EFFICIENT DISTRIBUTED MESH
DATASTRUCTURE FOR PARALLEL
AUTOMATED ADAPTIVE ANALYSIS

Mark S. Shephard and E. Seegyoung Seol

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

List of Figures
List of Tables

1 Efficient Distributed Mesh Data Structure for Parallel Automated Adaptive
Analysis

1.1 Introduction
1.1.1 Nomenclature

1.2 Requirements for a Parallel Infrastructure for Adaptively Evolving
Unstructured Meshes

1.3 Structure of the Flexible Mesh Database

1.4 Parallel Flexible Mesh DataBase (FMDB)
1.4.1 A Partition Model

1.5 Mesh Migration for Full Representations

1.6 Mesh Migration for Reduced Representations
1.6.1 Mesh Representation Adjustment
1.6.2 Algorithm of Mesh Migration with Reduced Representations
1.6.3 Summary

1.7 Parallel Adaptive Applications

1.8 Closing Remark

References

Vii

29

LIST OF FIGURES

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

1.7.
1.8.
1.9.
1.10.
1.11.

1.12.

1.13.

MRM'’s of 3D mesh representation 4
Example of 3D MRM union 5
Example of 3D MRM optimization 7
Distributed mesh on three partitioRg, P, and P, [24] 8
Example 3D mesh distributed on 3 partitions 9
Distributed mesh and its association with the partition model via partition
classifications 10
Example of 2D mesh migration 12
Example 2D mesh with the MSR 17
MRM adjustments for distributed incomplete meshes 17
Steps of 2D mesh migration with the MSR 19

Example of 2D mesh load balancing: (left) partition objects are tagged with
their destination pids (right) mesh after load balancing 24

Parallel mesh adaptation I: (left) initial 36 tet mesh, (right) adapted approx.
1 million tet mesh. 24

Parallel adaptive loop for SLAC I: (a) initial coarse Trispal mesh (65 tets),
(b) adapted mesh after the second adaptive loop (approx. 1 million tet),
(c) the final mesh converged to the solutions after the eighth adaptive loop
(approx. 12 million tets). 26

Vv

Vi LIST OF FIGURES

1.14. Parallel adaptive loop for SLAC II: (a) initial coarse RFQ mesh (1,595 tet),
(b) adapted mesh from the first adaptive loop (approx. 1 million tet), (c)
the front view of adapted mesh from the second adaptive loop (approx. 24
million tet), (d) the back view of (c). 27

LIST OF TABLES

1.1. The contents of vect@ntsToUpdafter Step 1

15

vii

CHAPTER 1

FLEXIBLE DISTRIBUTED MESH DATA
STRUCTURE FOR PARALLEL
ADAPTIVE ANALYSIS

1.1 INTRODUCTION

An efficient distributed mesh data structure is needed to support parallel adaptive analysis
since it strongly influences the overall performance of adaptive mesh-based simulations. In
addition to the general mesh-based operations [4], such as mesh entity creation/deletion,
adjacency and geometric classification, iterators, arbitrary attachable data to mesh entities,
etc., the distributed mesh data structure must sugppetficient communication between
entities duplicated over multiple processdrg) migration of mesh entities between pro-
cessors, andiii) dynamic load balancing.

Issues associated with supporting parallel adaptive analysis on a given unstructured mesh
include dynamic mesh load balancing techniques [11, 34, 8, 32], and data structure and
algorithms for parallel mesh adaptation [21, 20, 17, 23, 9, 27, 24]. The focus of this chapter
is a parallel mesh infrastructure capable of handling general non-manifold [19, 35] models
and effectively supporting automated adaptive analysis. The mesh infrastructure, referred
to as Flexible distributed Mesh DataBase (FMDB), is a distributed mesh data management
system thatis capable of shaping its data structure dynamically based on the user’s requested
mesh representation [29].

. By 1
©?2006 John Wiley & Sons, Inc.

2 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

1.1.1 Nomenclature

1% the modelV € {G, P, M} whereG signifies the geometric mode®, signifies
the partition model, and/ signifies the mesh model.

{(v{vdi} a set of topological entities of dimensidnn modelV".

|7 thei'” entity of dimensionl in modelV. d = 0 for a vertexd = 1 for an edge,

d = 2 for a face, andl = 3 for a region.

3

{o(VhH} set of entities on the boundary Bf".

{va{va}} asetof entities of dimensiapin modelV that are adjacent t&;“.

Va{vay; the j*" entity in the set of entities of dimensignn modelV that are adjacent
to V4.

Uidi C dej classification indicating the unique association of erm'ﬁi with entity dej,
d; < d;, whereU, V € {G, P, M} andU is lower thanV in terms of a
hierarchy of domain decomposition.

PIME set of partition id(s) where entity/¢ exists.

Examples

{M{M?}} the setof all the faces in the mesh.

{M3i{M3}} the mesh regions adjacent to mesh edfk

MP{M'Y, the2"d edge adjacent to mesh regidiy.

1.2 REQUIREMENTS FOR A PARALLEL INFRASTRUCTURE FOR
ADAPTIVELY EVOLVING UNSTRUCTURED MESHES

The design of a parallel mesh infrastructure is dictated by the type of meshes to be stored,
the mesh level information and functions to be performed by the applications and the
parallel computational environment that will be applied. This chapter considers the parallel
representation of adaptively evolving conforming unstructured meshes that can include
multiple mesh entity topological types.

The mesh information needed and the functions that must be carried out on the mesh
are a strong function of the specific application operations to be performed. In the case of
adaptive analysis the most demanding of operations performed are the mesh modifications
associated with adapting the mesh [1, 5, 9, 16, 15, 20]. In the case of curved geometries
the mesh modifications must be performed such that the geometric approximation of the
domain is improved as the mesh is modified [15]. This requires the mesh be related back
to the original geometry definition. The most common form of geometric representation
is a boundary representation defined in terms of topological entities including vertices,
edges, faces and regions and the adjacencies between the entities [19, 35]. This leads to
consideration of a boundary representation for the mesh in which the mesh entities are easily
related to geometric model entities, and the topological entities and their adjacencies are
used to support the wide range of mesh information need of mesh modification operations
[4, 6, 13, 25]. The three basic functional requirements of a general topology-based mesh
data structure are topological entities, geometric classification, and adjacencies between
entities.

Topologyprovides an unambiguous, shape-independent, abstraction of the mesh. With
reasonable restrictions on the topology [4], a mesh can be effectively represented with only
the basid to d dimensional topological entities, whedlds the dimension of the domain
of the interest. The full set of mesh entities in 3D(EM{M°}}, {(M{M1}}, {M{M?}},
{M{M?3}}}, where{M{M?}}, d = 0,1,2, 3, are, respectively, the set of vertices, edges,

STRUCTURE OF THE FLEXIBLE MESH DATABASE 3

faces and regions. Mesh edges, faces, and regions are bounded by the lower order mesh
entities.

Geometric classificatiomefines the relation of a mesh to a geometric model. The
unigue association of a mesh entity of dimensbani, to the geometric model entity

of dimensiond;, ij, whered; < dj;, on which it lies is termed geometric classification

and is denoted/" ij, where the classification symbat, indicates that the left hand
entity, or a set of entities, is classified on the right hand entity.

Adjacencieslescribe how mesh entities connect to each other. For an entity of dimension
d, adjacency, denoted by\/#{M?}}, returns all the mesh entities of dimensigrwhich
are on the closure of the entity for a downward adjacedcy (g), or for which the entity
is part of the closure for an upward adjacen€y(q).

There are many options in the design of the mesh data structure in terms of the entities
and adjacencies stored [4, 6, 13, 25]. If a mesh representation stabde dllevel entities
explicitly, itis afull representation, otherwise, itiseduced representationCompleteness
of adjacencyndicates the ability of a mesh representation to provide any type of adjacencies
requested without involving an operation dependent on the mesh size such as the global
mesh search or mesh traversal. Regardless of full or reduced, if all adjacency information
is obtainable in O(1) time, the representation is complete, otherwise, it is incomplete. In
terms of the requirements to be the basic mesh data structure to be used for parallel adaptive
computations it must be able to provide all the mesh adjacencies needed by the operations
to be performed and needs to be able to provide them effectively, which does require
they be provided in O(1) time since any requirement to provide an adjacency in time at
all proportional to the mesh size is not acceptable unless it is only done once. Although
this does not strictly require the use of a complete mesh representation, the wide range
of adjacencies typically needed by mesh modification will force one to select a complete
representation. Note that the ability to meet the requirements of a complete representation
does not require it be full [4, 6, 25]. However, the implementation of a complete mesh data
structure that is not full is more complex, particularly in parallel [28].

The requirements placed on the mesh are a function of the parallel computing environ-
ment. To ensure the greatest flexibility it is desirable to be able to distribute the mesh to
the processors in a distributed memory computing environment with the need to store little
more than the mesh entities assigned to that processor. Is is also a desirable feature that
with the exception of possibly added information, the mesh data structure on the individual
processors be identical to that of the serial implementation.

1.3 STRUCTURE OF THE FLEXIBLE MESH DATABASE

One approach to the implementation of a mesh data structure is to select a fixed represen-
tation that meets the full set of needs of the applications to be executed. In those cases
where the specific adjacencies needed are not know in advance, one will want to be sure the
representation selected is complete so that any adjacency can be obtained with acceptable
efficiency. Since explicitly storing all the adjacencies used is typically unacceptable, one
want to select a representation that can efficiently obtain those that are not stored. Even
when a complete representations is used the constant on some of the O(1) time adjacencies
recovery operations can be quite large [4]. An alternative approach taken recently is to
employ a flexible mesh data representation that at the time an application is initiated can
select the to adjacencies stored to be well suited to the application at hand [25, 24, 29, 28].

4 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

[| [| e
L

Edge ‘ Edge ‘ | | Edge = G} ‘}

1 0 0 1 1 1 0 O 1 0 0 O
1 1 0 0 1 1 1 0 - — 0 0
0 1 1 0 0 1 1 1 - 0 - 0
0 0 1 1 0 0 1 1 1 0 0 1
circular one level MSR

Figure 1.1. MRM'’s of 3D mesh representation

This section discusses the design of a flexible mesh database, FMDB, which enables
the mesh database to shape its structure based on the representational needs. A mesh
representation matrix, MRM, is used to define the mesh entities and adjacency information
to be maintained. The initial MRM is input by the user based on their knowledge of the
entities and adjacencies to be used where the "user" is an application program that interacts
with a mesh information in some manner, including changing it. The MRM provided by the
user is then modified to optimize its ability to provide the indicated information efficiently
without the storage of entities that can be quickly determined based on others that are stored.
To ensure the user requested representation remains correct, even with mesh modification,
the mesh entity creation/deletion operators used in the application are set to the proper ones
dynamically to maintain the needed representation.

For cases when the needed mesh representation is not known in advance, the Dynamic
Mesh Usage Monitor (DMUM) was developed [28]. DMUM collects mesh usage statistics
in terms of the levels of entities and adjacencies needed by the application and provides the
information for use in setting the appropriate representation in the FMDB.

The user requested mesh representation is provided to the mesh database in the form of a
4 x 4 matrix, called Mesh Representation Matrix (MRM). The matrix used in reference [24]
to describe a mesh representation has been extended to be able to represent the equally
classified mesh entities and adjacencies available only for the stored entities.

emphMesh Representation Matrix (MRM): The MRMlis 4 matrix R where diagonal
elementR,; ; is equal tol if mesh entities of dimensiohare present in the representation,
is equal to— if only entities of the same order as the geometric model entities they are
classified on are stored, and is equaltib not stored. Non-diagonal elemef; ; of R
is equal tol if R;; =R;; =1and{M{M7}} is present, is equal te if {M*{M7}}is
present only for storeflM { M} } and{M{M’}}, and is equal to O if the adjacency is not
stored at alli # j and0 <i,j5 < 3.

STRUCTURE OF THE FLEXIBLE MESH DATABASE 5

user representation after union
0 0 0 0] 1 0 0 O
.. |1 0 0 0 » |1 — 0 0
Casel: R*= 00 0 0 R =1 _ 0 - o
0 0 0 0| 1 0 0 1
1 0 1 17 1 0 1 1
. a_ |0 000 . - 0 0
Case2: R*= 00 1 1 Re=| _ 0 1 1
L0 0 1 1 | 1 0 1 1
[0 0 0 0] 1 0 0 O
0 1 1 0 h -1 1 0

. g —
Cased: TRI= 01 1 0 R = _ 11 0
|0 0 0 0| 1 00 1

Figure 1.2. Example of 3D MRM union

Figure 1.1. gives the MRM's of the circular, one-level and minimum sufficient represen-
tation. The circular and one level representation are popular full representations that are
complete. The minimum sufficient representation is the minimal representation with no loss
of information. In the MSR adjacency graph given in Figure 1Rk.o, R3 3, andRgs o are
1 since all the vertices, regions and adjacenef? { M°}} are present in the representation.
R1,1 andRy 2 are— since only edges classified on model edges and faces classified on
model faces are preser, o andR o are— since the downward adjacencigh/* {M°}}
and{M?{M°}} are stored only for the represented edges and faces. The remRinjng
1 # j,are0.

The requirements of the flexible mesh data structure are:

e The user-requested representation should be properly maintained even with mesh
modification such as entity creation/deletion and mesh migration.

e Restoration of implicit entities should produce valid entities in every aspect such as
geometrical classification and vertex ordering.

e Any mesh operators, except mesh loading/exporting and query to unrequested adja-
cencies, should be effective without involving global mesh level search or traversal
to ensure efficiency and scalability in parallel.

To meet the requirements, the mesh database is designed to shape its data structure dy-
namically by setting mesh modification operators to the proper ones that keep the requested
representation correct. Shaping mesh data structure is performed in three steps:

Step 1: Union the user-requested representation with the minimum sufficient represen-
tation: Unioning of the user-requested representation with the MSR is performed since
the MSR is the minimal representation to be stored in the mesh with no information loss.
For two MRM's, R' and R?, the union operation is performed on each paitgf, and
R?ﬁj, i,j = 0,1,2,3, where union of?} ; ande’j returns the maximum aR; ; ande,j,
1>->0.

Figure 1.2. depicts examples of 3D MRM union. By unid®?, R?, andR? are,
respectively, modified t&", R* andR". In case ofR?, R{, andR{, are set to- to

6 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

store edges classified on model edges with their bounding vertRgs. andRj , are,
respectively, set ta and— since regions and faces are defined in terms of vertices in the
MSR. In case ofR?, R{ , andRj ; are settd to store vertices and region&{ , andR ,
are set to- anng,0 is set tol to store adjacent vertices of edges, faces and regions.

Step 2: Optimize the representatiofhe second step alters the MRM to provide the op-
timal representation that satisfies the user requested representation at the minimum memory
cost. Optimization is performed as follows:

2.1 Correct MRMThe first sub-step corrects the MRM to be consistent in terms of entity
existence and adjacency requestRIf; = 1 but any ofR, ; andR; ; is notl, R, ;
is corrected to-. If R, ; = — and bothR; ; andR; ; arel, R, ; is corrected td.

2.2 Determine the level of bounding entitiéface can be created by vertices or edges, and
aregion can be created with vertices, edges or faces. However, to maintain the needed
adjacencies efficiently, it is desirable to determine the level of bounding entities for
face and region definition, and create face and region only with pre-determined level
of entities. For example, for a representation that requires adjacendiés/3}}
and{M3{M?}}, creating a region with faces is more effective than creating a region
with vertices in terms of updating adjacencies between regions and faces. Thus
the second step determines the level of bounding entities in face/region creation to
expedite the adjacency update. Note that restricting the lower level of entities for
face/region creation doesn’t necessarily mean that creating face/region with other
lower level of entities is not supported. It does mean creating a face/region with a
non-preferred level of entities will involve more effort to update desired adjacencies.

2.3 Suppress unnecessary adjacendies third step removes unnecessary adjacencies
which are effectively obtainable by local traversal to save the storage. For instance,
considerR; 2, Ri3 andR, 3 are equal to 1. Thef®; 3 is suppressed to 0 since
{M*{M?3}} can be effectively obtained by traversifyy/* { M2} } and{M?{ M3} }.

This step can be turned off by the user in case that the user doesn’t want local traversal
for specific adjacency queries.

Figure 1.3. depicts examples of 3D MRM optimization. By optimizatiﬂ:‘i\,0 is cor-
rected to— sinceR} ; is not1. R, is corrected to 1 since botR§ , andR§ , are 1.
R§ 3 andRg , are set to 0 since they are obtainable, respectively{ M {12} { M3} }
and{M3{M2}{M°}} In case ofR", first, R} , andR} , are corrected to since allR !,
i =0,1,2, arel. Then,R} , andR} ; are set td), andR372 is set tol. Regions and faces
with R¢ are determined to create with vertices. Regions WithandR* are determined to
create with faces. Faces wifd/ (resp. R?) are determined to create with vertices (resp.
edges).

Step 3: Shape mesh data structure via setting mesh operatbisstep shapes the mesh
data structure based on the mesh representation. To keep the user-requested adjacency even
with mesh modification efficient and correct, the needed adjacencies should be updated
when mesh entities are created or deleted. For example, suppose an application requires
adjacency{ M°{M?}}. Tokeep{M°{M?}},face creation mustbe followed by addihff
into {M?{M?}}, and face deletion must be followed by deletibkf from {MP{M?}},
for eachM? € {9(M?)}.

The mesh data structure is shaped by setting the mesh operators that create or delete
the mesh entities to the proper ones in order to preserve the user-requested representation.
Shaping the representations using dynamic setting of mesh operators doesn'’t involve any

PARALLEL FLEXIBLE MESH DATABASE (FMDB) 7

representation after union after optimization
1 0 0 O 1 0 0 0]
s |1 - 00 e |- - 00
Casel: R’ =] 0 - o Re=1 _ 0 - o
1 0 0 1 1 0 0 1|
1 0 1 17 1 0 1 017
. e | = = 00 f_| — — 00
Case2: R =| _ 0 1 1 R 1 0 1 1
1 0 1 1| 0 0 1 1|
1 0 0 0] 1 0 0 O
. n_ | - 1 10 1 1 10
Case3: R'=| _ L1 0 R' = 01 1 0
1 0 0 1| 00 1 1

Figure 1.3. Example of 3D MRM optimization

mesh size operation such as search and traversal, and maintains a valid representation under
all mesh level operations.

Consider the adjacency requést’¢{M?}} and{M<{M9}}, p < d < q. The follow-
ing are the rules for determining mesh entity creation/deletion operators which are declared
as function pointers:

1. whenM¢ is created{ M3 {MP}} is stored for eactis? € {9(M)}.

2. whenM/ is created{ M {M?}} is stored for eaci/¢ € {o(M])}.

3. whenM ¢ is deleted{ M£{MP}} doesn't need to be explicitly updated.
4

. when M7 is deleted {M@{M9}} is updated for eac/¢ € {9(M])} to remove
M.

Rule 1 means that whei/¢ is created,M! is added to the downward adjacency
{M2{MP}} foreachM? € {9(V,4)}. Rule 2 means that wheW! is created)M is added
to the upward adjacencyM{M}} for eachM¢ € {9(M)}. In the object-oriented
paradigm where a mesh entity stores its adjacency information as the member data of the
entity [3, 10, 26], the downward adjacen¢y/¢{MP}} is removed automatically when
M¢ is deleted. Thus, Rule 3 means that whdfi is deleted, the downward adjacencies of
M¢ don’t need to be removed explicitly. However, wheff is deleted M is not deleted
from the upward adjacency §f\/#{)7}} stored inM{ for eachM¢ € {9(M{)}. Rule 4
means, whed/ is removed M should be removed explicitly from all the stored upward
adjacency{ MZ{M1}} for eachM ¢ € {O(M])}.

1.4 PARALLEL FLEXIBLE MESH DATABASE (FMDB)

A distributed mesls a mesh divided into partitions for distribution over a set of processors
for parallel computation.

A Partition P; consists of the set of mesh entities assignedt@rocessor. For each
partition, the unique partition id can be given. Each partition is treated as a serial mesh

8 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

partition
boundary

P:

P:

|
|
I
|
|
I
|
:
M
A

N

Po

Figure 1.4. Distributed mesh on three partitiols, P1 and P [24]

with the addition of mesh partition boundaries to describe groups of mesh entities that are
on inter-partition boundaries. Mesh entities on partition boundaries are duplicated on all
partitions on which they are used in adjacency relations. Mesh entities not on the partition
boundary exist on a single partition. Figure 1.4. depicts a mesh that is distributed on 3
partitions. Vertex)/{ is common to three partitions and on each partition, several mesh
edges IikeMj1 are common to two partitions. The dashed linesgasition boundaries

that consist of mesh vertices and edges duplicated on multiple partitions.

In order to simply denote the partition(s) that a mesh entity resides, we define an operator
2 that returns a set of partition id(s) whelé¢ exists. Based on thResidence partition
equationthat operates as follows: {{MZ{M?}} = 0, d < q, thenZ[M¢] = {p} where
pis the id of a partition on whichi/{ exists. Otherwise?[M] = U Z[M] | M} €
oM},

For any entityM ¢ not on the boundary of any other mesh entities and on partition
2| Mg returns{p} since when the entity is not on the boundary of any other mesh entities of
higher order, its residence partition is determined simply to be the partition where it resides.
If entity M¢ is on the boundary of any higher order mesh entitie§, is duplicated on
multiple partitions depending on the residence partitions of its bounding entities/difice
exists wherever a mesh entity it bounds exists. Therefore, the residence partitiah($) of
is the union of residence partitions of all entities that it bounds. For a mesh topology where
the entities of orded > 0 are bounded by entities of ordér— 1, Z[M¢] is determined
to be{p} if {M{M{*'}} = 0. Otherwise Z[M{]isu Z2[M | M{ € {o(M])}].

For instance, for the 3D mesh depicted in Figure 1.5., wiéfeand M? are onP,, M3
andM2 are onP; (shaded), and/{ is on P; (thick line), residence partition ids af'? (big
black dot) are{ Py, P;, P>} since the union of residence partitions of its bounding edges,
(M}, M}, MY, M}, MY, M}, are{ o, Py, Py).

To migrate mesh entities to other partitions, the destination partition id’s of mesh entities
must be determined before moving the mesh entities. The residence partition equation
implies that once the destination partition id\df that is not on the boundary of any other
mesh entities is set, the other entities needed to migrate are determined by the entities it
bounds. Thus, a mesh entity that is not on the boundary of any higher order mesh entities
is the basic unit to assign the destination partition id in the mesh migration procedure.

PARALLEL FLEXIBLE MESH DATABASE (FMDB) 9

T

=
=

<

=
S
=

Rt BT

M P,

Figure 1.5. Example 3D mesh distributed on 3 partitions

The need for a formal definition of the residence partition is due to the fact that unlike
manifold models where only the highest order mesh entities need to assigned to a partition,
non-manifold geometries can have lower order mesh mesh entities not bounded by any
higher order mesh which thus must be assigned to a partition. TRastiion objectis the
basic unit to which a destination partition id is assigned. The full set of partition objects is
the set of mesh entities that are not part of the boundary of any higher order mesh entities.
In a 3D mesh, this includes all mesh regions, the mesh faces not bounded by any mesh
regions, the mesh edges not bounded by any mesh faces, and mesh vertices not bounded by
any mesh edges.

Requirements of the mesh data structure for supporting mesh operations on distributed
meshes are:

e Communication links Mesh entities on the partition boundaries (shortly, partition
boundary entities) must be aware of where they are duplicated. This is done by
maintaining theRemote partitiorwhere a mesh entity is duplicated, and Remote
copymemory location on the remote partition. In a parallel adaptive analysis the
mesh and its partitioning can change thousands of times. Therefore an efficient
mechanism to update mesh partitioning that keep the links between partitions updated
is mandatory to achieve scalability.

o Entity ownership For entities on partition boundaries, it is beneficial to assign a spe-
cific copy as the owner of the others and let the owner be in charge of communication
or computation between the copies. For the dynamic entity ownership, there can be
several options in determining owning processor of mesh entities. With the FMDB,
entity ownership is determined based on the rukdefoor-to-rich ownershipvhich
assigns the poorest partition to the owner of entity, where the poorest partition is the
partition that has the least number of partition objects among residence partitions of
the entity.

1.4.1 A Partition Model

To meet the goals and functionalities of distributed meshes, a partition model has been
developed between the mesh and the geometric model. The partition model can be viewed
as a part of hierarchical domain decomposition. Its sole purpose is to represent mesh

10 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

Po P Po P1

P3

I
AN /)
1\~ /
I) X
< 7
N : 7 A
I
| s < p !
/ 2 S R Lo oo
/ g R -—q4-4-- . L7
= .
Iy = \ . .
4 - \ B .
Ny = \ . .

P2

/

PZ // / *****/:% 1-7-- I — -4 -—==
_- \ 4

4 - P \ g

V2P - A .

//// 7 N\ s

Figure 1.6. Distributed mesh and its association with the partition model via partition classifications

partitioning in topology and support mesh-level parallel operations through inter-partition
boundary. The specific implementation is the parallel extension of the FMDB, such that
standard FMDB entities and adjacencies are used on processors only with the addition of
the partition entity information needed to support operations across multiple processors.
A Partition (model) entity P¢, is a topological entity which represents a group of mesh
entities of dimensionl that have the samg?. Each partition model entity is uniquely
determined by??. Each partition model entity stores dimension, id, residence partition(s),
and the owning partition. From a mesh entity level, by keeping proper relation to the
partition model entity, all needed services to represent mesh partitioning and support inter-
partition communications are easily supported. Given thisPdmtition classificationis
defined as the unique association of mesh topological entities of dimensiMf"‘, to the
topological entity of the partition model of dimensidnp, de-f whered; < d;, on which

it lies and is denoted/ dej. Figure 1.6. illustrates a distributed 3D mesh with mesh
entities labeled with arrows indicating the partition classification of the entities onto the
partition model entities and its associated partition model. The mesh vertices and edges on
the thick black lines are classified on partition edgeand they are duplicated on three
partitions Py, P;, andP,. The mesh vertices, edges and faces on the shaded planes are
duplicated on two partitions and they are classified on the partition face pointed with each
arrow. The remaining mesh entities are not duplicated, therefore they are classified on the
corresponding partition region.

The following rules govern the creation of the partition model and specify the partition
classification of mesh entities:

1. High-to-low mesh entity traversalrhe partition classification is set from high order
to low order entity (residence partition equation).

2. Inheritance-first If M € {9(M])} andZ2[M] = 22[M]], M;! inherits the partition
classification fromM{ as a subset of the partitions it Is on.

3. Connectivity-secondf M andM{ are connected an@?[M'] = 2[M], M and
M ;1 are classified on the same patrtition entity.

MESH MIGRATION FOR FULL REPRESENTATIONS 11

4. Partition entity creation-lastIf neither of rule 2 nor 3 applies fav/¢, a new partition
entity P{' is created.

Rule 2 means if the residence partitionsdf’ is identical to those of its bounding
entity of higher orderM]‘?, it is classified on the partition entity thMJ‘? is classified on.
For example, in Figure 1.6.(a), any mesh faces, edges and vertices that are not on shaded
planes nor on the thick black line are classified on the partition region by inheriting partition
classification from the regions it bounds. Rule 3 is applied when Rule 2 is not satisfied.
Rule 3 means if residence partitions ! andM;f are the same and they are connected,

M¢ is classified on the same partition entity wh‘Mn;‘ classified on. When neither Rule 2
nor Rule 3 is satisfied, Rule 4 applies, thus a new partition entity of dimedsmaoreated
for the partition classification of entity/¢.

1.5 MESH MIGRATION FOR FULL REPRESENTATIONS

The mesh migration procedure migrates mesh entities from patrtition to partition. It is
performed frequently in parallel adaptive analysis to re-gain mesh load balance, to obtain the
mesh entities needed for mesh modification operators or to distribute a mesh into partitions.
An efficient mesh migration algorithm with minimum resources (memory and time) are the
important factors for high performance in parallel adaptive mesh-based simulations. Since
the mesh migration process must have be able to deal with any partition mesh entity, it can
only be efficient with complete representations. The algorithms presented in this subsection
also assume a full representation. The next subsection will indicate the extensions required
for migration of reduced representations.

Figure 1.7.(a) and (b) illustrate the 2D partitioned mesh and its associated partition model
to be used as an example in this discussion. In Figure 1.7.(a), the partition classification
of entities on the partition boundaries is denoted with the lines of the same pattern in
Figure 1.7.(b). For instancel/{ and M} are classified onP!, and depicted with the
dashed lines aB}. In Figure 1.7.(b). the owning partition of a partition model edge (resp.
vertex) is illustrated with thickness (resp. size) of lines (resp. circle). For example, the
owning partition of partition vertex’? is P, since P, has the least number of partition
objects among the three residence partitionBaf ThereforeP) on P is depicted with a
bigger-sized circle tha# on P, or P, implying that P, is the owning partition of?.

The input of the mesh migration procedure is a list of partition objects to migrate and
their destination partition ids, called, for simplicitfOsToM ove. Given the initial parti-
tioned mesh in Figure 1.7.(a), we assume that the input of the mesh migration procedure is
<(M?,2), (M2,3), (M2,3)>; M? will migrate to P, and M2 and MZ will migrate to Ps.
Partition P; is currently empty.

Algorithm 1.1 is the pseudo code of the mesh migration procedure where the pseudo
code conventions in Reference [7] are used.

Step 1: Preparationfor a given list of partition objects to migrate, Step 1 collects a set
of entities to be updated by migration. The entities collected for the update are maintained in
vectorentsToUpdtwhereentsToUpdt] contains the entities of dimension = 0, 1, 2, 3.

With a single program multiple data paradigm [22] in parallel, each partition maintains the
separatentsToUpdt] with different contents.

For the example mesh, the contentseotsToUpdty dimension for each partition is
given in Table 1.1. Only entities listed in Table 1.1. will be affected by the remaining steps
in terms of their location and partitioning-related internal dat@sToUpdg] contains the

12 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

1 0 1
M7z Mg My,

(a) initial mesh

(e) final mesh

P

P:

(b) partition model of (a)

P>

Ps

(d) partition model updated based on the

P.

new partition topology

P>

|

0
NI
I
T
n

Ps

(e) final partition model with ownership

Figure 1.7. Example of 2D mesh migration

MESH MIGRATION FOR FULL REPRESENTATIONS

13

Data : M, POsToMove
Result : migrate partition objects i?OsT oM ove
begin
/x Step 1: collect entities to process and clear partitioning data.
for eachM? € POsToM ove do
insertM¢ into vectorentsToUpdd];
reset partition classification ané;
for eachM e {9(M)} do
insert)M into entsToUpd];
reset partition classification ané;

endfor
endfor

/% Step 2: determine residence partitios.
for eachM¢ € entsToUpd] do
setZ of M¢;
endfor
do one-round communication to unify? of partition boundary entities;

/x Step 3: update partition classification and collect entities to remeve.

for d — 3to 0do
for eachM¢ € entsToUpdid] do
determine partition classification;
if Piocal ¢ ‘@[Mzd} do
insertM¢ into entsToRmv|d);

endif
endfor
endfor

I+ Step 4: exchange entities/
for d «+ Oto 3do
M_exchngEnts{ntsT oUpdt[d)); I« Algorithm 1.2«/
endfor
/% Step 5: remove unnecessary entities.
for d — 3to0do
for eachM{ € entsToRmi] do
if Mg is on partition boundarylo
remove copies ol ¢ on other partitions;
endif
removeM¢;

endfor
endfor

/% Step 6: update ownership/
for eachP? in P do
owning partition ofP¢ «— the poorest partition among’| P{];

endfor
end

Algorithm 1.1: M_migrate(M, POsT oM ove)

14 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

Data :entsToUpdt[d]
Result : create entities on the destination partitions and update remote copies
begin
/+ Step 4.1: send a message to the destination partitidns
for eachM¢ € entsToUpdt|d] do
if Piocqr 7 Minimum partition id wherer exists
continue;
endif
for each partition idP; € £2[M¢] do
if M¢ exists on partitionP; (i.e. M¢ has remote copy aP;)
continue;
endif
send messagé (address of\/¢ on P,,.;, information ofMid) to P;

endfor
endfor

/% Step 4.2: create a new entity and send the new entity information to the
broadcaster */
while P; receives messagé (address of\/¢ on P, information ofM/£) from
Py, do
createM ¢ with the information ofdZ¢;
if M¢ is not a partition object
send messagB (address oMid on P,., address oMid created) taPy.;

endif
end

/% Step 4.3: théroadcaster sends the new entity informatieh
while P, receives message (address oﬂ\/lﬁ on P,., address oiMﬁ onp;)
from P; do
M¢ « entity located in the address 8f¢ on P.;
for each remote copy (Mid on remote partitionP,.c,,, o dO
send messag€ (address ofV/¢ on P,.,,.tc, address o/ on P;, P;)
to Premote;
endfor
Mid saves the address Mid on P; as for the remote copy oR;;
end
/x Step 4.4: update remote copy informatign
while P,..,,.:e receives messade (address oﬂ\/[f oNn Pycmote, address oMid
on P;, P;) from P,. do
M¢ — entity located in the address 8f? on P,.c.otc;
M¢ saves the address 8f¢ on P; as for the remote copy oR;;

end
end

Algorithm 1.2: M_exchngEnts{ntsT oUpdt[d])

MESH MIGRATION FOR FULL REPRESENTATIONS 15

Table 1.1. The contents of vecta@ntsToUpdafter Step 1

B P Py

entititesToProcess[0] MY, M, MY MY, M9, M2, M3 MY, MY, MY, M§
entititesToProcess[1] M4, M}, Mg Mj, Mg, M5, M, Mg, M}, Mi,, Mg
entititesToProcess[2] M} M3 M?

mesh faces to be migrated from each partitientsToUpdil] contains the mesh edges which
bound any mesh face entsToUpdR] and their remote copieentsToUpdp] contains the
mesh vertices that bound any mesh edgeritsToUpdtl] and their remote copies. The
partition classification and” of entities inentsToUpdtare cleared for further update.

Step 2: Determine residence partition(§tep 2 determines? of the entities according
to the residence partition equation. For each entity which bounds the higher order entity, it
should be determined if the entity will exist on the current local partition, denotéy as,
after migration to se’?. Existence of the entity oR),..; after migration is determined by
checking adjacent partition objects, i.e., checking if there’s any adjacent partition object to
reside onP;,.,;. One round of communication is performed at the end to exchaAgd
the partition boundary entities to unify them between remote copies.

Step 3: Update the partition classification and collect entities to remboethe entities
in entsToUpdtbased on#?, Step 3 refreshes the partition classification to reflect a new
updated partition model after migration, and determines the entities to remove from the
local partition, Py,..;. An entity is determined to remove from its local partitiondt of
the entity doesn’t contai®,,..;. Figure 1.7.(d) is the partition model updated based on the
new partition topology.

Step 4: Exchange entitieSince an entity of dimension 0 is bounded by lower dimen-
sion entities, mesh entities are exchanged from low to high dimension. Step 4 exchanges
entities from dimensiof to 3, creates entities on the destination partitions, and updates the
remote copies of the entities created on the destination partitions. Algorithm 1.2 illustrates
the pseudo code that exchanges the entities contained i oUpdt[d], d = 0,1, 2, 3.

Step 4.1 sends the messages to destination partitions to create new mesh entities. Con-
sider entityM? duplicated on several partitions needs to be migrate®; toln order to
reduce the communications between partitions, only one partition sends the message to
P; to createM{. The partition to send the message to credfg is the partition of the
minimum partition id among residence partitions\df. The partition that sends messages
to create a new entity is callégtoadcaster, denoted a$’.. The broadcaster is in charge
of creating as well as updating¢ over all partitions. The arrows in Figure 1.7.(c) indicate
the broadcaster of each entity to migrate based on minimum partition id. Before sending a
message t@;, M is checked if it already exists o using the remote copy information
and ignored if exists.

For eachM¢ to migrate,P,. of M¢ sends a message composed of the addressdof
on P, and the information of\/¢ necessary for entity creation, which consists of unique
vertex id (if vertex), entity shape information, required entity adjacencies, geometric clas-
sification information, residence partition(s) for setting partition classification, and remote
copy information. For instance, to creat€ on P;, P, sends a message composed of the
address of\7Y on P, and information ofd/? including its & (i.e., P, P>, and P5) and

16 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

remote copy information af/? stored onP, (i.e. the address dff on P, and the address
of MY on P3).

For the message received Bhfrom P,. (sent in Step 4.1), a new entify/¢ is created
on P; (Step 4.2). If the new entity/¢ created is not a partition object, its address should
be sent to back to the sende¥/f on P,.) for the update of communication links. The
message to be sent back®y. is composed of the address bf? on P,. and the address
of new M¢ created onP;. For example, afteds? is created orP;, the message composed
of the address a#/? on P, and the address dff on P; is sent back td>.

In Step 4.3, the message receivedrignfrom P; (sentin Step 4.2) are sent to the remote
copies ofM¢ on Pt and the address dff¢ on P; is saved as the remote copy/af?.

The messages sent are received in Step 4.4 and used to save the addféssnaP; on
all the remaining remote partitions af/¢. For instanceM? on P, sends the message
composed of the address bfY on P to M} on P; and MY on P.

For the message received &%..,,.tc from P, (sentin Step 4.3), Step 4.4 updates the
remote copy ofM? on P,.,..:. to include the address dff¢ on P;. For instance, when
MY's on P, and P, receive the message composed of the addres£’adn P, they add it
to their remote copy.

Step 5: Remove unnecessary entiti8sep 5 removes unnecessary mesh entities col-
lected in Step 3 which will be no longer used on the local partition. If the mesh entity to
remove is on the partition boundary, it also must be removed from other partitions where
it is kept as for remote copies through one round of communication. As for the opposite
direction of entity creation, entities are removed from high to low dimension.

Step 6: Update ownershiftep 6 updates the owning partition of the partition model
entities based on the rule of the poor-to-rich partition ownership. The partition model given
in Figure 1.7.(e) is the final partition model with ownership.

FMDB is implemented in C++, and uses STL (Standard Template Library) [30], func-
tors [10], templates [33], singletons [12], and generic programming [2] for the purpose of
achieving reusability of the software. MPI (Message Passing Interface) [22, 18] and Au-
topack [18] are used for efficient parallel communications between processors. The Zoltan
library [36] is used to make partition assignment during dynamic load balancing.

1.6 MESH MIGRATION FOR REDUCED REPRESENTATIONS

To support flexible mesh representations with distributed meshes, the mesh migration pro-
cedure must migrate the needed mesh entities regardless of mesh representation options
while keeping requested mesh representation correct and updating the partition model and
communication links based on new mesh partitioning. Figure 1.8.(a) is an example 2D
mesh with the minimum sufficient representation where all interior edges are reduced. The
reduced edges are denoted with the dotted lines. Figure 1.8.(b) is the partitioned mesh
over 3 partitions with the MSR, where the only interior edges not on the partition bound-
aries are reduced. After migration, the interior edges on the partition boundaries must
be restored in order to represent partitioning topology and support communication links
between partitions.

To support mesh migration regardless of mesh representation options, an important
question is what is a minimum set of entities and adjacencies necessary for migration. By
the analysis of the mesh migration procedure in the previous section, the representational
requirements for flexible distributed meshes are the following:

e For each partition objedt/¢, downward adjacent entities { (M)} .

MESH MIGRATION FOR REDUCED REPRESENTATIONS 17

(a) serial mesh (b) partitioned mesh

Figure 1.8. Example 2D mesh with the MSR

1 0 0 O 1 - -0 1 - — 1
- — 0 0 - - 0 0 - - 0 0
- 0 - 0 - 0 - 0 - 0 - 0
1 0 0 1 1 0 0 1 1 0 0 1
(a) input MSR (b) afte** adjustment (c) afte2™? adjustment

Figure 1.9. MRM adjustments for distributed incomplete meshes

e For each downward adjacent entity af¢, M JP, the other partition objects adjacent
to Mf and the remote copies.

Other partition objects adjacentlmf are necessary in setting of M Jp to check if it will
be existing on the local partition even after migration. The representational requirements
must be satisfied regardless of representation options to perform migration. In case that
the user-requested representation doesn'’t satisfy the requirements, the representation is
adjusted to meet the representational requirements to support mesh migration.

1.6.1 Mesh Representation Adjustment

To provide communication links between entities on the partition boundaries and represent
partitioning topology, non-existing internal mesh entities must be resurrected if they are
located on the partition boundaries after migration. For a reduced representation, checking
existence of downward entities in entity restoration can be efficiently done in O(1) time by
maintaining{ M°{ ¢} } for each reduced level Therefore, to support efficient downward
entity restoration, the first MRM adjustment is to modify the MRM to mainfalif® { M/} }
for each reduced level. For instance, for the 3D user-requested representation given in
Figure 1.9.(a) which is the MSRR, ; andR, » are set to- as seen in Figure 1.9.(b). By
maintaining the upward adjacencigas/®{M*}} and{M°{M?}} for existing edges and
faces, obtaining M?{M'}} and{M3{M?}} is done in a constant time either by local
searching or restoration.

In mesh migration using a complete representation, checking if an entity will exist on
the current partition after migration is done via checking if there is any upward adjacent
partition object that is maintained in the local partition. If any upward adjacent partition

18 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

object remains in the local partition after migration, the current partitioRid,,;, must be
added intaZ of the entity.

With flexible mesh representations, especially in case where upward adjacency to the
level of partition objects is not available, to determine if an entity will exist on the current
partition after migration or not while creating partition objadf’, we must store adjacency
{MP{MZ}} for eachM? € {9(MF)} to avoid the need for global searches.

This process maintains upward adjacefidy®{ M¢}} for each vertex/? on the bound-
ary of partition objectM?. The neighboring partition objects df¢ is a set of partition
objectstj thatis bounded by/} whereM? € {9(M;')}. Upward adjacencyM{ M} }
for eachM? € {9(M¢)} enable obtaining neighboring partition objects in a constant time.
Based on the resident partition equation, for eathe {0(M¢)}, if the neighboring par-
tition objects ofM¢ is available, existence dﬁf]’.’ on the local partition after migration can
be checked using downward adjacency of the neighboring partition objects.

This leads to the second step of MRM adjustment that{set${A/3}} to 1 in order to
support neighboring partition objects of leviehs seen in Figure 1.9.(c). The penalty of
this option is storing unrequested adjacency information. However, these adjacencies are
necessary to avoid mesh-size dependent operations.

Data : M, POsToMigrate
Result : migrate partition objects i?OsToMigrate
begin
/x STEP A: collect neighboring partition objects.
For each partition object iROsT oM igrate, collect neighboring partition
objects and store them teighbor POs;
I+ STEP B: restore downward entitieg/
M _buildAdj URR(M,POsToMigrate,neighbor POs);
I+ STEP 1: collect entities to process and clear partitioning data.
Run STEP 1 in Algorithm 1.1;
/x STEP 2: determine residence partitio#.
M setResidencePartitiddRR(POsT oM igrate, neighbor POs);
/x STEP 3: update p. classification and collect entities to remeve.
Run STEP 3 in Algorithm 1.1;
/x STEP 4: exchange entities.
for d — 0 to 3do
M_exchangeEnt8IRR(entitiesToUpdateld));
endfor
/+ STEP 5: remove unnecessary entities.
Run STEP 5 in Algorithm 1.1;
/x STEP 6: update ownership/
Run STEP 6 in Algorithm 1.1;
/+ STEP C: remove unnecessary interior entities and adjaceneles.
M _destoryAdjURR (M, entitiesT oU pdate, neighbor POs);
end

Algorithm 1.3: M_migrateURR(M, POsT oM igrate)

MESH MIGRATION FOR REDUCED REPRESENTATIONS 19

(d) migrate entities to dest. partition

(e) delete entities migrated (f) delete internal entities

Figure 1.10. Steps of 2D mesh migration with the MSR

20 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

1.6.2 Algorithm of Mesh Migration with Reduced Representations

The mesh migration proceduté _migrate based on use of complete mesh representations
is now extended to work with any mesh representation options. GiveR@h& oM ove,
the overall procedure for the mesh migration is the following:

1. Collect neighboring partition objects.
2. Restore needed downward interior entities.

3. Collect entities to be updated with migration and clear partitioning defaafd
partition classification) of them.

. Determine residence patrtition.

. Update partition classification and collect entities to remove.

. Remove unnecessary entities.

4
5
6. Exchange entities and update remote copies.
7
8. Update ownership of partition model entities.
9

. Remove unnecessary interior entities and adjacencies.

Figure 1.10. depicts the 2D mesh migration procedure with a reduced representation. For
the given list of partition objects to migrate(O sToM ove, (Figure 1.10.(a)), first collect the
partition objects which are adjacent to any partition objedtins7T oM ove and store them
in a separate container namedghbor POs (Figure 1.10.(b)). Second, for partition objects
in POsT oM ove or neighbor POs, restore their interior entities and associated downward
adjacencies (Figure 1.10.(c)). Collect entities to be updated by migration in terms of their
partitioning information such as?, partition classification and remote copies, and save
them in a container namedhtitiesT oU pdate for further manipulation. Using downward
adjacencies and neighboring partition objects informatigrand partition classification of
entities inentitiesToUpdate are updated. Based 6A updated, the entities to remove from
the local partition after migration are determined among the entitiestittiesT oU pdate.

After migrating onlynecessary entities to the destination partitions, remote copies of the
entities on the partition boundaries are updated (Figure 1.10.(d)). The entities collected to
remove are deleted from the local partition (Figure 1.10.(e)). Finally, the interior entities
and adjacencies restored in the second step are removed to keep the original requested
mesh representation (Figure 1.10.(f)). Algorithm 1.3 is pseudo code that migrates partition
objects with flexible mesh representations.

Step A: Collect neighboring partition object&or the given list of partition objects to
migrate, POsToMigrate, Step A collects neighboring partition objects of them, which
will be used in Step 2 to determin# of entities. Neighboring partition objects collected
are stored in a container nameel ghbor POs. One round of communication is performed
to gather neighboring partition objects on remote partitions.

Step B: Restore downward entitie$n Step B, iterating ovePOsToMigrate and
neighbor POs, M buildAdj_U R R restores needed non-existing downward interior entities
of each partition object.

Step 1: PreparationUsing downward entities restored in Step B, Step 1 collects entities
to be updated with migration, stores them in list vectatitiesToUpdate and resets
partition classification and? of those entities.

MESH MIGRATION FOR REDUCED REPRESENTATIONS

21

Data : M, POsToMigrate, entitiesToU pdate, neighbor POs
Result : determineZ? of entities inentitiesToUpdate
begin
[+ STEP 2.1: set” of entities inentitiesToU pdate through downward
adjacency of partition objects iIROsT oM igrate x/
for each pair (¢, p) € POsToM ove do
PIM{] — {p};
for eachM? e {9(M)} do
DM} | — Z[M]]U{p};
endfor
endfor
/x STEP 2.2: determine if an entity will exist on the local partition after
migration s/
for eachM¢ € neighbor POs do
for eachM € {9(M")} do
Q[M]q] — @[qu } U {Plocal};
endfor
endfor
I+ STEP 2.3: unify?? of partition boundary entities/
Do one round of communication to exchangeof partition boundary entities

in entitiesToU pdate;
end

Algorithm 1.4: M _setResidencePartitiddRR(POsToMigrate, entitiesToUpdate,
neighbor POs)

22 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

Step 2: Determine residence partitiolstep 2 determines” of entities collected in
entitiesToUpdate (Algorithm 1.4). In Step 2.1, according to the resident partition equa-
tion, for each partition object/¢ to migrate to partitiop, 22| M¢] is set top, andp is added
into 2[M], whereM e {9(M;")}. For non-partition object entity/?, their & must
include local partition id Pj,.q;, if it will exist on the local partition even after migration.
Step 2.2 determines MJ‘? will exist or not on the local partition after migration based on
downward adjacency of neighboring partition objects. For partition boundary entities in
entitiesToUpdate, Step 2.3 performs one round of communication to uifyof them.

Step 3: Determine partition classification and entities to remolver each entity in
entitiesToUpdate, determine the partition classification and determine if it will be re-
moved from the local partition.

Data : entitiesToUpdateld]
Result : create entities on the destination partitions and update remote copies
begin
/x STEP 4.1: send a message to the destination partitidons
for eachM{ € entitiesToUpdate[d] do
if Pjocar 7 Minimum partition id wheré/¢ exists
continue;
endif
if Rga#1
if M¢ will not be on p.boundaries or not equally classified
continue;

endif
endif

for each partition idP; € 2[M¢] do
if M¢ exists on partitionP; (i.e. M¢ has remote copy aP;)
continue;
endif
send messagé (address of\/? on P,,..;, information of M¢) to P;;

endfor
endfor

Run STEP 4.2 to 4.4 in Algorithm 1.2;
end

Algorithm 1.5: M_exchangeEntSIRR(entitiesToUpdate[d)])

Step 4: Exchange entities and update remote copi&tep 4 exchanges mesh entities
from dimensior) to 3 to create mesh entities on destination partitions. Algorithm 1.2 has
been slightly modified to Algorithm 1.5 in order to work with any mesh representation
options. Differences from Algorithm 1.2 are the following:

e The dimension of the entities used to create(define) faces and regions are determined
based on the MRM.

¢ Not all interior mesh entities are migrated to the destination partitions. Interior
entities are migrated to destination partitions only when they will be on the partition
boundaries in new mesh partitioning topology after migration.

Figure 1.10.(c) is an intermediary mesh after Step 4 where mesh faces marked for mi-
gration are created on destination partitions with reduced interior edges. On the destination

MESH MIGRATION FOR REDUCED REPRESENTATIONS 23

partitions, the interior edges on partition boundaries were created to provide communica-
tion links. The faces migrated to the destination partitions are not deleted from the original
partitions yet.

Step 5: Remove unnecessary entiti€sep 5 removes unnecessary mesh entities col-
lected in Step 3, which are not used on the local partition any more. Figure 1.10.(d) is an
intermediary mesh after Step 5, where mesh faces migrated to the destination partitions
and their unnecessary adjacent edges and vertices are removed from pBgtitidote the
interior entities of neighboring partition objects restored in Step B still exist on partition
Po.

Step 6: Update entity ownershi@tep 6 updates ownership of partition model entities.
See§??.

Step C: Restore mesh representatidhis step restores the mesh representation modified
to have interior entities and associated downward adjacencies in Step B to the original
modified MRM. The entities to be considered to remove or update in this step include
neighboring partition objects and their downward entities, and entitieginiesT oU pdate
not removed in Step 5.

1.6.3 Summary

The following are the comparisons of the migration procedutésnigrate U RR in Al-
gorithm 1.3 (Steps A, B, 1 to 6, C) and -migrate in Algorithm 1.1 (Steps 1 to 6):

e In Step A,M migrate.U RR collects neighboring partition objects to support com-
putation of 42 without upward adjacencies.

e In Step B,M migrate U RR restores downward entities and associated downward
adjacencies of partition objects to migrate or neighboring.

e Step lisidentical.

e In Step 2,M migrate determines the existence of entities on the local partition after
migration based on the existence of adjacent partition objects not to be migrated.
[-20pt]

e Step 3isidentical.

e In Step 4,M _migrate.U RR doesn’t create interior entities on destination partitions
if they are not on partition boundaries.

e Step 5isidentical.

e Step 6 is identical.

e In Step C,M migrate U RR restores the representation to the modified MRM by
removing unnecessary downward entities and adjacencies restored in Step B.

It has been noted that Step 4 spends most of the migration time among all steps both
in M migrate and M migrate U RR due to communication for entity exchange is most
costly. In case oM/ migrate.U RR, the total migration time varies substantially depend-
ing on mesh representation options and partitioning topology due to the varying number
of entity exchanges in Step 4. Performance results demonstratel/thatyrate U RR
with reduced representations tends to outperfdfomigrate with the one-level adjacency
representation as the mesh size and the number of partitions increase [28].

During parallel adaptive analysis, the mesh data needs often re-partitioning to maintain
load balance while keeping the size of the inter-partition boundaries minimal [31, 9]. The
Zoltan library [36], which is a collection of data management services for parallel, un-
structured, adaptive, and dynamic partitioners is used to assign partition entities. FMDB

24 EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

Figure 1.11. Example of 2D mesh load balancing: (left) partition objects are tagged with their
destination pids (right) mesh after load balancing

proc 2 4 8 16

speedup 2.23 337 5.48 8.40
rel. speedup 2.23 150 1.62 1.53

Figure 1.12. Parallel mesh adaptation I: (left) initial 36 tet mesh, (right) adapted approx. 1 million
tet mesh.

computes the input to the Zoltan as a weighted graph or coordinates of partition objects.
With the distribution information from Zoltan, the re-partitioning or initial partitioning step

is completed by calling the mesh migration procedure that moves the appropriate entities
from one partition to another. Figure 1.11. illustrates an example of 2D mesh load bal-
ancing. In the left, the partition objects (all mesh faces in this case) are tagged with their
destination partition ids. The final balanced mesh is given on the right.

1.7 PARALLEL ADAPTIVE APPLICATIONS

The parallel mesh adaptation procedure has been tested against a wide range of models
using either analytical or adaptively defined anisotropic mesh size field definitions [16].

CLOSING REMARK 25

The scalability of a parallel program running pmprocessors is measured as tpeedup
or relativespeedup.

run-time on 1 processor

dup = - 1.1
SPECEUD =\ n-time Onp processors (2.1)
The relative speedup is the speedup against the progragrmacessors.
. run time on% processors
relative speedup = (1.2)

run time Onp pProcessors

Figure 1.12. shows a uniform initial non-manifold mesh d#al x 1 cubic and triangular
surface domain and the adapted mesh with two spherical mesh size fields on 4 processors.
Different color represents different partitions.

Adaptive results have be obtained using the Stanford Linear Accelerator Center (SLAC)'s
eigenmode solver Omega3P [14] in conjunction with parallel mesh adaptation. The parallel
adaptive procedure has been applied to Trispal model and RFQ model. The speedups given
are just for the parallel mesh adaptation portion of the process.

Figure 1.13. shows the Trispal meshes during the parallel adaptive loop, (a) gives the
initial mesh composed of 65 tetrahedron, (b) is the adapted, approximately 1 million, mesh
after the second adaptive loop on 24 processors, and (c) is the adapted, approximately 12
million, mesh after the eighth adaptive loop.

Figure 1.14. gives the RFQ meshes during the parallel adaptive loop, (a) gives the initial
coarse mesh of 1,595 tetrahedron, (b) is the adapted mesh after the first adaptive loop, which
is approximately 1 million tetrahedron, and (c) and (d) are the front and back view of the
adapted mesh after the second adaptive loop, which contains about 24 million tetrahedron.

1.8 CLOSING REMARK

A flexible mesh database has been defined and implemented for distributed meshes based
on the hierarchical domain decomposition. There procedures are being actively used to
support parallel adaptive simulation procedures.

The FMDB is open source availablelatp://www.scorec.rpi.edu/FMDB

26

EFFICIENT DISTRIBUTED MESH DATA STRUCTURE FOR PARALLEL AUTOMATED ADAPTIVE ANALYSIS

initial mesh

A
i
i

LT
L
h“‘?ﬁ\)
o
A
K\uﬁw&ﬁk
e

N
|

(

n

} 0 %‘n} SN

T

T
PR
i

i

i

) ‘!Eh\\ﬁ\‘fm\w‘
DS N
X» «i‘i“gml

)
A‘ .

(b) after

N
N
Y
N

I

D

K

LT,
EF

X

N
1§"

cavza
o

(P

NS

o
=

SN,
i

LPZAN

%
oo

o

B

(T

VAN

{1 x
it

“‘A\

svzas
=

s

KR

o

R
\1"1\‘
IR
&.im&?gé‘
w‘ﬂ“ﬂl‘%ﬁﬂ
i
o

U

N
YN

N

it

7AS

the8*" loop

proc 20 40

1.81

rel. speedup

s
o

N
N

(c) after

Figure 1.13. Parallel adaptive loop for SLAC I: (a) initial coarse Trispal mesh (65 tets), (b) adapted
mesh after the second adaptive loop (approx. 1 million tet), (c) the final mesh converged to the

solutions after the eighth adaptive loop (approx. 12 million tets).

CLOSING REMARK 27

(a) initial (front) (b) 1%t loop (back)

(c) 2" loop (front) (d)2™? loop (back)

proc 28 56

rel. speedup - 1.97

Figure 1.14. Parallel adaptive loop for SLAC II: (a) initial coarse RFQ mesh (1,595 tet), (b) adapted
mesh from the first adaptive loop (approx. 1 million tet), (c) the front view of adapted mesh from the
second adaptive loop (approx. 24 million tet), (d) the back view of (c).

REFERENCES

10.
11.

By

. F. Alauzet, X. Li, E.S. Seol, and M.S. Shephard. Parallel anisotropic 3d mesh adaptation by mesh
modification.Engineering with Computer21(3):247-258, 2006.

. A. Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns Aplied
Addison-Wesley, 2001.

. M.W. Beall. An object-oriented framework for the reliable automated solution of problems in
mathematical physics. Technical report, Rensselaer Polytechnic Institute, Troy NY, 1999. PhD
Dissertation Mechanical Engineering Dept.

. M.W. Beall and M.S. Shephard. A general topology-based mesh data strutttemational
Journal for Numerical Methods in Engineering0(9):1573-1596, 1997.

. R.Biswas and L. Oliker. A new procedure for dynamic adaptation of three-dimensional unstruc-
tured grids.Appl. Numer. Math13:437-452, 1997.

. W. Celes, G.H. Paulino, and R. Espinha. A compact adjacency-based topological data structure
for finite element mesh representatidfumerical Methods in Engineering4(11):1529-1565,
2005.

. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Sthitroduction to AIgotitth"‘i Ed.MIT
Press, second edition, 2001.

. H.L. deCougny, K.D. Devine, J.E. Flaherty, and R.M. Loy. Load balancing for the parallel
solution of partial differential equationg\ppl. Numer. Math16:157-182, 1995.

. H.L. deCougny and M.S. Shephard. Parallel refinement and coarsening of tetrahedral meshes.
Int. 3. Numer. Meth. Engn@6:1101-1125, 1999.

Deitel and Deitel C++ How To Program Prentice Hall, second edition edition, 2001.

R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-optimized mesh partitioning and
load balancing for parallel adaptive fefRarallel Computing26:1555-1581, 2000.

29

©2006 John Wiley & Sons, Inc.

30

12

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.
23.

24.

25.

26.
27.

28.

29.

30.
31.

32.

33.
34.

35.

36.

REFERENCES

. E. Gamma, R. Johnson, R. Helm, and J.M VlissidBgesign Patterns: Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, 1994.

R.V. Garimella. Mesh data structure selection for mesh generation and fea applichtiens.
national Journal for Numerical Methods in Engineerjrigh:451-478, 2002.

L. Ge, L Lee, L. Zenghai, C. Ng, K. Ko, Y Luo, and M.S. Shephard. Adaptive mesh refinement
for high accuracy wall loss determination in accelerating cavity desigheHEfE Conference on
Electromagnetic Field Computationdune 2004.

X. Li, M.S. Shephard, and M.W. Beall. Accounting for curved domains in mesh adapthtton.
J. Numer. Meth. Engnd8:247-276, 2002.

X. Li, M.S. Shephard, and M.W. Beall. 3d anisotropic mesh adaptation by mesh modifications.
Comp. Meth. Appl. Mech. Engng003.

libMesh. http://libmesh.sourceforge.net., 2005.
R. Loy. Autopack User Manual, 2000.

M. Mantyla. An Introduction to Solid ModelingComputer Science Press, Rockville Maryland,
1988.

L. Oliker, R. Biswas, and H.N. Gabow. Parallel tetrahedral mesh adaptation with dynamic load
balancing.Parallel Computing26:1583-1608, 2000.

C. Ozturan, H.L. de Cougny, M.S. Shephard, and J.E. Flaherty. Parallel adaptive mesh refinement
and redistribution on distributed memoomp. Meth. Appl. Mech. Engngy19:123-127, 1994.

P.S. PachecdRarallel Programming with MPIMorganKaufmann Publisher., 1997.

Y. Parkand O. Kwon. A parallel unstructured dynamic mesh adaptation algorithm for 3-d unsteady
flows. Int. J. Numer. Meth. Fluids48:671-690, 2005.

J.F. Remacle, O. Klaas, J.E. Flaherty, and M.S. Shephard. A parallel algorithm oriented mesh
databaseEngineering with Computerd8:274—-284, 2002.

J.F. Remacle and M.S. Shephard. An algorithm oriented mesh datdbasg. Numer. Meth.
Engng 58:349-374, 2003.

M.L. Scott. Programming Language Pragmatic&aufmann Publisher, 2000.

P.M. Selwood and M. Berzins. Parallel unstructured tetrahedral mesh adaptation: algorithms,
implementation and scalabilit€oncurrency: Pract.Experl1(14):863—884, 1999.

E.S. Seol. FMDB: Flexible Distributed Mesh Database for Parallel Automated Adaptive Analysis.
Technical report, Rensselaer Polytechnic Institute, 2005. Ph.D. Thesis in Computer Science,
http://www.scorec.rpi.edu/cgi-bin/reports/GetByYear.pl?Year=2005.

E.S. Seol and M.S. Shephard. Efficient distributed mesh data structure for parallel automated
adaptive analysi€Engineering with Computer2006.

Sgi Inc. http://www.sgi.com/tech/stl/gtidex.html., 2005.

M.S. Shephard, J.E. Flaherty, C.L. Bottasso, and H.L. de Cougny. Parallel automated adaptive
analysis.Parallel Computing23:1327-1347, 1997.

J.D. Teresco, M.W. Beall, J.E. Flaherty, and M.S. Shephard. A hierarchical partition model for
adaptive finite element computatiot@mput. Methods Appl. Mech. Engaf4:269-285, 2000.

D. Vandevoorde and N.M. Josutti€++ Templates Addison-Wesley, 2003.

C. Walshaw and M. Cross. Parallel optimization algorithms for multilevel mesh partitioning.
Parallel Computing26(12):1635-1660, 2000.

K.J. Weiler. The radial-edge structure: a topological representation for non-manifold geometric
boundary representationGeometric Modeling for CAD Applicationpages 3—-36, 1988.

Zoltan. Zoltan: data-management services for parallel applications.
http://www.cs.sandia.gov/Zoltan., 2005.

