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Abstract

The pre-processing stage of finite element analysis of the
Navier-Stokes equations is becoming increasingly impor-
tant as the desire for more general boundary conditions, as
well as applications to parallel computers increases. The
set up of general boundary conditions and communica-
tion structures for parallel computations should be accom-
plished during the pre-processing phase of the analysis, if
possible, to ensure efficient computations for large scale
problems in computational fluid dynamics (CFD). This
paper introduces a general methodology for geometry
based boundary condition application and pre-computing
of parallel communication tasks.

1 Introduction

Large scale finite element simulations [11, 12], require
boundary condition information, parallel communication
data structures, and higher order degree-of-freedom in-
formation to be pre-processed for rapid retrieval during
the computation phase of the analysis. This is critical
for achieving scalability and short turnaround times. Al-
though this is not always possible, (e.g. dynamic mesh
adaptivity during computation will require data structure
modification during simulations), when it is, it represents
a substantial decrease in computation time. Many large
scale computations of laminar and turbulent flows, do
meet the requirements for pre-processed data structures,
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and the additional speed gained is often a necessity to ac-
quire a solution in a reasonable time-frame.

The pre-processing method described here is based on
recent developments in abstract mesh representation and
classification against a geometric model. Mesh-model
classification (see Beall and Shephard [3]) provides a
connection between the finite element mesh, which may
be varied over the course of several analysis runs, and
the geometric (topological) model of the physical domain,
which remains fixed. Given this relationship, bound-
ary condition attributes are associated with the geometric
model(O’bara et al. [13]) the topological description of
the problem domain, rather than the finite element mesh,
thus enabling a more intuitive approach to their applica-
tion [17]. The finite element mesh then inherits bound-
ary condition attributes from the geometric model. The
pre-processor interacts with the geometric model, as well
as the finite element mesh, to pre-compute the element
degree-of-freedom (mode) connectivity information (in-
cluding information necessary for higher order computa-
tions), boundary condition arrays, and parallel commu-
nication data structures. In this paper when we use the
term mode, we refer an interpolation function which con-
tributes a single degree of freedom to the global system of
equations.

Essential and natural boundary condition attributes
may be quite complex for fluid dynamics simulations and
require substantial pre-processing for accurate specifica-
tion. In addition, periodic boundary conditions are han-
dled differently than other essential boundary conditions
and pose additional difficulties. A method is presented

1



for application of general sets of boundary conditions to
the geometric model, which are conferred to the finite el-
ement mesh during pre-processing. Classical finite ele-
ment procedures traditionally associate boundary condi-
tions directly with the nodal degrees of freedom which
requires that the boundary conditions be set up for each
mesh, even when the geometric model is unchanged. In
addition, higher-order computations rely heavily on the
additional topology of the mesh (e.g. mesh edges and
faces), information which is not readily accessible from
the classical data structures which are based on simple
element connectivity in terms of global mode numbers.
To address these issues, the boundary conditions are in-
stead applied directly to the geometric model (no mesh
even needs to exist at this stage) and the pre-processor
reads the model and the mesh and associates the model
information with the mesh. By pre-processing boundary
condition information, the analysis code has no need to
make expensive geometric model queries and therefore,
can rapidly constrain the required modes.

The increasing complexity of fluid dynamic simula-
tions has lead to the heavy use of parallel computers.
While the solvers themselves can be trivially parallelized
[11, 23, 22] and have been shown to yield near perfect
scaling on large problems, a non trivial, extensive effort
goes into the pre-processing of these parallel data struc-
tures and communication traces which make the paral-
lelism almost transparent to the solver.

In this paper we attempt to address the most critical
aspects required for pre-processing higher order simula-
tions. First we introduce the idea of topological mesh
model hierarchy. Then we discuss the concepts used
in applying boundary and initial conditions efficiently.
At this point we also present the compact data structure
which holds all the higher order information and is pro-
vided as input for the solver code. Following that, we
briefly describe the additional pre-processing required for
parallel processing.

2 Topological hierarchy

Finite element meshes have traditionally been described
in terms of nodal coordinates and element connectivity.
For the purpose of preprocessing, this representation has
been dispensed in favor of a richer topological data struc-

ture [3]. This data structure or database, maintains infor-
mation related to all mesh entities, vertices, edges, faces,
and regions as well as adjacency relationships between
them. The geometric model may be similarly defined in
terms of model entities of the same type. The ith mesh
entity of dimension di will be denoted by Mdi

i similarly
Gdi

i for a model entity. For linear basis computations this
information is clearly more than necessary, however, pre-
processing higher-order computations requires this. The
pre-processor also performs the essential task of distilling
the available generic data available in the initial stages
to an optimal size and form needed by the main anal-
ysis code. Therefore the use of the entire mesh data
structure is confined to the pre-processing stage, and only
the traditional finite element structures (coordinates and
connectivity generalized to support higher order mode
information) are used within the analysis code. This
means that the traditional structures are created during
pre-processing, and written to disk to be read by the anal-
ysis code. This data structure is identical to the traditional
format, with the exception that information on higher or-
der degrees of freedom is included.

Central to the method of pre-processing described here
is the idea of the classification of the finite element mesh
on the geometric model. Every stage in the pre-processor
makes extensive use of the cross referencing capability
provided by this idea. Mesh-model classification defines
the relationship between the finite element mesh and the
physical domain (geometric model) on which the problem
is to be solved and is key to the development of geometry
based boundary condition specification. Beall and Shep-
hard [3] define mesh classification against the geometric
domain as the unique association of a mesh entity of di-
mension di, Mdi

i to a geometric model entity of dimen-

sion dj , G
dj

j where di ≤ dj , denoted Mdi

i @ G
dj

j . The
classification symbol @ indicates that the left-hand entity
is classified on the right-hand entity.

For example a mesh vertex can be classified on a model
vertex, model edge, model face or model region. Where
as a mesh edge cannot be classified on model vertex (an
entity of lower order than itself), similarly mesh faces can-
not be classified on model edges or vertices and mesh
regions can be classified only on model regions. This
unique classification can be used to transfer the desired
boundary condition information from the model entities
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Figure 1: Mesh Model Classification

to the mesh entities that are classified on them. In the
remainder of the document geometric model entities are
referred as model entities and the finite element mesh en-
tities are referred to as mesh entities.

3 Boundary and Initial conditions

A central part of the finite element formulation is the ac-
curate specification of boundary conditions, which help
define the physical problem being solved. Furthermore
initial conditions affect the time it takes to reach a steady
solution, when that is the goal or strongly influence the
solution when solving unsteady problems.

When solving differential equations using numerical or
finite element methods, generally we have three kinds of
boundary conditions. First there are essential or Dirichlet
boundary conditions, which constrain the solution vari-
ables, on specified sections of the boundary. Secondly

there are natural or Neumann boundary conditions, which
constrain the fluxes (which are dependent on the deriva-
tives) of the variables. The third type of boundary condi-
tion involves periodicity in which case the solution repeats
itself after a certain spatial interval, in a given direction.
We can take advantage of this fact by equating the solu-
tion variables at the ends of the periodic spatial interval.
This periodic interval can be either a translation or a rota-
tion. This type of periodic boundary conditions are really
a subtype of a larger class of boundary conditions known
as multi-point constraints.

For Navier-Stokes equations essential boundary con-
ditions can be applied to all of the solution variables,
pressure, three components of velocity and temperature.
There are two specific ways of specifying velocity essen-
tial boundary conditions. The first one constrains one
component of velocity while leaving the other compo-
nents free. This will be referred to as one component
boundary conditions. The velocity components in the
plane perpendicular to this vector are free. The second
way completely specifies the complete velocity vector,
thus all components are constrained. This will be referred
to as three component boundary conditions. When only
two components are prescribed, this can be done with the
application of two one component conditions. Finally nat-
ural boundary conditions are applied in the form of mass
or heat fluxes, traction on surfaces and pressure specified
over a surface in a weak or integral sense.

3.1 Inheritance of boundary conditions

In section 1, we discussed the capability of applying gen-
eral sets of boundary conditions to the geometric model,
which are then automatically transferred to the finite ele-
ment mesh during pre-processing. This ability to transfer
boundary condition data attached to a topological model,
to the finite element mesh is one of the most important at-
tributes of this pre-processing method. This capability is
made possible by the mesh-model hierarchy discussed in
section 2.

While the mesh-model classification saves us from hav-
ing to set boundary conditions on individual mesh entities,
for complicated models even the model entities could run
into the hundreds. The application of boundary condi-
tions, even to a relatively simple geometric model, can be-
come quite cumbersome if the model has many edges and
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vertices. Since the physical information is most naturally
associated with the model faces, a method has been im-
plemented by which edges inherit from faces and vertices
from edges, thus enabling the user to consider only the
faces. While this makes the application of boundary con-
ditions much simpler, it places additional demands on the
pre-processor to derive the correct set of boundary condi-
tions to be inherited.

To address this problem we introduce the concept of
boundary condition inheritance. This allows for the
boundary conditions to be set on the highest possible
model entities (usually faces, since faces are the high-
est level entities which can represent a boundary). The
pre-processor uses a predefined set of rules to inherit the
boundary condition attributes from the faces to the other
lower order entities (edges and vertices). Setting bound-
ary conditions on model faces is usually all that is re-
quired, but occasionally the user might need to specify
boundary conditions on a small number of edges and ver-
tices to correct for any known conditions of conflict of the
inheritance.

The task of transferring the boundary condition val-
ues from model to mesh entities is performed by using
the classification information provided by the mesh data
structure. For instance if a particular value of pressure
is set on a model face, the pre-processor iterates over all
the mesh entities classified on this model face and ap-
plies the pressure boundary condition to them. There is
no scope for any sort of conflict since each mesh entity is
uniquely classified on a single model entity. On the other
hand the transfer of information from the model faces (on
the boundary conditions were actually specified) to the
lower model entities (edges and vertices) is usually more
involved. In the topological geometric model, edges are
formed by the intersection of two model faces and ver-
tices are defined at locations where at least two model
edges meet. When deriving boundary conditions from
multiple neighbors there could both resolvable and unre-
solvable conflicts. For instance when two different direc-
tions are specified for the one component velocity on two
neighboring faces of a model edge, both directions are
preserved and two components are constrained instead of
one. Where as, if the conflict occurs in the magnitudes
only, then the result is indeterminate and it is suggested
that velocity boundary condition be explicitly set on the
edge to avoid the ambiguity arising from inheritance.

The following general methodology is used to imple-
ment the boundary condition inheritance from higher or-
der to lower order model entities. The pre-processor iter-
ates over all the model entities, faces followed by edges
and finally vertices. For each entity, if any boundary con-
dition attribute is explicitly specified, that value is given
precedence and used as it is (usually the case for model
faces). When nothing is explicitly specified on an en-
tity, the boundary condition attributes are derived from
the higher order entities intersecting to create it. All the
immediate higher order entities in contact with the current
one are visited and the value of the attribute in the current
entity is derived as a combination of all the surrounding
higher entities. For instance a model edge will derive its
boundary condition data from the model faces intersect-
ing to create the edge. Similarly a vertex will derive its
information from the model edges coincident on it.

The above described method of boundary condition in-
heritance can be applied to both essential and periodic
class of boundary conditions. It should be noted that the
natural boundary conditions are defined only for model
faces and are not derived for edges and vertices since
they do not make physical sense for edges and vertices
on which the formulation does not evaluate boundary in-
tegrals.

3.2 Boundary and initial conditions for hi-
erarchic basis

The boundary condition coefficients are calculated at the
pre-processing stage where the rich mesh model classi-
fication structure is available and then the evaluated val-
ues are written out in the traditional form and can be ef-
ficiently applied at the solver stage. This also enables us
to set boundary conditions on the higher order modes at-
tached to mesh edges and faces. In the current work we
have used higher order basis functions based on the Leg-
endre Polynomials. They have been discussed in detail by
Shephard et al. [18].

Higher order basis functions using Lagrange basis
functions enforce essential boundary conditions in a rel-
atively straight forward manner, as the basis coefficients
correspond to solution values at nodes, e.g., the Lagrange
interpolation equation Na(ξb) = δab. Since the so-
lution coefficients with respect to the hierarchical basis
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do not correspond to solution values at spatial locations,
work must be done to determine the coefficients on the
boundaries. To accomplish this, we interpolate the known
Dirichlet boundary function with the hierarchical basis by
solving a linear system of equations for the unknown ba-
sis coefficients. Additionally, a unique set of interpolation
points must be chosen since there are no particular spatial
locations associated with the higher-order coefficients.

The element level interpolation may be constructed by
solving a linear system of equations for the coefficients on
each element in the domain. Suppose we wish to specify
that φ(xi) = g(xi) over some portion of the boundary,
where φ(xi) could be any of our solution variables. We
can find the coefficients of an approximation to g(xi) (for
each element, e) as

g(xi) ≈ ĝe(xi) =

nip∑

a=1

ge
aNe

a(xi) (1)

where Ne
a are the basis functions for element e, ge

a are the
unknown coefficients, and nip is the number of interpola-
tion points, which must equal nes, the number of element
shape functions. Equation (1) can be expressed in the fol-
lowing matrix system.

Mg = R (2)

M = [Mab] = Ne
a(ξint

b ), (3)

and R = [Rb] = g(x(ξint
b )) (4)

where ξint
b is the bth interpolation point (in element e’s

coordinates). This system of linear equations is solved for
the basis coefficients, ge

a, which are used when needed by
the analysis code to evaluate φ(xi) (which is expanded
in the same basis as ĝe(xi)). Even though we are us-
ing only element level interpolation, the resulting values
are continuous between elements. The hierarchical na-
ture of the higher order basis functions ensures that only
the modes common between neighboring element bound-
aries are coupled and C0 continuity insures the same an-
swer will be obtained regardless of which element is cho-
sen. For instance, when interpolating the edge coefficients
for an edge shared by two or more elements, we will al-
ways arrive at the same value regardless of which element

we use to do the interpolation since the only contribut-
ing shape functions are that of the two vertices associated
with the end points of the edge and the functions associ-
ated with that edge. For computations using the Lagrange
basis, the interpolation points are simply the nodal coor-
dinates, and the matrix in (2) is the identity matrix. Fur-
thermore, the system of equations described above may
be simplified somewhat by statically condensing the co-
efficients since not all functions are coupled. In practice,
however, the interpolation is only computed during pre-
processing, making the time savings less significant.

The procedure described above for essential boundary
conditions may also used to set an initial condition in
cases where the exact initial condition is relevant to the
simulation. However, experience has shown that in cases
where such accuracy is not necessary (as is usually the
case), using the linear interpolation of the initial condi-
tions is sufficient to ensure convergence. The linear in-
terpolation is obtained by simply setting all higher-order
coefficients equal to zero.

3.3 Periodic boundary conditions

The application of periodic boundary conditions poses
several difficulties in the context of hierarchical basis
functions since all mesh entities must be identical on pe-
riodic planes (including edge and face directions). A gen-
eral methodology has been developed for the application
of periodic boundary conditions. The data necessary to
enforce periodic boundary conditions can be contained
in a single array which specifies the “periodic master” of
each mesh entity. When essential boundary conditions are
set, periodic boundary conditions are also set by copying
the solution coefficients of the periodic masters to their
periodic slaves. This operation is simply an indirect ad-
dress of the solution array using the periodic boundary
conditions array. The equations corresponding to the pe-
riodic entities are eliminated from the system by using this
array to zero the corresponding residual components.

As with the essential and natural boundary conditions
described in section 3.1, periodic boundary conditions are
specified on the entities of highest possible dimension,
usually faces. The process of boundary condition inheri-
tance is used to transfer these to bounding edges and ver-
tices. As in the previous case, any periodic boundary con-
dition attributes directly specified on an entity take prece-
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Figure 2: Inheritance of periodic boundary conditions

dence over inherited values. We present two examples to
illustrate the procedure.

In the first case, let us consider the simple box model
shown in Figure 2 and describe the process by which one
of the edges inherits the periodicity from the faces. In this
example, the inflow and outflow faces have been specified
as periodic with each other, with the outflow face as the
periodic master. When the edge e1 is probed for periodic
boundary conditions, all the higher order entities (faces)
adjacent to edge are queried for periodic boundary condi-
tion attributes. In the current example the inflow face is
adjacent to the edge e1 and it returns the tag of the outflow
face as the master. The pre-processor uses this outflow
face to iterate over all its edges until it finds the edge e2

which is closest to the edge e1 and sets it as the master.

For the second example we will consider a case with
axisymmetry, Figure 3. Again, there is a master face and
a slave face and e1 finds its master edge, e2 through in-
heritance from the face as in the previous example. One
significant difference from the box case is that a match is
determined by comparing e1 rotated by the angle deter-
mined by the angle between the two periodic faces. This
process is repeated for e3 and e4 without change but e5

finds that it matches itself. Such a situation signals that
e5 is in fact an axis of symmetry where the two non-axial
components should be constrained to zero.

Periodic Master 

Periodic Slave

Axisymmetric Centerline 

 e1

 e5

 e3 

e4

 e2 

Figure 3: Axisymmetric periodicity

4 Compact data structure

Recall that the goal of pre-processing was not only to pro-
duce the boundary and initial conditions but also the data
structures necessary to enable integration over the finite
elements of the mesh, when using a hierarchical basis.
The traditional finite element mesh structure providing
coordinates and connectivity is no longer sufficient. All
the edges in the mesh pick up modes for p ≥ 2, triangu-
lar faces pick up modes for p ≥ 3 and quadrilateral faces
for p ≥ 4. In addition, different element topologies start
having region modes starting at different polynomial or-
ders. Tetrahedral mesh regions will have region modes
associated with them for p ≥ 4, hexahedral and pyrami-
dal mesh regions for p ≥ 6 and wedges for p ≥ 5 (see
Shephard et al. [18] for details). Here we exploit the rich
data structure provided by mesh data base as described
in section (2) to generate all the higher order mode and
entity information and condense it into the compact data
structure used by the solver code. Also all the informa-
tion pertaining to any entity (such as a vertex, an edge, a
face or a region) are kept local. This information includes
the number of modes on the entity, its partition adjacency
information, global equation number and its local poly-
nomial order. This increases the memory requirements
somewhat but simplifies the process of applying boundary
conditions and generating parallel communication traces.

The first step in setting up the data structures is the as-
signment of global equation numbers to all mesh entities.
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This is done by visiting each entity, determining the num-
ber of shape functions it contributes based on its polyno-
mial order and assigning a unique equation number for
each of these functions. Next all the elements in the mesh
are visited and the equation numbers associated with the
lower order entities bound by it are collected. For ex-
ample a tetrahedral region may collect equation numbers
from 4 vertices, 6 edges and 4 faces and the region itself
if the polynomial order is greater than 3. This procedure
is similar to that described by Hughes [10] for meshes
of Lagrange elements where the global node numbers as-
sociated with each finite element are stored in the data
structure.

This connectivity information provides a complete de-
scription of the mapping between the element level com-
putations and the global degrees of freedom (where the
linear equations are formed and solved). For hierarchi-
cal basis functions of degree 3 and higher some of the
basis functions need to have their sign reversed since the
mapping from the entity to the element coordinate system
introduces a sign change for some of the bounding ele-
ments. The situation is illustrated by a simple example
shown in Figure 4.

3

12

1 2

3

1

2
PSfrag replacements

ξ̂1 ξ̂2 ≡ 1 − ξ̂1

Figure 4: Mesh elements illustrating the reversal of shape
functions

In Figure 4 a two dimensional case is shown in which
two triangular mesh faces share a common edge; we will
consider each face as an element. This figure shows the
element numbers in circles, as well as each local degree
of freedom number with respect to each of the elements.
The edge is also shown along with its local coordinate
system, ξ̂1, which is directed as indicated by the arrow,

note that the global direction of the edge is determined by
the vertex ordering stored in the mesh database. The local
coordinates of the edge must be mapped to the coordinate
system of each bounding element in order to evaluate the
function. It is desirable to evaluate a single set of element
shape functions to be used for all elements in the mesh.
This enables the basis functions to be pre-computed and
tabulated for each quadrature point, as commonly done
for Lagrange-type elements. This is not possible without
accounting for the edge direction in some way.

Returning to the example, suppose k = 3 has been set
on the edge depicted in Figure 4. It will therefore con-
tribute two functions, one quadratic and one cubic, to the
local basis of each of the two bounding triangular ele-
ments (see [6] for a description of the shape functions)
given by

N2(ξ̂i) = −2ξ̂1ξ̂2 (5)

N3(ξ̂i) = −2ξ̂1ξ̂2(ξ̂2 − ξ̂1) (6)

where the parametric coordinates for this edge are

ξ̂1 and ξ̂2 ≡ 1 − ξ̂1 (7)

and the subscripts on the basis functions refer to their
respective polynomial orders. When the coordinates are
mapped from the edge to the element coordinates, the
problem becomes apparent, i.e.

Element 1:

ξ1 = ξ̂1, ξ2 = ξ̂2 (8)

Element 2:

ξ1 = ξ̂2, ξ2 = ξ̂1 (9)

and the basis functions become:

Quadratic:

N
(1)
2 = −2ξ1ξ2 (10)

N
(2)
2 = −2ξ2ξ1

= N
(1)
2 (11)
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Cubic:

N
(1)
3 = −2ξ1ξ2(ξ2 − ξ1) (12)

N
(2)
3 = −2ξ2ξ1(ξ1 − ξ2)

= −N
(1)
3 (13)

where the superscript indicates the element that the func-
tion is associated with. The cubic function on element
2 is the negative of that on element 1, while the quadratic
function is the same, regardless of the edge direction. This
case generally occurs when an element uses an edge in
the opposite direction than that edge was defined. Since
the cubic edge function is different for each of the bound-
ing elements, a single set of basis functions will clearly
not suffice to completely describe the basis. To overcome
this difficulty, during pre-processing the local degree of
freedom numbers that correspond to shape functions that
must be negated are flagged (e.g. there equation num-
bers are negated). This information is then used in the
flow solver to create the correct element basis functions
from the pre-computed table of element functions. For
quadratic or linear basis, no functions need to be negated,
and the data structures may be used as they are. This also
implies that when using the hierarchical code with linear
elements, no significant penalty is paid for having the gen-
erality of higher-order basis functions in the same code.

The compact data structure described above can be eas-
ily analyzed regarding its memory usage. When employ-
ing piecewise linear functions on tetrahedra, the savings
is dramatic (nearly a factor of five less memory used to
store the mesh). The savings is reduced, but still present,
for quadratic (a factor of nearly two). As expected, when
the basis is increased to cubic, the memory advantage is
lost (“compact” data structure uses 30% more memory)
but this is a modest tradeoff for the significant improve-
ment to algorithmic efficiency and simplicity. Compar-
isons were also made in terms of computational effort.
The code that made use of the compact data structure de-
scribed above typically required a factor of five less time
taken when compared to a flow solver that makes direct
use of the mesh database. While it is clear that some of
the observed advantage can be attributed to the prepro-
cessing which effectively maps all the data required for
the integration of a large set of elements in one operation
(as opposed to traversing the mesh data structure to col-

lect this information one element at a time), there were
other differences in the codes that make it impossible to
attribute all of this gain to the compact data structure.

5 Parallel communication

Finite element methods are very well suited to use on par-
allel computers as a substantial computational effort is in
the calculation of element level integrals. To reduce the
computational effort during the analysis phase, the struc-
tures specifying the interpartition (sometimes called inter-
processor or interprocess to reflect that it is the computer
processes that are communicating to sustain a correct par-
allel advancement of the solution strategy) communica-
tions are pre-processed. Each partition then executes a
copy of the analysis code, reading the pre-processed in-
put data relating to its portion of the domain, as well as
information relating to other partitions it must communi-
cate with. Each partition makes a call to the linear al-
gebra solver with the locally formed matrices. We have
used a linear algebra solver based on GMRES [14, 16],
which needs only matrix vector products. The parallelism
is transparent to the linear algebra solver which works on
each individual partition as if it was the whole domain.
This section describes the information that partitions must
communicate to each other as well as the construction of
these communication structures by the pre-processor.

5.1 Mesh partitioning

For a parallel simulation to be efficient, the load distribu-
tion on all the partitions should be balanced at all times.
This helps avoid some partitions lying idle and some be-
ing overloaded. In recent years, a considerable attention
has been focused on solving the problem of mesh parti-
tioning [7, 8, 2, 19, 4, 20, 5]. For computations which
depend on adaptive refinement, various strategies of dy-
namic load balancing and migration have been devel-
oped [1] and have to be deployed at the solver stage. But
for computations not depending on dynamic adaptivity all
the load balancing and partitioning can be done at the pre-
processing stage. This involves partitioning the mesh and
assigning local equation numbers for all the entities on
every partition.
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Mesh partitioning can be done in many ways to suit
specific needs. We have chosen two popular strategies
suitable for our needs.

Inertial Partitioning: This is the method where
partition boundaries are chosen based on geometrical
considerations [9]. The users specify criterion used
to divide the mesh into partitions. While this method
is not ideal for achieving optimal interface length or
perfect load balancing in a generic case, it does give
the user a greater control over the description of the
partitions. This can prove very helpful in some special
cases where specific sections of the mesh have to be
on pre-determined partitions. An example for inertial
partitioning can be seen in Figure 5.

Dual Based Partitioning: This involves partitioning
the dual graph of the mesh using various graph partition-
ing methods. We have used the generic graph partitioning
package, METIS [15], which provides extensive op-
portunities for customization and is known to produce
partitions with good load balancing and optimal interface
length. An example of a dual based partition can be seen
in Figure 6.

Each partition maintains a complete collection of data
representing its portion of the finite element mesh and
analysis information. This includes mode numbers and
connectivity information as well as boundary condition
data for all modes that are physically on the partition or its
interpartition boundary. The finite elements are uniquely
divided among the partitions, so each element will be
found on only one partition. The mesh entities that con-
tribute to element level integrals, however, appear in mul-
tiple partitions if they are on an interpartition boundary.
Element level computations are performed completely lo-
cal to each partition and must communicate only when
the element level contributions,such as element integrals,
are assembled to the global equations. This global as-
sembly procedure involves the sending and receiving of
mode information between partitions. Another case in
which partitions must exchange information is when pe-
riodic boundary conditions are present with periodic part-
ners residing on different partitions. These two types of
communications will be described below.

Figure 5: Inertial Partitioning

5.2 Communication

The basic idea behind the parallel communication of finite
element information can be described with the aid of Fig-
ures 7, 8 and 9. This figure illustrates three partitions and
vertices on the interpartition boundaries. For simplicity,
only vertices are shown since edges and faces are handled
identically. Solid circles denote master vertices (where
the equations are actually solved) while hollow circles de-
note slave vertices where only temporary information is
stored. This master-slave relationship is established by
creating a hierarchy based on host partition numbers (for
example, 2 is greater than 1, so on the boundary between
1 and 2 all the vertex images on partition 2 will be desig-
nated masters and the images on 1 will designated slaves.
Similar hierarchy can be used on other partition bound-
aries). The element residuals associated with each vertex
are first assembled from elements on each of the bounding
partitions. After local assembly [10], these values are sent
in the direction of the arrows to the values on the master
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Figure 6: Dual Based Partitioning

partition ( as defined by the numeric hierarchy described
earlier) and added. The sending partition (also known as
the slave partition) then zeroes its residual values, essen-
tially removing this vertex from it’s system. In this man-
ner, all residuals associated with entities on the interpar-
tition boundary are only solved for by a single partition,
known as the entity’s master image. After the equations
are solved, the solution values are copied from the entity’s
image on the master partition to all of its slave images.
The creation of the necessary data structures and the exe-
cution of these tasks is described in the next section.

For the partitions to exchange information during the
computation, each must maintain a data structure describ-
ing its communications in addition to the other finite el-
ement data. The Message Passing Interface [21] is used
for exchanging information between the partitions. Let us
define a communication stage as that which involves all
partitions making all their necessary communications. In
other words, each communication stage consists of each

2

3

1

Figure 7: Overview of communication

partition sending to and receiving from each partition with
which it must communicate. We will denote by N i

P the
number of partitions with which partition i must commu-
nicate. There are two types of communication stages: one
in which the residuals are added to masters and zeroed on
slaves (type 1), and another in which the solution values
are copied from masters to slaves (type 2). Both require
the same information and differ only slightly. A single
type 1 communication stage is necessary each time the el-
ement level residual formation and local assembly is com-
pleted and a type 2 communication stage is necessary each
time the boundary conditions are set on the solution vec-
tor. This two stage communication structure is a result of
the method used to enforce boundary conditions, where in
the residuals on boundary modes are zeroed.

From the perspective of a single partition, i, a commu-
nication stage may be described as a sequence of tasks,
denoted T i

j and j iterates over the partitions i interacts
with. For MPI to carry out the communications described
above, each task, T i

j , must provide details of the exchange
of data between partitions i and j. To this end, T i

j has as-
sociated with it, the following integer data:

tag: A unique tag associated with T i
j which distin-

guishes this send and receive for the MPI func-

10
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1

Figure 8: Communication Slave to Master

tions.

type: Denotes whether this partition is master or slave
in the current communication. For a type 1
communication, a master calls MPI receive(...)
to receive and add the data, while a slave calls
MPI send(...) to send and zero the data. In a
type 2 communication, the slaves receive and
copy and the masters send and thus there is no
need to zero anything.

partner: PID number of the partner partition involved in
this task.

numSeg: Number of data segments to be sent or re-
ceived (see below).

segData: local mode numbers on the other partition to
send to or receive data from for each of the
numSeg data segments.

Here a data segment is defined as a continuously num-
bered group of mode numbers. Each segment also con-
tains its length and starting index. In the beginning of
execution of the analysis code, the segment data is used
in conjunction with the MPI TYPE HVECTOR(...) func-
tion to create new MPI data types which are used during

2

3

1

Figure 9: Communication Master to Slave

the communication stages. These data types are simply
masks that describe where information can be found on
the various partitions for each of the segments in T i

j .
The above concepts can be clarified through a simple

example. Consider the two dimensional mesh shown in
Figure 10(a) which is decomposed into four partitions.
This mesh can be considered as a single geometric face
of a three dimensional model. The bold encircled num-
bers indicate partition ID numbers and the small numbers
indicate local mode numbers on each partition. For sim-
plicity, only vertex numbers are shown, however, edges
(if p ≥ 2) and faces (if p ≥ 3) also get mode numbers
associated with them and are handled identically to ver-
tices. We also assume, for simplicity of discussion, that
there are no periodic boundary conditions applied to the
geometric model. A consistent graph corresponding to
this mesh, created using the algorithm described above, is
shown in Figure 10(b). Let us consider only the tasks as-
sociated with partition 2, T 2

j , where j = 1, 3, 4, N i
P = 3.

T 2
1 involves a communication where partition 2 is master,

and modes 8 and 13 on partition 2 will receive contribu-
tions from modes 4 and 9, respectively, from partition 1.
The other two tasks associated with partition 2, T 2

3 and
T 2

4 , are both slave communications. Here, mode 7 is sent
to partition 3 where they are assembled into local mode

11
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Figure 10: Communication example

5, and 1 through 4 are sent to partition 4, where they are
assembled to local modes 5 through 8. Then these values
are zeroed on partition 2.

Let us now consider that the two vertical edges in Fig-
ure 10(a) to be periodic, and the right edge as the master.
T 2

1 now receives contributions from partition 1 modes 6
and 7 and adds them to local modes 10 and 11. Partition 2
does not receive any contributions for local mode 5 since
the master vertex image for that vertex is mode 7 on par-
tition 3 and both mode 5 on partition 2 and mode 1 on
partition 1 add to mode 7 on partition 3 via T 2

3 and T 1
3 .

The above examples represent type 1 communication and
they are reversed for type 2, as noted earlier.

6 Summary and Conclusions

In this paper we have presented a generalized method
for statically pre-processing finite element computa-
tions. The mesh-model hierarchy around which this pre-
processor was designed, was described. This hierarchy
was then used to provide an intuitive way to apply a vari-
ety of boundary conditions. Finally, the details regarding
the pre-processing necessary for the parallel communica-
tions were introduced.
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