Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force

Jacob Fish a, Mohan A. Nuggehallyb, Mark S. Shephardc and Catalin R. Picud

Scientific Computation Research Center
Rensselaer Polytechnic Institute 110 8th St.
Troy NY 12180
afishj@rpi.edu bnuggehal@scorec.rpi.edu
cshephard@scorec.rpi.edu dcpicu@scorec.rpi.edu

Abstract

A concurrent Atomistic to Continuum (AtC) coupling method is presented in this paper. The problem domain is decomposed into an atomistic sub-domain where fine scale features need to be resolved, a continuum sub-domain which can adequately describe the macroscale deformation and an overlap interphase sub-domain that has a blended description of the two. The problem is formulated in terms of equilibrium equations with a blending between the continuum stress and the atomistic force in the interphase. Coupling between the continuum and the atomistics is established by imposing constraints between the continuum solution and the atomistic solution over the interphase sub-domain in a weak sense. Specifically, in the examples considered here, the atomistic domain is modeled by the Aluminum Embedded Atom Method (EAM) inter-atomic potential developed by Ercolessi and Adams [10] and the continuum domain is a linear elastic model consistent with the EAM potential. The formulation is subjected to patch tests to demonstrate its ability to represent the constant strain modes and the rigid body modes. Numerical examples are illustrated with comparisons to reference atomistic solution.

Key words: concurrent multiscale, atomistic to continuum coupling, overlap domain decomposition.

1 Introduction

Engineers and scientists have realized the importance of analyzing all the relevant scales together and linking them properly for the problems that have features or phenomena of interest in different spatial and temporal scales. It has become crucial to understand the relationship of processes taking place across various length and time scales for the advancement of various fields like material science [20], pharmaceutical drugs and biology, micro and nano technology [24] etc. The macroscopic behavior of systems are predicted from continuum based theory and computational models, which traditionally
have phenomenological constitutive relationships. But the macroscopic behavior is inherently governed by the physics taking place on multiple unresolved scales.

Multiscale modeling and simulation techniques can be broadly classified into two categories as sequential multiscale methods and concurrent multiscale methods. In sequential multiscale methods fine scale information is averaged and introduced into coarse scale models in the form of constitutive relations. In concurrent methods two or more models are simultaneously resolved in different regions of a problem domain.

Macroscopic phenomena of interest such as fracture and fatigue of materials are a result of the physical processes occurring in the atomistic scale such as dislocations, voids and interstitials or even quantum scale processes such as reactions leading to corrosion. Disparity in the length scales between such coarse scale and fine scale phenomena can exceed 10^{10}. It is prohibitive in terms of computational cost to model coarse scale phenomena from fine scale models alone. Often only localized areas of a vast problem domain need fine scale models to resolve the complicated fine scale processes while the rest of problem domain can be modeled with a coarse scale model. Concurrent multiscale methods are an effective tool to handle such situations. The focus here is on a concurrent method that couples a continuum model with an atomistic model.

Most of the work in concurrent modeling techniques is by coupling molecular statics or molecular dynamics with a continuum model. Following is a brief review of such concurrent modeling techniques available in the literature. Combined finite element and atomistic models to study crack propagation in crystals [21][18] are some of the earliest works of atomistic/continuum coupling. A reference cited frequently is the Macroscopic, Atomistic, Ab-initio Dynamics (MAAD) [1][4] where crack propagation in silicon was simulated with a tight-binding quantum mechanics model to represent bond breaking at the crack tip, molecular dynamics around the crack tip to model processes such as dislocation loop formation and a finite element model farther away from the crack to capture macroscopic deformation. The quasi-continuum (QC) method [28][20][19] resolves the regions close to defects like dislocations, grain boundary, etc. with molecular mechanics, while farther away from the defect region atoms are constrained to move in groups by the finite element shape functions and mesh, thereby greatly reducing the degrees of freedom in a problem. Finite-temperature quasicontinuum [9] is developed as a coarse-grained alternative to molecular dynamics for crystalline solids at constant temperature by using a combination of statistical mechanics and finite element interpolation functions. Coarse-grained molecular dynamics [25][26] uses a coarse graining procedure based on statistical mechanics to derive equations of motion for a finite element mesh from the equations of motion of molecular dynamics. The bridging domain method [3][30] has been used to couple continuum to atomistics through an overlap region and study shock wave propagation from molecular region to the continuum region. Bridging Scale Method (BSM) has been adopted by Liu et.al [29][22] where the solution is decomposed into fine scale and coarse scale parts and a projection operator is used to decouple the kinetic energy of the atomistic and the continuum sub-domains. A concurrent multiscale approach based
on multigrid principles was introduced in [14]. The Arlequin modeling technique [8] that has been proposed to locally modify a mathematical model to capture the required physics can be potentially used for concurrent multiscale problems.

A hybrid domain decomposition concurrent multiscale formulation is proposed in which two or more mathematical models with disparate scales (continuum and atomistic models specifically) coexist in different parts of a problem domain. The models interact through an overlap interphase sub-domain. The problem is formulated in terms of equilibrium equations for the whole problem domain; the atomistic force is blended with the continuum stress in the overlap interphase. Constraints are imposed between the degrees of freedom of the interacting models in the form of a weak compatibility in overlap interphase sub-domains. Section 2 gives the details of the concurrent AtC coupling method. Patch tests are devised to test the correctness of the method, which is discussed in section 3. Section 4 illustrates numerical examples. The last section gives a summary of the different sections. There are two distinguishing features of the proposed method. First, the problem is formulated in terms of an equilibrium equation that has a blend of the atomistic force and the continuum stress in the interphase. Second, coupling between the continuum and the atomistic models is through a weak compatibility of solution in an overlap interphase sub-domain.

2 Problem formulation

2.1 Strong and weak form equilibrium equations

Consider the problem domain Ω in figure 1 subdivided into three sub-domains denoted as Ω^C, Ω^A and Ω^I such that $\Omega = \Omega^C \cup \Omega^A \cup \Omega^I$; $\Omega^C \cap \Omega^A = \emptyset$, $\Omega^C \cap \Omega^I = \emptyset$, $\Omega^A \cap \Omega^I = \emptyset$. Ω^C and Ω^A are the sub-domains where a continuum and an atomistic descriptions are defined respectively; Ω^I is an overlap domain or an interphase where a combination of the atomic and the continuum descriptions is defined.

In the continuum sub-domain Ω^C the governing equilibrium equation is

$$\sigma_{ij,j} + b_i = 0 \quad x \in \Omega^C$$

(1)

along with appropriate boundary conditions, constitutive and kinematic equations. Lower case Roman subscripts i, j, ... denote coordinates in the deformed configuration or current configuration, and comma in equation 1 denotes derivative with respect to space. Summation convention over the repeated indices is employed. σ_{ij} and b_i are the Cauchy stress tensor and the body force per unit volume respectively.

Lower case roman subscripts denote coordinates in the deformed spatial configuration, summation convention over the repeated indices is employed.

In the atomistic domain Ω^A the equilibrium equation can be written as

$$\sum_{\alpha}^{n_A} \{f_{i\alpha} + b_{i\alpha}\} \delta(x - x_{\alpha}) = 0 \quad x \in \Omega^A$$

(2)
Figure 1: Hybrid atomistic-continuum domain

where $f_{i\alpha}$ is the sum of the internal forces acting on an atom α. $b_{i\alpha}$ is the body force acting on the atom α. Greek letters α, β, \ldots denote atoms and are used as subscripts to represent the quantities related to atoms. Also there is no summation convention on the Greek subscripts. $\delta(x - x_\alpha)$ is the Dirac delta function equal to infinity at the position x_α of an atom α and zero elsewhere; its integral over the problem domain is one. n_A^A is the number of atoms in Ω^A. The internal forces in equation 2 arise from the interaction of atom α with its neighbors depending on the inter-atomic potential used. An Embedded atom method (EAM) potential is adopted here [7], although this is not a limitation of the method presented here. In EAM the total energy Φ of a system of atoms is obtained as the sum of energies of individual atoms Φ_α.

$$\Phi = \sum_{\alpha} \Phi_\alpha$$

(3)

where n is the total number of atoms in the system. Φ_α is given by

$$\Phi_\alpha = E(\rho_\alpha) + \frac{1}{2} \sum_{\beta, \beta \neq \alpha}^{neig_\alpha} V(r_{\alpha\beta})$$

(4)

$$\rho_\alpha = \sum_{\beta, \beta \neq \alpha}^{neig_\alpha} \Psi(r_{\alpha\beta})$$

(5)
where ρ_{α} is the total electron density at atom α, $E(\rho_{\alpha})$ is the embedding energy function. $r_{\alpha\beta} = |\mathbf{x}_{\alpha} - \mathbf{x}_{\beta}|$ is the distance between the atoms α and β. $V(r_{\alpha\beta})$ is the pair potential term and $\Psi(r_{\alpha\beta})$ is the electron density function, which have a cutoff distance in terms of r as defined by the inter-atomic potential. Thus the summation in equations 4 and 5 is over the atoms in a neighborhood of the atom α denoted by neig^{α}. The internal force $f_{i\alpha}$ acting on an atom α in terms of the EAM potential is given by

$$f_{i\alpha} = \sum_{\beta} \frac{\partial \Phi_\beta}{\partial d_{i\alpha}}$$

(6)

where $d_{i\alpha}$ is the displacement of the atom α and

$$\frac{\partial \Phi_\beta}{\partial d_{i\alpha}} = \frac{\partial E}{\partial \rho_{\beta}} \sum_{\gamma,\gamma\neq\beta}^{\text{neig}^\beta} \left\{ \frac{\partial \Psi(r_{\beta\gamma})}{\partial r_{\beta\gamma}} \frac{\partial r_{\beta\gamma}}{\partial d_{i\alpha}} \right\} + \frac{1}{2} \sum_{\gamma,\gamma\neq\beta}^{\text{neig}^\beta} \left\{ \frac{\partial V(r_{\beta\gamma})}{\partial r_{\beta\gamma}} \frac{\partial r_{\beta\gamma}}{\partial d_{i\alpha}} \right\}$$

(7)

Note: $\Phi(r)$ and $V(r)$ are represented as a function of the distance r and $E(\rho)$ as a function of the electron density ρ, both r and ρ being scalar parameters. The function values are interpolated by a 1-D cubic spline $\chi(x)$, where $\chi(x)$ denotes $\Psi(r)$ or $V(r)$ or $E(\rho)$ with x being either r or ρ. Cubic spline function is given by

$$\chi(x) = y(i) + b(i)\{x - x(i)\} + c(i)\{x - x(i)\}^2 + d(i)\{x - x(i)\}^3, \ \forall x(i) \leq x < x(i + 1)$$

(8)

where $x(i)$ is the i^{th} spline knot position, $y(i)$ is the function value at the knot, $b(i)$, $c(i)$ and $d(i)$ are the derivative coefficients that construct the spline function. Spline parameters are obtained through a least square fit to both experimental data and quantum mechanical force calculations. The optimized parameters that we have used are available at the website [11].

The motivation for using a blend between the continuum stress and the atomic force in the interphase Ω^I comes from the fact that the continuum stress σ_{ij} can be considered as an equivalent of the Virial stress $\bar{\sigma}_{ij}$ defined at the atomic level [31]. The Virial stress $\bar{\sigma}_{ij}$ evaluated at an atom α is given in terms of the forces between its neighbors as follows [23]:

$$\bar{\sigma}_{ij} = \frac{1}{v} \sum_{\beta,\beta\neq\alpha}^{\text{neig}^\alpha} r_{i\alpha\beta} f_{j\alpha\beta} ; \quad f_{j\alpha\beta} = \frac{\partial \Phi_\beta}{\partial d_{j\alpha}}$$

(9)

where $r_{i\alpha\beta} = x_{i\alpha} - x_{i\beta}$ is the distance vector between the atoms α and β, v is the volume of the unit cell associated with the atom α. Blending the continuum stress σ_{ij} is therefore equivalent to blending the atomic force $f_{i\alpha\beta}$.

Thus in the interphase Ω^I, the equilibrium equation is obtained as follows:

$$\{\Theta^C(x)\sigma_{ij}\}_{\cdot j} + \Theta^C(x)b_i + \sum_{\alpha}^{n^I} [\Theta^A(x)\{f_{i\alpha} + b_{i\alpha}\} \delta(x - x_\alpha)] = 0 \quad x \in \Omega^I$$

(10)

where $\Theta^C(x) + \Theta^A(x) = 1$ and n^I is the number of atoms in the interphase. The continuum blend function $\Theta^C(x)$ and the atomistic blend function $\Theta^A(x)$ are evaluated
based on the proximity of the point \(\mathbf{x} \in \Omega^I \) to the boundaries \(\Gamma^{CI} \) and \(\Gamma^{AI} \) (figure 1). For instance \(\Theta^C(\mathbf{x}) = 1 \) on \(\Gamma^{CI} \) and \(\Theta^A(\mathbf{x}) = 1 \) on \(\Gamma^{AI} \). By defining \(s \in [0, 1] \) as a normalized distance in the physical domain from \(\Gamma^{CI} \) to \(\Gamma^{AI} \), \(\Theta^C(s) \) and \(\Theta^A(s) \) can be approximated to be a function of the scalar parameter \(s \).

To this end it is convenient to define the equilibrium equation 10 on the whole problem domain by defining \(\Theta^C(\mathbf{x}) = 0 \), \(\Theta^A(\mathbf{x}) = 1 \) on \(\Omega^A \) and \(\Theta^A(\mathbf{x}) = 0 \), \(\Theta^C(\mathbf{x}) = 1 \) on \(\Omega^C \). The above definition \(\Theta^C + \Theta^A = 1 \) is satisfied on the whole domain \(\Omega \) and the equilibrium equation 10 holds good for the whole problem domain \(\Omega \).

There are several possibilities for choosing \(\Theta^C \) and \(\Theta^A \) over \(\Omega^I \). They can be approximated to coincide with 1-D linear shape functions in \(s \). Alternatively a \(C^1 \) continuous function can be constructed using a cubic polynomial satisfying the following conditions:

\[
\Theta^C = 1, \quad \frac{\partial \Theta^C}{\partial s} = 0, \quad \Theta^A = 0, \quad \frac{\partial \Theta^A}{\partial s} = 0 \quad \text{on } \Gamma^{CI} \tag{11}
\]

\[
\Theta^C = 0, \quad \frac{\partial \Theta^C}{\partial s} = 0, \quad \Theta^A = 1, \quad \frac{\partial \Theta^A}{\partial s} = 0 \quad \text{on } \Gamma^{AI} \tag{12}
\]

In addition to the equilibrium, compatibility needs to be satisfied between the atomistic and the continuum displacements in some average sense, schematically denoted as

\[
\Lambda \left\{ u^C_i(\mathbf{x}_\alpha) - u^A_{i\alpha} \right\} = 0 \quad \text{on } \Omega^I \tag{13}
\]

where \(\Lambda \) is an averaging operator to be defined subsequently. \(u^C_i(\mathbf{x}_\alpha) \) is the continuum displacement at the position \(\mathbf{x}_\alpha \) of an atom \(\alpha \), \(u^A_{i\alpha} \) is the displacement of the atom \(\alpha \).

The strong form of the concurrent AtC coupling method is formulated as: Given \(b_i : \Omega^C \cup \Omega^I \rightarrow \mathbb{R} \), \(b_{i\alpha} : \Omega^A \cup \Omega^I \rightarrow \mathbb{R} \), \(g_i : \Gamma_{g_i} \rightarrow \mathbb{R} \), \(h_i : \Gamma_{h_i} \rightarrow \mathbb{R} \), Find \(u^C_i(\mathbf{x}) \) and \(u^A_{i\alpha} \) such that

\[
\left\{ \Theta^C(\mathbf{x}) \sigma_{ij} \right\}_j + \Theta^C(\mathbf{x}) b_i + \sum_{\alpha} \left[\Theta^A(\mathbf{x}) \left\{ f_{i\alpha} + b_{i\alpha} \right\} \delta(\mathbf{x} - \mathbf{x}_\alpha) \right] = 0 \quad \mathbf{x} \in \Omega \tag{14}
\]

\[
u^C_i = g_i \quad \text{on } \Gamma_{g_i} \tag{15}
\]

\[
\sigma_{ij} n_j = h_i \quad \text{on } \Gamma_{h_i} \tag{16}
\]

\[
\Lambda \left\{ u^C_i(\mathbf{x}_\alpha) - u^A_{i\alpha} \right\} = 0 \quad \mathbf{x} \in \Omega^I \tag{17}
\]

with an appropriate constitutive equations and inter-atomic potentials. \(n = n^A + n^I \) is the total number of atoms in the system. \(g_i \) and \(h_i \) are essential and natural boundary conditions on essential boundary \(\Gamma_{g_i} \) and natural boundary \(\Gamma_{h_i} \) respectively, where \(\Gamma_{g_i} \cup \Gamma_{h_i} = \Gamma \) and \(\Gamma_{g_i} \cap \Gamma_{h_i} = \emptyset \). Note that the equilibrium equation 14 is satisfied point-wise over \(\Omega \), whereas the compatibility equation is defined in an average sense. This is because the strong (point-wise) atomistic-continuum compatibility may result in over-constraining [13].
The weak form of the equilibrium equation 14 is stated as: Given \(b_i : \Omega^C \cup \Omega^f \rightarrow \mathbb{R}, \) \(b_{i\alpha} : \Omega^A \cup \Omega^f \rightarrow \mathbb{R}, \) \(g_i : \Gamma_{g_i} \rightarrow \mathbb{R}, \) \(h_i : \Gamma_{h_i} \rightarrow \mathbb{R}, \) Find displacements \(u_i^C(x) \in \mathcal{U}_i^C \) and \(u_{i\alpha}^A \in \mathcal{U}_i^A \) such that

\[
\int_\Omega w_i^C \{ \left(\Theta^C \sigma_{ij} \right)_{,j} + \Theta^C b_i \} \, d\Omega + \int_{\Omega_{g_i}} w_{i\alpha}^A \left\{ \sum_{\alpha} \Theta^A (f_{i\alpha} + b_{i\alpha}) \delta(x - x_\alpha) \right\} \, d\Gamma = 0
\]
\(\forall w_i^C \in \mathcal{W}_i^C, \ \forall w_{i\alpha}^A \in \mathcal{W}_i^A \) (18)

Integration by parts of the first term in equation 18 results in

\[
- \int_\Omega w_i^C \Theta^C \sigma_{ij} \, d\Omega + \int_{\Gamma_{h_i}} w_i^C \Theta^C h_i \, d\Gamma + \int_\Omega w_i^C \Theta^C b_i \, d\Omega
\]
\[+ \int_\Omega \sum_{\alpha} w_{i\alpha}^A \Theta^A (f_{i\alpha} + b_{i\alpha}) \delta(x - x_\alpha) \, d\Omega = 0 \]
(19)

The weak compatibility \(\Lambda \) is defined as follows:

\[
\Lambda \left(u_i^C(x_\alpha) - u_{i\alpha}^A \right) = \int_{\Omega^f} \lambda_i(x) \sum_{\alpha} \left(u_i^C(x_\alpha) - u_{i\alpha}^A \right) \delta(x - x_\alpha) \, d\Omega = 0 \ \forall \lambda_i \in H^{-1} \] (20)

\(\mathcal{U}_i^C \) and \(\mathcal{W}_i^C \) are continuum function spaces defined as follows:

\[
\mathcal{U}_i^C = \left\{ u_i^C | u_i^C \in H^1, \Lambda \left(u_i^C(x_\alpha) - u_{i\alpha}^A \right) = 0 \text{ on } \Omega^f, u_i^C = g_i \text{ on } \Gamma_{g_i} \right\} \] (21)

\[
\mathcal{W}_i^C = \left\{ w_i^C | w_i^C \in H^1, \Lambda \left(w_i^C(x_\alpha) - w_{i\alpha}^A \right) = 0 \text{ on } \Omega^f, w_i^C = 0 \text{ on } \Gamma_{g_i} \right\} \] (22)

where \(H^{-1} \) in equation 20 and \(H^1 \) in equations 21, 22 denote Hilbert spaces [15]. \(\mathcal{U}_i^A \) and \(\mathcal{W}_i^A \) belong to the discrete phase space of the atomistic system given by

\[
\mathcal{U}_i^A = \left\{ u_{i\alpha}^A | u_{i\alpha}^A \in \mathbb{R}^n, \Lambda \left(u_i^C(x_\alpha) - u_{i\alpha}^A \right) = 0 \text{ on } \Omega^f \right\} \] (23)

\[
\mathcal{W}_i^A = \left\{ w_{i\alpha}^A | w_{i\alpha}^A \in \mathbb{R}^n, \Lambda \left(w_i^C(x_\alpha) - w_{i\alpha}^A \right) = 0 \text{ on } \Omega^f \right\} \] (24)

2.2 Discretized equations of equilibrium and constraints

A finite element discretization of the problem domain \(\Omega \) is denoted by \(\Omega^h \). The continuum displacement and test functions defined over \(\Omega^C \cup \Omega^f \) are discretized using \(C^0 \) continuous finite element shape functions. The discretized displacement is denoted by \(u_i^h \in \mathcal{U}_i^h \) and the discretized test function is denoted by \(w_i^h \in \mathcal{W}_i^h \). The spaces \(\mathcal{U}_i^h \) and \(\mathcal{W}_i^h \) are given by

\[
\mathcal{U}_i^h = \left\{ u_i^h | u_i^h = N_B d_i^C_B, \Lambda^h \left(u_i^h(x_\alpha) - u_{i\alpha}^A \right) = 0 \text{ on } \Omega^h, u_i^h = g_i \text{ on } \Gamma_{g_i}^h \right\} \] (25)

\[
\mathcal{W}_i^h = \left\{ w_i^h | w_i^h = N_B a_i^C_B, \Lambda^h \left(w_i^h(x_\alpha) - w_{i\alpha}^A \right) = 0 \text{ on } \Omega^h, w_i^h = 0 \text{ on } \Gamma_{g_i}^h \right\} \] (26)
where N_B are the finite element shape functions associated with the finite element nodes B, d_{iB}^C are the nodal degrees of freedom and a_{iB}^C are the nodal multipliers corresponding to test functions. Summation convention over repeated index B is employed.

The discrete compatibility equation is constructed by discretizing $\lambda(x) \in H^{-1}$ using piecewise constant shape functions defined to be constant over the finite element domains $\Omega^e \in \Omega^h$.

$$\lambda^h_i(x) = \sum_{\Omega^e \in \Omega^h} N^e \zeta_i^e$$

where

$$N^e = \begin{cases}
1 & \text{on } \Omega^e \\
0 & \text{elsewhere}
\end{cases}$$

Substituting equations 27 and 28 into the equation 20 we obtain

$$\sum_{\Omega^e \in \Omega^h} \int_{\Omega^e} \zeta_i^e \sum_{\alpha} \left\{ u_i^C(x_\alpha) - u_{i\alpha}^A \right\} \delta(x - x_\alpha) \, d\Omega = 0$$

(29)

Requiring the arbitrariness of ζ_i^e yields the following discrete compatibility equation for every element Ω^e, n^e being the number of atoms in an element Ω^e:

$$\Lambda^h \left\{ u_i^h(x_\alpha) - u_{i\alpha}^A \right\} = \sum_{\alpha} \left\{ N_B(x_\alpha) d_{iB}^C - u_{i\alpha}^A \right\} = 0 \quad \forall \Omega^e$$

(30)

The above equation 30 yields number of constraint equations equal to the number of spatial dimension for each finite element $\Omega^e \in \Omega^h$. From equation 30 the degrees of freedom of one atom in Ω^e can be expressed in terms of the degrees of freedom of the finite element Ω^e and the degrees of freedom of the remaining atoms in the element.

Note that at least one atom has to be positioned with an element Ω^e in the interphase.

Let d_{iP} be the independent degrees of freedom in a concurrent problem formulation.

Subscripts P, Q, R, etc. are used to denote global degrees of freedom (combined atomistic and continuum), whereas subscripts A, B, C, D, etc. are used to denote the finite element nodal degrees of freedom.
where \(a_{iP}\) are the global independent multipliers of the test function, \(a^C_{jD}\) and \(a^A_{ja}\) are the multipliers of the test function corresponding to the degrees of freedom \(d^C_{jD}\) and \(d^A_{ja}\).

The discretized system of equations shown below is obtained by using the equations 25 to 32 in the weak form equilibrium equation 19

\[
\begin{align*}
\int_{\Omega} T^C_{iAkP} N_{A,j} \Theta^C \sigma_{ij} \, d\Omega + \int_{\Gamma_{h_i}} T^C_{iAkP} N_A \Theta^C h_i \, d\Gamma \\
+ \int_{\Gamma_{h_i}} T^C_{iAkP} N_A \Theta^C b_i \, d\Omega \quad + \sum_{\alpha} T^A_{iakP} \Theta^A(x_{\alpha})(f_{i\alpha} + b_{i\alpha}) = 0
\end{align*}
\]

where \(n^m\) is the number of independent atoms. Equation 33 is a nonlinear system of algebraic equations for the unknown continuum and independent atomistic degrees of freedom, schematically written in terms of residuals as

\[
r_{kP} = 0
\]

This equation can be solved by the Newton method for each load increment. The tangent stiffness matrix is given by

\[
\mathcal{K}_{kPmQ} = \frac{\partial r_{kP}}{\partial d_{mQ}} = \frac{\partial \dot{r}_{kP}}{\partial d_{mQ}}
\]

Superimposed dot in equation 35 represents the material time derivative. Assuming no follower forces and no body forces simplifies equation 33 to

\[
r_{kP} = -\int_{\Omega} T^C_{iAkP} N_{A,j} \Theta^C \sigma_{ij} \, d\Omega + \sum_{\alpha} T^A_{iakP} \Theta^A(x_{\alpha}) f_{i\alpha} = 0
\]

Consistent linearization of the first term of the tangent stiffness matrix in equation 36 yields

\[
\dot{r}^{(1)}_{kP} = \frac{d}{dt} \left\{ \int_{\Omega} T^C_{iAkP} \partial_X^C \sigma_{ij} \, d\Omega \right\} = \int_{\Omega} T^C_{iAkP} \partial_N^A \sigma_{ij} \, d\Omega
\]

\(\Omega_0\) denotes the initial or undeformed configuration, \(X_I\) is the initial position with big Roman subscripts denoting the coordinates in the initial configuration. \(\Theta^C\) is expressed as a function of \(X_I\), \(\frac{\partial X_I}{\partial x_j}\) is the inverse of the deformation gradient tensor. \(J\) is the determinant of the Jacobian such that \(d\Omega = Jd\Omega_0\). Simplification of the derivative terms in equation 37 gives

\[
\dot{r}^{(1)}_{kP} = \int_{\Omega} T^C_{iAkP} N_{A,j} \Theta^C \left\{ \dot{\sigma}_{ij} + (\sigma_{ij} \delta_{kl} - \sigma_{il} \delta_{jk}) \dot{u}^C_{k,l} \right\} \, d\Omega
\]

Linearization of the Cauchy stress depends on the choice of material model and the material and rotational stress update. Details can be found in references [2][32]. The term in parenthesis in equation 38 can be expressed as

\[
\dot{\sigma}_{ij} + (\sigma_{ij} \delta_{kl} - \sigma_{il} \delta_{jk}) \dot{u}^C_{k,l} = \mathcal{L}_{ijkl} \dot{u}^C_{k,l} = \mathcal{L}_{ijkl} N_{B,j} \dot{d}^C_{kB} = \mathcal{L}_{ijkl} N_{B,l} T^C_{kBnR} \dot{d}_{nR}
\]
where L_{ijkl} depends on the material model and algorithmic parameters. By substituting equation 39 into equation 38 it can be seen that the resulting tangent stiffness matrix is symmetric if L_{ijkl} has a major symmetry.

Consistent linearization of the second term of the tangent stiffness matrix in equation 36 yields

$$\dot{r}_{kP}^{(2)} = \sum_{\alpha} T^A_{ik\alpha} \Theta^A \dot{f}_{i\alpha} = \sum_{\alpha} T^A_{ik\alpha} \Theta^A \frac{\partial f_{i\alpha}}{\partial d_{j\delta}} \dot{d}_{j\delta} \left(\sum_{\alpha} T^A_{ik\alpha} \Theta^A \frac{\partial f_{i\alpha}}{\partial d_{j\delta}} T^A_{j\alpha nR} \right) \dot{d}_{nR} \quad (40)$$

Θ^A is expressed as a function of X_I and $\frac{\partial f_{i\alpha}}{\partial d_{j\delta}}$ can be obtained by differentiating equation 6 as follows:

$$\frac{\partial f_{i\alpha}}{\partial d_{j\delta}} = \frac{\partial}{\partial d_{j\delta}} \frac{\partial \Phi}{\partial d_{i\alpha}} = \frac{n}{\sum_{\gamma,\gamma \neq \beta} \left\{ \frac{\partial^2 \Psi(r_{\beta\gamma})}{\partial r_{\beta\gamma}^2} \frac{\partial r_{\beta\gamma}}{\partial d_{j\delta}} \frac{\partial r_{\beta\gamma}}{\partial d_{i\alpha}} \right\} \sum_{\gamma,\gamma \neq \beta} \left\{ \frac{\partial^2 \Psi(r_{\beta\gamma})}{\partial r_{\beta\gamma}^2} \frac{\partial r_{\beta\gamma}}{\partial d_{j\delta}} \frac{\partial r_{\beta\gamma}}{\partial d_{i\alpha}} \right\} + \frac{1}{2} \left\{ \frac{\partial^2 V(r_{\beta\gamma})}{\partial d_{j\delta}^2} \frac{\partial r_{\beta\gamma}}{\partial d_{i\alpha}} + \frac{\partial V(r_{\beta\gamma})}{\partial r_{\beta\gamma}} \right\} \right\}$$

$\dot{r}_{kP}^{(2)} = \sum_{\alpha} T^A_{ik\alpha} \Theta^A \dot{f}_{i\alpha} = \sum_{\alpha} T^A_{ik\alpha} \Theta^A \frac{\partial f_{i\alpha}}{\partial d_{j\delta}} \dot{d}_{j\delta} \left(\sum_{\alpha} T^A_{ik\alpha} \Theta^A \frac{\partial f_{i\alpha}}{\partial d_{j\delta}} T^A_{j\alpha nR} \right) \dot{d}_{nR} \quad (40)$

2.3 Blend functions over a discretized domain

The continuum sub-domain Ω^C and the interphase sub-domain Ω^I are discretized into a finite element mesh with tetrahedral elements in 3D. We consider three different scenarios of the blend functions:

1. **Piecewise constant blend function:** In this scenario, a constant value for Θ^C is assigned for each $\Omega^e \in \Omega^I$ based on the normalized distance of the centroid of Ω^e from Γ^{CI} in the figure 1. $\Theta^A = 1 - \Theta^C$ is a constant for the atoms bounded by an element $\Omega^e \in \Omega^I$.

2. **Piecewise linear blend function:** Local coordinates of the parent domain of tetrahedral mesh elements is used to construct linear blend function. With $u = 1 - r - s - t$ linear blend function is of the form

$$\Theta^C(r, s, t, u) = A_1 r + A_2 s + A_3 t \quad (43)$$

Constants A_1, A_2 and A_3 are determined based on the normalized distance of the vertices from Γ^{CI} shown in the figure 1. As before $\Theta^A = 1 - \Theta^C$ in the entire problem domain.

2 The subscript δ used to denote an atom is not to be confused with the Dirac delta function
3. **Piecewise cubic blend function:** A cubic blend function is defined in the local coordinates of the parent domain of tetrahedral mesh elements. It is constructed from cubic Bézier patch for a tetrahedron analogous to the Bézier triangle [12]. A cubic Bézier tetrahedron is defined as

\[
\Theta^C(r, s, t, u) = \sum_{|a|=3} \left\{ \frac{n!}{a!b!c!d!} r^a s^b t^c u^d B_{(abcd)} \right\}, \quad |a| = a + b + c + d = 3 \text{ for cubic }
\]

where \(a, b, c\) and \(d\) are the indices of the control points corresponding to \(r, s, t\) and \(u\) as shown in the figure 2. The control points \(B_{(abcd)}\) can be computed by

![Figure 2: Parent tetrahedron with indices of control points](image)

enforcing \(\Theta^C(r, s, t, u)\) to coincide with the specific 1-D blending functions like \(\Theta^C(s) = 1 - 3s^2 + 2s^3\) along the edges of the parent tetrahedra.

2.4 Discussion on the method

A comparison of AtC with the similar existing methods is discussed in this section. An overlapping domain between the continuum and atomistic sub-domains has been used in the past to couple continuum and atomistic models. In the paper by Curtin and Miller [5] a review of different continuum-atomistic concurrent methods is given with an emphasis on the generalization of atomistic/continuum transition region. Details of the transition region are discussed for the quasicontinuum method [28][20], the Coupling of Length Scales (CLS) method [4][1], the Finite Element Atomistics (FEAt) method [18] and Coupled Atomistics and Discrete Dislocation (CADD) method [27] under a unified generic transition model as shown in figure 2 of [5]. It is evident from the discussion of transition region in [5] that all the methods discussed in there have a continuum mesh refined to the level of atomic spacing and the continuum nodes coincide with the atoms in the transition region. This is not necessary for the AtC method presented here as shown in the figures 3, 5 and 7. In fact this may be a tedious extra work in an adaptive
framework where the atomistic domain is not known \textit{a priori}. The bridging domain method [3][30] also eliminated the restriction of continuum mesh refinement down to atomistic spacing and coincidence of atoms with continuum nodes in the transition region.

Among the methods discussed in [5] some of the methods like the quasicontinuum method [28][20], CLS method [4][1] have a well defined energy functional that approximates the potential energy due to deformation of the combined continuum-atomic regions. The bridging domain method of Belytschko et al. [3][30] also defines a Hamiltonian for the complete problem domain, in which a linear scalar parameter is used to obtain a linear combination of the atomistic and the continuum Hamiltonians in the overlap region. The FEAt method [18] and CADD method [27] discussed in [5] have separate problem descriptions for each domain and the coupling is achieved through a solution procedure that incorporates the boundary condition for the atomistic model from the continuum model and vice-versa. An adaptive approach to bridge continuum with atomistics presented in [6] also follows the approach of FEAt and CADD. In contrast to defining an energy functional for the problem domain, which may not be possible for irreversible processes, here the problem is defined in terms of residuals as shown in the equilibrium equations 14-16 for the AtC method.

In addition to equilibrium (equations 14-16), a compatibility is enforced (equation 17) between the continuum solution and the atomistic solution. This is similar to the constraints imposed by the Lagrange multiplier or augmented Lagrangian method in [3] and [30]. However the compatibility in equation 17 allows for a flexibility in imposing the constraints between the continuum solution and atomistic solution. By controlling the discretization of $\lambda_i(x)$ in the equation 27 we can control the strength of the coupling, which will be studied in detail in a continuing work.

3 Patch tests

A series of patch tests are conducted to verify the problem formulation and its implementation. Figure 3 shows the hybrid atomistic-continuum domain considered for the patch tests. A cube with an atomistic sub-domain Ω^A at the center and surrounded by an interphase sub-domain Ω^I is subjected to 6 constant strain modes (3 normal strain modes and 3 shear strain modes) and 6 rigid body modes (3 translation and 3 rotation) one at a time. The problem domain Ω is discretized with a tetrahedral finite element mesh. The finite element nodes only in $\Omega^{hC} \cup \Omega^{hI}$ contribute to the continuum residual equations. The EAM potential for Aluminum [10] is chosen for the atomistics and a linear elastic constitutive relationship consistent with the EAM is chosen for the continuum [6]. The constant strain modes and the rigid body modes are imposed through the appropriate Dirichlet boundary conditions to the continuum.

Figure 4 shows that the displacements solved by the AtC method is consistent with the imposed strain modes for the case of a normal strain mode $\varepsilon_{xx} = 0.001$ and a shear strain mode $\varepsilon_{xy} = 0.001$. These strains are well within the linear elastic regime of
stress-strain response of the Aluminum lattice. The displacements were consistent for the other constant strain modes and rigid body modes as well. Energy density is calculated for each element in the continuum sub-domain Ω^h_C, for each atom in the atomistic sub-domain Ω^A and at each atom location in the overlap interphase Ω^h_I. It was found to be accurate within a tolerance of the order of $10^{-8} MPa$. Although the continuum energy density and atomistic energy density are accurate to a tolerance of the order of $10^{-10} - 10^{-12}$ individually, a conversion factor from the atomistic unit of the energy density, eV/A^3 to that of the continuum, MPa causes this apparent loss in accuracy. Table 1 shows the energy density for different strain modes. The energy density for the rigid body modes calculated by AtC is zero as expected. Using different

<table>
<thead>
<tr>
<th>Strain modes</th>
<th>Strain energy density in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_{xx} = 0.001$</td>
<td>0.0374602</td>
</tr>
<tr>
<td>$\varepsilon_{yy} = 0.001$</td>
<td>0.0374602</td>
</tr>
<tr>
<td>$\varepsilon_{zz} = 0.001$</td>
<td>0.0374602</td>
</tr>
<tr>
<td>$\varepsilon_{xy} = 0.001$</td>
<td>0.0734003</td>
</tr>
<tr>
<td>$\varepsilon_{yz} = 0.001$</td>
<td>0.0734003</td>
</tr>
<tr>
<td>$\varepsilon_{xz} = 0.001$</td>
<td>0.0734003</td>
</tr>
</tbody>
</table>
blend functions discussed in the section 2.3 in the overlap interphase Ω^I of the patch test domain (Figure 3) did not affect the patch test results.

Remark: A formulation in which the residuals are weighted instead of the continuum stress and the atomistic force was also investigated. The equilibrium equation is given by

$$r_i(x) = \Theta_C^C(x) \{ \sigma_{ij,j} + b_i \} + \sum_n \left[\Theta_A^A(x) \{ f_{i\alpha} + b_{i\alpha} \} \delta(x - x_\alpha) \right] = 0 \quad x \in \Omega \quad (45)$$

The weak form of the equilibrium equation 45 is written as follows

$$\int_{\Omega} w_i^C \Theta_C^C (\sigma_{ij,j} + b_i) \ d\Omega + \int_{\Omega} w_{i\alpha}^A \left\{ \sum_n \Theta_A^A (f_{i\alpha} + b_{i\alpha}) \delta(x - x_\alpha) \right\} \ d\Omega = 0 \quad (46)$$

with the same notations as used in the equations 14 and 18. After integrating the first term of equation 46 by parts we obtain

$$- \int_{\Omega} \left(\Theta_C^C w_i^C \right)_{,j} \sigma_{ij} \ d\Omega + \int_{\Gamma_h} \Theta_C^C w_i^C h_i \ d\Gamma + \int_{\Omega} \Theta_C^C w_i^C b_i \ d\Omega$$

$$+ \int_{\Omega} \left\{ \sum_n \Theta_A^A w_{i\alpha}^A (f_{i\alpha} + b_{i\alpha}) \delta(x - x_\alpha) \right\} \ d\Omega = 0 \quad (47)$$

Weak compatibility was imposed as discussed earlier in the equations 29 and 30. Patch tests were conducted as discussed before. The formulation in equation 47 did not pass the tests. Instead of a constant value for the energy density for the whole domain, there was a variation of $5 - 10\%$ in the energy density over the problem domain. Although this was not investigated in detail, we think the extra $\Theta_C^C w_i^C$ term from the first term in the equation 47 might be causing a problem, which needs to be investigated further.
4 Numerical examples

Two numerical examples are illustrated in this section. The first one is nano-indentation of a thin film and the second is a nano-void subjected to hydrostatic loading. The continuum is linear elastic. The EAM potential of the Aluminum given by Ercolessi and Adams [10] is used for the atomistics and the elastic constitutive parameters chosen for the continuum are consistent with the EAM potential. A finite element discretization of the problem domain is constructed such that the mesh is finer in the regions where stresses are expected to be high. A hybrid atomistic-continuum concurrent model is constructed \textit{a priori} by replacing the mesh elements in the regions where stresses are expected to be high with an atomistic sub-domain. An adaptive scheme by which the atomistic regions are selected based on the underlying fields will be presented in a subsequent publication. Although the entire problem domain is discretized with a finite element mesh for the sake of simplicity, only the finite element nodes in the sub-domain \(\Omega^C \cup \Omega^I \) contribute to the continuum residual in the equation 33.

Crystal defects such as dislocations that are formed as a result of loading are captured by the atomistic model. Centrosymmetry calculation [17] is used to detect the atoms in the dislocation core and these atoms are plotted to show the dislocation core structure. The centrosymmetry parameter for each atom is defined as follows:

\[
P = \sum_{\alpha=1}^{6} |R_\alpha + R_{\alpha+6}|^2
\]

where \(R_\alpha \) and \(R_{\alpha+6} \) are the vectors corresponding to the six pairs of opposite nearest neighbors in the FCC lattice. The centrosymmetry parameter is zero for the atoms in a perfect crystal. For \(P = 0.5 - 4.0 \) the atom is considered to be located at a dislocation core [17]. Centrosymmetry criteria has been used to show dislocation structures in [19].

4.1 Nano-indentation of a thin film

Indentation of a film of thickness \(\sim 30 \) nm placed on a rigid substrate is illustrated in this section. The indenter is rectangular in shape and \(\sim 18.7 \) A wide. The indenter as well as the film are considered to be infinite in the out of plane \(X \) direction, thus a plane strain condition exists in the \(Y - Z \) plane (Figure 5). Indentation direction is \(-Z\). Homogeneous Dirichlet boundary condition in \(Z \) is imposed on the bottom face of the film that rests on the substrate. Homogeneous Dirichlet boundary condition in \(Y \) is imposed on the left and right face of the continuum problem domain. Indenter load is applied quasi-statically through Dirichlet boundary condition by moving the indenter by 0.05 A for each load step. Thus the indenter corresponds to a perfectly rigid indenter. A 3D lattice structure is maintained by imposing periodic boundary conditions in \(X \) direction for the atomistic model. Crystallographic orientation chosen for the lattice (shown in the left picture of figure 5) is such that the dislocations generated from the corners of the indenter move straight down into the material. Figure 5 shows a concurrent model for the problem.
Dislocation nucleation is seen beginning from an indenter displacement of 1.7 Å. Figure 6 shows a plot of the total energy of the domain versus indenter displacement. The curve is flat for the first 20 load steps due to a small amount of surface relaxation that happens alongside indentation. The load steps at which dislocation nucleation occurs in the AtC model and the atomistic reference solution are the same except for the last two. The load steps at which the last 2 dislocations nucleate differ between the two models is due to the constraining effect of the finite atomistic region in AtC on defect nucleation. Thus the AtC model solution agrees well with the atomistic reference solution. The atomistic model of the reference solution consists of 57960 atoms, and the concurrent model (figure 5) consists of 19566 atoms.

4.2 Nano-void subjected to hydrostatic tension

A void of size ~ 50 nm in diameter at the center of a cube of side ~ 500 nm is subjected to hydrostatic tension. The load is applied quasi-statically in small increments (0.375 Å) through Dirichlet boundary conditions imposed on the outer faces of the cube. Problem simulation consists of solving the problem at each incremental
The dislocation loops observed at 18th load step around the void are shown in the left picture of figure 8. With the increase in load, dislocation loops grow and quickly react to form Lomer-Cottrell junctions [16]. These junctions result in stacking fault tetrahedra around the void as shown in the right portion of the figure 8, which plots the atoms along the edges of the tetrahedra. Results of the fully atomistic simulation at the corresponding load steps are shown in the figure 9. The symmetry of the resulting dislocation configuration is due to the crystal symmetry.

Figure 10 shows a comparison of the energy plots between the fully atomistic reference solution and the concurrent model (figure 7) solution. The energy of the atoms within the inter-atomic cutoff distance from a free surface is subtracted from the

Figure 6: Energy comparison between atomistic reference solution and the concurrent model solution
model energy to eliminate the energy fluctuations due to surface relaxation. The linear elastic strain energy of the model is also subtracted from the total energy of the model so that the fluctuation in the energy due to nucleation and growth of dislocation loops is clearly distinguishable. Different events noticed during the simulation are also marked in figure 10. Stacking fault tetrahedra shown in the right side of the figures 8 and 9 occur between the load steps 20 and 21 with an associated drop in the energy as shown in figure 10. The atomistic simulation for a reference solution consists of 438804 atoms and the concurrent model (figure 7) consists of 111249 atoms.

5 Closing remarks

A concurrent atomistic to continuum (AtC) coupling method is formulated based on a blending of the continuum stress and the atomistic force in the equilibrium equation. The problem domain is decomposed into a continuum sub-domain, an atomistic sub-domain and an overlap interphase sub-domain with a blended atomistic-continuum description. Three different blend functions are considered. Compatibility between the atomistic solution and the continuum solution is imposed within the interphase in a
weak sense. Patch test results verified the problem formulation and its implementation. A nano-indentation problem and a nano-void subjected to hydrostatic tension are solved by the AtC method and the results are compared with the results of fully atomistic simulations. Further investigation of the blend functions and weak compatibility constraints is an ongoing work. The AtC method is the basis of an automated adaptive concurrent multiscale procedure currently under development.

Acknowledgements

We gratefully acknowledge the support of DOE program “A Mathematical Analysis of Atomistic to Continuum Coupling Methods” DE-FG01-05ER05-16 for this work. We also would like to acknowledge NSF for “NIRT: Modeling and Simulation Framework at the Nanoscale: Application to Process Simulation, Nanodevices, and Nanostructured Composites” NSF Grant 0303902 and “Multiscale Systems Engineering for Nanocomposites” NSF Grant 0310596.

References

Figure 9: Dislocations in the Void problem - atomistic reference solution

Figure 10: Comparison of energy between a fully atomistic reference solution and the concurrent model for successive load steps

