}var ← Mp
var;

set geo. classification of Mp
j to Gd1

i where Md
i < Gd1

i ;
endif

endfor
end

/∗ Time = |{Md
i {Mp}}| · O(1) = O(1)∗/

Algorithm 5.1: createDownAdjacency URR(M , Md
i , p)

The Algorithm 5.1 is the pseudo code that restores downward adjacent entities of

Md
i , if necessary. The operator E exist (resp. F exist) returns an edge (resp. a face)

which is defined by the input list of entities by local traversal of existing adjacencies,

{M0{M1}} (resp. {M0{M2}}) in this case. It returns NULL if no edge or a face exists

for the given entity list. createDownAdjacency URR creates a downward interior entity

if NULL is returned by E exist or F exist. The list of vertices that define the interior

downward entities are computed through the ordering templates illustrated in Figure 2.6

− 2.8.

5.1.2 Neighboring partition objects

In mesh migration using a complete representation, checking if an entity will exist on

the current partition after migration is done via checking if there is any upward adjacent

partition object that is maintained in the local partition. If any upward adjacent partition

object remains in the local partition after migration, the current partition id, Plocal, must

be added into P of the entity.

With flexible mesh representations, especially in case where upward adjacency to

57

the level of partition objects is not available, to determine if an entity will exist on the

current partition after migration or not, the alternatives are either:

1. during migration, creates the upward adjacency, or

2. while creating partition object Md
i , store adjacency {M0

i {Md
i }} for each M0

i ∈

{∂(Md
i)}.

Data : Md
i , q where d < q

Result: construct upward adjacency {Md
i {M q}} using {M q{Md}}

begin
if {M q

i {Md}} = ∅
return;

endif
/∗ repeat |{M{M q}}| times ∗/
for each M q

j ∈ {M{M q}} do
if Md

i ∈ {M
q
j {Md}} and M q

j /∈ {Md
i {M q}}

{Md
i {M q}} ← {Md

i {M q}} ∪ M q
j ;

endif
endfor

end

/∗ Time = |{M{M q}}|·O(1) = O(|{M{M q}}|) ∗/

Algorithm 5.2: createUpAdjacency URR(Md
i , q)

The first option restores upward adjacency to the level of partition objects when

necessary. Algorithm 5.2 is pseudo code that creates upward adjacency {Md
i {M q}}, d < q,

from scratch. It involves global mesh-level traversal of level q. Thus this method is not

appropriate for the effective migration procedure.

The second option maintains upward adjacency {M0
i {Md

i }} for each vertex M0
i on

the boundary of partition object Md
i . The neighboring partition objects of Md

i is a set of

partition objects Mdj
j that is bounded by Mp

j where Mp
j ∈ {∂(Md

i)}. Upward adjacency

{M0
i {Md

i }} for each M0
i ∈ {∂(Md

i)} enable obtaining neighboring partition objects in a

constant time. Based on the resident partition equation, for each Mp
j ∈ {∂(Md

i)}, if the

neighboring partition objects of Md
i is available, existence of Mp

j on the local partition

after migration can be checked using downward adjacency of the neighboring partition

objects.

Consider the user-requested representations in Figure 5.3(a). {M0{M1}} and {M0{M2}}

are already set to − by the first step of MRM adjustment (Figure 5.3(b)). By {M0{M1}}

58

1 − − 0
− − 0 0
− 0 − 0
1 0 0 1

1 − − 1
− − 0 0
− 0 − 0
1 0 0 1

(b) MRM after 1st adjustment (c) MRM after 2nd adjustment

Figure 5.3: 3D MRM adjustment (2 of 2)

input MRM

1 0 0 0
− − 0 0
− 0 − 0
1 0 0 1

1 0 0 0
1 1 0 0
− 0 − 0
1 0 0 1

1 0 0 0
− − 0 0
1 0 1 0
0 0 1 1

1 0 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⇓ ⇓ ⇓ ⇓

adjusted MRM

1 − − 1
− − 0 0
− 0 − 0
1 0 0 1

1 1 − 0
1 1 0 1
− 0 − 0
1 0 0 1

1 − 0 1
− − 0 0
1 0 1 0
0 0 1 1

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

Figure 5.4: Example of 3D MRM adjustment for parallel

and {M0{M2}}, the neighboring partition objects of level 1 and 2 are obtainable. The

second step of MRM adjustment set {M0{M3}} to 1 in order to support neighboring

partition objects of level 3 as seen in Figure 5.3(c). The penalty of this option is storing

unrequested adjacency information. However, these adjacencies are necessary to avoid the

needed, mesh-size dependent operations.

Figure 5.4 gives examples of MRM adjustment in parallel. For simplicity, we as-

sume that the mesh is 3D and manifold models. The representations in the upper row are

the mesh representations requested by the users and the representations in the lower row

are the ones after MRM adjustment for parallel. Due to MRM adjustment, in parallel,

the memory cost can increase compared that of the original user-requested representa-

tion. Memory increase due to the extra entities and adjacencies maintained for parallel is

analyzed in §7.1.

5.2 Algorithm of Mesh Migration with Flexible Representations

In this section, the mesh migration procedure M migrate developed based on use of

complete mesh representations is extended to work with any mesh representation options.

The overall procedure for the mesh migration is the following: given POsToMove,

1. Collect neighboring partition objects.

59

2

2

2
2

2

2

1
1

1

1
1

1

P0 2

2

2
2

2

2

1
1

1

1
1

1

P0

(a) mark destination pid (b) get neighboring partition objects

2

2

2
2

2

2

1
1

1

1
1

1

P0

2

2

2
2

2

2

1
1

1

1
1

1

P0

P2

P1

(c) restore internal entities (d) migrate entities to dest. partition

P0 P2

P1

P0 P2

P1

(e) delete entities migrated (f) delete internal entities

Figure 5.5: Steps of 2D mesh migration with the MSR

2. Restore needed downward interior entities.

3. Collect entities to be updated with migration and clear partitioning data (P and

partition classification) of them.

4. Determine residence partition.

5. Update partition classification and collect entities to remove.

6. Exchange entities and update remote copies.

7. Remove unnecessary entities.

60

8. Update ownership of partition model entities.

9. Remove unnecessary interior entities and adjacencies.

Figure 5.5 depicts the 2D mesh migration procedure with a reduced representation

by steps. For the given list of partition objects to migrate, POsToMove, (Figure 5.5(a)),

first it collects a set of partition objects which are adjacent to any partition object in

POsToMove and store them in a separate container named neighborPOs (Figure 5.5(b)).

Second, for partition objects in POsToMove or neighborPOs, restore their interior enti-

ties and associated downward adjacencies (Figure 5.5(c)). Based on downward adjacency

restored, collect entities to be updated by migration in terms of their partitioning infor-

mation such as P, partition classification and remote copies, and save them in a con-

tainer named entitiesToUpdate for further manipulation. Using downward adjacencies

and neighboring partition objects information, P and partition classification of entities

in entitiesToUpdate are updated. Based on P updated, the entities to remove from the

local partition after migration are determined among the entities in entitiesToUpdate.

After migrating only necessary entities to the destination partitions, remote copies of

the entities on the partition boundaries are updated to refresh the communication links

(Figure 5.5(d)). The entities collected to remove are deleted from the local partition (Fig-

ure 5.5(e)). Finally, the interior entities and adjacencies restored in the second step are

removed to keep the original requested mesh representation (Figure 5.5(f)).

Algorithm 5.3 is pseudo code that migrates partition objects with flexible mesh

representations.

5.2.1 Step A: Collect neighboring partition objects

For the given list of partition objects to migrate, POsToMigrate, Step A col-

lects neighboring partition objects of them, which will be used in Step 2 to determine

P of entities. Neighboring partition objects collected are stored in a container named

neighborPOs. One round of communication is performed to gather neighboring partition

objects on remote partitions.

5.2.2 Step B: Restore downward entities

In Step B, iterating over POsToMigrate and neighborPOs, M buildAdj URR re-

stores non-existing downward interior entities of each partition object (Algorithm 5.4).

M adjacencyCost(M, i, j) is used to determine the call of createDownAdjacency URR.

61

Data : M , POsToMigrate

Result: migrate partition objects in POsToMigrate

begin
/∗ STEP A: collect neighboring partition objects. See §5.2.1 ∗/
For each partition object in POsToMigrate, collect neighboring
partition objects and store them in neighborPOs;
/∗ STEP B: restore downward entities. See §5.2.2 ∗/
M buildAdj URR(M ,POsToMigrate,neighborPOs);
/∗ STEP 1: collect entities to process and clear partitioning data. See
§5.2.3 ∗/
Run STEP 1 in Algorithm 4.2;
/∗ STEP 2: determine residence partition. See §5.2.4 ∗/
M setResidencePartition URR(POsToMigrate, neighborPOs);
/∗ STEP 3: update p. classification and collect entities to remove. See
§5.2.5 ∗/
Run STEP 3 in Algorithm 4.2;
/∗ STEP 4: exchange entities. See §5.2.6 ∗/
for d ← 0 to 3 do

M exchangeEnts URR(entitiesToUpdate[d]);
endfor
/∗ STEP 5: remove unnecessary entities. See §5.2.7 ∗/
Run STEP 5 in Algorithm 4.2;
/∗ STEP 6: update ownership. See §5.2.8 ∗/
Run STEP 6 in Algorithm 4.2;
/∗ STEP C: remove unnecessary interior entities and adjacencies. See
§5.2.9 ∗/
M destoryAdj URR(M , entitiesToUpdate, neighborPOs);

end

Algorithm 5.3: M migrate URR(M , POsToMigrate)

Data : M , POsToMigrate, neighborPOs

Result: for each partition object in POsToMigrate or neighborPOs, restore
downward entities

begin
for each Md

i ∈ POsToMigrate or neighborPOs do
if M adjacencyCost(M , d, d− 1) 6= Immediate or Local

createDownAdjacency URR(M , Md
i , d− 1);

endif
if d = 3 and M adjacencyCost(M , d, 1) 6= Immediate or Local

for each M2
j ∈ {Md

i {M2}} do
createDownAdjacency URR(M , M2

j , 1);
endfor

endif
endfor

end

Algorithm 5.4: M buildAdj URR(M , POsToMigrate, neighborPOs)

62

createDownAdjacency URR returns the cost of adjacency query {M i{M j}} of which

value is one of {Immediate, Local, Global, Unavailable}.

For each Md
i ∈ POsToMigrate or neighborPOs, if M adjacencyCost(M,d, d −

1) is neither Immediate nor Local, interior entities of level d − 1 are created using

createDownAdjacency URR(M , Md
i , d−1). If Md

i is a region and M adjacencyCost(3, 1)

is neither Immediate nor Local, for each M2
j ∈ {∂(Md

i)}, createDownAdjacency URR(M ,

M2
j , 1) is called to create interior edges of Md

i . createDownAdjacency URR(M,M1
i , 0)

is not necessary to call since R1,0 is stored by default.

5.2.3 Step 1: Preparation

Using downward entities restored in Step B, Step 1 collects entities to be updated

with migration, stores them in list vector entitiesToUpdate and resets partition classifi-

cation and P of those entities. See §4.4.1.

Data : M , POsToMigrate, entitiesToUpdate, neighborPOs

Result: determine P of entities in entitiesToUpdate

begin
/∗ STEP 2.1: set P of entities in entitiesToUpdate through downward
adjacency of partition objects in POsToMigrate ∗/
for each pair (Md

i , p) ∈ POsToMove do
P[Md

i] ← {p};
for each M q

j ∈ {∂(Md
i)} do

P[M q
j] ← P[M q

j] ∪ {p};
endfor

endfor
/∗ STEP 2.2: determine if an entity will exist on the local partition after
migration ∗/
for each Md

i ∈ neighborPOs do
for each M q

j ∈ {∂(Md
i)} do

P[M q
j] ← P[M q

j] ∪ {Plocal};
endfor

endfor
/∗ STEP 2.3: unify P of partition boundary entities ∗/
Do one round of communication to exchange P of partition boundary
entities in entitiesToUpdate;

end

Algorithm 5.5: M setResidencePartition URR(POsToMigrate, entitiesToUpdate,
neighborPOs)

63

5.2.4 Step 2: Determine residence partition

Step 2 determines P of entities collected in entitiesToUpdate (Algorithm 5.5). In

Step 2.1, according to the resident partition equation, for each partition object Md
i to

migrate to partition p, P[Md
i] is set to p, and p is added into P[M q

j], where M q
j ∈

{∂(Md
i)}. For non-partition object entity M q

j , their P must include local partition id,

Plocal, if it will exist on the local partition even after migration. Step 2.2 determines if M q
j

will exist or not on the local partition after migration based on downward adjacency of

neighboring partition objects. For partition boundary entities in entitiesToUpdate, Step

2.3 performs one round of communication to unify P of them.

5.2.5 Step 3: Determine partition classification and entities to remove

For each entity in entitiesToUpdate, Step 3 determines partition classification and

determines if it will be removed from the local partition. See § 4.4.3 for the details.

Data : entitiesToUpdate[d]
Result: create entities on the destination partitions and update remote copies
begin

/∗ STEP 4.1: send a message to the destination partitions ∗/
for each Md

i ∈ entitiesToUpdate[d] do
if Plocal 6= minimum partition id where Md

i exists
continue;

endif
if Rd,d 6= 1

if Md
i will not be on p.boundaries or not equally classified

continue;
endif

endif
for each partition id Pi ∈ P[Md

i] do
if Md

i exists on partition Pi (i.e. Md
i has remote copy of Pi)

continue;
endif
send message A (address of Md

i on Plocal, information of Md
i) to

Pi;
endfor

endfor
Run STEP 4.2 to 4.4 in Algorithm 4.4;

end

Algorithm 5.6: M exchangeEnts URR(entitiesToUpdate[d])

64

Data : M , entitiesToUpdate, neighborPOs

Result: remove unnecessary interior entities and downward adjacencies
begin

/∗ STEP C.1: collect entities to process by dimension ∗/
for each Md

i ∈ neighborPOs do
store Md

i in a list vector entitiesToProcess[d];
for each M q

i ∈ {∂(Md
i)} do

store M q
i in a list vector entitiesToProcess[q];

endfor
endfor
/∗ STEP C.2: remove {M3{M2}} if unnecessary ∗/
if M adjacencyCost(M , 3, 2) 6= Immediate or Local

for each M3
i ∈ entitiesToProcess[3] do

{M3
i {M2}} ← ∅;

endfor
endif
/∗ STEP C.3: remove interior faces and {M2{M1}} if unnecessary ∗/
if M adjacencyCost(M , 2, 1) 6= Immediate or Local

for each M2
i ∈ entitiesToUpdate[2] and entitiesToProcess[2] do

if R2,2 6= 1
if M2

i is not on partition boundary or not equally classified
M deleteFace(M , M2

i);
endif

else
{M2

i {M1}} ← ∅;
endif

endfor
endif
/∗ STEP C.4: remove interior edges if unnecessary ∗/
if R1,1 6= 1

for each M1
i ∈ entitiesToUpdate[1] and entitiesToProcess[1] do

if M1
i is not on partition boundary or not equally classified

M deleteEdge(M , M1
i);

endif
endfor

endif
end

Algorithm 5.7: M destroyAdj URR(M , entitiesToUpdate, neighborPOs)

Ra =

1 − 0 0
− − 0 0
1 0 1 1
0 0 1 1

 Rb =

1 − − 1
− − 0 0
− 0 − 0
1 0 0 1

Figure 5.6: Example MRM for 3D manifold model

65

5.2.6 Step 4: Exchange entities and update remote copies

Step 4 exchanges mesh entities from dimension 0 to 3 to create mesh entities on

destination partitions. Algorithm 4.4 has been slightly modified to Algorithm 5.6 in order

to work with any mesh representation options. Differences from Algorithm 4.4 are the

following:

• The dimension of the entities used to create(define) faces and regions are determined

based on the MRM. Consider region M3
i to migrate from Pi to Pj and the two

MRM’s, Ra ad Rb, given in Figure 5.6. In case of Ra, the message sent from Pi

to Pj to create M3
i contains the number of faces that bound M3

i and a list of local

copies of the faces on Pj . In case of Rb, the message sent from Pi to Pj to create

M3
i contains the number of vertices that bound M3

i and a list of local copies of the

vertices on Pj .

• Not all interior mesh entities are migrated to the destination partitions. They are

migrated only when necessary. In other words, interior entities are migrated to

destination partitions only when they will be on the partition boundaries in new

mesh partitioning topology after migration.

Figure 5.5(c) is an intermediary mesh after Step 4 where mesh faces marked for

migration are created on destination partitions with reduced interior edges. On the des-

tination partitions, the interior edges on partition boundaries were created to provide

communication links. The faces migrated to the destination partitions are not deleted

from the original partitions yet.

5.2.7 Step 5: Remove unnecessary entities

Step 5 removes unnecessary mesh entities collected in Step 3, which are not used

on the local partition any more. See §4.4.5 for more information. Figure 5.5(d) is an

intermediary mesh after Step 5, where mesh faces migrated to the destination partitions

and their unnecessary adjacent edges and vertices are removed from partition P0. Note the

interior entities of neighboring partition objects restored in Step B still exist on partition

P0.

5.2.8 Step 6: Update entity ownership

Step 6 updates ownership of partition model entities. See §4.4.6.

66

5.2.9 Step C: Restore mesh representation

Step C restores the mesh representation modified to have interior entities and as-

sociated downward adjacencies in Step B to the original modified MRM. Note that some

interior entities were already deleted in Step 5 while removing partition objects migrated.

Also note that when partition objects are created on the destination partitions in Step 4,

their representation is consistent with the modified MRM. The entities to be considered

to remove or update in this step include neighboring partition objects and their down-

ward entities, and entities in entitiesToUpdate not removed in Step 5. Algorithm 5.7 is

pseudo-code of Step C performing 4 sub-steps.

[C.1] In addition to entitiesToUpdate, the entities to be considered to remove or update

are collected from neighborPOs, and stored in a list vector named entitiesToProcess

to expedite the process. entitiesToProcess[i] contains the entities of dimension i,

i = 0, 1, 2, 3.

[C.2] For each region M3
i in entitiesToProcess[3], if M adjacencyCost(M , 3, 2) is not

Immediate nor Local, {M3
i {M2}} is removed.

[C.3] M adjacencyCost(M , 2, 1) is not Immediate nor Local in two cases: R2,2 6= 1 or

R2,2 = 1. If R2,2 6= 1, iterating over entitiesToUpdate[2] and entitiesToProcess[2],

a face is removed from the database if the face is not on the partition boundary or

not classified on model face. In the second case, only the adjacency {M2{M1}} is

removed for each face in entitiesToUpdate[2] or entitiesToProcess[2].

[C.4] If R1,1 6= 1, iterating over entitiesToUpdate[1] and entitiesToProcess[1], an edge

is removed from the database if the edge is not on the partition boundary or not

classified on model edge.

5.3 Summary

The following are the comparisons of the migration procedures, M migrate URR

in Algorithm 5.3 (Steps A, B, 1 to 6, C) and M migrate in Algorithm 4.2 (Steps 1 to 6):

• In Step A, M migrate URR collects neighboring partition objects to support com-

putation of P without upward adjacencies.

• In Step B, M migrate URR restores downward entities and associated downward

adjacencies of partition objects to migrate or neighboring.

67

• Step 1 is identical.

• In Step 2, M migrate determines the existence of entities on the local partition after

migration based on the existence of adjacent partition objects not to be migrated.

M migrate URR uses downward adjacency of neighboring partition objects on that

determination.

• Step 3 is identical.

• In Step 4, M migrate URR doesn’t create interior entities on destination partitions

if they are not on partition boundaries. In the message sent to the destination par-

titions to create an entity, the dimension of bounding entities for entity creation is

explicitly specified.

• Step 5 is identical.

• Step 6 is identical.

• In Step C, M migrate URR restores the representation to the modified MRM by

removing unnecessary downward entities and adjacencies restored in Step B.

If a step involves inter-partition communications, the cost of the step is affected by

the complexity of the partitioning topology. We assume that as the more entities are on

the partition boundaries or the number of partitions increases, the partitioning topology

gets more complicated. Obviously, as the partitioning topology gets more complex, the

more cost is required for communications.

Partitioning topology refers to either of one before migration or one after migration,

or both. For instance, the communications in Step A is influenced by before partition-

ing topology. Whereas, the communications in Step 6 is influenced by after partitioning

topology. The communications in Step 4 is affected by both of before and after par-

titioning topology since it migrates entities based on after partitioning topology and

updates remote copies of entities based on before partitioning topology. Note in Step 4 of

M migrate URR, as the number of interior entities not on partition boundaries increases,

the cost of the step decreases due to the less number of entity exchanges.

Conclusively, the computational cost of each migration procedures is the following:

Time(M migrate) = f (# POs to migrate1,before/after partitioning topology) (5.1)

68

Time(M migrate URR) = f (# POs to migrate1,# neighboring POs1,

before/after partitioning topology,

non-existing interior entities1,

interior entities to be exchanged1)

(5.2)

Equation 5.1 means that the run time for M migrate is a function of the number

of partition objects and the complexity of the partitioning topology. The migration time

increases with increases in the number of partition objects to migrate and the entities on

partition boundaries increase. Equation 5.2 means that the run time of M migrate URR

increases as the number of partition objects to migrate, the number of neighboring par-

tition objects, the number of interior entities to restore, the complexity of partitioning

topology and the number of interior entities to be exchanged.

It has been noted that Step 4 spends most of the migration time among all steps

both in M migrate and M migrate URR due to communication for entity exchange is

most costly. In case of M migrate URR, the total migration time varies substantially

depending on mesh representation options and partitioning topology due to the varying

number of entity exchanges in Step 4. Performance results in §7.3 demonstrates that

M migrate URR with reduced representations tends to outperform M migrate with the

one-level adjacency representation as the mesh size and the number of partitions increase.

CHAPTER 6

IMPLEMENTATION

One important aspect of building a mesh database is its software design and implemen-

tation. The FMDB is implemented with C++ and provides an API (Application Pro-

gramming Interface) for C/C++ and FORTRAN. Several advanced C++ programming

elements such as the STL (Standard Template Library), functors, templates, singletons,

and generic programming are used for the purpose of achieving reusability of the soft-

ware [2, 24, 33, 59, 60, 62, 63, 82, 84, 98]. MPI (Message Passing Interface) [3, 38, 43, 67]

and Autopack [55] are used for efficient parallel communications between processors. The

Zoltan library [80] is used to make partition assignment during dynamic load balancing. In

this chapter, the design and implementation of the FMDB including its parallel operation

are presented. The FMDB is open source available at http://www.scorec.rpi.edu/FMDB.

6.1 Design/Implementation of Classes

This section discusses the design and implementation of classes for mesh, entity,

partition model, and partition model entity.

6.1.1 Mesh

Figure 6.1 illustrates the relationship between the geometric model, the partition

model, the mesh and their entities using the Unified Modeling Language notation [11, 12].

In the UML, boxes and lines between boxes denote, respectively, classes and relationships.

Inheritance is indicated by a line ending in an arrow pointing from the derived class to the

base class. Aggregation, that is, the where one object is a collection of other objects, is

shown as a line connected to the “collection” object by a diamond. A general association

is indicated by a simple line from one class box to another. The association may have a

name. Each end of the association may have a role name that describes what the class

at that end of the association does in that association. Also each end of the association

may have a multiplicity indicator which indicates how many objects are involved in that

association. A multiplicity of unknown number is indicated by an ∗.

A geometric model, gModel, is a collection of geometric model entities (gEntity).

A partition model, pModel, is a collection of partition model entities (pEntity), and it

is constructed from a set of mesh entities assigned to partitions. A mesh, mMesh, is a

69

70

FMDB::mEntity

FMDB::mMesh

*

*

*

*

gModel

*
gEntity

createdFrom

classifiedOn

constructedFrom

classifiedOn

*

FMDB::pModel

FMDB::pEntity

Figure 6.1: Class diagram of mMesh

collection of mesh entities (mEntity), and it is created from gModel using a mesh genera-

tion procedure. The mesh maintains its current classification against a geometric model,

gModel, and a partition model, pModel.

class mMesh {

protected:

gModel* theGeoModel; // geometric model

pModel* thePtnModel; // partition model

// container of all mesh entities by dimension

mMeshEntityContainer allEntities;

public:

typedef mMeshEntityContainer::iter iterall; // iterators on all entities

mMesh(gModel* model); // constructor

virtual ~mMesh(); // virtual destructor

virtual void add(mEntity*); // add a mesh entity to entity container

mVertex* createVertex(double*, gEntity*); // create a vertex

mEdge* createEdge(mVertex*, mVertex*, gEntity*); // create an edge

// create a new face

mFace* createFace(mVertex**, int num_vertices, gEntity*);

mFace* createFace(mEdge**, int num_edges, gEntity*);

// create a new region

mRegion* createRegion(mVertex**, int num_vertices, gEntity*);

mRegion* createRegion(mFace**, int num_faces, gEntity*);

...

virtual void DEL(mEntity*); // entity deletion

virtual mIterator beginall(int what) const; // iterator on all entities

virtual mIterator endall(int what) const;

// iterator on entities of dimension what classified on which

virtual mIterator beginclas(int what, int which, int onwhat) const;

71

FMDB::mVertex FMDB::mEdge

FMDB::mAttachableDataContainer

FMDB::mEntity

FMDB::mFace

FMDB::mTet FMDB::mHex

FMDB::mRegion

FMDB::mPrismFMDB::mTetFMDB::mTet FMDB::mPyramid

Figure 6.2: Class diagram of mEntity

virtual mIterator endclas(int what, int which, int onwhat) const;

// dimension of the mesh (0,1,2 or 3).

int getDim() const;

...

};

An mMesh object acts as a container for mesh entities. Class mMeshEntityContainer

is a class defined for a container of mesh entities using an STL hash table. mMesh provides

mesh entity creation functions for various entity topologies. There are a number of member

functions to allow accessing either all of the entities in the mesh or the entities classified

on certain model entities. The concept of iterator similar to STL iterators is used in the

design of access to the entities in the mesh. Class mIterator provides an iterator to the

mesh which is a separate object which, once obtained, allows one to advance to the next

item sequentially. This separation of the functionality of a container and the access to the

contents of the container allows multiple independent traversals of the information in the

container.

6.1.2 Mesh entity

The class diagram of the mesh entity classes is illustrated in Figure 6.2. The func-

tionality of arbitrary attachable data to mesh entities is provided by inheriting mEntity

from class mAttachableContainer. Class mAdjacencyContainer is a class for a container

to store upward and downward adjacent entities for each mesh entity. This is an internal

of the implementation that is only accessible through STL-like iterators, mAdjacencyCon-

tainer::iter begin() and mAdjacencyContainer::iter end(), via mEntity interface functions.

Four classes for mesh region (mRegion), mesh face (mFace), mesh edge (mEdge) and mesh

vertex (mVertex) are inherited from the base class mEntity.

72

The mesh entity class is defined as the following:

class mEntity : public mAttachableDataContainer {

public:

// bounding partition ids operator

typedef map<int, mEntity*> remoteCopyMap;

typedef map<int, mEntity*>::iterator RCIter;

// virtual destructor

virtual ~mEntity();

// classification

void setGClassification(gEntity*); // set geo. classification

gEntity* getGClassification() const; // get geo. classification

void setPClassification(pEntity*); // set partition classification

pEntity* getPClassification() const;// get partition classification

// remote copy operator

mEntity* getRemoteCopy(int pid);

void addRemoteCopy(int, mEntity*);

void deleteRemoteCopy(int);

virtual RCIter rcBegin() { return theRemoteCopies.begin(); }

virtual RCIter rcEnd() { return theRemoteCopies.end(); };

// adjacencies

void add(mEntity* m); // add entity m into adjacency list

void del(mEntity* m); // delete entity m from adjacency list

mEntity* find(mEntity* m) const; //search entity m in adjacency list

mAdjacencyContainer::iter begin(int what); // iterator on adjacent entities

mAdjacencyContainer::iter end(int what);

// Get the ith adjacent entity of level what

inline mEntity* get(int what, int ith) const;

...

protected:

int id; // entity identifier

// four adjacency sets. 0 is for vertices,

// 1 for edges, 2 for faces and 3 for regions

mAdjacencyContainer* theAdjacencies[4];

gEntity* theClassification; // geometric classification

mEntity(); // constructor without parameters

pEntity* thePClassification; // partition classification

// container for multiple pair of remote partition and remote copy

73

remoteCopyMap theRemoteCopies;

...

};

Each mesh entity stores geometric classification and partition model classification

as data members. When an entity is located on the partition boundaries, its remote copies

and remote partitions are maintained. A set of pairs of remote copy and remote partition

of each mesh entity is stored in the STL map since remote copy and remote partition are

one-to-one mapped. Iteration over remote copies is provided through STL-like iterators,

RCIter rcBegin() and RCIter rcEnd().

6.1.3 Partition model

The partition model, pModel, acts as a container for partition model entities. All

partition model entities are stored in an STL set and iterated through STL-like iterators,

PEIter peBegin() and PEIter peEnd(). It provides member functions such as updating

the owner partition of partition model entities and computing partition classification of a

mesh entity. Since a partition model must be dynamically updated as mesh partitioning

changes, each partition model instance must maintain the relation to the corresponding

distributed mesh.

class pModel {

public:

typedef set<pEntity*, pEntityLessThanKey>::const_iterator PEIter;

pModel(mMesh*); // constructor

~pModel(); // destructor

void updateOwnership(); // update ownership of mesh entities

void addPMEntity(pEntity*) // add a partition entity

// return a partition entity where the entity e is be classified on

pEntity* getPClassification(mEntity* e)

PEIter peBegin() const; // partition entity iterator

PEIter peEnd() const;

...

private:

set<pEntity*, pEntityLessThanKey> allPEntities;

mMesh* mesh; // a mesh pointer

};

74

6.1.4 Partition model entity

pEntity is a base class of partition model entities and partition model region (pRe-

gion), partition model face (pFace), partition model edge (pEdge) and partition model

vertex (pVertex) are derived from pEntity. Each partition model entity, pEntity, stores

id, dimension, the owner partition id, and the set of residence partitions as its member

data. From the mesh entity level, by maintaining a relation to the partition model entity

(the partition classification), all needed information in terms of partitioning, such as the

owner partition and residence partition(s), are obtained with ease. Residence partitions

of a partition entity are stored in an STL set since they are unique and iterated through

STL-like iterators, RPIter rpBegin() and RPIter rpEnd().

class pEntity {

public:

typedef set<int>::iterator RPIter;

pEntity(int id, set<int>& bps, int dim); // constructor

~pEntity(); // destructor

RPIter rpBegin() { return BPs.begin(); } // residence partition iterator

RPIter rpEnd() { return BPs.end(); }

...

private:

int id;

int dimension; // dimension

int owner; // owner partition

set<int> RPs; // set of residence partitions

};

6.2 Flexible Mesh Data Structure

In the implementation, mesh entity creation/deletion operators are declared as func-

tion pointers, and they are undetermined initially. The following are type definitions of

mesh entity creation/deletion operators. The arguments of an entity creation operator are

the mesh, the number of lower order bounding entities, the list of lower order bounding

entities, and the geometric model entity to be classified on. The entity creation operator

returns the entity created. The arguments of an entity deletion operator are the mesh and

the mesh entity to be deleted.

// mesh edge creation:

75

1G j

Vertex

Region

Edge

Face

Figure 6.3: Example of user-requested representation

typedef mEdge* (*t_createE_FP)(mMesh*, int, mEntity**, gEntity*);

t_createE_FP createE_FP;

// mesh face creation:

typedef mFace* (*t_createF_FP)(mMesh*, int, mEntity**, gEntity*);

t_createF_FP createF_FP;

// mesh region creation}:

typedef mRegion* (*t_createR_FP)(mMesh*, int, mEntity**, gEntity*);

t_createR_FP createR_FP;

// mesh edge deletion:

typedef void (*t_deleteE_FP)(mMesh*, mEntity*);

t_deleteE_FP deleteE_FP;

// mesh face deletion:

typedef void (*t_deleteF_FP)(mMesh*, mEntity*);

t_deleteF_FP deleteF_FP;

// mesh region deletion:

typedef void (*t_deleteR_FP)(mMesh*, mEntity*);

t_deleteR_FP deleteR_FP;

Once the user-requested representation is provided, entity creation/deletion opera-

tors are dynamically set to the proper ones based on the rules of the design of mesh entity

creation/deletion discussed in §3.2.3. Consider the user-requested representation depicted

in Figure 6.3. For the given representation, mesh modification operators are shaped as

the following:

// mesh edge creation: for each M0
i ∈ {∂(M1

i)}, the edge creation operator

// adds M0
i to {M1

i {M0}}

createE_FP = createE_EV; // createE_EV updates {M1{M0}}

76

// mesh face creation: for each M0
i ∈ {∂(M2

i)}, the face creation operator

// adds M0
i to {M2

i {M0}} and adds the created face into {M0
i {M2}}

createF_FP = createF_VF; // createF_VF updates {M2{M0}} and {M0{M2}}

// mesh region creation: for each M2
i ∈ {∂(M3

i)}, the region creation operator

// adds M2
i to {M3

i {M0}} and adds the created region into {M2
i {M3}}

createR_FP = createR_FR; // createR_FR updates {M3{M2}} and {M2{M3}}

// mesh edge deletion: the edge deletion operator updates no adjacencies.

deleteE_FP = deleteE; // deleteE updates no adjacencies

// mesh face deletion: for each M0
i ∈ {∂(M2

i)}, the face deletion operator

// deletes M2
i from {M2

i {M0}}

deleteF_FP = deleteF_VF; // deleteF_VF updates {M0{M2}}

// mesh region deletion: for each M2
i ∈ {∂(M3

i)}, the region deletion operator

// deletes M3
i from {M3

i {M2}}

deleteR_FP = deleteR_FR; // deleteR_FR updates {M2{M3}}

By rule 1, the edge creation operator is set to the one that updates {M1
i {M0}}.

By rule 1 and 2, the face (resp. region) creation operator is set to the one that updates

{M2
i {M0}} and {M0

i {M2}}(resp. {M3
i {M2}} and {M2

i {M3}}). By rule 3, the edge

deletion operator is set to the one that merely deletes the edge. By rule 4, the face (resp.

region) deletion operator is set to the one that deletes the face (resp. region) from mesh

database and removes the face (resp. region) from {M0
i {M2}} (resp. {M2

i {M3}}) for

each bounding vertex (resp. face) M0
i of it.

6.3 Parallel Functionalities

6.3.1 Parallel services

The parallel utility class, ParUtil, supports various services for parallel program-

ming. Its main purpose is to hide the details of parallelization and let the user program

do parallel operations without knowing details of parallel components. Class ParUtil is

a singleton (i.e., it is based on the Singleton pattern [2, 33]) so only one single instance,

ParUtil::Instance(), can exist overall and be accessible globally. The main goal in the

design of distributed meshes is to have a serial mesh be a distributed mesh on a single

processor. All parallel utility functions are also available in serial. For instance, in the

serial case, ParUtil::Instance()->size() and ParUtil::Instance()->rank() return, respec-

77

tively, 1 and 0, which denote the number of partitions and the partition id. The class

definition of ParUtil is the following:

class ParUtil {

public:

static ParUtil* Instance(); // return the only instance

void init(int &argc, char **&argv); // initialize MPI and Autopack

void Barrier(int, const char*); // synchronize

void Finalize(); // close communications

double wTime() const; // compute wall clock time

// prints a message, the same format as printf

void Msg(MessageLevel lev, char* fmt, ...);

inline int rank() { return myrank; } // gets the partition id

inline int size() { return mysize; } // gets the number of partitions

inline int master(){ return myrank==0; } // return 1 if the master partition

...

private:

static ParUtil* instance;

int myrank;

int mysize;

MPI_Comm seq_local_comm;

ParUtil(); // constructor

~ParUtil(); // destructor

...

};

6.3.2 Efficient communications: Autopack

Since communication is costly for distributed memory systems, it is important to

group small pieces of messages and send all out in one inter-processor communication. The

message packing library Autopack [55] is used for the purpose of reducing the number of

message fragments exchanged between partitions.

Algorithm 6.1 gives the general non-blocking pseudo codes embedded in parallel

mesh-based algorithms to minimize communications: beginning by allocating a local buffer

on each processor (line 1), for mesh entities on partition boundaries, the messages for

remote copies to be sent to remote partitions are collected in the buffer (line 2-4). When

all desired messages have been processed, the messages collected in local buffer are sent

to remote partitions(line 5). Then the remote partitions process what they received (line

78

6).

begin
1. initialize a buffer at local processor by AP send begin()
2. loop over desired mesh entities on each partition:
3. if the entity to be processed is on a partition boundary
4. pack messages and send them to the local buffer by AP send()
5. send all messages in buffer using AP send end()
6. receive and process all received data

end

Algorithm 6.1: Pseudo-code of communications between partitions using Au-
topack

The following is the template of a program used for communications between remote

copies of partition boundary entities using Autopack.

#include "autopack.h"

// send phase

int* sendcounts = new int[ParUtil::Instance()->size()];

for (int i = 0; i < ParUtil::Instance()->size(); ++i) sendcounts[i] = 0;

for each entity on the partition boundary {

for each remote copy of the entity {

void* buf = AP_alloc(..., remote partition id,);

fill the buffer ;

AP_send(buf);

++sendcounts[remote partition id];

}

}

// receive phase

AP_check_sends(AP_NOFLAGS);

AP_reduce_nsends(sendcounts);

int count, message = 0;

while (!AP_recv_count(&count) || message<count) {

void* msg;

int rc = AP_recv(..., &msg, ...);

if (rc) {

++message;

process msg received ;

AP_free(msg);

79

}

}

AP_check_sends(AP_WAITALL);

delete[] sendcounts;

The C integer array sendcounts is a counter for the number of messages sent to each

partition. After initializing sendcounts, for each remote copy of each entity, AP alloc

allocates memory for a message. After filling the message buffer to send, AP send sends

the message to the remote partition where the remote copy exists. AP recv receives the

message and the appropriate operation is performed on the remote copy. AP recv count

keeps track of the number of messages received ensuring the number of messages sent and

received are identical. Packing many small messages into larger messages is hidden from

the user.

6.3.3 Generic data communicator

Communications between remote copies of partition boundary entities are performed

frequently during parallel adaptive simulations. The typical pattern of communications

between remote copies of a mesh entity on the partition boundary is the following:

1. For each mesh entity on the partition boundaries:

(a) For each remote copy of the mesh entity on remote partitions:

i. Fill the message buffer to send to the remote copy on the remote parti-

tion. One message per remote copy is filled. This allows sending different

messages depending on the destination partition.

ii. Send the messages to the remote copy of the mesh entity.

iii. The remote copy of the entity receives the message from the sender parti-

tion and processes the received data.

The only difference between each communication is the data to be sent, the tag

of message (an MPI term, it is like the address on a mail message) and how the remote

copy will process the data received. To avoid coding of the communications over and over

with the same pattern and different messages and/or operations, a generic communicator

callback class, pmDataExchanger, and a generic data exchange operator, genericDataEx-

changer, have been developed.

80

class pmDataExchanger {

public :

virtual int tag() const = 0; // get a message tag

// send a message to the remote copy of a mesh entity e

// on the remote partition pid

virtual void* alloc_and_fill_buffer(mEntity* e,

int pid, mEntity*, int tag) = 0;

// receive data from partition pid

virtual void receiveData(int pid, void* buf) = 0;

};

template <class Iterator>

void genericDataExchanger(const Iterator &beg, const Iterator &end,

pmDataExchanger& de) {

mEntity* ent;

int* sendcounts = new int[ParUtil::Instance()->size()];

for (int i = 0; i < ParUtil::Instance()->size(); ++i) sendcounts[i] = 0;

for (Iterator it=beg; it != end ; ++it) {

ent = *it;

if (ent->getNumRemoteCopies() == 0) continue;

for (mEntity::RCIter rcIter = ent->rcBegin(); rcIter != ent->rcEnd();

++rcIter) {

void* buf = de.alloc_and_fill_buffer(ent,

(*rcIter).first, (*rcIter).second, de.tag());

if (buf) {

AP_send(buf);

++sendcounts[(*rcIter).first];

}

}

}

AP_check_sends(AP_NOFLAGS);

AP_reduce_nsends(sendcounts);

int count, message = 0;

while (!AP_recv_count(&count) || message<count) {

void* msg;

int from, tag, size, rc;

rc = AP_recv(MPI_ANY_SOURCE, de.tag(), AP_BLOCKING|AP_DROPOUT,

&msg, &size, &from, &tag);

if (rc) {

81

++message;

de.receiveData(from, msg);

AP_free(msg);

}

}

AP_check_sends(AP_WAITALL);

}

Class pmDataExchanger is an abstract base class since it defines pure virtual mem-

ber functions; such functions must be given definitions in a derived class. Users must spec-

ify data to be filled in the message buffer, message tag and the operation to be performed

when the data is received to the remote copy. Using a specialized instance of pmDataEx-

changer, operator genericDataExchanger exchanges data between remote copies of entities

provided through templated parameter Iterator. A typical round of communications looks

like the following:

class myExchanger: public pmDataExchanger {...};

vector<mEntity*> entsOnPtnBdry;

fill entsOnPtnBdry ;

myExchanger myCallback;

genericDataExchanger(entsOnPtnBdry.begin(), entsOnPtnBdry.end(), myCallback);

The following is the example of one round of communications that exchange resi-

dence partitions of the partition boundary entities in order to unify them between copies.

This is called in Step 2.3 of the mesh migration procedures.

class rpsExchanger: public pmDataExchanger {

public :

virtual int tag() const { return 2222; }

virtual void* alloc_and_fill_buffer(mEntity* e, int pid, mEntity* rc, int);

virtual void receiveData(int pid, void* buf);

};

void* rpsExchanger::alloc_and_fill_buffer

(mEntity* ent, int pid, mEntity* remoteEnt, int d_tag) {

// ent->RPs is an STL vector that stores residence partitions of

// the entity temporarily for a computation purpose

int nbRPs = ent->RPs.size(); // number of residence partitions

char* buf = (char*) AP_alloc(pid, d_tag,

82

(sizeof(mEntity*)+(nbRPs+1)*sizeof(int)));

memcpy(buf, &remoteEnt, sizeof(mEntity*));

int* resPids = (int*)malloc((nbRPs+1)*sizeof(int));

resPids[0] = nbRPs;

int count = 0;

for (vector<int>::iterator rpIter = ent->RPs.begin();

rpIter != ent->RPs.end(); ++rpIter)

resPids[++count] = *rpIter;

memcpy(&buf[sizeof(mEntity*)], resPids, (nbRPs+1)*sizeof(int));

free(resPids);

return buf;

}

void rpsExchanger::receiveData(int senderPid, void* buf) {

char* mybuf = (char*) buf;

mEntity* e;

memcpy(&e,mybuf,sizeof(mEntity*));

int nbRPs;

memcpy(&nbRPs, &mybuf[sizeof(mEntity*)], sizeof(int));

int* resPids = (int*)malloc((nbRPs+1)*sizeof(int));

memcpy(resPids, &mybuf[sizeof(mEntity*)], (nbRPs+1)*sizeof(int));

for (int i = 1; i <= nbRPs; ++i)

e->RPs.push_back(resPids[i]);

free(resPids);

}

int M_migrate(mMesh* mesh, list<pair<mEntity*, int> >& POsToMove) {

...

vector<mEntity*> entitiesOnPtnBdry;

// M_getEntsOnPtnBdry returns entities on the partition boundaries

M_getEntsOnPtnBdry(mesh, entitiesOnPtnBdry);

rpsExchanger aCallback; // declare an instance of rpsExchanger

genericDataExchanger(entitiesOnCB.begin(), entitiesOnCB.end(), aCallback);

...

}

Class rpsExchanger is derived from pmDataExchanger and specialized to exchange

resident partitions as the following:

• The sender partition fills the message buffer with residence partitions of an entity.

83

(A = B)

mesh importmesh export

distribued mesh A on mesh filesn distribued mesh B on n partitions n partitions

Figure 6.4: Parallel mesh I/O

• The message buffers are tagged with integer 2222 (an arbitrary value).

• The receiver partition adds the received residence partition(s) into the residence

partition(s) of the remote copy.

Operator M getEntsOnPtnBdry returns a set of partition boundary entities in a

given STL vector container. To perform communication, first, an instance of rpsExchanger,

named aCallback in the example, is declared. Next, operator genericDataExchanger is

called with 2 input iterator arguments, begin() and end() to the vector container filled by

M getEntsOnPtnBdry, and the specialized instance of pmDataExchanger, aCallback.

6.3.4 Parallel mesh I/O

Figure 6.4 illustrates the parallel mesh I/O. The parallel mesh import/export pro-

cedures let the user export the distributed mesh into mesh files and recover the mesh

later from the files. The parallel mesh export operator writes a distributed mesh on n

partitions into n mesh files and the parallel mesh import operator reads the n mesh files

and constructs the identical distributed mesh on n partitions as before the export. The

information kept in the mesh file to recover the distributed mesh from the file includes:

• the partition model information, and

• for each entity on the partition boundaries, the partition model classification infor-

mation.

Note that with parallel mesh I/O, mesh entities’ partition classification should be

kept the same and a list of remote partition ids are determined from the partition classifi-

cation of mesh entities. Therefore, in exporting a distributed mesh, mesh entity’s partition

classification should be stored for the future recovery. However, the remote copy on the

remote partition cannot be set until mesh distribution is finished since the remote copy

84

2
1M

1
8M

1
2M

1
1M

1
6M

1
5M

1
5M

2
4M

1
4M

0
4M

0
2M

0
1M

0
3M

2
3M

1
7M2

2M

1
3M

P2

P1

P0
1
3P

1
1P

1
2P

0
1P

P2

P0 P1

2
2P

2
1P

2
3P

partition

model

Figure 6.5: Simple 2D distributed mesh on 3 partitions and its partition model

is a memory address (location) of the mesh entity on a remote partition. Thus, for the

purpose of parallel mesh I/O, the following must be considered.

1. How to store and recover the partition classification of mesh entity

2. How to set a remote copy on a remote partition of mesh entity efficiently, especially

without involving mesh entity search of which time complexity is O(n lg n) where n

is the number of mesh entities in the mesh of the entity level.

6.3.4.1 Parallel mesh exporting: storing partition model

Because the partition model should be kept the same before and after the parallel

mesh I/O, the partition model of the mesh should be stored in the file along with the mesh.

For this purpose, three pieces of information are needed: partition id, partition entity

information, and the reverse partition classification of partition entity (or the partition

classification of mesh entity). We use the partition classification of mesh entities instead

of reverse partition classification. For a simple example mesh in Figure 6.5, Figure 6.6

illustrates the contents of the mesh file dumped from partition P1.

Under an assumption of one partition per processor taken in the FMDB, a pair of

the partition id and processor id doesn’t need to be kept the same before and after parallel

mesh I/O.

6.3.4.2 Parallel mesh importing: recovering partition model

When a distributed mesh is recovered from files, partition entities are created first,

and then, mesh entities are created with given partition classification in the file. By

doing this for all mesh entities, parallel classification and the list of remote partition ids

85

// PART 1
// partition id

1

// PART 2
// partition entity id residence partition id dimension owner partition id

1 0, 1 1 0
2 1, 2 1 2
4 0, 1, 2 0 0

// PART 3
// mesh entity partition entity id

· · · · · ·

Figure 6.6: Mesh file dumped from partition P1

partition entity residence partitions owner partition
P 1

1 P0, P1 P0

P 1
2 P1, P2 P2

P 0
1 P0, P1, P2 P0

Table 6.1: Partition model entities recovered on partition P1 from mesh file

are properly set. For the sample mesh file given in Figure 6.6, Table 6.1 and 6.2 show,

respectively, the partition entities and mesh entities recovered from the file on partition

P1. Now, the remaining task is to set remote copies of partition boundary entities to

recover partition boundary links.

6.3.4.3 Parallel mesh importing: recovering partition boundary links

This step requires one round of communication to exchange the memory locations

of the duplicated copies of mesh entities. The most expensive part would be, when a

mesh entity partition classification remote partition id remote copy
M2

2 P 2
2 - -

M2
3 P 2

2 - -
M1

2 P 2
2 - -

M1
3 P 2

2 - -
M1

6 P 1
1 P0 -

M1
7 P 2

2 - -
M1

8 P 1
2 P2 -

M0
2 P 1

1 P0 -
M0

3 P 2
2 - -

M0
4 P 1

2 P2 -
M0

5 P 0
1 P0 -

P2 -

Table 6.2: Mesh entities recovered on partition P1 from mesh file

86

remote copy is received from other partitions, finding the corresponding mesh entity to

set the remote copy from the received data. The time complexity of mesh entity search is

O(Ni lg Ni) where Ni is the number of mesh entities in the mesh of level i. To be efficient,

this search operation must be avoided. The algorithms for setting remote copies efficiently

is the following:

1. Before exporting the mesh entities to the file, unique ids are assigned to all of the

partition boundary entities. The unique id assignments start from 0 since the array

indices in C/C++ start from 0. Entity’s owner partition is used in this step. For

each partition boundary entity, if the current partition is the owner of the entity, the

unique id is assigned to the entity and the unique id is propagated to all copies of

the entity by this partition. After one round of communication is finished to assign

unique ids, the unique ids are dumped to files along with mesh entities.

2. In loading mesh entities, if an entity is given with unique id i, the entity is saved

in the ith element of a vector. Therefore, each partition boundary entity can be

accessed directly without searching.

3. To set remote copy(s) of a partition boundary entity, for each entity on partition

boundaries, send a message (Plocal, address of the entity on Plocal, j) to each remote

partition, where Plocal is the current partition id.

4. When the message (Pi, address of the entity on Pi, unique id) is received from

another partition, the corresponding mesh entity is the jth element of the array

vector filled in step 2. For that entity, the address of the entity on Pi is saved as for

a remote copy of the entity on Pi.

6.4 Dynamic Mesh Load Balancing

6.4.1 Design of the load balancing procedure

Figure 6.7 shows the main components of parallel adaptive analysis. An adap-

tive analysis typically starts with a coarse mesh and a low-order numerical solution of a

problem and based on an estimate of the local discretization error either refines the mesh

(h−refinement), increases the order of numerical solution (p−refinement), moves the mesh

(r−refinement), or does combinations of h−, p− and r−refinements to improve the qual-

ity of the solution. In order to perform each component in parallel, the computation

and mesh data need to be partitioned in such a way that the load balance is achieved in

87

Local Mesh
Modification
Procedure

Mesh Partitioning
(Load Balancing)

Analysis

Error
Estimation

Local Mesh
Migration

Adaptation
Conversence?

Initial Mesh

Optimal Mesh Size
Field Specification

Adapted Mesh

Geometric
Model

Partition
Model

STOP

Figure 6.7: Key steps of parallel automated adaptive analysis

each partition and the size of the inter-partition boundaries is kept minimal. In addition,

having adapted the distributed mesh, the processors may become imbalanced in which

case either a parallel re-partitioning or dynamic load balancing phase needs to be applied.

These two basic requirements are necessary to maximize utilization of all processors by

minimizing idling of processors due to load imbalance and inter-processor communication.

The Zoltan library [80] is a collection of data management services for parallel,

unstructured, adaptive, and dynamic applications. It includes a suite of parallel algorithms

for dynamically partitioning problems over sets of processors. The FMDB interfaces with

the Zoltan to obtain redistribution information of the mesh. The load balancing procedure

computes the input to the Zoltan which is a representation of the distributed mesh, usually

a weighted graph. With the distribution information from Zoltan, the re-partitioning or

initial partitioning step is completed by calling the mesh migration procedure that moves

the appropriate entities from one partition to another. Figure 6.8 illustrates an example

of 2D mesh load balancing. In the left, the partition objects (all mesh faces in this case)

are tagged with their destination partition ids. The final balanced mesh is given on the

right.

88

0
iM 0

jM

P2P1

P0

0
iM

0
kM

0
jM

P1 P2

P0

1

1 1

11

1

0
0 0

0

2

2

1

1

1

0

0
0

1
1

1
1

1
2
2

2

2
2

2

2 2

2

0

2
2

2

0
1

1

Figure 6.8: Example of 2D mesh load balancing: (left) partition objects are
tagged with their destination pids (right) mesh after load balancing

6.4.2 User interface: Zoltan callbacks

The load balance procedure utilizes a weighted graph or coordinates of partition

objects to define a model for computational load. The load of a given processor Pi is

defined as the number of elements in its partition multiplied by a weight that can be

determined based on, for example, the elements computational demands. If no weight

information is provided, the FMDB sets all weights to 1.0 by default so that the load is

simply proportional to the number of elements. The aim of load balancing is to balance

loads between processors while minimizing inter-processor communications, i.e., size of

partition boundaries. The user can also provide weights for partition boundaries in order

to take into account differing communication costs. Finally, arbitrary data attached to

mesh entities can be migrated as well as mesh entities. The interface for load balancing

is the following:

class pmLBCallbacks {

public :

// from a given graph, we retrieve a partition information

virtual void partition(FMDB_distributed_graph &theGraph,

int *partitionInfo) = 0;

// get user data of size "size" attached to a mesh entity for migration

virtual void * getUserData (mEntity*, int dest_pid, int &size) = 0;

// delete or free user attached data

virtual void deleteUserData (void*) = 0;

// receive user data. mEntity* is now the mesh entity on the

// remote partition

virtual void receiveUserData (mEntity*, int pid, int tag, void *buf) = 0;

};

89

class pmZoltanCallbacks: public pmLBCallbacks {

public :

// Zoltan algorithms available

typedef enum Algorithm {LDiffusion, GDiffusion, Remap, MLRemap, Random,

Octree, Serial};

// Constructor takes the algorithm as input

pmZoltanCallbacks(Algorithm algo = Remap);

// this function interfaces with Zoltan

virtual void partition(FMDB_distributed_graph &theGraph,

int *partitionVector);

// change the algorithm

void setAlgorithm (const Algorithm &algo);

private:

// save the algorithm

Algorithm theAlgorithm;

};

Class pmLBCallbacks is purely virtual. It serves as a base class of the Zoltan call-

backs class, pmZoltanCallbacks, to provide functions to retrieve partition information from

the Zoltan in a form of an integer array of which the ith item denotes the destination parti-

tion of ith partition object in the mesh and pack/unpack arbitrary attached data to mesh

entities for communication. Class pmZoltanCallbacks is a derived class from pmLBCall-

backs with addition of a function that enables one to choose one specific load balancing

algorithm among various partitioning services of the Zoltan.

A typical set of instructions for doing a dynamic load balancing with the FMDB is

to declare a derived class from pmZoltanCallbacks, choose a Zoltan algorithm, fill in the

behaviors for packing/unpacking attached data to mesh entities, set weights of entities.

Reference [80] provides more detailed discussions on the partitioning algorithms provided

by Zoltan. The following is a simple user-defined Zoltan callback class for initial serial

mesh partitioning:

class myCB: public pmZoltanCallbacks {

public :

myCB() : pmZoltanCallbacks(pmZoltanCallbacks::Serial){}

virtual void * getUserData (mEntity* e, int dest_proc, int &size)

{ return; }

virtual void receiveUserData (mEntity* e, int pid, int tag, void *buf)

{ return; }

90

virtual void deleteUserData (void *buf) { free(buf); }

};

// define a mesh object

mMesh* theMesh = new mMesh();

// load a serial mesh from a mesh file

M_load(theMesh, mesh_file);

// declare Zoltan callback object

myCB myCB_object;

// call load balance procedure

M_loadbalance(theMesh, myCB_object);

The load balance procedure, M loadbalance, takes two inputs: a distributed mesh and an

object of user-defined Zoltan callback type. For simplicity, attached data or weights were

not considered in the user-defined Zoltan callback type, myCB.

CHAPTER 7

PERFORMANCE RESULTS

This chapter presents performance results of the FMDB (serial and parallel). Throughout

this thesis, all the experiments were performed on an IBM HPC cluster machine with 32

compute nodes, each with two Intel Xeon 2.0GHz processors and 2GB memory, IBM x335

master node with 2GB memory and two Intel Xeon 2.0GHz processors, and Myrinet-2000

interconnect with peak performance 53.3 Gflops running Linux.

Some of tetrahedral meshes used in the performance tests are listed in Table 7.1. For

test purposes, some of the mesh entities are deleted to have the exact number of regions.

The number given in parentheses represents the number of entities equally classified on

model entities and the percentage represents the ratio of those entities among all entities

of the level.

7.1 Storage Efficiency with Flexibility

Figure 7.1 shows four mesh representations used to measure the memory cost of

FMDB, the minimum sufficient representation (MSR), representation with no interior

faces which consists of regions, edges, vertices and faces on the boundary (denoted as

REV), representation with no interior edges which consists of a full set of regions, faces,

Table 7.1: Example meshes used in FMDB performance tests
name # regions # faces # edges # vertices
name (# faces < G2

i , %) (# edges < G1
i , %)

1K 1000 2,332 1,659 335
(477, 20.45%) (116, 6.99%)

5K 5000 10,858 7,068 1,237
(1,378, 12.69%) (198, 2.80%)

10K 10,000 21,242 13,419 2,266
(1,461, 6.87%) (198, 1.47%)

50K 50000 103,913 63,945 10,414
(5,060, 4.86%) (356, 0.55%)

100K 100,000 208,853 127,992 19,761
(12,641, 6.05%) (2,009, 1.57%)

500K 500,000 1,023,105 614,570 94,526
(25,458, 2.48%) (804, 0.13%)

1M 1,000,000 2,083,475 1,264,707 193,932
(55,600, 2.67%) (1,435, 0.11%)

91

92

1
iG

2
iGFace 2

iGFace

1
iG

Region

Vertex

Edge

Face

(c) RFV

Edge

Region

Face

Vertex

(d) one level

Region

Vertex

Edge

(a) MSR

Region

Vertex

Edge

(b) REV

Figure 7.1: Mesh representation used in performance tests: (a) minimum suf-
ficient representation (b) reduced faces (c) reduced edges (d) one
level

Table 7.2: Storage cost for 3D meshes (MB)

R1 (MSR) R2 (REV) R3 (RFV) R4 (one level)

MRM

1 0 0 0
− − 0 0
− 0 − 0
1 0 0 1

1 0 0 0
1 1 0 0
− 0 − 0
0 0 1 1

1 0 0 0
− − 0 0
1 0 1 0
1 0 0 1

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

1K 1.85 1.99 2.05 2.27
5K 2.42 3.04 3.41 4.58
10K 3.03 4.21 5.00 7.21
50K 7.82 13.18 17.66 28.64
100K 14.26 24.86 33.75 55.75
500K 59.19 110.73 158.17 264.73
1M 96.45 177.50 244.57 420.71

1.2M 117.76 223.79 318.91 536.94
2.3M 214.51 405.11 585.57 975.02

vertices and edges on the boundary (denoted as RFV), and one-level representation.

Table 7.2 shows the storage cost of 4 mesh representation options in mega bites

(MB); R1, R2, R3, and R4 are, respectively, MRM for the minimum sufficient representa-

tion (MSR), representation with no interior faces (REV), representation with no interior

edges (RFV), and one-level representation. Memory usage is measured with resident set

size (RSS). In a virtual memory system, a process’ resident set is that part of a process’

address space which is currently in main memory [72] obtained through “ps -ly -C” com-

mand and includes that of geometric model. Note that even with the same number of

93

Table 7.3: Relative storage cost for 3D meshes
MRM R1 (MSR) R2 (REV) R3 (RFV) R4 (one level)
1K .81 (.82) .87 (.89) .90 (.94) 1
5K .52 (.55) .66 (.71) .74 (.84) 1
10K .42 (.45) .58 (.64) .69 (.82) 1
50K .27 (.31) .46 (.53) .61 (.77) 1
100K .25 (.30) .44 (.52) .60 (.77) 1
500K .22 (.27) .41 (.49) .59 (.77) 1
1M .22 (.27) .42 (.49) .58 (.74) 1

1.2M .21 (.27) .41 (.49) .59 (.77) 1
2.3M .22 (.26) .41 (.49) .60 (.76) 1

region meshes, depending on the number of faces and edges in the representation, the

memory usage varies substantially.

Table 7.3 shows the relative storage cost of 4 mesh representation options with an

assumption of storage cost 1 with the one-level adjacency representation. For reduced rep-

resentations, R1, R2 and R3, relative storage for distributed meshes, which were measured

with adjusted MRM’s, are given in parentheses.

The reduction in memory consumption with the flexible mesh representation options

varies depending on the level of reduced entities and adjacencies, and the ratio of equally

classified entities. For the example meshes, a decrease in storage is 19 − 79% with R1,

13−59% with R2, 10−42% with R3. In the parallel case, a decrease in storage is 18−74%

with R1, 11 − 51% with R2, and 6 − 26% with R3. It has been observed that memory

savings with reduced representations increase as the mesh size gets greater.

The memory savings with the flexible mesh representation options shows a clear

benefit of running mesh-based applications with customized mesh data structures that

fit to the needs of the application in terms of the mesh representation. The potential

improvement from the flexible mesh representation depends to a large extent on the mesh

representation. If the application requires all d levels of mesh entities and most of adja-

cencies, very little will be gained by using the flexible mesh representation.

7.2 Overhead of Function Pointers

In order to support the flexible mesh data structure, the mesh creation/deletion op-

erators are declared not as functions, but as function pointers. We conducted experiments

to evaluate the overhead generated by function pointers. We ran several applications of

mesh adaptation [49, 50, 51] and discontinuous Galerkin methods [30, 74] using fixed and

flexible mesh data structures, both with the one-level representation.

94

The overhead is measured by subtracting the run time with the fixed mesh data

structure from that of the flexible mesh data structure of which mesh creation/deletion

operators declared as the function pointers are set to the ones for one-level adjacencies. It

has been observed that a difference in execution time between two mesh data structures,

fixed and flexible, is 0−5% depending on the frequency of calls to entity creation/deletion

operator, which are declared with function pointers. In most cases, the overhead with

function pointers was less than 1%.

If the application is mesh modification intensive, the overhead with flexible mesh

data structure increases since it is strongly affected by the frequency of calls to entity

creation/deletion operator. In cases where the application needs complete representation

and modification intensive, it’s desirable to run the application with the fixed mesh data

structure to avoid the overhead from the flexibility due to function pointers. The FMDB

lets the user choose between the fixed mesh data structure with one-level adjacency and

the flexible mesh data structure via a flag.

7.3 Efficiency of Mesh Migration

We’ve performed the mesh migration procedures with the 1000K mesh to measure

the run time of it. Algorithm 7.1 is a test program used to determine POsToMove. Given

distributed mesh M , the number of partition objects to migrate per partition, n, and the

number of partitions, p, it picks n partition objects and their destination partition id’s

using a random number generator and performs mesh migration. The total number of

partition objects migrated over p partitions, N , is n× p.

The run time of the migration procedure obtained with a randomly, intentionally

generated mesh partitioning may be less meaningful, thus not appropriate to demonstrate

the efficiency of the distributed mesh data structure developed. However it may be helpful

in discussing how the migration procedure is affected by mesh representation options and

various combinations of n and p. Demonstration of the efficiency of the distributed mesh

data structure with the real adaptive simulations is presented in §8.1.

As the number of partitions participating in migration increases, partitioning topol-

ogy becomes more complicated since more entities will be on partition boundaries and/or

have more remote copies. Thus, the test is to migrate a fixed total number of partition

objects with various numbers of partitions in order to see how the migration procedures

are affected as the number of partition objects decreases and partitioning topologies com-

95

Data : M , n, p

Result: migrate n× p partition objects
begin

counter ← 0;
for each partition object Md

i in M do
pid ← rand() % p;
if pid = the local partition id

continue; // proceed to the next partition object
endif
POsToMove.push back(Md

i , pid);
++counter;
if counter = n

break; // exit for loop
endif

endfor
migrate partition objects collected in POsToMove;

end

Algorithm 7.1: Test program of the mesh migration procedure

plicated. Obviously, with the fixed total number of partition objects, as the number of

partitions increases, the number of partition objects migrated per partition decreases.

Table 7.4 shows the run time to migrate total 100, 000 − 500, 000 partition objects

over 2− 48 partitions. The migration time is collected for 4 mesh representation options

given in Table 7.2. Migration with reduced representations, R1 (MSR), R2 (REV, reduced

interior faces), and R3 (RFV, reduced interior edges) is performed with M migrate URR.

Migration withR4 (one-level representation) is performed with M migrate. In comparison

between the four mesh representation options, the fastest is denoted with bold.

Comparing total migration time of M migrate and M migrate URR, M migrate

with R4 is much faster than M migrate URR when n and p are relatively small. However

as n and p increase, M migrate URR tends to outperform M migrate due to the less

number of entity exchanges. For the cases where the number of total partition object

migrated is 400,000 or 500,000, M migrate URR with R1 performed the best.

96

Table 7.4: Run time of migrating total N partition objects (sec)
partitions

N MRM 2 4 8 16 24 32 40 48
100,000 R1 36.28 21.24 17.35 14.88 17.08 19.45 25.05 29.13

R2 28.26 19.26 16.21 13.18 17.00 19.51 25.45 29.65
R3 21.81 15.28 14.16 12.11 16.53 20.01 26.98 25.35
R4 16.76 13.81 12.98 11.77 17.05 21.46 27.60 26.20

200,000 R1 26.82 20.05 18.96 16.65 28.81 35.46 43.00 31.69
R2 24.31 20.18 18.78 17.12 26.23 36.28 42.15 32.13
R3 24.01 19.96 17.91 17.23 27.01 40.31 43.18 34.26
R4 22.79 19.64 18.38 16.01 26.61 42.32 44.29 34.95

300,000 R1 36.38 39.46 39.74 39.95 52.96 66.73 69.71 70.34
R2 35.21 40.98 40.18 39.99 53.21 65.01 69.23 72.31
R3 33.12 40.26 40.00 40.21 53.96 66.98 66.12 78.12
R4 33.47 45.61 41.93 41.82 53.74 65.35 67.13 81.18

400,000 R1 45.98 43.97 45.60 43.10 61.36 69.28 72.23 77.32
R2 48.23 51.25 50.26 45.35 65.36 72.28 75.95 79.23
R3 51.26 50.88 49.23 48.23 65.26 80.55 84.23 86.28
R4 54.36 60.04 53.16 52.02 72.05 78.13 81.26 88.36

500,000 R1 46.27 47.53 50.56 51.87 63.24 75.12 75.36 79.23
R2 51.48 56.23 55.23 52.81 65.53 76.26 75.98 80.23
R3 55.64 63.54 73.54 75.34 70.34 76.34 80.34 89.34
R4 64.30 75.69 81.19 76.38 82.82 85.78 90.26 93.41

CHAPTER 8

APPLICATIONS

This chapter presents the use for the FMDB (serial and parallel) in a set of mesh-based

applications including its performance data.

8.1 Parallel Anisotropic 3D Mesh Adaptation

Anisotropic mesh modification [48, 49, 50, 51] provides a general mesh adaptation

procedure that applies local mesh modification operations to yield a mesh of elements

matching the required sizes and shapes. The mesh adaptation procedure is governed by a

discrete anisotropic metric field specified at each mesh vertex of the current mesh [48, 51].

The procedure consists of the four interacted high-level components of refinement, coars-

ening, swapping [51], and projecting new vertices created onto curved model boundaries

onto the boundaries [50].

The serial mesh modification procedure has been extended to work with the dis-

tributed meshes in parallel [1, 51].

8.1.1 Parallelizing mesh modification procedures

The key technical issues in parallelizing mesh modification procedures deal with:

(i) evaluating3 and executing mesh modifications on the partition boundaries and (ii) an

effective message packing and load balancing.

Applying mesh modification operation on the partition boundary requires inter-

partition communication for its evaluation and may break partition boundary links during

its execution. Therefore, a technique is required to prevent the operation to break the

links or follow the operation with a process to repair the broken links. Since inter-partition

communications are costly, it is important for message packing to reduce the number of

such communications. Thus, small pieces of messages from many mesh modifications are

packed together and sent out in as few communications as possible. The load balancing

is critical for the parallel procedure to achieve speed-up. In addition, performing local

mesh modification operations on partition boundaries between several partitions requires

parallelization of each local mesh modification operator, in particular, repartitioning the
3Predicting the validity or quality of the result mesh.

97

98

mesh via the mesh migration procedure to treat mesh entities on or near the partition

boundaries.

The distributed mesh data structure of the FMDB provides all needed functionali-

ties for supporting parallel mesh adaptation such as dynamic mesh load balancing, indi-

vidual local mesh migration for coarsening, projecting and swapping, easy-to-customize

templated communication, etc.. The mesh migration procedures combined with the poor-

to-rich ownership maintain the mesh load balance during processes, reducing the frequency

of calls to the mesh load balancing procedure. The metric field of each mesh vertex is im-

plemented with attachable data to the mesh vertices. While migrating mesh vertices, the

metric field attached to the vertex must be exchanged properly to proceed the adaptation.

As discussed in §6.4.2, the Zoltan callback of the FMDB supports the functionality to cus-

tomize packing/unpacking any arbitrary attached data to mesh entities in the migration

procedure. Detailed discussions on parallelizing each mesh modification component are

presented in reference [1].

8.1.2 Experiments

The parallel mesh adaptation procedure has been tested against a wide range of

models under either analytical or adaptively defined mesh size field definitions [48]. Some

results of the parallel mesh adaptation are presented to demonstrate the scalability of the

distributed mesh data structure developed. The scalability of a parallel program running

on p processors is defined as the speedup.

speedup =
run time on 1 processor
run time on p processors

(8.1)

The relative speedup is the speedup against the program on
p

2
processors.

relative speedup =
run time on p

2 processors
run time on p processors

(8.2)

Figure 8.1 shows a uniform initial non-manifold mesh of a 1 × 1 × 1 cubic and

triangular surface domain and the adapted mesh with two spherical mesh size fields on 4

processors. Different color represents different partitions.

The geometry of the mesh in Figure 8.2 is a torus with four circular holes. The

initial mesh is 20,067 tetrahedron. The adapted, approximately 2 million tetrahedron

mesh with two spherical shocks is given with the speedup.

99

proc 2 4 8 16
speedup 2.23 3.37 5.48 8.40

rel. speedup 2.23 1.50 1.62 1.53

Figure 8.1: Parallel mesh adaptation I: (left) initial 36 tet mesh, (right)
adapted approx. 1 million tet mesh

proc 2 4 8 16 32
speedup 1.52 2.47 4.18 8.28 18.71

rel. speedup 1.52 1.57 1.76 1.93 2.26

Figure 8.2: Parallel mesh adaptation II: (left) initial 20,067 tet mesh, (right)
adapted approx. 2 million tet mesh

100

proc 12 24 48
rel. speedup - 1.86 1.87

Figure 8.3: Parallel mesh adaptation III: (left) initial 6,213 tet mesh, (right)
adapted approx. 7 million tet mesh

Figure 8.3 gives the initial coarse mesh with sphere geometry and adapted mesh

with the analytical size field. The final mesh is of approximately 7 million tetrahedron.

8.2 Adaptive Loop for Accelerator Design

The Stanford Linear Accelerator Center (SLAC)’s eigenmode solver Omega3P [47]

is being used in the design of next generation linear accelerators. Recently, Omega3P has

been integrated with adaptive mesh control [48, 49, 50, 51] to improve the accuracy and

convergence of wall loss (or quality factor) calculations in accelerating cavities. The sim-

ulation procedure consists of interfacing Omega3P to automatic mesh generator, general

mesh modification, and error estimator components to form an adaptive loop as depicted

in Figure 8.4.

The accelerator geometries are defined as ACISTM solid models [91] and physical

parameters required by the simulation are associated with geometric model entities. Using

functional interfaces between geometric model and meshing techniques [8], the automatic

mesh generation tools of SimmetrixTM [89] generates an initial mesh. After Omega3P

calculates the solution fields, the error indication procedure determines a new mesh size

field and the mesh modification procedures modify the mesh to generate a new mesh for

the next execution of Omega3P. This iterative procedure repeats until the desired accuracy

is reached.

The FMDB is used as for a mesh database to support these processes including

mesh adaptation. As seen in Figure 3.7, all d levels of mesh entities with 12 first-order

101

Initital mesh

Symmetrix
− Mesh generator

Geometric model

Adapted mesh

Solution field Size field

SCOREC

− Mesh adaptation

SCOREC

SLAC
− FMDB

− Field

− Eigensolver

− Error estimator

− Omega3P

Figure 8.4: Framework of adaptive loop for accelerator design
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 0 0
1 1 1 0
0 1 1 1
1 0 1 1

Figure 8.5: MRM’s for SLAC adaptive loop: (left) requested (right) optimized

adjacencies are necessary to run the mesh adaptation procedure (note this is currently what

is being used, and it would be better being considered to improve). The MRM given in

the left of Figure 8.5 represents the mesh representation requested by the adaptive loop.

To compromise between the memory and computational efficiency, the representation

provided in the adapted loop is the one-level adjacency representation with the addition

of {M3{M0}} as given in the right of Figure 8.5. The last step of MRM optimization that

suppresses unnecessary adjacencies which are obtainable by local traversal (See §3.2.2)

was turned off since vertices of a region is frequently used by the adaptation procedure,

thus storing them explicitly is more beneficial in time.

The parallel adaptive procedure has been applied to Trispal model and RFQ model.

In these examples, the size fields were intentionally set to generate big meshes to demon-

strate the scalability of the FMDB. The speedups given are just for the parallel mesh

adaptation portion of the process.

102

(a) initial mesh

(b) after the 2nd loop

(c) after the 8th loop

proc 20 40
rel. speedup - 1.81

Figure 8.6: Parallel adaptive loop for SLAC I: (a) initial coarse Trispal mesh
(65 tets), (b) adapted mesh after the second adaptive loop (approx.
1 million tet), (c) the final mesh converged to the solutions after
the eighth adaptive loop. (approx. 12 million tets)

103

Figure 8.7: Mesh and wall-loss distribution for 3 adaptive steps

(a) initial (front) (b) 1st loop (back)

(c) 2nd loop (front) (d) 2nd loop (back)

proc 28 56
rel. speedup - 1.97

Figure 8.8: Parallel adaptive loop for SLAC II: (a) initial coarse RFQ mesh
(1,595 tet), (b) adapted mesh from the first adaptive loop (approx.
1 million tet), (c) front view of adapted mesh from the second
adaptive loop (approx. 24 million tet), (d) back view of (c)

Figure 8.6 shows the Trispal meshes during the parallel adaptive loop, (a) gives the

initial mesh composed of 65 tetrahedron, (b) is the adapted mesh after the second adaptive

loop, which is of approximately 1 million tetrahedron, (c) is the adapted, approximately 12

million tetrahedral, mesh after the eighth adaptive loop, which converged to the solution

fields.

Figure 8.7 shows the Trispal mesh and wall loss distribution on the cavity surface for

three adaptive steps with an increasingly denser mesh in the area of high field concentration

104

Table 8.1: Relative storage cost with DG applications
one level flexible

2D Rayleigh Taylor 1 .93
3D Rayleigh Taylor 1 .72

2D riemann 1 .82
3D riemann 1 .66

3D sedov explosion 1 1

(from left to right).

Figure 8.8 gives the RFQ meshes during the parallel adaptive loop, (a) gives the

initial coarse mesh of 1,595 tetrahedron, (b) is the adapted mesh after the first adaptive

loop, which is approximately 1 million tetrahedron, (c) and (d) are the front and back

view of the adapted mesh after the second adaptive loop, which contains about 24 million

tetrahedron.

In both of Trispal and RFQ cavities, it has been observed that the parallel adaptive

procedure reliably produces the results with the desired accuracy and quality factors.

8.3 Parallel Discontinuous Galerkin Method

The Discontinuous Galerkin (DG) method was initially introduced by Reed and Hill

in 1973 [73] as a technique to solve neutron transport problems. It is now being used to

solve ordinary differential equations, hyperbolic, parabolic and elliptic partial differential

equations [78].

The SCOREC DG codes has been developed for solving complex phenomena fea-

turing sharp moving fronts such as transient inviscid flows (e.g. Rayleigh-Talor instabili-

ties [26, 35], or blast wave propagations [30, 74, 77, 78]). The FMDB has been used for a

mesh database supporting conforming/non-conforming adaptive mesh refinement calcula-

tions in the DG codes. The DG codes also were parallelized to be able to run on parallel

computers supported by the FMDB.

Table 8.1 gives the memory savings with various DG applications via flexible mesh

representation options. There was no memory savings with 3D sedov explosion since it

performs the mesh adaptation procedure which requires all d levels of entities with 12

adjacencies.

105

Figure 8.9: Isosurface of pressure evolution in the domain at time 0.04, 0.06,
0.08 and 0.1 (from left to right and top to bottom)

8.3.1 A double sedov explosion simulation

The parallel DG with adaptation applied to a double sedov explosion simulation,

modeled by the Euler equations, in a 3D geometry that simulates the evolution of two

spherical blasts in a homogeneous medium. This problem is a purely hydro dynamical

test and it involves strong shocks.

In the example, a domain with a non-dimensional size of [−1, 1] × [−1, 1] × [0, 1]

containing several obstacles is considered. The domain is filled with an homogeneous

medium. To initialize the simulation, two quantities of energy equal to 1 are considered

into two small hemisphere regions with a radius 0.15 and for centers (−0.1, 0.2, 0) and

106

Figure 8.10: (left) Isopressure distribution at time 0.06 and 0.1, (right) the
associated anisotropic adapted meshes

Figure 8.11: Final adapted partitioned mesh at time 0.1

107

(0.1, 0.1, 0).

The shock waves propagation (pressure isosurface) is illustrated in Figure 8.9 at var-

ious time steps. Figure 8.10 shows the anisotropic adapted mesh and the corresponding

isopressure distributions at time 0.06 and 0.1. The load balancing procedure was per-

formed to keep even mesh distribution for each mesh partition as the mesh size evolves

slowly along the adaptive computation. Figure 8.11 gives the final mesh that contains

638, 677 tetrahedron.

CHAPTER 9

CLOSING REMARKS

The aim of this thesis was to develop an efficient flexible distributed mesh data structure

including parallel algorithms which are scalable for parallel automated adaptive mesh-

based simulations. This chapter summarizes the contributions made in achieving the

goal, and suggests directions for future work.

9.1 Research Contributions

The essential requirement for the efficient mesh data structure is the design and

implementation of algorithms that manipulate the mesh and mesh entities effectively both

in serial and parallel. The core of the flexible distributed mesh data structures includes

the functions to construct the user-requested representations and the mesh migration

procedures. All mesh entity level operations were developed to execute in O(1) time.

This includes operators affected by representation such as entity creation, deletion and

migration.

Data structures for distributed meshes were designed based on the hierarchical do-

main decomposition, providing a partition model as intermediate domain decomposition

between the geometric model and the mesh. For that purpose, the definitions and prop-

erties of the partition model and relations between the distributed mesh and the partition

model were identified. From the support of partitioning at the partition model level as

well as optimal order algorithms to construct and use it, local mesh entity migration and

dynamic load balancing are supported effectively. The distributed mesh environment was

designed to handle 2D triangular and 3D tetrahedral meshes on non-manifold geometries.

The entity’s owner partition rule lets the owning partition of either a duplicated

entity on a partition boundary or an internal entity to the partition boundary be the

partition which has the least number of entities among all partitions where the entity

exists. In supporting mesh modification with entities on or near the partition boundaries,

the poor-to-rich owner partition rule migrates entities to the partitions which have less

load, enhancing the overall performance of parallel mesh adaptation by keeping mesh load

balance.

The FMDB is supported by the DOE SciDAC [81] program through the TSTT

center [95] that is developing interoperable and interchangeable meshing and discretization

108

109

software for scientific computation. The FMDB was developed to be TSTT compliant

and represent core functionalities of the TSTT meshing tools. It is a TSTT component

developed to fully support the extensive demands of adaptive mesh-based analyses and

mesh operations on parallel computers.

The FMDB is embedded in SCOREC simulation packages effectively supporting

parallel automated adaptive analyses such as parallel adaptive loop for SLAC and parallel

discontinuous Galerkin methods.

9.2 Future Directions

There are many extensions that can be made to the FMDB.

• Currently, only triangular and tetrahedral elements are supported. The data struc-

tures for flexibility and migration algorithms are general and can support other types

of elements such as quadrilateral or hexahedral elements with minor modifications.

• There are 2 categories in Zoltan’s parallel data management algorithms: coordinate

and graph-based. Currently, the load balancing procedure works only with graph-

based algorithms, especially ParMETIS [40]. In the load balancing procedure, the

part that interfaces with Zoltan is being modified to work with extensive set of load

balancing libraries included in Zoltan, either coordinate or graph-based.

• It is also worthwhile to explore other types of links which point to remote copies

of duplicated entities on remote partitions. Currently, full links, as described in

§4.2.2, are used. With full links, the remote copy update involves all of the remote

copies of the duplicated entities. Further optimizations in terms of memory and

communication volume reduction in remote copy updates are possible through the

use of compressed (minimal) links.

• In order to support more effective load balancing on heterogeneous clusters which

expose a growing heterogeneity in processing and communication capabilities, the

FMDB is being combined with the Dynamic Resource Utilization Module (DRUM) [29].

The DRUM supports hierarchical and architecture-dependent load balancing in con-

junction with the Zoltan toolkit. By using the DRUM underneath, any of the ap-

plications that use Zoltan can better tailor partitions to a given architecture.

• Even through the FMDB was developed to be TSTT compliant, its implementation

is at the initial stage. Extensive unit testing and development of applications that

110

access the FMDB through the TSTT Mesh API are necessary to ensure the FMDB

is an interoperable/interchangeable component in the mesh-based analysis environ-

ment. The current working plan includes running Mesquite [95] the mesh quality im-

provement library and SCOREC mesh adaptation procedure [48, 49, 50, 51] through

the TSTT Mesh API of the FMDB.

• The interest when solving a partial differential equation (PDE) on a parallel com-

puter is obtaining a solution with a prescribed error tolerance in minimal time rather

than in speedup [66, 87]. Hence the success of parallel PDE solver should be mea-

sured in terms of error attained and the time it takes. The experiments for the

success with parallel PDE solver were not covered in this thesis, thus this will need

to be done in the near future.

• Currently, the mesh I/O is performed through text formatted files. It would be

better to have binary formatted file I/O for better performance. The most commonly

used library for binary formatted data access is the Network Common Data Form

(NetCDF) [97]. The NetCDF is an interface for array-oriented data access and a

library that provides an implementation of the interface. The NetCDF library also

defines a machine-independent format for representing scientific data such as meshes.

Together, the interface, library, and format support the creation, access, and sharing

of scientific data.

• Parallel mesh I/O discussed in §6.3.4 assumed that the partition model is kept the

same before and after the partitioned mesh is recovered from the mesh files. However,

for more flexibility, it’s possible to have different partition models before and after,

for example a different number of partitions. Further investigation will be needed

to realize this functionality.

LITERATURE CITED

[1] Alauzet F, Li X, Seol ES, Shephard MS (2005) Parallel anisotropic 3D mesh
adaptation by mesh modification In preparation to submit to J. Computing and
Information Science.

[2] Alexandrescu A (2001) Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley.

[3] Argonne National Laboratory (2005) The Message Passing Interface (MPI)
standard library. http://www-unix.mcs.anl.gov/mpi.

[4] Balsara DS, Norton CD (2001) Highly parallel structured adaptive mesh refinement
using parallel language-based approaches Parallel Computing 27:37-70.

[5] Beall MW (1999) An object-oriented framework for the reliable automated solution
of problems in mathematical physics. PhD Dissertation Mechanical Engineering
Dept. Rensselaer Polytechnic Institute Troy NY.

[6] Beall MW, Shephard MS (1997) A general topology-based mesh data structure Int.
J. Numer. Meth. Engng 40:1573-1596.

[7] Beall MW, Shephard MS (1999) An object-oriented framework for the reliable
numerical simulations Engineering with Computers 20(3):210-221.

[8] Beall MW, Walsh J, Shephard MS (2004) A comparison of techniques for geometry
access related to mesh generation Engineering with Computers 20(3):210-221.

[9] Biswas R, Oliker L (1994) A new procedure for dynamic adaptation of
three-dimensional unstructured grids Appl. Numer. Math 13:437-452.

[10] Bonet J, Peraire J (1991) An alternating digital tree (ADT) algorithm for 3D
geometric and intersection problems Int. J. Numer. Meth. Engng 31:1-17.

[11] Booch G (1994) Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Company Inc. Redwood City, CA.

[12] Booch G, Jacobson I, Rumbaugh J (1999) Unified Modeling Language for
Object-Oriented Development Documentation Set Version 0.91 Addendum,
Rational Software Corp. Santa Clara, CA.

[13] Celes W, Paulino GH, Espinha R (2005) A compact adjacency-based topological
data structure for finite element mesh representation Int. J. Numer. Meth. Engng
(in press).

[14] Center for component technologies for terascale simulation science (2005)
SIDL/Babel user’s guide. http://www.llnl.gov/CASC/components/babel.html.

111

112

[15] Chand K, Diachin LF, Fix B, Ollivier-Gooch C, Seol ES, Shephard MS, Tauges T
(2005) Toward interoperable mesh, geometry, and field components for PDE
simulation development Submitted to Engineering with Computers.

[16] Chellamuthu KC, Ida N (1994) Algorithms and data structures for 2D and 3D
adaptive finite element mesh refinement Finite Elements in Analysis and Design
17(3)205-229.

[17] Chen J, Taylor VE (2000) ParaPART: parallel mesh partitioning tool for
distributed systems Concurrency: Pract. Exper 12:111-123.

[18] Cockburn B, Karniadakis G, Shu CW (2000) Discontinuous galerkin methods Vol.
11 of Lecture Notes in Computational Science and Engineering Berlin.

[19] Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithm
2nd Ed.. MIT Press.

[20] de Cougny HL, Devine KD, Flaherty JE, Loy RM, Özturan C, Shephard MS (1995)
Load balancing for the parallel solution of partial differential equations Appl.
Numer. Math 16:157-182.

[21] de Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of
tetrahedral meshes Int. J. Numer. Meth. Engng 46:1101-1125.

[22] de Cougny HL, Shephard MS (1999) Parallel unstructured grid generation CRC
Handbook of Grid Generation Thompson JF, Soni Bk, Wetherill NP, Eds. CRC
Press Inc. Boca Raton p24.1-24.18.

[23] de Cougny HL, Shephard MS, Özturan C (1996) Parallel three-dimensional mesh
generation on distributed memory (MIMD) computers Engineering with Computers
12(2):94-106.

[24] Deitel & Deitel (2001) C++ How To Program 2nd Ed.. Prentice Hall.

[25] Diekmann R, Preis R, Schlimbach F, Walshaw C (2000) Shape-optimized mesh
partitioning and load balancing for parallel adaptive FEM Parallel Computing
26:1555-1581.

[26] Drazin PG, Reid WH (1982) Hydrodynamic Stability. Cambridge University Press.

[27] DUNE - A unified framework for scientific computing (2005) http://dune.uni-hd.de.

[28] Eletronic Data Systems Corp. (1994) Parasolid V6 Functional Description.
Maryland Heights MO 63043.

[29] Faik J, Flaherty JE, Gervasio LG, Teresco JD, Devine KD, Boman EG (2005) A
model for resource-aware load balancing on heterogeneous clusters.
http://www.cs.williams.edu/drum.

[30] Flaherty JE, Krivodonova L, Remacle JF, Shephard MS (2002) Aspects of
discontinuous Galerkin methods for hyperbolic conservation laws Comp. Meth.
Appl. Mech. Engng 38:889-908.

113

[31] Galimella RV (2002) Mesh data structure for mesh generation and FEA
applications Int. J. Numer. Meth. Engng 55:451-478.

[32] Galimella RV (2004) MSTK - A flexible infrastructure library for developing mesh
based applications 13th International Meshing Roundtable, Sandia National
Laboratories p203-212. Available from
http://www.andrew.cmu.edu/user/sowen/topics/data.html.

[33] Gamma E, Johnson R, Helm R, Vlissides JM (1994) Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

[34] Ge L, Lee LQ, Li Z, Ng C, Ko K, Luo Y, Shephard MS (2004) Adaptive mesh
refinement for high accuracy wall loss determination in accelerating cavity design
Eleventh Biennial IEEE Conference on Eletromagnetic Field Computation, Seoul,
Korea.

[35] Glimm J, Grove J, Li X, Oh W, Tan DC (1988) The dynamics of bubble growth for
Rayleigh-Taylor unstable interfaces Physics of Fluids 31:447-465.

[36] Hawken DM, Townsend P, Webster MF (1992) The use of dynamic structures in
finite element applications Int. J. Numer. Meth. Engng 33:1795-1811.

[37] Hughes TJR (2000) The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Dover Publication Inc..

[38] Joint Institute for Computational Science (1997) Beginner’s Guide to MPI Message
Passing Interface. University of Tennessee.

[39] Kallinderis Y, Kavouklis C (2004) A dynamic adaptation scheme for general 3-D
hybrid meshes Comp. Meth. Appl. Mech. Engng (in press).

[40] Karypis G, Schloegel K, Kumar V (1998) ParMETIS: Parallel Graph Partitioning &
Sparse Matrix Ordering Library V. 2.0. University of Minnesota, Computer Science
Dept. Army HPC Research Center Minneapolis MN.

[41] Koenig A, Moo BE (2001) Accelerated C++. Addison-Wesley.

[42] Kohn SR, Baden SB (2001) Parallel software abstractions for structured adaptive
mesh methods J. of Parallel and Distributed Computing 61(6):713-736.

[43] LAM/MPI Parallel Computing (2005) http://www.lam-mpi.org.

[44] Lämmer L, Burghardt M (2000) Parallel generation of triangular and quadrilateral
meshes Advances in Engineering Software 31(12):929-936.

[45] Larwood BG, Weatherill NP, Hassan O, Morgan K (2003) Domain decomposition
approach for parallel unstructured mesh generation Int. J. Numer. Meth. Engng
58(2)2:177-188.

[46] Le Saint P (1975) Sur la résolution des systèmes hyperboliques du premier order par
la méthode des éléments finis. PhD Dissertation Université Pierre et Marie Curie.

114

[47] Lee LQ, et al. (2004) Solving large sparse linear systems in end-to-end accelerator
structure simulations. SLAC-PUB-10320 January.

[48] Li X (2003) Mesh modification procedures for general 3D non-manifold domains.
PhD Dissertation Mechanical Engineering Dept. Rensselaer Polytechnic Institute
Troy NY.

[49] Li X, Remacle JF, Nicolas C, Shephard MS (2004) Anisotropic mesh gradation
control 13th International Meshing Roundtable, Williamsburg VA.

[50] Li X, Shephard MS, Beall MW (2002) Accounting for curved domains in mesh
adaptation Int. J. Numer. Meth. Engng 58:247-276.

[51] Li X, Shephard MS, Beall MW (2003) 3D Anisotropic mesh adaptation by mesh
modifications Submitted to Comp. Meth. Appl. Mech. Engng.

[52] libMesh: Parallel data structures for finite element computations (2005)
http://www.cfdlab.ae.utexas.edu.

[53] Lo SH, Wang WX (2002) An algorithm for the intersection of quadrilateral surfaces
by tracing of neighbours Comp. Meth. Appl. Mech. Engng 192:2319-2338.

[54] Löhner R (1988) Some useful data structures for the generation of unstructured
grids Comm. appl. numer. methods 4:123-135.

[55] Loy R (2000) Autopack User Manual. Science Division Argonne National
Laboratory.

[56] Luo X, Shephard MS, Remacle JF, O’Bara RM, Beall MW, Szabó BA, Actis R
(2002) p-version mesh generation issues 11th International Meshing Roundtable,
Sandia National Laboratories p343-354.

[57] MacNeice P, Olson KM, Mobarry C, Fainchtein RD, Packer C (2000) PARAMESH:
A parallel adaptive mesh refinement community toolkit Computer Physics
Communications 126(3):330-354.

[58] Mäntylä M (1988) An Introduction to Solid Modeling. Computer Science Press
Rockville Maryland.

[59] Meyers S (2000) Effective C++ 2nd Ed.. Addition-Wesley.

[60] Meyers S (2001) Effective STL. Addison-Wesley.

[61] Mohamed SA (1997) Automatic mesh refinement and data structure for multigrid
finite elements techniques Computers & Stuctures 65(6):958-993.

[62] Musser DR (2005) Generic programming. http://www.cs.rpi.edu/∼musser/gp.

[63] Musser DR, Derge GJ, Saini A (2001) STL Tutorial and Reference Guide 2nd Ed..
Addison-Wesley.

[64] Oliker L, Biswas R, Gabow HN (2000) Parallel tetrahedral mesh adaptation with
dynamic load balancing Parallel Computing 26:1583-1608.

115

[65] Ollivier-Gooch C (2005) GRUMMP: Generation and Refinement of Unstructured,
Mixed-element Meshes in Parallel. http://tetra.mech.ubc.ca/GRUMMP.

[66] Özturan C, de Cougny HL, Shephard MS, Flaherty JE (1994) Parallel adaptive
mesh refinement and redistribution on distributed memory computers Comp. Meth.
Appl. Mech. Engng 119:123-127.

[67] Pacheco PS (1997) Parallel Programming with MPI. Morgan Kaufmann Publisher.

[68] Parametric Technologies Corp. (1997) Pro/TOOLKIT reference manual 128
Technology Drive. Waltham MA.

[69] Parashar M, Browne JC (2005) DAGH: Data Management for Parallel Adaptive
Mesh Refinement Techniques. http://www.caip.rutgers.edu/∼parashar/DAGH.

[70] Park Y, Kwon O (2005) A parallel unstructured dynamic mesh adaptation
algorithm for 3-D unsteady flows Int. J. Numer. Meth. Fluids 48:671-690.

[71] Provatas N, Goldenfeld N, Dantzig J (1998) Adaptive mesh refinement computation
of solidification microstructures using dynamic data structures J. Computational
Physics 148:265-290.

[72] Ravenbrook (2005) The memory management reference.
http://www.memorymanagement.org.

[73] Reed W, Hill T (1973) Triangular mesh methods for the neutron transport
equation. Tech. Report LA-UR-73-479 Los Alamos Scientific Laboratory.

[74] Remacle JF, Flaherty JE, Shephard MS (2003) An adaptive discontinuous Galerkin
technique with an orthogonal basis applied compressible flow problems SIAM
Review 45(1):53-72.

[75] Remacle JF, Karamete BK, Shephard MS (2003) Algorithm oriented mesh database
Int. J. Numer. Meth. Engng 58:349-374.

[76] Remacle JF, Klaas O, Flaherty JE, Shephard MS (2002) A parallel algorithm
oriented mesh database Engineering with Computers 18:274-284.

[77] Remacle JF, Li X, Shephard MS, Flaherty JE (2005) Anisotropic adaptive simlation
of transient flows using discontinuous Galerkin methods Int. J. Numer. Meth.
Engng 62:899-923.

[78] Remacle JF, Pinchedez K, Flaherty JE, Shephard MS (2002) An efficient local time
stepping-discontinuous Galerkin scheme for adaptive transient computations
Submitted to Comp. Meth. Appl. Mech. Engng.

[79] Said R, Weatherill NP, Morgan K, Verhoeven NA (1999) Distributed parallel
Delaunay mesh generation Comp. Meth. Appl. Mech. Engng 177:109-125.

[80] Sandia National Labratories (2005) Zoltan: data-management services for parallel
applications. http://www.cs.sandia.gov/Zoltan.

116

[81] SciDAC: Scientific Discovery through Advanced Computing (2005)
http://www.scidac.org.

[82] Scott ML (2000) Programming Language Pragmatics. Morgan Kaufmann Publisher.

[83] Selwood PM, Berzins M (1999) Parallel unstructured tetrahedral mesh adaptation:
algorithms, implementation and scalability Concurrency: Pract. Exper V11(14)
863-884.

[84] Sgi Inc. (2005) Standard Template Library.
http://www.sgi.com/tech/stl/stl index.html.

[85] Shephard MS (2000) Meshing environment for geometry-based analysis Int. J.
Numer. Meth. Engng 47:169-190.

[86] Shephard MS, Fischer P, Chand KK, Flaherty JE (2003) Simulation information
structures. http://www.tstt-scidac.org.

[87] Shephard MS, Flaherty JE, Bottasso CL, de Cougny HL, Özturan C, Simone ML
(1997) Parallel automated adaptive analysis Parallel Computing 23:1327-1347.

[88] Shephard MS, Seol ES, Wan J, Bauer AC (2004) Component-based adaptive mesh
control procedures Conference on Analysis, Modeling and Computation on PDE and
Multiphase Flow Stony Brook NY.

[89] Simmetrix Inc. (2005) Simulation modeling suite. http://www.simmetrix.com.

[90] Soetebier I, Birthelmer H, Sahm J, Luckas V (2004) Managing large progressive
meshes Computers & Graphics 28:691-701.

[91] Spatial Technology Inc. (2005) http://www.spatial.com/components/acis.

[92] Tautges T (2004) MOAM-SD: integrated structured and unstructured mesh
representation Engineering with Computers 20:286-293.
http://www.sass1693.sandia.gov/cubit.

[93] Tautges T, Ernst C, Merkley K, Meyers R, Stimpson C (2005) Mesh Oriented
datABase (MOAB) http://cubit.sandia.gov/MOAB.

[94] Teresco JD, Beall MW, Flaherty JE, Shephard MS (2000) A hierarchical partition
model for adaptive finite element computations Comput. Methods Appl. Mech.
Engrg 184:269-285.

[95] The SciDAC Terascale Simulation Tools and Technology (TSTT) center (2005)
http://www.tstt-scidac.org.

[96] Topping BHV, Cheng B (1999) Parallel and distributed adaptive quadrilateral mesh
generation Computers & Structures 73:519-536.

[97] Unidata Program Center (2005) Network Common Data Form (NetCDF)
http://my.unidata.ucar.edu/content/software/netcdf/index.html.

[98] Vandevoorde D, Josuttis NM (2003) C++ Templates. Addison-Wesley.

117

[99] Walshaw C, Cross M (2000) Parallel optimisation algorithms for multilevel mesh
partitioning Parallel Computing 26(12):1635-1660.

[100] Waltz J (2002) Derived data structure algorithms for unstructured finite element
meshes Int. J. Numer. Meth. Engng 54:945-963.

[101] Weiler KJ (1988) The radial-edge structure: a topological representation for
non-manifold geometric boundary representations Geometric Modeling for CAD
Applications p3-36.

[102] Weiler KJ (1986) Topological Structures for Geometric Modeling. PhD Dissertation
Mechanical Engineering Dept. Rensselaer Polytechnic Institute Troy NY.

[103] Zienkiewicz OC (1997) The Finite Element Method 3rd Ed.. McGraw-Hill.

[104] Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a
posteriori error estimates. Part 1: The Recovery Technique Int. J. Numer. Meth.
Engng 33:1331-1364.

APPENDIX A

ALGORITHMS OF MESH OPERATORS WITH GREEDY

ADJACENCY

Data : M0
i , M0

j

Result: M1
i bounded by M0

i , M0
j

begin
GET({M0

i {M1}}); /∗ 14 steps ∗/
for each M1

i ∈ {M0
i {M1}} /∗ repeat 14 times ∗/ do

GET({M1
i {M0}}); /∗ 2 steps ∗/

if FIND({M1
i {M0}}, M0

j) = true /∗ lg 2+1 steps ∗/
RETURN M1

i ; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time = 14+14·(2+2)+1 = 71 ∗/

Algorithm A.1: Greedy adjacency: E exist(M0
i , M0

j)

Data : M0
i , M0

j , M0
k

Result: M2
i bounded by M0

i , M0
j , M0

k

begin
M1

i ← E exist(M0
i , M0

j); /∗ 71+1 steps ∗/
GET({M1

i {M2}}); /∗ 5 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M0}}); /∗ 3 steps ∗/

if FIND({M2
i {M0}}, M0

k) = true /∗ lg 3+1 steps ∗/
RETURN M2

i ; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time = 72+5+5(3+(lg 3+1))+1 ≈ 106 ∗/

Algorithm A.2: Greedy adjacency: F exist(M0
i , M0

j , M0
k)

118

119

Data : M1
i , M1

j , M1
k

Result: M2
i bounded by M1

i , M1
j , M1

k

begin
GET({M1

i {M2}}); /∗ 5 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M1}}); /∗ 3 steps ∗/

if FIND({M2
i {M1}}, M1

j) = FIND({M2
i {M1}}, M1

k) = true /∗
2(lg 3 + 1) steps ∗/

RETURN M2
i ; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time = 5+5(3+2(lg 3+1))+1 ≈ 47 ∗/

Algorithm A.3: Greedy adjacency: F exist(M1
i , M1

j , M1
k)

Data : M0
i , M0

j , M0
k , M0

l

Result: M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
M2

i ← F exist(M0
i , M0

j , M0
k); /∗ 107+1 steps ∗/

GET({M2
i {M3}}); /∗ 2 steps ∗/

for each M3
i ∈ {M2

i {M3}} /∗ repeat 2 times ∗/ do
GET({M3

i {M0}}); /∗ 4 steps ∗/
if FIND({M3

i {M0}}, M0
l) = true /∗ lg 4+1 steps ∗/

RETURN M3
i ; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time = 108+2+2(4+(2+1))+1 = 125 ∗/

Algorithm A.4: Greedy adjacency: R exist(M0
i , M0

j , M0
k , M0

l)

120

Data : M0
i , M0

j

Result: create and return M1
i bounded by M0

i and M0
j

begin
CREATE an edge M1

i ; /∗ 1 step ∗/
PUT({M{M1}}, M1

i); /∗ 1 step ∗/
/∗ update link from edge to vertex ∗/
M1

i {M0}0 ← M0
i ; /∗ 1 step ∗/

M1
i {M0}1 ← M0

j ; /∗ 1 step ∗/
/∗ update link from vertex to edge ∗/
PUT UNIQ({M0

i {M1}}, M1
i); /∗ lg 14+2 steps ∗/

PUT UNIQ({M0
j {M1}}, M1

i); /∗ lg 14+2 steps ∗/
RETURN M1

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+1+1+2(lg 14+2)+1 ≈ 16 ∗/

Algorithm A.5: Greedy adjacency: M createE(M0
i , M0

j)

Data : M0
i , M0

j , M0
k

Result: create M2
i bounded by M0

i , M0
j , M0

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to vertex and vice versa ∗/
M2

i {M0}0 ← M0
i ; /∗ 1 step ∗/

M2
i {M0}1 ← M0

j ; /∗ 1 step ∗/
M2

i {M0}2 ← M0
k ; /∗ 1 step ∗/

PUT UNIQ({M0
i {M2}}, M2

i); /∗ lg 35+2 steps ∗/
PUT UNIQ({M0

j {M2}}, M2
i); /∗ lg 35+2 steps ∗/

PUT UNIQ({M0
k{M2}}, M2

i); /∗ lg 35+2 steps ∗/
/∗ update link from face to edge - 71+1 steps for each ∗/
M2

i {M1}0 ← E exist(M0
i , M0

j);
M2

i {M1}1 ← E exist(M0
j , M0

k);
M2

i {M1}2 ← E exist(M0
i , M0

k);
/∗ update link from edge to face - lg 5+2 steps for each ∗/
PUT UNIQ({M2

i {M1}0{M2}}, M2
i);

PUT UNIQ({M2
i {M1}0{M2}}, M2

i);
PUT UNIQ({M2

i {M1}0{M2}}, M2
i);

RETURN M2
i ; /∗ 1 step ∗/

end

/∗ Time = 1+1+3(1+lg 35+2)+3(71+1)+3(lg 5+2)+1 ≈ 256 ∗/

Algorithm A.6: Greedy adjacency: M createF(M0
i , M0

j , M0
k)

121

Data : M1
i , M1

j , M1
k

Result: create M2
i bounded by M1

i , M1
j , M1

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to edge and face to vertex∗/
M2

i {M1}0 ← M1
i ; /∗ 1 step ∗/

M2
i {M0}0 ← M1

i {M0}0; /∗ 2 (GET and ASSIGN) steps ∗/
M2

i {M0}1 ← M1
i {M0}1; /∗ 2 steps ∗/

if dir[0]=1 /∗ 1 step ∗/
if FIND({M1

j {M0}}, M0
i) = true /∗ lg 2+1 steps ∗/

M2
i {M1}1 ← M1

k ; /∗ 1 step ∗/
M2

i {M1}2 ← M1
j ; /∗ 1 step ∗/

else
M2

i {M1}1 ← M1
j ;

M2
i {M1}2 ← M1

k ;
endif

else
if FIND({M1

j {M0}}, M0
i) = true

M2
i {M1}1 ← M1

j ;
M2

i {M1}2 ← M1
k ;

else
M2

i {M1}1 ← M1
k ;

M2
i {M1}2 ← M1

j ;
endif

endif
M2

i {M0}2 ← M2
i {M1}2{M0}1; /∗ 3 (2 GET’s 1 ASSIGN) steps ∗/

/∗ update link from vertex to face and edge to face ∗/
for var ← 0 to 2 /∗ repeat 3 times ∗/ do

PUT UNIQ({M2
i {M0}var{M2}}, M2

i); /∗ lg 35+2 steps ∗/
PUT UNIQ({M2

i {M1}var{M2}}, M2
i); /∗ lg 5+2 steps ∗/

endfor
RETURN M2

i ; /∗ 1 step ∗/ ;
end

/∗ Time = 1+1+1+2+2+1(if dir)+2(if
FIND)+1+1+3+3(lg 35+2+lg 5+2)+1 ≈ 50 ∗/

Algorithm A.7: Greedy adjacency: M createF(M1
i , M1

j , M1
k , dir[3])

122

sData : M0
i , M0

j , M0
k , M0

l

Result: create M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update link from vertex to region and vice versa ∗/
for var ← i to l /∗ repeat 4 times ∗/ do

PUT UNIQ({M0
var{M3}},M0

var); /∗ lg 23+2 ∗/
{M3

i {M0}} ← M0
var; /∗ 1 step ∗/

endfor
/∗ update {M3

i {M1}} - (71+1) steps for each ∗/
M3

i {M1}0 ← E exist(M0
i ,M0

j);
M3

i {M1}1 ← E exist(M0
j ,M0

k);
M3

i {M1}2 ← E exist(M0
i ,M0

k);
M3

i {M1}3 ← E exist(M0
i ,M0

l);
M3

i {M1}4 ← E exist(M0
j ,M0

l);
M3

i {M1}5 ← E exist(M0
k ,M0

l);
/∗ update {M3

i {M2}} - (3+47+1) steps for each ∗/
M3

i {M2}0 ← F exist(M3
i {M1}0, M3

i {M1}1, M3
i {M1}2));

M3
i {M2}2 ← F exist(M3

i {M1}0, M3
i {M1}1, M3

i {M1}3));
M3

i {M2}1 ← F exist(M3
i {M1}1, M3

i {M1}5, M3
i {M1}4));

M3
i {M2}3 ← F exist(M3

i {M1}0, M3
i {M1}2, M3

i {M1}3));
/∗ update link from edge to region - lg 5+2 steps for each ∗/
for var ← 0 to 5 /∗ repeat 6 times ∗/ do

PUT UNIQ({M3
i {M1}var{M3}}, M3

i);
endfor
/∗ update link from face to region - lg 2+2 steps for each ∗/
for var ← 0 to 3 /∗ repeat 5 times ∗/ do

PUT UNIQ({M3
i {M2}var{M3}}, M3

i);
endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time =
1+1+4(lg 23+2+1)+6(71+1)+4(3+47+1)+6(lg 5+2)+4(lg 2+2)+1 ≈ 703
∗/

Algorithm A.8: Greedy adjacency: M createR(M0
i , M0

j , M0
k , M0

l)

123

Data : M2
i , M2

j , M2
k , M2

l

Result: create M3
i bounded by M2

i , M2
j , M2

k , M2
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update link from face to region and vice versa ∗/
for var ← i to l /∗ repeat 4 times ∗/ do

PUT UNIQ({M2
var{M3}},M2

var); /∗ lg 2+2 steps ∗/
{M3

i {M2}} ← M2
var; /∗ 1 step ∗/

endfor
/∗ update {M3

i {M1}} - (14+1) steps for each ∗/
M3

i {M1}0 ← F commonEdge(M2
i ,M2

j); /∗ See Algorithm A.12 ∗/
M3

i {M1}1 ← F commonEdge(M2
i ,M2

k);
M3

i {M1}2 ← F commonEdge(M2
i ,M2

l);
M3

i {M1}3 ← F commonEdge(M2
j ,M2

l);
M3

i {M1}4 ← F commonEdge(M2
j ,M2

k);
M3

i {M1}5 ← F commonEdge(M2
k ,M2

l);
/∗ update {M3

i {M0}} - (2+9+1) steps for each ∗/
M3

i {M0}0 ← E commonVertex(M3
i {M1}0, M3

i {M1}2); /∗ See
Algorithm A.10 ∗/
M3

i {M0}1 ← E commonVertex(M3
i {M1}0, M3

i {M1}1);
M3

i {M0}2 ← E commonVertex(M3
i {M1}1, M3

i {M1}2);
M3

i {M0}3 ← E commonVertex(M3
i {M1}3, M3

i {M1}4);
/∗ update link from edge to region - lg 5+2 steps for each ∗/
for var ← 0 to 5 /∗ repeat 6 times ∗/ do

PUT UNIQ({M3
i {M1}var{M3}}, M3

i);
endfor
/∗ update link from vertex to region - lg 23+2 steps for each ∗/
for var ← 0 to 3 /∗ repeat 4 times ∗/ do

PUT UNIQ({M3
i {M0}var{M3}}, M3

i);
endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+2(lg 2+2+1)+6·15+4·12+6(lg 5+2)+4(lg 23+2)+1 ≈ 201
∗/

Algorithm A.9: Greedy adjacency: M createR(M2
i , M2

j , M2
k , M2

l)

124

Data : M1
i , M1

j

Result: Common vertex of M1
i , M1

j

begin
GET({M1

i {M0}}); /∗ 2 steps ∗/
for var ← 1 to 2 do

if FIND({M1
i {M0}}, {M1

j {M0}}var) = true /∗ 1(GET)+lg 2+1
steps ∗/

RETURN {M1
j {M0}}var; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time= 2+2·3+1 = 9 ∗/

Algorithm A.10: E commonVertex(M1
i , M1

j)

Data : M2
i , M2

j , M2
k

Result: Common vertex of M2
i , M2

j , M2
k

begin
GET({M2

i {M0}}); /∗ 3 steps ∗/
GET({M2

j {M0}}); /∗ 3 steps ∗/
GET({M2

k{M0}}); /∗ 3 steps ∗/
for var ← 0 to 2 /∗ repeat 3 times ∗/ do

if FIND({M2
j {M0}}, {M2

i {M0}}var) = true and FIND({M2
j {M0}},

{M2
i {M0}}var) = true /∗ 2(lg 3+1) steps ∗/
RETURN {M2

j {M1}}var; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time= 3+3+3+3(2(lg 3+1))+1 ≈ 25 ∗/

Algorithm A.11: F commonVertex(M2
i , M2

j , M2
k)

125

Data : M2
i , M2

j

Result: Common edge of M2
i and M2

j

begin
GET({M2

i {M1}}); /∗ 3 steps ∗/
for var ← 0 to 2 /∗ repeat 3 times ∗/ do

if FIND({M2
i {M1}}, {M2

j {M1}}var) = true /∗ 1+lg 3+1 steps ∗/
RETURN {M2

j {M1}}var; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time= 3+3(1+lg 3+1)+1 ≈ 14 ∗/

Algorithm A.12: F commonEdge(M2
i , M2

j)

APPENDIX B

ALGORITHMS OF MESH OPERATORS WITH CIRCULAR

ADJACENCY

Data : M0
i

Result: {M0
i {M1}}

begin
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M0}}); /∗ 17 steps ∗/

if FIND({M3
i {M0}}, M0

i) = true /∗ lg 4+1 steps ∗/
if FIND({M0

i {M1}}, M1
i) = false /∗ lg 14+1 steps ∗/

PUT({M0
i {M1}}, M1

i); /∗ at most 14 steps ∗/
endif

endif
endfor

end

/∗ Time = 23+23(17+2+1+lg 14+1)+14 ≈ 584 ∗/

Algorithm B.1: Circular adjacency: V edges(M0
i)

126

127

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M2}}); /∗ 4 steps ∗/

for each M2
i ∈ {M3

i {M2}} /∗ repeat 4 times ∗/ do
GET({M2

i {M0}}); /∗ 10 steps ∗/
if FIND({M2

i {M0}}, M0
i) = true /∗ lg 3+1 steps ∗/

if FIND({M0
i {M2}}, M2

i) = false /∗ lg 35+1 steps ∗/
PUT({M0

i {M2}}, M2
i); /∗ at most 35 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 23+23(4+4(10+lg 3+1+lg 35+1))+35 ≈ 1871 ∗/

Algorithm B.2: Circular adjacency: V faces(M0
i)

Data : M1
i

Result: {M1
i {M2}}

begin
M0

i ← M1
i {M0}0; /∗ 2 steps ∗/

GET({M0
i {M3}}); /∗ 23 steps ∗/

for each M3
i ∈ {M0

i {M3}} /∗ repeat 23 times ∗/ do
GET({M3

i {M2}}) /∗ 4 steps ∗/
for each M2

i ∈ {M3
i {M2}} /∗ repeat 4 times ∗/ do

GET({M2
i {M1}}); /∗ 3 steps ∗/

if FIND({M2
i {M1}}, M1

i) = true and FIND({M1
i {M2}}, M2

i) =
false /∗ lg 6+1+lg 5+1 steps ∗/

PUT({M1
i {M2}}, M2

i); /∗ at most 5 steps ∗/
endif

endfor
endfor

end

/∗ Time = 2+23+23(4+4(3+lg 3+1+lg 5+1))+5 ≈ 941 ∗/

Algorithm B.3: Circular adjacency: E faces(M0
i)

128

Data : M1
i

Result: {M1
i {M3}}

begin
M0

i ← M1
i {M0}0; /∗ first vertex of M1

i - 2 steps ∗/
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M1}}); /∗ 9 steps ∗/

if FIND({M3
i {M1}}, M1

i) = true and FIND({M1
i {M3}}, M3

i) =
false /∗ lg 6+1+lg 5+1 steps ∗/

PUT({M1
i {M3}}, M2

i); /∗ at most 5 steps ∗/
endif

endfor
end

/∗ Time = 2+23+23(9+lg 6+1+lg 5+1)+5 ≈ 455 ∗/

Algorithm B.4: Circular adjacency: E regions(M0
i)

Data : M2
i

Result: {M2
i {M0}}

begin
M1

i ← M2
i {M1}0; /∗ 2(GET+ASSIGN) steps ∗/

M1
k ← M2

i {M1}2; /∗ 2 steps ∗/
M2

i {M0}0 ← M1
i {M0}0; /∗ 2 steps ∗/

M2
i {M0}1 ← M1

i {M0}1; /∗ 2 steps ∗/
M2

i {M0}2 ← M1
k{M0}1; /∗ 2 steps ∗/

end

/∗ Time = 2+2+2+2+2 = 10 ∗/

Algorithm B.5: Circular adjacency: F vertices(M2
i)

129

Data : M2
i

Result: {M2
i {M3}}

begin
/∗ first vertex of M2

i {M1}0- 3(2 GET’s+1 ASSIGN) steps ∗/
M0

i ← M2
i {M1}0{M0}0;

GET({M0
i {M3}}); /∗ 23 steps ∗/

for each M3
i ∈ {M0

i {M3}} /∗ repeat 23 times ∗/ do
GET({M3

i {M2}}); /∗ 4 steps ∗/
if FIND({M3

i {M2}}, M2
i) = true /∗ lg 4+1 steps ∗/

if FIND({M2
i {M3}}, M3

i) = false /∗ lg 2+1 steps ∗/
PUT({M2

i {M3}}, M3
i); /∗ at most 2 steps ∗/

endif
endif

endfor
end

/∗ Time = 3+23+23(4+2+1+1+1)+2 = 235 ∗/

Algorithm B.6: Circular adjacency: F regions(M2
i)

Data : M3
i

Result: {M3
i {M0}}

begin
/∗ first edge of first face of region - 3(2 GET’s+1 ASSIGN) steps ∗/
M1

i ← M3
i {M2}0{M1}0;

/∗ second edge of first face of region - 3 steps ∗/
M1

j ← M3
i {M2}0{M1}1;

/∗ second edge of second face of region - 3 steps ∗/
M1

k ← M3
i {M2}1{M1}1;

M3
i {M0}0 ← M1

i {M0}0; /∗ 2 (GET+ASSIGN) steps ∗/
M3

i {M0}1 ← M1
i {M0}1; /∗ 2 steps ∗/

M3
i {M0}2 ← M1

j {M0}1; /∗ 2 steps ∗/
M3

i {M0}3 ← M1
k{M0}1; /∗ 2 steps ∗/

end

/∗ Time = 3·3+4·2 = 17 ∗/

Algorithm B.7: Circular adjacency: R vertices(M0
i)

130

Data : M3
i

Result: {M3
i {M1}}

begin
/∗ 3 (2 GET’s+1 ASSIGN) steps for each∗/
M3

i {M1}0 ← M3
i {M2}0{M1}0;

M3
i {M1}1 ← M3

i {M2}0{M1}1;
M3

i {M1}2 ← M3
i {M2}1{M1}1;

end

/∗ Time = 3·3 = 9 ∗/

Algorithm B.8: Circular adjacency: R edges(M0
i)

Data : M0
i , M0

j

Result: M1
i bounded by M0

i , M0
j

begin
GET({M0

i {M1}}); /∗ 584 steps ∗/
for each M1

i ∈ {M0
i {M1}} do

GET({M1
i {M0}}); /∗ 2 steps ∗/

if FIND({M1
i {M0}}, M0

j) = true /∗ lg 2+1 steps ∗/
RETURN M1

i ; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time = 584+14·(2+2)+1 = 641 ∗/

Algorithm B.9: Circular adjacency: E exist(M0
i , M0

j)

131

Data : M0
i , M0

j , M0
k

Result: M2
i bounded by M0

i , M0
j , M0

k

begin
M1

i ← E exist(M0
i , M0

j); /∗ 641+1 steps ∗/
GET({M1

i {M2}}); /∗ 941 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M0}}); /∗ 10 steps ∗/

if FIND({M2
i {M0}}, M0

k) = true /∗ lg 3 +1 steps ∗/
RETURN M2

i ; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time = 642+941+5(10+lg 3+1)+1 ≈ 1647 ∗/

Algorithm B.10: Circular adjacency: F exist(M0
i , M0

j , M0
k)

Data : M0
i , M0

j , M0
k

Result: M2
i bounded by M2

i , M2
j , M2

k

begin
GET({M1

i {M2}}); /∗ 941 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M1}}); /∗ 3 steps ∗/

if FIND({M2
i {M1}}, M1

j) = FIND({M2
i {M1}}, M1

k)= true /∗ 2(lg 3
+1) steps ∗/

RETURN M2
i ; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time = 941+5(3+2(lg 3+1))+1 ≈ 982 ∗/

Algorithm B.11: Circular adjacency: F exist(M2
i , M2

j , M2
k)

132

Data : M0
i , M0

j , M0
k , M0

l

Result: M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M0}}); /∗ 17 steps ∗/

if FIND({M3
i {M0}}, M0

j) = FIND({M3
i {M0}}, M0

k) =
FIND({M3

i {M0}}, M0
l) = true /∗ 3(lg 17+1) steps ∗/

RETURN M3
i ; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time = 23+23(17+3(lg 17+1))+1 ≈ 766 ∗/

Algorithm B.12: Circular adjacency: R exist(M0
i , M0

j , M0
k , M0

l)

Data : M0
i , M0

j

Result: create M1
i bounded by M0

i , M0
j

begin
CREATE an edge M1

i ; /∗ 1 step ∗/
PUT({M{M1}}, M1

i); /∗ 1 step ∗/
/∗ update link from edge to vertex ∗/
M1

i {M0}0 ← M0
i ; /∗ 1 step ∗/

M1
i {M0}1 ← M0

j ; /∗ 1 step ∗/
RETURN M1

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+1+1+1 = 5 ∗/

Algorithm B.13: Circular adjacency: M createE(M0
i , M0

j)

133

Data : M0
i , M0

j , M0
k

Result: create M2
i bounded by M0

i , M0
j , M0

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to edge - 641+1 steps for each ∗/
M2

i {M1}0 ← E exist(M0
i , M0

j);
M2

i {M1}1 ← E exist(M0
j , M0

k);
M2

i {M1}2 ← E exist(M0
i , M0

k);
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+3·642+1 = 1929 ∗/

Algorithm B.14: Circular adjacency: M createF(M0
i , M0

j , M0
k)

134

Data : M1
i , M1

j , M1
k

Result: create M2
i bounded by M1

i , M1
j , M1

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to edge∗/
M2

i {M1}0 ← M1
i ; /∗ 1 step ∗/

if dir[0] = 1 /∗ 1 step ∗/
if FIND({M1

j {M0}}, M0
i) = true /∗ 2 step ∗/

M2
i {M1}1 ← M1

k ; /∗ 1 step ∗/
M2

i {M1}2 ← M1
j ; /∗ 1 step ∗/

else
M2

i {M1}1 ← M1
j ;

M2
i {M1}2 ← M1

k ;
endif

else
if FIND({M1

j {M0}}, M0
i) = true

M2
i {M1}1 ← M1

j ;
M2

i {M1}2 ← M1
k ;

else
M2

i {M1}1 ← M1
k ;

M2
i {M1}2 ← M1

j ;
endif

endif
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+1+1(if dir)+2(if FIND)+2+1 = 9 ∗/

Algorithm B.15: Circular adjacency: M createF(M1
i , M1

j , M1
k , dir[3])

135

Data : M0
i , M0

j , M0
k , M0

l

Result: create M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update link from vertex to region ∗/
for var ← i to l /∗ repeat 4 times ∗/ do

PUT UNIQ({M0
var{M3}},M0

var); /∗ lg 23+2 steps ∗/
endfor
/∗ update {M3

i {M2}} - 3+1647+1 steps for each ∗/
M3

i {M2}0 ← F exist(M3
i {M0}0, M3

i {M0}1, M3
i {M1}2));

M3
i {M2}2 ← F exist(M3

i {M0}0, M3
i {M0}1, M3

i {M1}3));
M3

i {M2}1 ← F exist(M3
i {M0}1, M3

i {M0}2, M3
i {M1}3));

M3
i {M2}3 ← F exist(M3

i {M0}0, M3
i {M0}2, M3

i {M1}3));
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+4(lg 23+2)+4·1651+1 ≈ 6627 ∗/

Algorithm B.16: Circular adjacency: M createR(M0
i , M0

j , M0
k , M0

l)

Data : M2
i , M2

j , M2
k , M2

l

Result: create M3
i bounded by M2

i , M2
j , M2

k , M2
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update {M3

i {M2}} - 1 step for each ∗/
M3

i {M2}0 ← M2
i ;

M3
i {M2}1 ← M2

j ;
M3

i {M2}2 ← M2
k ;

M3
i {M2}3 ← M2

l ;
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+4·1+1 = 7 ∗/

Algorithm B.17: Circular adjacency: M createR(M2
i , M2

j , M2
k , M2

l)

APPENDIX C

ALGORITHMS OF MESH OPERATORS WITH ONE-LEVEL

ADJACENCY

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M1}}); /∗ 14 steps ∗/
for each M1

i ∈ {M0
i {M1}} /∗ repeat 14 times ∗/ do

GET({M1
i {M2}}); /∗ 5 steps ∗/

for each M2
i ∈ {M1

i {M2}} /∗ repeat 5 times ∗/ do
if FIND({M0

i {M2}}, M2
i) = false /∗ lg 35+1 steps ∗/

PUT({M0
i {M2}}, M2

i); /∗ at most 35 steps ∗/
endif

endfor
endfor

end

/∗ Time = 14+14(5+5(lg 35+1))+35 ≈ 548 ∗/

Algorithm C.1: One-Level adjacency: V faces(M0
i)

136

137

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M1}}); /∗ 14 steps ∗/
for each M1

i ∈ {M0
i {M1}} /∗ repeat 14 times ∗/ do

GET({M1
i {M2}}); /∗ 5 steps ∗/

for each M2
i ∈ {M1

i {M2}} /∗ repeat 5 times ∗/ do
if MARKED(M2

i) = false /∗ 3 steps ∗/
PUT({M0

i {M2}}, M2
i); /∗ at most 35 steps ∗/

MARK(M2
i); /∗ at most 35·2 steps ∗/

endif
endfor

endfor
for each M2

i ∈ {M0
i {M2}} /∗ repeat 35 times ∗/ do

UNMARK(M2
i); /∗ 2 steps ∗/

endfor
end

/∗ Time = 14+14(5+5·3))+35+70+70 = 469 ∗/

Algorithm C.2: One-Level adjacency: V faces(M0
i) with MARK

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M1}}); /∗ 14 steps ∗/
for each M1

i ∈ {M0
i {M1}} /∗ repeat 14 times ∗/ do

GET({M1
i {M2}}); /∗ 5 steps ∗/

for each M2
i ∈ {M1

i {M2}} /∗ repeat 5 times ∗/ do
GET({M2

i {M3}}); /∗ 2 steps ∗/
for each M3

i ∈ {M2
i {M3}} /∗ repeat 2 times ∗/ do

if FIND({M0
i {M3}}, M3

i) = false /∗ lg 23+1 steps ∗/
PUT({M0

i {M3}}, M2
i); /∗ at most 23 steps ∗/

endif
endfor

endfor
endfor

end

/∗ Time = 14+14(5+5(2+2(lg 23+1)))+23 ≈ 1020 ∗/

Algorithm C.3: One-Level adjacency: V region(M0
i)

138

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M1}}); /∗ 14 steps ∗/
for each M1

i ∈ {M0
i {M1}} /∗ repeat 14 times ∗/ do

GET({M1
i {M2}}); /∗ 5 steps ∗/

for each M2
i ∈ {M1

i {M2}} /∗ repeat 5 times ∗/ do
GET({M2

i {M3}}); /∗ 2 steps ∗/
if MARKED(M3

i) = false /∗ 3 steps ∗/
PUT({M0

i {M3}}, M2
i); /∗ at most 23 steps ∗/

MARK(M3
i); /∗ at most 23·2 steps ∗/

endif
endfor

endfor
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

UNMARK(M3
i); /∗ 2 steps ∗/

endfor
end

/∗ Time = 14+14(5+5(2+3))+23+23·2+23·2 = 549 ∗/

Algorithm C.4: One-Level adjacency: V region(M0
i) with MARK

Data : M1
i

Result: {M1
i {M3}}

begin
GET({M1

i {M2}}); /∗ 5 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M3}}); /∗ 2 steps ∗/

for each M3
i ∈ {M1

i {M2}} /∗ repeat 2 times ∗/ do
if FIND({M1

i {M3}}, M3
i) = false /∗ lg 5+1 steps ∗/

PUT({M1
i {M3}}, M3

i); /∗ at most 5 steps ∗/
endif

endfor
endfor

end

/∗ Time = 5+5(2+2(lg 5+1))+5 ≈ 53 ∗/

Algorithm C.5: One-Level adjacency: E regions(M0
i)

139

Data : M1
i

Result: {M1
i {M3}}

begin
GET({M1

i {M2}}); /∗ 5 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M3}}); /∗ 2 steps ∗/

for each M3
i ∈ {M1

i {M2}} /∗ repeat 2 times ∗/ do
if MARKED(M3

i) = false /∗ 3 steps ∗/
PUT({M1

i {M3}}, M2
i); /∗ at most 5 steps ∗/

MARK(M3
i); /∗ at most 5·2 steps ∗/

endif
endfor

endfor
for each M3

i ∈ {M1
i {M3}} /∗ repeat 5 times ∗/ do

UNMARK(M3
i) /∗ 2 steps ∗/

endfor
end

/∗ Time = 5+5(2+2·3)+5+10+10 = 70 ∗/

Algorithm C.6: One-Level adjacency: E regions(M0
i) with MARK

Data : M0
i , M0

j , M0
k

Result: M2
i bounded by M0

i , M0
j , M0

k

begin
M1

i ← E exist(M0
i , M0

j); /∗ 71+1 steps ∗/
GET({M1

i {M2}}); /∗ 5 steps ∗/
for each M2

i ∈ {M1
i {M2}} /∗ repeat 5 times ∗/ do

GET({M2
i {M0}}); /∗ 10 steps ∗/

if FIND({M2
i {M0}}, M0

k) = true /∗ lg 3 +1 steps ∗/
RETURN M2

i ; /∗ 1 step ∗/
endif

endfor
RETURN NULL;

end

/∗ Time = 72+5+5(10+lg 3+1)+1 ≈ 140 ∗/

Algorithm C.7: One-Level adjacency: F exist(M0
i , M0

j , M0
k)

140

Data : M0
i , M0

j , M0
k , M0

l

Result: M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
M2

i ← F exist(M0
i , M0

j , M0
k); /∗ 140+1 steps ∗/

GET({M2
i {M3}}); /∗ 2 steps ∗/

for each M3
i ∈ {M2

i {M3}} /∗ repeat 2 times ∗/ do
GET({M3

i {M0}}); /∗ 17 steps ∗/
if FIND({M3

i {M0}}, M0
l) = true /∗ lg 4 +1 steps ∗/

RETURN M3
i ; /∗ 1 step ∗/

endif
endfor
RETURN NULL;

end

/∗ Time = 141+2+2(17+(2+1))+1 = 544 ∗/

Algorithm C.8: One-Level adjacency: R exist(M0
i , M0

j , M0
k , M0

l)

Data : M0
i , M0

j , M0
k

Result: create M2
i bounded by M0

i , M0
j , M0

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to edge - 71+1 steps for each ∗/
M2

i {M1}0 ← E exist(M0
i , M0

j);
M2

i {M1}1 ← E exist(M0
j , M0

k);
M2

i {M1}2 ← E exist(M0
i , M0

k);
/∗ update link from edge to face ∗/
for var ← 0 to 2 /∗ repeat 3 times - lg 5+2 steps for each ∗/ do

PUT UNIQ({{M2
i {M1}}var{M2}, M2

i);
endfor
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+3·72+3(lg 5+2)+1 ≈ 231 ∗/

Algorithm C.9: One-Level adjacency: M createF(M0
i , M0

j , M0
k)

141

Data : M1
i , M1

j , M1
k

Result: create M2
i bounded by M1

i , M1
j , M1

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to edge∗/
M2

i {M1}0 ← M1
i ; /∗ 1 step ∗/

if dir[0] = 1 /∗ 1 step ∗/
if FIND({M1

j {M0}}, M0
i) = true /∗ 2 steps ∗/

M2
i {M1}1 ← M1

k ; /∗ 1 step ∗/
M2

i {M1}2 ← M1
j ; /∗ 1 step ∗/

else
M2

i {M1}1 ← M1
j ;

M2
i {M1}2 ← M1

k ;
endif

else
if FIND({M1

j {M0}}, M0
i) = true

M2
i {M1}1 ← M1

j ;
M2

i {M1}2 ← M1
k ;

else
M2

i {M1}1 ← M1
k ;

M2
i {M1}2 ← M1

j ;
endif

endif
/∗ update link from edge to face ∗/
for var ← 0 to 2 /∗ repeat 3 times - lg 5+2 steps for each ∗/ do

PUT UNIQ({{M2
i {M1}}var{M2}}, M2

i);
endfor
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+1+1(if dir)+2(if FIND)+2+3(lg 5+2)+1 ≈ 21 ∗/

Algorithm C.10: One-Level adjacency: M createF(M1
i , M1

j , M1
k , dir[3])

142

Data : M0
i , M0

j , M0
k , M0

l

Result: create M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update {M3

i {M2}} - (140+1) steps for each ∗/
M3

i {M2}0 ← F exist(M2
i , M2

j , M2
k));

M3
i {M2}2 ← F exist(M2

i , M2
j , M2

l));
M3

i {M2}1 ← F exist(M2
l , M2

k , M2
l));

M3
i {M2}3 ← F exist(M2

i , M2
k , M2

l));
/∗ update link from face to region - 1 step for each ∗/
for var ← 0 to 3 /∗ repeat 4 times - lg 2+2 steps for each ∗/ do

PUT UNIQ({{M3
i {M2}}var{M3}}, M3

i)
endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+4·141+4(lg 2+2)+1 = 579 ∗/

Algorithm C.11: One-Level adjacency: M createR(M0
i , M0

j , M0
k , M0

l)

Data : M2
i , M2

j , M2
k , M2

l

Result: create M3
i bounded by M2

i , M2
j , M2

k , M2
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update link from face to region and vice versa ∗/
for var ← i to l /∗ repeat 4 times ∗/ do

PUT UNIQ({M2
var{M3}},M2

var); /∗ lg 2+2 steps ∗/
{M3

i {M2}} ← M2
var; /∗ 1 step ∗/

endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+4(lg 2+2+1)+1 = 19 ∗/

Algorithm C.12: One-Level adjacency: M createR(M2
i , M2

j , M2
k , M2

l)

APPENDIX D

ALGORITHMS OF MESH OPERATORS WITH COMPLETE

MINIMUM SUFFICIENT

For the purpose of computing downward adjacent entity in terms of the ordering illustrated

in Figure 2.6 − 2.8, the following data structures are used in the algorithms. Refer to Ap-

pendix A for algorithms of E commonV ertex, F commonV ertex, and F commonEdge.

We assume that M2
i is a triangle and M3

i is a tetrahedron for the analysis purpose.

• int Fev[3][2] = {{0,1},{1,2},{2,0}};

Structure Fev provides the order of {M2
i {M1}{M0}} in terms of {M2

i {M0}}. For

example, for M2
i , M2

i {M0}Fev[j][k] returns the kth vertex of edge M2
i {M1}j , j =

0, 1, 2, k = 0, 1. Thus, M2
i {M1}j is identical to E exist(M2

i {M0}Fev[j][0], M2
i {M0}Fev[j][1])

if exists.

• int Fve[4][2] = {{2,0},{0,1},{1,2}};

Structure Fve provides vertex the order of {M2
i {M0}} as an intersection of 2

edges in {M2
i {M1}}. For example, for M2

i , E commonV ertex(M3
i {M1}Fve[j][0],

M2
i {M1}Fve[j][1]) returns M3

i {M0}j , j = 0, 1, 2.

• int Rev[6][2] = {{0,1},{1,2},{2,0},{0,3},{1,3},{2,3}};

Structure Rev provides the order of {M3
i {M1}{M0}} in terms of {M3

i {M0}}. For

example, for M3
i , M3

i {M0}Rev[j][k] returns the kth vertex of edge M3
i {M1}j , 0 ≤ j ≤

5, k = 0, 1. Thus, M3
i {M1}j is identical to E exist(M3

i {M0}Rev[j][0], M3
i {M0}Rev[j][1])

if exists.

• int Rfv[4][3] = {{0,1,2},{0,1,3},{1,2,3},{0,2,3}};

Structure Rfv provides the order of {M3
i {M2}{M0}} in terms of {M3

i {M0}}.

For example, for M3
i , M3

i {M0}Rfv[j][k] returns the kth vertex of face M3
i {M2}j ,

j = 0, 1, 2, 3, k = 0, 1, 2. Thus, M3
i {M2}j is identical to F exist(M3

i {M0}Rfv[j][0],

M3
i {M0}Rfv[j][1], M3

i {M0}Rfv[j][2]) if exists.

• int Rfe[4][3] = {{0,1,2},{0,4,3},{1,5,4},{2,3,5}};

Structure Rfe provides the order of {M3
i {M2}{M1}} in terms of {M3

i {M1}}. For

143

144

example, for M3
i , M3

i {M1}Rfe[j][k] returns the kth edge of face M3
i {M2}j , j =

0, 1, 2, 3, k = 0, 1, 2. Thus, M3
i {M2}j is identical to F exist(M3

i {M1}Rfe[j][0],

M3
i {M1}Rfe[j][1], M3

i {M1}Rfe[j][2]) if exists.

• int Rve[4][2] = {{0,2},{0,1},{1,2},{3,4}};

Structure Rve provides the order of {M3
i {M0}} as an intersection of 2 edges in

{M3
i {M1}}. For example, for M3

i , E commonV ertex(M3
i {M1}Rve[j][0], M3

i {M1}Rve[j][1])

returns M3
i {M0}j , j = 0, 1, 2, 3.

• int Rvf[4][3] = {{0,1,3},{0,1,2},{0,2,3},{1,2,3}};

Structure Rvf provides the order of {M3
i {M0}} as an intersection of 3 faces in

{M3
i {M2}}. For example, for M3

i , F commonV ertex(M3
i {M2}Rvf [j][0], M3

i {M2}Rvf [j][1],

M3
i {M2}Rvf [j][2]) returns M3

i {M0}j , j = 0, 1, 2, 3.

• int Ref[6][2] = {{0,1},{0,2},{0,3},{1,3},{1,2},{2,3}};

Structure Rvf provides the order of {M3
i {M1}} as an intersection of 2 faces in

{M3
i {M2}}. For example, for M3

i , F commonEdge(M3
i {M2}Ref [j][0], M3

i {M2}Ref [j][1])

returns M3
i {M1}j , 0 ≤ j ≤ 5.

Data : M0
i

Result: {M0
i {M1}}

begin
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M1}}); /∗ 576 steps ∗/

for each M1
i ∈ {M3

i {M1}} /∗ repeat 6 times ∗/ do
if FIND({M1

i {M0}}, M0
i) = true /∗ lg2+1 steps ∗/

if FIND({M0
i {M1}}, M1

i) = false /∗ lg14+1 steps ∗/
PUT({M0

i {M1}}, M1
i); /∗ at most 14 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 23+23(582+6(lg 2+1+lg 14+1))+14 ≈ 14,362 ∗/

Algorithm D.1: Complete MSR: V edges(M0
i)

145

Data : M0
i

Result: {M0
i {M2}}

begin
GET({M0

i {M3}}); /∗ 23 steps ∗/
for each M3

i ∈ {M0
i {M3}} /∗ repeat 23 times ∗/ do

GET({M3
i {M2}}); /∗ 584 steps ∗/

for each M2
i ∈ {M3

i {M2}} /∗ repeat 4 times ∗/ do
if FIND({M2

i {M0}}, M0
i) = true /∗ lg3+1 steps ∗/

if FIND({M0
i {M2}}, M2

i) = false /∗ lg35+1 steps ∗/
PUT({M0

i {M2}}, M2
i); /∗ at most 35 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 23+23(584+4(lg 3+1+lg 35+1))+35 ≈ 14,291 ∗/

Algorithm D.2: Complete MSR: V faces(M0
i)

Data : M1
i

Result: {M1
i {M2}}

begin
GET({M1

i {M0}}); /∗ 2 steps ∗/
for each M1

i ∈ {M1
i {M2}} /∗ repeat 2 times ∗/ do

GET({M0
i {M2}}); /∗ 14,291 steps ∗/

for each M2
i ∈ {M0

i {M2}} /∗ repeat 35 times ∗/ do
GET({M2

i {M1}}); /∗ 291 steps ∗/
if FIND({M2

i {M1}}, M1
i) = true /∗ lg3+1 steps ∗/

if FIND({M1
i {M2}}, M2

i) = false /∗ lg5+1 steps ∗/
PUT({M1

i {M2}}, M2
i); /∗ at most 5 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 2+2(14291+35(291+lg3+1+lg5+1))+5 ≈ 49,372 ∗/

Algorithm D.3: Complete MSR: E faces(M0
i)

146

Data : M1
i

Result: {M1
i {M3}}

begin
GET({M1

i {M0}}); /∗ 2 steps ∗/
for each M0

i ∈ {M1
i {M0}} /∗ repeat 2 times ∗/ do

GET({M0
i {M3}}); /∗ 23 steps ∗/

for each M3
i ∈ {M0

i {M3}} /∗ repeat 23 times ∗/ do
GET({M3

i {M1}}); /∗ 582 steps ∗/
if FIND({M3

i {M1}}, M1
i) = true /∗ lg6+1 steps ∗/

if FIND({M1
i {M3}}, M2

i) = false /∗ lg5+1 steps ∗/
PUT({M1

i {M3}}, M2
i); /∗ at most 5 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 2+2(23+23(582+lg6+1+lg5+1))+5 ≈ 27,142 ∗/

Algorithm D.4: Complete MSR: E regions(M0
i)

Data : M2
i

Result: {M2
i {M1}}

begin
for var ← 0 to 2 /∗ repeat 3 times ∗/ do

M0
i ← M2

i {M0}Fev[var][0]; /∗ 3 (2 GET’s + ASSIGN) steps ∗/
M0

j ← M2
i {M0}Fev[var][1]; /∗ 3 steps ∗/

M1
i ← E exist(M0

i , M0
j); /∗ 71+1 steps ∗/

if M1
i = NULL /∗ 1 step ∗/

M1
i ← M createE(M0

i , M0
j); /∗ 16+1 steps ∗/

endif
M2

i {M1}var ← M1
i ; /∗ 1 step ∗/

endfor
end

/∗ Time = 3(3+3+72+1+17+1) = 291 ∗/

Algorithm D.5: Complete MSR: F edges(M2
i)

147

Data : M2
i

Result: {M2
i {M3}}

begin
GET({M2

i {M0}}); /∗ 3 steps ∗/
for each M0

i ∈ {M2
i {M0}} /∗ repeat 3 times ∗/ do

GET({M0
i {M3}}); /∗ 23 steps ∗/

for each M3
i ∈ {M0

i {M3}} /∗ repeat 23 times ∗/ do
GET({M3

i {M2}}); /∗ 584 steps ∗/
if FIND({M3

i {M2}}, M2
i) = true /∗ lg4+1 steps ∗/

if FIND({M2
i {M3}}, M3

i) = false /∗ lg2+1 steps ∗/
PUT({M2

i {M3}}, M3
i); /∗ at most 2 steps ∗/

endif
endif

endfor
endfor

end

/∗ Time = 3+3(23+23(584+lg4+1+lg2+1))+2 = 40,784 ∗/

Algorithm D.6: Complete MSR: F regions(M2
i)

Data : M3
i

Result: {M3
i {M1}}

begin
for var ← 0 to 5 /∗ repeat 6 times ∗/ do

M0
i ← M3

i {M0}Rev[var][0]; /∗ 3 (2 GET’s + ASSIGN) steps ∗/
M0

j ← M3
i {M0}Rev[var][1]; /∗ 3 steps ∗/

M1
i ← E exist(M0

i , M0
j); /∗ 71+1 steps ∗/

if M1
i = NULL /∗ 1 step ∗/

M1
i ← M createE(M0

i , M0
j); /∗ 16+1 steps ∗/

endif
M3

i {M1}var ← M1
i ; /∗ 1 step ∗/

endfor
end

/∗ Time = 6(3+3+72+1+17+1) = 582 ∗/

Algorithm D.7: Complete MSR: R edges(M3
i)

148

Data : M3
i

Result: {M3
i {M2}}

begin
for var ← 0 to 3 /∗ repeat 4 times ∗/ do

M0
i ← M3

i {M0}Rfv[var][0]; /∗ 3 (2 GET’s + ASSIGN) steps ∗/
M0

j ← M3
i {M0}Rfv[var][1]; /∗ 3 steps ∗/

M0
k ← M3

i {M0}Rfv[var][2]; /∗ 3 steps ∗/
M2

i ← F exist(M0
i , M0

j , M0
k); /∗ 106+1 steps ∗/

if M2
i = NULL /∗ 1 step ∗/

M2
i ← M createF(M0

i , M0
j , M0

k); /∗ 27+1 steps ∗/
endif
M3

i {M2}var ← M2
i ; /∗ 1 step ∗/

endfor
end

/∗ Time = 4(3+3+3+107+1+28+1) = 584 ∗/

Algorithm D.8: Complete MSR: R faces(M3
i)

Data : M1
i , M1

j , M1
k

Result: M2
i bounded by M1

i , M1
j , M1

k

begin
M0

i ← M1
i {M0}0; /∗ 2 steps ∗/

M0
j ← M1

i {M0}1; /∗ 2 steps ∗/
if M0

i 6= M1
j {M0}0 and M0

j 6= M1
j {M0}0 /∗ 4 steps ∗/

M0
k ← M1

j {M0}0; /∗ 2 steps ∗/
else

M0
k ← M1

j {M0}1; /∗ 2 steps ∗/
endif
RETURN F exist(M0

i , M0
i , M0

i); /∗ 106+1 step ∗/
end

/∗ Time = 2+2+4+2+107 = 117 ∗/

Algorithm D.9: Complete MSR: F exist(M1
i , M1

j , M1
k)

149

Data : M0
i , M0

j , M0
k

Result: create M2
i bounded by M0

i , M0
j , M0

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to vertex and vice versa ∗/
M2

i {M0}0 ← M0
i ; /∗ 1 step ∗/

M2
i {M0}1 ← M0

j ;
M2

i {M0}2 ← M0
k ;

PUT UNIQ({M0
i {M2}}, M2

i); /∗ lg 35+2 steps ∗/
PUT UNIQ({M0

j {M2}}, M2
i);

PUT UNIQ({M0
k{M2}}, M2

i);
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+3(1+lg 35+2)+1 ≈ 27 ∗/

Algorithm D.10: Complete MSR: M createF(M0
i , M0

j , M0
k)

150

Data : M1
i , M1

j , M1
k

Result: create M2
i bounded by M1

i , M1
j , M1

k

begin
CREATE a face M2

i ; /∗ 1 step ∗/
PUT({M{M2}}, M2

i); /∗ 1 step ∗/
/∗ update link from face to vertex∗/
M2

i {M0}0 ← M1
i {M0}0; /∗ 2 (GET and ASSIGN) steps ∗/

M2
i {M0}1 ← M1

i {M0}1; /∗ 2 steps ∗/
if dir[0]=1 /∗ 1 step ∗/

if FIND({M1
j {M0}}, M2

i {M0}0) = true /∗ lg 2+1 steps ∗/
M2

i {M0}2 ← M1
j {M0}1; /∗ 2 steps ∗/

else
M2

i {M0}2 ← M1
k{M0}1;

endif
else

if FIND({M1
j {M0}}, M2

i {M0}0) = true
M2

i {M0}2 ← M1
k{M0}1;

else
M2

i {M0}2 ← M1
j {M0}1;

endif
endif
/∗ update link from vertex to face and edge to face ∗/
for var ← 0 to 2 /∗ repeat 3 times ∗/ do

PUT UNIQ({M2
i {M0}var{M2}}, M2

i); /∗ lg 35+2 steps ∗/
endfor
RETURN M2

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+2+2+1(if dir)+2(if FIND)+2+3(lg 35+2)+1 ≈ 33 ∗/

Algorithm D.11: Complete MSR: M createF(M1
i , M1

j , M1
k , dir[3])

151

sData : M0
i , M0

j , M0
k , M0

l

Result: create M3
i bounded by M0

i , M0
j , M0

k , M0
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update link from vertex to region and vice versa ∗/
for var ← i to l /∗ repeat 4 times ∗/ do

PUT UNIQ({M0
var{M3}},M0

var); /∗ lg 23+2 ∗/
{M3

i {M0}} ← M0
var; /∗ 1 step ∗/

endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+4(lg 23+2+1)+1 ≈ 33 ∗/

Algorithm D.12: Complete MSR: M createR(M0
i , M0

j , M0
k , M0

l)

Data : M2
i , M2

j , M2
k , M2

l

Result: create M3
i bounded by M2

i , M2
j , M2

k , M2
l

begin
CREATE a region M3

i ; /∗ 1 step ∗/
PUT({M{M3}}, M3

i); /∗ 1 step ∗/
/∗ update {M3

i {M0}} ∗/
M3

i {M0}0 ← M2
i {M0}0; /∗ 2 steps ∗/

M3
i {M0}1 ← M2

i {M0}1;
M3

i {M0}2 ← M2
i {M0}2;

GET({M2
j {M0}}); /∗ 3 steps ∗/

for M0
i ∈ {M2

j {M0}} /∗ repeat 3 times ∗/ do
if FIND({M2

i {M0}}, M0
i) = false /∗ lg 3+1 steps ∗/

M3
i {M0}3 ← M0

i ;/∗ at most 1 step ∗/
endif

endfor
/∗ update link from vertex to region - lg 23+2 steps for each ∗/
for var ← 0 to 3 /∗ repeat 4 times ∗/ do

PUT UNIQ({M3
i {M0}var{M3}}, M3

i);
endfor
RETURN M3

i ; /∗ 1 step ∗/
end

/∗ Time = 1+1+3·2+3+3(lg 3+1)+1+4(lg 23+2)+1 ≈ 46 ∗/

Algorithm D.13: Complete MSR: M createR(M2
i , M2

j , M2
k , M2

l)

