
Toward a Multi-Model Hierarchy to Support

Multiscale Simulations

Mark S. Shephard E. Seegyoung Seol

Benjamin FrantzDale

Scientific Computation Research Center

110 8th Street, Troy, NY 12180, U.S.A.

June 20, 2006

1 Introduction

There is a long history of developing mathematical representations capable of

providing behavioral predictions of physical parameters on the atomic, molecu-

lar, microscopic, and macroscopic scales. Over the past half century, simulation

programs have been developed to support the computerized solution of these

mathematical representations which, in some cases, are discretized with billions

of degrees of freedom and solved on massively parallel computers with thousands

of processors. Historically, scientists and engineers have applied these models

(simulation programs) to solve problems on a single physical scale. However, in

1



recent years it has become clear that to continue to make advances in the areas

of nanotechnology and biotechnology, and to develop new products and treat-

ments based on those advances, scientists and engineers must be able to solve

sets of coupled models active over multiple interacting scales. For example, the

development of new materials will require the design of structure and function

across a hierarchy of scales, starting at the molecular scale to define nanoscale

building blocks that will be used to construct mesoscale features that may be

combined into micron-scale weaves that could be used in the manufacturing of

complete parts (figure 1). Such capabilities are clearly central to the develop-

ment of nanoelectronics devices and future biomedical device design, as well as

many of other future products.

<INSERT FIGURE 1 HERE>

As an example of the potential impact of multiscale simulation on biomedical

device design, consider a drug-eluting stent (figure 2). Drug-eluting stents are

hybrid device–drug medical products that release therapeutic drugs and pro-

vide a scaffold to maintain arterial lumen size after angioplasty. The design of

these devices requires consideration of the mechanical function of holding open

a diseased artery, and of the pharmacological function of delivering the appro-

priate drug in the appropriate concentration for the requisite length of time

to prevent in-stent restenosis. The mechanical simulations involved with de-

vice deployment includes continuum-scale models of the stent and blood vessel,

which employ complex material models. The complex nature of the blood ves-

sel requires the application of multiscale methods to determine those material

2



models. Consideration of drug delivery from the stent coating requires a model

that includes continuum-level modeling of blood flow coupled with molecular-

level diffusion and transport of drug molecules, which needs to be coupled to

cell- and molecular-level models of drug diffusion into blood vessels through cell

membranes. Similar models and methods are central to many other applications.

For example, similar models and model coupling is needed in the consideration

of new automotive skins made of nano-reinforced materials in which the material

interfaces are strong at strain rates consistent with normal use, while at high

strain rates demonstrating substantial local damage, leading to high stiffness so

that little dents are avoided, but providing high energy absorption under impact

loading to keep passengers safe.

<INSERT FIGURE 2 HERE>

There are many available models to solve various single-scale simulation

problems, but while the development of multiscale methods is an active re-

search area, there has been limited attention paid to the development of general

multiscale modeling techniques. One procedure that does address the complex

issue of bridging from atomistic to continuum physics, including the ability to

adaptively control the model selection over the domain, is the quasicontinuum

method (Knap and Ortiz 2001; Miller and Tadmor 2002). Since this proce-

dure is based on a single method to define and link the physical scales, its

development has not needed to address the inclusion of flexible methods or the

insertion of alternative models and scale-linking methods. Other efforts have

limited the range of models included to similar models such as the OCTA soft-

3



ware, which includes four discrete mesoscale models (OCTA 2006). Considering

the thousands of person-years of effort that has gone into the development of the

existing single-scale models that operate at each of the physical scales needed,

the effective development of multiscale simulations will be greatly facilitated

by the development of methods that can easily integrate and use existing and

developing single-scale models. This chapter outlines the overall structure of a

component-based multi-model approach in which each model uses clearly de-

fined interfaces and functionality for sharing information. Since these methods

are early in the development phase, this chapter provides one view of how this

complex problem could be addressed with the goal of opening a constructive

dialog between the software engineers developing multimodel methods and the

computational engineers developing multiscale methods.

The next section considers the key information and function hierarchies of

a multiscale simulation. Section 3 discusses the overall design of a set of func-

tional components defined to support the full set of interactions and transforma-

tions needed by multiscale simulation. It is the combination of these functional

components with existing single-scale models that will provide an operational

multi-model multiscale simulation system. Section 4 presents two example sim-

ulations combining existing single-scale models with prototypes of the interfaces

described here.

4



2 Functional and Information Hierarchies in Mul-

tiscale Simulation

In abstracting multiscale simulation processes, one must consider the hierar-

chy of transformations required to go from a description of physical behavior

to a set of mathematical and computational models capable of simulating the

desired behaviors. The highest level in the hierarchy is an overall problem

definition related to mathematical descriptions used to describe the behavior,

typically-coupled, at various scales, including equations relating parameters be-

tween the scales. The other two levels in the hierarchy are the discretizations

of the mathematical models and the numerical algorithms used to solve the dis-

cretized mathematical models. A key to abstracting this process is to qualify

the information needed to support the models and the transformations required

as information is shared by models. The information used in the processes can

be placed in the following three groups:

Mathematical models: The description of the mathematical equations used

as a description of the physical behavior on the various scales and math-

ematical equations that relate behaviors between scales.

Domains: The description of the domains over which the various mathematical

equations apply. In the case of multiscale analysis, this includes appro-

priate definitions at each relevant scale of space and time, and the spatial

and temporal interactions between them.

5



Physical parameters: The description of the various physical parameters used

in the mathematical equations, defined over the appropriate domains as

required to qualify the current instances of the governing equations to be

solved.

The ability to properly support component-based multiscale simulation re-

quires the specification of mathematical descriptions with associated domain

and physical-parameter definitions at the highest possible level meaningful to

the execution of the process so that the full range of solution methods interaction

modes can be supported.

2.1 Mathematical Physics Description Transformations and

Interactions

A mathematical physics description is a set of governing equations that are

assumed to govern the behavior at a particular scale over a particular domain.

The equations are written in terms of a set of dependent variables and given

parameters, and are a function of the coordinates of the domain of the problem.

To make this more concrete, consider the two most common forms of equations

encountered in multiscale analysis: partial differential equations (PDEs), which

are defined at various continuum scales, and molecular dynamics (MD), which is

based on interatomic potentials that define the interactions between molecules

and atoms at the small scales for which continuum equations over the domain

are not applicable.

6



2.1.1 PDEs

PDEs may be written in terms of multiple sets of dependent variables where

each set can contain tensors of various orders that vary over the space–time

domain. For the purposes of this discussion, consider the PDE

Dm(u, σ)− f = 0 on Ω (1)

subject to boundary conditions

Di(u, σ)− gi = 0 on Γi for i = 0, 1, 2, . . . ,m− 1 (2)

where

Dm represents the appropriate mth-order differential operator;

u(x, t) represents one or more dependent vector variables which are functions

of the independent variables of space, x, and time, t;

σ represents one or more dependent scalar variables which are functions of the

independent variables of space, x, and time, t;

f represents the forcing functions;

Ω represents the domain over which the equation is defined;

Di are the appropriate ith-order differential operators;

gi are the given boundary conditions;

7



Γi are the portions of the boundary over which the associated boundary con-

ditions act.

Computerized models of the PDEs typically use mesh-based methods in

which a two-part discretization process is used to transform the mathematical

model into numerical systems which are solved. The first part of the discretiza-

tion is the decomposition of the space–time domain into a set of mesh entities

with simple shapes in space and time. The second part of the discretization

is to discretize the shapes of the functions. A set of basis functions related

to a “weak form” of the governing equation, and/or to difference relations for

the differential operators, are used to discretize the dependent variables over

the individual mesh entities in terms of a set of to-be-determined parameters,

called degrees of freedom (dofs). The dofs can always be associated with a sin-

gle mesh entity whereas the distribution functions (basis functions or difference

relations) are associated with one or more mesh entities. In the case that the

distribution is associated with multiple mesh entities, that set is defined by rules

associated with the discretization operator and can be supported by using mesh

adjacency information. Three common cases that employ different combinations

of interactions among the mesh entities, the dofs, and the distributions are:

Finite difference based on a vertex stencil, in which the dofs are typi-

cally values of the dependent variables at vertices of a mesh and the

distribution functions are difference stencils defined in terms of vertex

values for mesh vertices for the appropriate set of topologically adjacent

mesh entities.

8



Finite volume methods are constructed in terms of distribution function

written over individual mesh entities. In most cases the field being de-

fined is discontinuous between elements (that is C−1). Therefore, dofs are

not shared between neighboring mesh entities. The coupling of the dofs

from different mesh entities is through operators acting over boundary

entities between neighboring mesh entities.

Finite element distribution functions are written over individual mesh enti-

ties, called elements. In cases where Cm, m ≥ 0 continuity is required, the

distribution functions associated with neighboring elements are made Cm,

m ≥ 0 continuous by having common dofs associated with the bounding

mesh entities common to the neighboring elements.

The application of the discretization operations over the mesh entities pro-

duces a local contributor which can be stated symbolically as:

kcdc = fc (3)

where kc is the discretized matrix for contributor c that multiplies the vector of

dofs associated with the contributor, dc.

These individual contributions are then assembled into a global algebraic

system, Kd = F , based on an assembly operator defined by the relationships of

the contributor-level dofs, dc, with the assembled set of global dofs, d.

9



2.1.2 Molecular Dynamics

In molecular dynamics (MD), the mathematical model is a potential function

describing the forces among interacting atoms and which depends on the relative

position of the atoms (Frenkel and Smit 2002). An a common potential function

is the Lennard–Jones potential which approximates the force between two atoms

as

VLJ = 4ε
[(σ

r

)12

−
(σ

r

)6
]

(4)

where σ and ε are Lennard–Jones parameters for a given material and r is the

inter-atomic distance. The parameters in potential equations may be developed

empirically or based on simulations performed on a finer ab initio scale using

an electron model. Due to the large number of atoms required to fill domains,

MD simulation is typically performed over small subdomains where boundary

conditions must be applied to the atoms on and/or near the boundary. Typical

boundary conditions are free-surface, periodic, or fixed (“Dirichlet”). The direct

outputs of an MD simulation, atom trajectories and forces on the atoms, are

typically not of specific interest, but rather are needed to determine the mean-

ingful higher-scale parameters of interest. The extraction of those higher-scale

parameters is often done by taking statistical ensembles.

2.1.3 Interactions Between PDEs and MD

It is common for a simulation to require the solution of a set of coupled mathe-

matical models where the coupling is defined by parameters assumed to be given

10



in one model but which are actually the results of another model. In some cases,

the coupling simply requires solving the models in a given order so that param-

eters are available when required. In other cases, parameters are shared in both

directions, necessitating the application of an appropriate coupling method.

Coupling on a single scale occurs when multiple models are used to solve for

different sets of the physical parameters of interest. A common example is fluid–

structure interactions, in which the flow field is influenced by the geometry of the

structure over which it flows and the geometry of the structure is a function of

the forces on it caused by the flow field. The issues associated with the transfer

of parameters between models depend on the portions of the domain over which

the interactions occur and on how those portions have been discretized, both in

terms of its geometry (mesh) and the distributions and dof used.

The interactions of parameters between models solved on multiple scales

must account for differences of the domain representation at the different scales,

for the models used to couple information between the scales, and for the re-

lationships between the parameters passed between the models on the different

scales. Two broad classes of scale-linking methods are “information-passing”

and “concurrent-bridging” (Fish 2006). With information-passing methods, fine

scales are modeled and their gross response is infused into the coarse scale;

the influences of coarse-scale fields on the fine scales are taken into account

as boundary conditions and/or forcing functions on the fine scale. With con-

current bridging, the fine and coarse scales are simultaneously resolved. For

nonlinear problems, the models at different scales are coupled in both directions

11



and information continuously flows between the scales.

In many information-passing techniques, the fine-scale model is a represen-

tative unit cell subject to appropriate boundary conditions and information

passed to the larger scale is considered to be at a point on the larger scale. In

concurrent techniques, the fine-scale model acts over some small finite portion

of the coarse-scale domain and the parameters are passed through the com-

mon boundary between the domains, or through some overlap portion of the

domains.

In multiscale methods, where entirely different models are used at each scale,

the relationships of parameters between scales is usually not direct and care

must be taken to define the appropriate operations to relate them. In some

cases, these operations act as filters to remove information (e.g., the removal

of high-frequency modes when up-scaling). In others, they must account for

relating discrete and continuum models (e.g., relating atomic-level deformations

defined by atomic positions to a continuum displacement field). In some cases,

operations are needed to relate quantities with different forms of definition (e.g.,

atomic-scale forces to continuum stresses) or to define terms not defined at a

given scale (e.g., defining continuum-level temperature in terms of atomic scale

motions).

The complication of properly relating information between scales has led to

the active development of methods for scale linking and to computer implemen-

tation of these methods. Representative information-passing methods include

multiple-scale asymptotic techniques (Fish et al. 2002), variational multiscale

12



methods (Hughes et al. 2000), heterogeneous multiscale methods (E and En-

quist 2002), multiscale enrichment schemes based on partition of unity (Fish

and Yuan 2005), discontinuous Galerkin discretizations (Hou and Wu 1997), and

equation-free methods (Kevrekidis et al. 2003). Spatially-concurrent schemes

are based on either multilevel (Fish and Belsky 1995) or domain-bridging meth-

ods (Belytschko and Xiao 2003; Broughton et al. 1999), while concurrent

schemes in the time domain are typically based on multistep methods (Gravouil

and Combescure 2001).

2.2 Domain Definitions, Transformations and Interactions

The domains considered here are space–time domains. Time is a linear progres-

sion that runs from an initial time to a final time and is typically discretized

using a well-accepted set of methods based on time increments. On the other

hand, there are a number of general forms commonly used to provide a high-level

representation of spatial domains. To meet the needs of multiscale simulation,

• The domain representation must support the transformation of an original

domain definition into representations that can support a discretization of

the governing equations over the domain. For example, the original defi-

nition of a domain may be a feature-based model of a domain over which

a mesh-based simulation is to be performed. The process of creating the

mesh in this case requires the transformation of the feature model into a

non-manifold geometric model upon which an automatic mesh generation

procedure can be applied to generate the desired mesh (Shephard, Beall,

13



O’Bara, and Webster 2004). In addition, the transformations needed to

construct the required domain representations; it is necessary to maintain

the relationship between the entities in each of the representations.

• The domain representation must support the definition of the physical

parameters (attributes) associated with the equations to be solved and the

proper transformation of that information into any derived representation

to be used by the models. For example, the ability to map the components

of a tensor with a given distribution onto a model entity, such as a surface

of the geometric domain.

• The domain representation must support the ability to address any do-

main interrogation required during the execution of models involved with

the simulation. Most of these interrogations can be limited to pointwise

evaluations (e.g., determine the normal vector at a given point on a sur-

face).

• The domain representation must support geometric interactions between

related domains used in a multiscale simulation. For example, in a con-

current multiscale model, to determine the mesh entities in the continuum

domain which overlap with the atomic region.

The definition of the domain is a function of the type of mathematical descrip-

tion used. For example, continuum domain definitions are needed in the case of

PDEs while a discrete set of atomic positions are needed in MD.

14



2.2.1 Continuum Domains

There are multiple sources for domain definitions, the most common being CAD

models, mesh models, and image data. CAD systems and mesh models employ

a boundary representation. Image data is generally defined in terms of voxels.

Except in cases of directly using the image data as the model, it is gener-

ally accepted that boundary representation is well suited to defining continuum

domains. Common to all boundary representations is the use of topological

entities and their adjacencies to represent the entities of various dimensions.

Information defining the actual shape of topological entities can be thought of

as information associated with each entity. The ability to interact with a do-

main definition in terms of the topological entities provides an effective means to

develop abstract interfaces to a domain definition, allowing for easy integration

of multiple domain-definition sources.

An important consideration in selecting a boundary representation is its

ability to represent the classes of domain needed. In the most general case,

domains can be general combinations of 0-, 1-, 2-, and 3-D entities where lower-

order entities are not required to bound higher-order entities. Figure 3 shows a

typical analysis domain of this type which would be appropriate for structural

analysis. The boundary representations that can fully and properly represent

such geometric domains are referred to as a non-manifold boundary representa-

tions (Weiler 1998).

In addition to the topological entities and associated shape information,

geometric-modeling systems maintain numerical tolerance information on how

15



well the entities fit together. The algorithms and methods within a geometric

modeling system are able to use such tolerance information to effectively define

and maintain a consistent representation of the geometric domain. (The vast

majority of what various geometry-based applications have referred to as “dirty

geometry” is caused by a lack of knowledge of, or improper use of, the tolerance

information (Beall, Walsh, and Shephard 2004).)

< INSERT FIGURE 3 HERE >

Abstracting topology is an effective way to allow for the development of

functional interfaces to boundary-based modelers that are independent of spe-

cific shape information. The developers of CAD systems have recognized the

possibility of supporting geometry-based applications through general applica-

tion program interfaces (APIs) where functions that provide entity adjacencies,

calculate geometric information such as surface normals, etc. are keyed to topo-

logical entities. This has lead to the development of geometric modeling kernels

such as ACIS (Spatial Inc.) and Parasolid (Parasolid, Inc.) which have been

successfully used to develop automated finite element modeling processes (Shep-

hard et al. 2005; Wan et al. 2005) and automatic mesh generators (Beall et al.

2004).

In the application of generalized numerical analysis processes, a meshed ap-

proximation must be created from a geometric domain. To support the full

set of operations needed for reliable multiscale analysis, a mesh must main-

tain an association with its continuum-domain representation and with the

distribution functions and number of dofs used in discretizing the PDEs (see

16



section 2.1.1). From the perspective of maintaining its relationship to the ge-

ometric domain, the use of an appropriate set of topological entities and their

adjacency is ideal (Beall and Shephard 1997).

A key component of supporting mesh-based simulation is the association of

a mesh to its geometric model (Beall and Shephard 1997; Shephard and Georges

1992), which indicates the mesh entities that represent particular model entities.

This association is used for operations such as ensuring the mesh entities on the

boundary of a model are properly curved when needed, associating boundary

conditions defined at the model entity level with the appropriate mesh entities,

etc. This association can be defined as follows:

Classification: The unique association of the ith mesh topological entity (with

dimension di), Mdi
i , to a topological entity of the geometric model of

dimension dj , G
dj

j , on which it lies, where di ≤ dj . This is denoted

Mdi
i < G

dj

j where the classification symbol, <, indicates that the left

hand entity, or set, is classified on the right hand entity.

Reverse Classification: For each model entity, Gd
j , the set of equal-order

mesh entities classified on that model entity defines the reverse classifi-

cation information for that model entity. Reverse classification is denoted

as

RC(Gd
j ) = {Md

i | Md
i < Gd

j} (5)

Shape information can be effectively associated with the topological entities

defining the mesh. In many cases this is limited to the coordinates of the mesh

17



vertices and, if they exist, higher-order nodes associated with mesh edges, faces

or regions. In addition, it is possible to associate other forms of geometric

information with the mesh entities. For example, the association of Bézier

curves and surface definitions with mesh edges and faces for use in high-order

curved finite elements (Luo et al. 2002). The mesh classification can be used

to obtain other needed geometric information such as the coordinates of a new

mesh vertex formed by splitting a mesh edge classified on a model face.

2.2.2 Discrete Domains

The domain definition for the discrete domains are the positions of the entities

for which the potentials are written to relate. For example, in the case of MD

this is the position of atoms. In many cases it is possible to define the full

set of discrete entity positions from a higher-level construct with appropriate

transformations. In this case the highest-level domain definition consists of the

geometry of the domain to be included, parameters defining the distribution

of the discrete positions, and the functions required to define those positions.

The overall domain is often a representative volume that has portions of its

boundary interior to a higher-level domain and may include knowledge of free

surfaces.

The parameters and transformations used to define the atomic positions are

a function of the type of material being defined. In the case of perfect crystals,

the position of atoms within each crystal are defined by a set of lattice vectors

which provide information defining the positions of atoms. The definition of

18



the geometric configuration of the crystal is a nontrivial process that can start

with a statistical method to define an initial set of seed locations for crystals

whose initial shape can then be defined as the Voronoi diagram of those points.

To define more-realistic configurations, various grain-growth procedures can be

applied which account for knowledge of the material system. There can be

defects in the crystal systems (Hull and Bacon 1975). With additional infor-

mation about these defects and the total number of atoms, coordinates, and

velocities of the atoms can have an initial adjustment applied to them. In the

case of polyms, an atom’s position must be defined by its position along its

molecular chain, where there are strong bounds between neighboring units in

the chain. Statistically-based geometric constructs can be used to define these

material-dependent chains in the simulation box. Methods like those just out-

lined, which can take a compact definition of discrete domains and produce a

proper set of atomistic positions, are required. In some cases these methods

will be purely geometric while in others will can require the execution of a full

atomistic relaxation model.

One approach to bridging scales is to interpolate the behavior of a large set

of atoms in terms of a small subset of them. One such approach, well-suited to

lattice structures, is the quasi-continuum method in which the position of atoms

over simple shapes such as triangles and tetrahedra is described to vary linearly

between known atom positions (Knap and Ortiz 2001; Miller and Tadmor 2002).

In the case of polymer chains, atoms along a chain can be represented by a small

number of “beads” placed along the chain (Mavrantzas et al. 1999; Padding

19



and Briels 2002).

2.2.3 Interactions of Domains

There are three general forms of domain interactions used in multiscale simula-

tions. They are:

Disjoint domains, which share information across a common boundary.

Overlapping domains, which have portions of the overall domain represented

at more than one scale and the information is shared through the over-

lapped region.

Telescoping domains, which represent microstructure by many small-scale

domains, which have essentially zero size with respect to the higher-scale

domain. Thus, each small-scale domain passes information to a point in

the higher-scale domain.

In each case, the operations used to transfer parameters between the scales must

be consistent with the form of domain interaction.

2.3 Physical Parameter Definitions, Transformations and

Interactions

The physical parameters used in the mathematical equations are tensor quanti-

ties (Beju et al. 1983) defined over various portions of the domain that can be

general functions of the independent variables of space and time as well as other

dependent variables. Knowledge of the order of a tensor and the dimension of

20



the spatial domain it is defined over defines the number of components needed to

uniquely define the tensor. The symmetries, for tensors of order two or greater,

define those components that are identical to, or negative of (anti-symmetric),

other components. The components of the tensor are, in general, functions of

the domain parameters as well as other problem parameters. The ability to

understand and use a tensor at any particular instant requires knowledge of the

coordinate system in which the components are written. Tensors can be repre-

sented in other coordinate systems of equal or lower order through appropriate

coordinate transformations.

To support the full range of simulation needs, the tensors used to define

the equations parameters must be related to the highest level of the geometric

representation possible. For example, in the case of solving a PDE over contin-

uum domains, the distribution of the given input tensors needs to be related to

the entities in the geometric model. The model topological entities of regions,

faces, edges, and vertices are ideally suited for supporting that specification in

a general way.

The tensors associated with the dependent parameters are determined as

part of the solution process. Therefore these tensors, referred to as fields, are

understood with respect to the spatial and equation discretizations used in the

simulation process. Since the spatial discretizations are required to maintain

the relationship to the original domain definition (see section 2.2), the fields can

also be related to the highest-level domain definitions.

In multiscale simulation, a single tensor field can be used by a number of

21



different analysis routines that interact and the field may be associated with

multiple spatial discretizations (e.g., meshes) having alternative relationships

between them. In addition, different distributions can be used by a field to

discretize its associated tensor. The ability to have a given tensor defined over

multiple meshes and/or discretized in terms of multiple distributions can be

handled by supporting multiple field instances.

3 Constructing a Multi-Model: Design of Func-

tional Components to Support Multiscale Sim-

ulations

In the design of a multi-model system to support multiscale simulations, it is

important to determine the information required by the models and the transfor-

mations to be applied to provide the information in the needed form. Within the

multi-model multiscale simulation environment, functional APIs are defined to

support the various classes of information transformations needed. Employing

the APIs provided by components makes it straightforward to combine various

single-scale models to construct multi-models for multiscale simulations. Each

of the various models interact with other models only through the component’s

API. For example, in a concurrent model, part of the scale-linking component

would be a function linking atomistic to continuum using statistical averaging of

atomic displacements on the boundary of the atomistic region thereby providing

22



boundary deformations to the continuum model.

A key goal of this design is to build multiscale simulation procedures by using

adaptive solution strategies to control existing time-tested single-scale models

thereby ensuring the reliability of simulation in terms of providing predictions

of the desired parameters to the required degree of accuracy. The only way to

provide this reliability is to explicitly consider the approximation errors that

can arise within each step executed by a model or transformation performed

by a component. Since many of these errors cannot be controlled through

a priori means, it is necessary to support adaptive feedback processes that

use a posteriori information to control the execution of each model step and

transformation.

A number of the models needed to perform specific simulation steps are

well-established and should be used. Two examples are generalized fixed-mesh

continuum PDE solvers (finite element, finite volume, and finite difference) and

discrete-level models for solving discrete-potential systems (ab initio, molecular

statics, molecular dynamics).

The majority of the mature and widely-used software operates only though

input and output files. In that case, the components will be a facade, crating

the input files and interacting with the output files. Although this case does

not take full advantage of the components, advantages gained are the easy sub-

stitution of other models, including ones that can more-directly interact with

the components.

Some programs support the addition of user-defined functionality. For ex-

23



ample, ABAQUS (ABAQUS Inc.) supports user-defined material models and

user-defined finite elements. Although limited, these two features facilitate the

majority of the functionality needed for ABAQUS to be an effective model in a

multiscale simulation environment.

Another area in which mature models exist to support multiscale modeling

is the definition of geometric domains of 3-D parts using boundary represen-

tations. Most existing systems provide a functional API (Parasolid, Inc.; Spa-

tial Inc.), which is ideal for creating a component for a multiscale simulation.

These geometric-modeling APIs provide the capabilities needed to represent

continuum-level domains in multiscale simulations. There are also many ex-

isting programs which can generate mesh-level discretizations of geometric do-

mains, the interfaces of which range from file- to API-based (Beall et al. 2004).

API-based interfaces have been used in the development of adaptive mesh mod-

ification procedures (Li et al. 2002) and complete adaptive PDE multi-model

simulations (Shephard et al. 2005; Wan et al. 2005), and are well-suited for the

needs of multiscale simulation.

In designing a multi-model system to support multiscale simulation, we must

identify appropriate levels of abstraction to support the flow of information be-

tween models such that information can be provided to procedures which exe-

cute any required transformations. The components defined to support multi-

model multiscale simulations are:

1. problem definition,

2. equation parameters,

24



3. geometric domains,

4. discretized geometric domains,

5. tensor fields, and

6. scale-linking operations.

A subset of similar functional components are being defined to support the

interoperability of simulation models is a topic of current development for mesh-

based continuum-simulation methods both in terms of open-source code (Chand

et al. 2006; TSTT Software 2006) and commercial products (Simmetrix Inc.

2006).

< INSERT FIGURE 4 HERE >

Figure 4 illustrates the structure of a multiscale multi-model in which five

functional components are used by the single-scale models in the multi-model

of a given multiscale simulation. Additional scales can be added by adding

another scale-linking component and model to either side of the diagram. Each

instance of a component utilizes other components in the same scale to do its

job. Information flow is indicated by the arrows. Furthermore, components will

only share information through scale linking with the component of the same

type in the other model. Based on this, the functions within a component need

to consider the following three modes of interaction:

1. providing and modifying component-internal data (procedures which don’t

involve interactions with other components),

2. providing information between components within a model, and

25



3. providing information between like components for different models.

3.1 Problem Definition

To consider multiscale simulations, we need an overall problem definition. A

problem definition must include all of the relevant physical parts, must define

the relationships between the parts, and must facilitate the creation of alternate

representations of the parts. In addition, a problem definition must provide

any other information needed to construct and execute the desired solution

process. A problem definition must also allow for the creation of viewpoint-

specific interfaces as needed by the solution strategy and simulation models to

be used (for example, considering an atomic region as though it is a continuum).

Representations, including simulation viewpoints, are under development (Shep-

hard et al. 2004). These representations can be defined in terms of graph struc-

tures similar to those used to define assembly and feature models in CAD sys-

tems (Bidarra and Bronsvoort 2000; Hoffmann and Joan-Arinyo 1998), with the

extensions to support hierarchal decompositions and multiple viewpoints (Bronsvoort

and Jansen 1993; Hoffmann and Joan-Arinyo 1998; Hoffmann and Joan-Arinyo

2000; Noort et al. 2002). In the single-scale case, a problem-definition compo-

nent would then support the following interaction modes:

Component-internal: part definitions, relationships of parts, and mathemat-

ical equations governing part behavior.

Inter-component: relationships of parts to domains, relationships of parts

to parameters, relationships of parts to model functions, and model-level

26



simulation strategy information.

Interacting with like components of other models: viewpoint construction

rules, relation of mathematical equations on related parts in the different

models, and multiscale simulation strategy information.

In the multiscale case, the overall problem definition is inherently multiscale. As

such, it will depend on a scale-linking component, as well as single-scale models

which compose it, complete with their own subproblem definitions.

3.2 Equation Parameters

The parameters in the mathematical equations representing physical quantities

are, in general, tensors. The types of physical parameters these tensors define

are material properties, loading functions, boundary conditions, and initial con-

ditions. Although the execution of any model requires a specific set of these

tensors associated with the mathematical equations of that model, the param-

eters can be stated abstractly in terms of the highest-level problem-definition

entities. For example, a boundary heat flux of 1 kW/m2 defined on surface 1 of

mesh element 2 might be abstractly stated as the same heat flux applied to the

bottom surface of a heat sink. This boundary conditions on the heat sink would

be mapped onto a corresponding concrete solid model, and in turn onto a mesh.

By defining conditions on the highest-possible level, it becomes easy to change

the mesh, or even the solid model itself, without having to start from scratch.

Generalized methods to define and manipulate such a structure of models have

been defined (O’Bara et al. 2002; Shephard 1985).

27



The equation parameters component must support:

Component-internal: parameter information queries, parameter instance in-

formation queries, parameter coordinate transformations, and parameter

reduction and modification functions.

Inter-component: relation to problem parts and geometric domains, relation

to model solution process, and relation to fields.

Interacting with like components of other models: dependencies between

parameters for different models.

3.3 Geometric Domain

A geometric-domain component is a functional unit to describe a multiscale

simulation domain at a particular scale (e.g., continuum domain or atomistic

domain). Within a multiscale model, a geometric domain supports geometric

interactions between other geometric domains.

Consider, first, a continuum geometric domain defined in a CAD modeler in

terms of a boundary representation. This component must support:

Component-internal: topological entity information, shape information, geometric-

model tolerance information, and geometric model modification.

Inter-component: association with parts in the problem definition, associ-

ation of equation parameters with the geometric domain (and, through

that, association with domain discretizations—meshes), and association

with scale linking.

28



Interacting with like components of other models: geometric interactions

relating domains on different scales through boundaries and/or overlaps.

Atomic-scale models must support:

Component-internal: the definition of atom layouts, and the geometric rela-

tionships among atoms.

Inter-component: obtain potentials and provide forces.

Interacting with like components of other models: placement of the do-

main with respect to larger-scale domains, and geometric interactions re-

lating domains of different scales through boundaries and/or overlaps.

3.4 Discretized Geometric Domains

A discretized geometric-domain component is a piecewise-geometric approxi-

mation of a corresponding geometric-domain component in terms of a mesh or

idealized atomistic layout. This component must support:

Component-internal: topological entity queries for meshes, geometric shape

of mesh entities, and geometric queries such as position of atoms and

distance between atoms or mesh entities.

Inter-component: mesh Jacobian information, association with the geometric

domain, and association with fields.

Interacting with like components of other models: mesh-to-mesh inter-

action, mesh-to-atomistic interactions, and discrete-to-atomistic interac-

tions.

29



3.5 Tensor Fields

A tensor-field component is a discretization of a tensor field over a discretized

domain. To support a tensor field defined over multiple discretized domains, the

tensor-field component must support a collection of field instances for a single

field where one field instance is defined over each of the discretized domains.

The tensor field-component must support:

Component-internal: field information queries, field coordinate transforma-

tion, and field reduction and modification.

Inter-components: association of field with the discretized geometric domain

entities, association with quantities determined by model solution pro-

cesses, and relation to parameters.

Interacting with like components of other models: field transfer between

field instances, and field transformation or modification to meet the model

needs.

3.6 Scale-Linking Operators

Scale-linking operators exist to transform parameters among different single-

scale models. A scale-linking operator is defined in terms of

• the domains at each scale and the form of the domain interactions,

• the domain discretization used for the interacting fields,

30



• the distribution functions and number of dofs used to represent the inter-

acting fields over the discretized domains, and

• the functional operations associated with transforming the field informa-

tion on the one scale to the other scale.

The methods used should allow scale-linking operations to be defined at the

highest level of problem definition, with additional qualification as needed to

account for specific forms of domain discretizations and field distributions used.

As such it must support:

Component-internal: the definition of the linking operations.

Inter-component: the relationship to parts and domains, and to other fields

and/or parameters.

Interacting with models: using single-scale components’ interfaces to trans-

fer information between scales.

By combining components as described, and as shown in figure 4, each com-

ponent will have minimal dependence on the rest of the system. This reduces

software complexity and will allow the components to be easily interchanged.

4 Example Multi-Model Simulation Procedures

The examples of automated adaptive simulation procedures presented in this

section employ prototype implementations of the functional components out-

lined in section 3. The first example is an automated adaptive single-scale pro-

31



cedure that is currently used in industry. The second is an adaptive atomistic–

continuum multiscale procedure under development.

4.1 Automated Adaptive Mesh-Based Simulation

Many programs are used for the solution of PDEs on a given fixed mesh. Al-

though these they are capable of providing results to required levels of accuracy,

the vast majority lack the ability to automatically control mesh discretization

errors through adaptive methods. Using the interoperable components discussed

in section 3 in conjunction with existing fixed-mesh finite element models and

a mesh-modification component (Li et al. 2002), multiple adaptive analysis

procedures have been built.

One such example was created for 3-D forming simulations in which the

deformable parts undergo large plastic deformations that result in major changes

in the analysis domain geometry. The meshes of the deforming parts need

to be frequently modified to continue the analysis due to significant element

distortions, mesh discretization errors, and/or geometric approximation errors.

In these cases, it is necessary to replace the deformed mesh with an improved

mesh that is consistent with the current configuration. Procedures using the

two domain and field components are employed to determine a new mesh size

field, which is provided to a local mesh modification procedure (Wan et al. 2005)

which creates an adapted mesh. A tensor-field component is also used to transfer

history-dependent field variables as each mesh modification is performed (Wan

et al. 2005) so that the full set of information needed for the next set of analysis

32



steps can be provided to the analysis model, the commercial finite element

program DEFORM-3D (Fluhrer 2004).

Figure 5 shows the setup, initial mesh, and final adapted meshes for a

steering-link manufacturing problem solved using this multi-model capability.

This simulation shows a total stroke of 41.7 mm. The initial mesh of the work-

piece consists of 28,885 elements. The simulation was completed with 20 mesh-

modification steps producing a final mesh with 102,249 elements.

< INSERT FIGURE 5 HERE >

4.2 Adaptive Atomistic/Continuum Adaptive Multiscale

Simulation

Concurrent adaptive multiscale simulation capabilities are being developed for

modeling fracture in metallic structures (Datta et al. 2004). The key analysis

engines for this multi-model application are non-linear finite element models

for the continuum level and molecular-statics models to address the atomistic

aspects of dislocation formation and growth. Part of the simulation viewpoint

in this case is the indication of the set of behaviors that can be associated

with the parts which indicate that both linear- and non-linear continuum be-

havior can be considered, and that atomistic regions can be superimposed at

locations of dislocation formation such as crack tips. The equation parameters

include the continuum material properties, loads and boundary conditions, and

the atomistic potentials. The geometric domain includes the full part geome-

try and atomistic overlays, including defect locations for the locations that are

33



adaptively determined to require an atomistic overlay. The computational rep-

resentation of these two regions includes a finite element mesh and atomistic

positions, taking account of the defects. The tensor fields include overall and

local deformations as well as and stresses at the continuum level, and atom

positions and forces on the atomistic level. Since the atomistic and continuum

levels overlap, the options for a scale-linking operator include relating local de-

formations and forces either though a common boundary or through an overlap

region. In both cases the atomistic deformations must be smoothed before being

transferred to the continuum level and the discrete inter-atom forces must be

transformed into stress-like quantities so they can be related to continuum level

stresses.

Figure 6 shows an example of an adaptive atomic continuum simulation for

the definition and growth of dislocations at a crack tip. In this case, the cracked

macro-domain was defined in a solid modeler and the finite elements were gen-

erated automatically. Atomic overlay regions are defined in the critical areas

based on an error indicator; as defects form, the atomic domains automatically

adjust.

< INSERT FIGURE 6 HERE >

5 Closing Remarks

The focus of this paper has been an examination of the process of performing

adaptive multiscale simulation with the goal of defining an appropriate set of

34



high-level components to support the construction of multi-model simulations

taking advantage of established models that can effectively address specific as-

pects of these simulations. Six functional components have been defined which

support the transformation and transfer of information to the various models

used by these multi-model simulations. The application of these components

has been demonstrated through two multi-model automated adaptive simulation

examples building on an initial prototype of six functional components.

References

ABAQUS Inc. (2006). http://www.abaqus.com.

Beall, M. and M. Shephard (1997). A general topology-based mesh data struc-

ture. International Journal for Numerical Methods in Engineering 40 (9),

1573–1596.

Beall, M., J. Walsh, and M. Shephard (2004). Accessing cad geometry for

mesh generation. Engineering with Computers 20 (3), 210–221.

Beju, I., E. Soos, and Teodorescu (1983). Euclidean Tensor Calculus with

Applications. Abacus Press.

Belytschko, T. and S. Xiao (2003). Coupling methods for continuum model

with molecular model. International Journal for Numerical Methods in

Engineering 1, 115–126.

Bidarra, R. and W. Bronsvoort (2000). Semantic feature modeling. Computer-

Aided Design 32, 201–225.

35



Bronsvoort, W. and F. Jansen (1993). Feature modeling and conversion – key

concepts to concurrent engineering. Computers in Industry 21 (1), 61–86.

Broughton, J., F. Abraham, N. Berstein, and E. Kaxiras (1999). Concurrent

coupling of length scales: Methodology and application. Physical Review

B 60, 2391–2403.

Chand, K., L. Diachin, X. Li, C. Ollivier-Gooch, E. Seol, M. Shephard,

T. Tautges, and H. Trease (2006). Toward interoperable mesh, geome-

try and field components for pde simulation development. Engineering

With Computers.

Datta, D., R. Picu, and M. Shephard (2004). Composite grid atomistic contin-

uum method: An adaptive approach to bridge continuum with atomistic

analysis. Journal of Multiscale Computational Engineering 2 (3), 401–420.

E, W. and B. Enquist (2002). The heterogeneous multi-scale method. Com-

munications in Mathematical Sciences 1, 87–132.

Fish, J. (2006). Discrete to continuum multiscale bridging. Multiscaling in

Molecular and Continuum Mechanics.

Fish, J. and V. Belsky (1995). Multigrid method for a periodic heterogeneous

medium. Computer Methods in Applied Mechanics and Engineering 126,

1–38.

Fish, J., W. Chen, and G. Nagai (2002). Nonlocal dispersive model for wave

propagation in heterogeneous media: One-dimensional case and multi-

dimensional case. International Journal of Numerical Methods in Engi-

36



neering 54 (3), 331–363.

Fish, J. and Z. Yuan (2005). Multiscale enrichment based on the partition of

unity. International Journal of Numerical Methods in Engineering 62 (10),

1341–1359.

Fluhrer, J. (2004). DEFORM-3D Version 5.0 User’s Manual. Scientific Form-

ing Technologies Corporation.

Frenkel, D. and B. Smit (2002). Understanding Molecular Simulations: From

Algorithms to Applications (Second ed.). Academic Press.

Gravouil, A. and A. Combescure (2001). Multi-time-step explicit method for

nonlinear structural dynamics. International Journal of Numerical Meth-

ods in Engineering 50, 199–225.

Hoffmann, C. and R. Joan-Arinyo (1998). Cad and the product master model.

Computer-Aided Design 30 (11), 905–918.

Hoffmann, C. and R. Joan-Arinyo (2000). Distributed maintenance of multi-

ple project views. Computer-Aided Design 32, 421–431.

Hou, T. and X. Wu (1997). A multiscale finite element method for elliptic

problems in composite materials and porous media. Journal of Computa-

tional Physics 134, 169–189.

Hughes, T., L. Mazzei, and K. Jansen (2000). Large-eddy simulation and the

variational multiscale method. Computing and Visualization in Science 3,

47–59.

Hull, D. and D. Bacon (1975). Introduction to Dislocations. Butter worth-

37



Heinemann.

Kevrekidis, I. G., C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg,

and C. Theodoropoulos (2003). Equation-free coarse-grained multiscale

computation: Enabling microscopic simulators to perform system-level

tasks. Communications in Mathematical Sciences 1 (4), 715–762.

Knap, J. and M. Ortiz (2001). An analysis of the quasicontinuum method.

Journal of Mechanics and Physics of Solids 49, 1899–1923.

Li, X., M. Shephard, and M. Beall (2002). Accounting for curved domains

in mesh adaptation. International Journal of Numerical Methods in En-

gineering 58, 246–276.

Luo, X., M. Shephard, J.-F. Remacle, R. O’Bara, M. Beall, B. Szab, and

R. Actis (2002). p-version mesh generation issues. In 11th International

Meshing Roundtable, pp. 343–354.

Mavrantzas, V., T. Boone, E. Zervopoulou, and D. Theodorou (1999). End-

bridging monte carlo: An ultrafast algorithm for atomistic simulation of

condensed phases of long polymer chains. Macromolecules 32, 5072–5096.

Miller, R. and E. Tadmor (2002). The quasicontinuum method: Overview,

applications and current directions. Journal of Computer-Aided Materials

Design 9, 203–209.

Noort, A., G. Hoek, and W. Bronsvoort (2002). Integrated part and assembly

modeling. Computer-Aided Design 34, 899–912.

O’Bara, R., M. Beall, and M. Shephard (2002). Attribute management system

38



for engineering analysis. Engineering with Computers 18 (4), 339–351.

OCTA (2006). Meso-scale simulation programs. http://octa.jp/.

Padding, J. and W. Briels (2002). Time and length scales of polymer melts

studied by coarse-grained molecular dynamics simulations. Journal of

Chemical Physics 117 (2), 925–943.

Parasolid, Inc. (2006). http://www.ugs.com/products/open/parasolid.

Shephard, M. (1985). Finite element modeling within an integrated geometric

modeling environment: Part ii – attribute specification, domain differences

and indirect element types. Engineering with Computers 1, 72–85.

Shephard, M., M. Beall, R. O’Bara, and B. Webster (2004). Toward

simulation-based design. Finite Elements in Analysis and Design 40,

1575–1598.

Shephard, M., J. Flaherty, K. Jansen, X. Li, X.-J. Luo, N. Chevaugeon, J.-

F. Remacle, M. Beall, and R. O’Bara (2005). Adaptive mesh generation

for curved domains. Journal for Applied Numerical Mathematics 50 (2–3),

251–271.

Shephard, M. and M. Georges (1992). Reliability of automatic 3-d mesh gener-

ation. Computational Methods in Applied Mechanics and Engineering 101,

443–462.

Simmetrix Inc. (2006). http://www.simmetrix.com/.

Spatial Inc. (2006). 3d acis modeler. http://www.spatial.com/components/acis.

TSTT Software (2006). http://tstt-scidac.org/software/software.html.

39



Wan, J., S. Kocak, and M. Shephard (2005). Automated adaptive 3-d forming

simulation process. Engineering with Computers 21 (1), 47–75.

Weiler, K. (1998). The radial-edge structure: A topological representation

for non-manifold geometric boundary representations. Geometric Model-

ing for CAD Applications, 3–36.

40



Figure 1. Multi-model hierarchy used in the design of a composite material

system.

Figure 2. Multi-model hierarchy needed for a drug delivery system.

Figure 3. Example of a non-manifold model.

Figure 4. Interactions between components.

Figure 5. Adaptive forming simulation example where the left image shows

the problem set-up with geometry of the two dies and initial workpiece and the

right two images show the initial (top) and final (bottom) meshes.

Figure 6. Adaptive molecular/continuum multiscale simulation.

41


