
Comput Mech (2010) 45:321–334
DOI 10.1007/s00466-009-0449-5

ORIGINAL PAPER

Interpolation functions in the immersed boundary
and finite element methods

Xingshi Wang · Lucy T. Zhang

Received: 30 July 2009 / Accepted: 11 November 2009 / Published online: 3 December 2009
© Springer-Verlag 2009

Abstract In this paper, we review the existing interpolation
functions and introduce a finite element interpolation func-
tion to be used in the immersed boundary and finite element
methods. This straightforward finite element interpolation
function for unstructured grids enables us to obtain a sharper
interface that yields more accurate interfacial solutions. The
solution accuracy is compared with the existing interpola-
tion functions such as the discretized Dirac delta function
and the reproducing kernel interpolation function. The finite
element shape function is easy to implement and it natu-
rally satisfies the reproducing condition. They are interpo-
lated through only one element layer instead of smearing to
several elements. A pressure jump is clearly captured at the
fluid–solid interface. Two example problems are studied and
results are compared with other numerical methods. A con-
vergence test is thoroughly conducted for the independent
fluid and solid meshes in a fluid–structure interaction sys-
tem. The required mesh size ratio between the fluid and solid
domains is obtained.

Keywords Immersed boundary method · Immersed
finite element method · Convergence test · Fluid–structure
interaction · Incompressibility

1 Introduction

Investigating complex physical phenomena in fluid–struc-
ture interactions requires reliable and efficient modeling tech-
nique and simulation tools. In the past few decades, numerous

X. Wang · L. T. Zhang (B)
JEC 2049, Department of Mechanical, Aerospace,
and Nuclear Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA
e-mail: zhanglucy@rpi.edu

research efforts have been directed to method development
for fluid–structure interactions. Methods developed by
Tezduyar and his coworkers [1–4] are widely used in the
simulation of fluid-particle and fluid–structure interactions,
such as the studies on parachute aerodynamics [5]. The Arbi-
trary Lagrangian Eulerian (ALE) numerical approach [6–11]
is another technique to accommodate the complicated fluid–
structure interface. Nevertheless, mesh updating or re-mesh-
ing processes can be computationally expensive for the ALE
algorithm. Glowinski et al. [12–14] developed the Distrib-
uted Lagrange Multiplier method to study particulate flows.
Recently, researchers have applied the extended finite ele-
ment method (XFEM) to study fluid–structure interactions
[15–17].

Among the computational methods developed for fluid–
structure interactions, one of the most noticeable contribu-
tions is the immersed boundary method [18,19], which was
initially developed to study the blood flow around heart valves
[20–26]. The mathematical formulation of the immersed
boundary method employs a mixture of Eulerian and Lagra-
ngian descriptions for fluid and solid domains. The inter-
action between the fluid and structure is accomplished by
distributing nodal forces and interpolating nodal velocities
between the Eulerian and Lagrangian domains through a
smoothed approximation of the Dirac delta function. The
advantage of the immersed boundary method is that the fluid–
structure interface is tracked automatically, which circum-
vents costly mesh updating algorithms. The immersed
boundary method inspired researchers around the world to
further develop and enhance the accuracy and efficiency of
the method. One of them is the immersed interface method
[27,28] where LeVeque and Li obtained second-order accu-
racy in Peskin’s immersed boundary method by imposing a
derived second-order solution for Stokes fluid at the inter-
face for finite difference method with uniform grid instead

123

322 Comput Mech (2010) 45:321–334

of a smoothed Dirac delta function. This method was later
extended to solve more complicated Navier–Stokes fluid
flows [29–33]. Other methods include the extended immersed
boundary method [34] which uses the finite element approach
to calculate solid boundary nodal forces and the immersed
boundary finite element method [35,36] which describes an
immersed solid boundary in a fluid domain that is modeled
using finite elements.

The immersed finite element method [37–42] is another
method that extends the immersed boundary method to repre-
sent the background viscous fluid with an unstructured finite
element mesh and nonlinear finite elements for the immersed
deformable solid. Similar to the immersed boundary method,
the fluid domain is defined on a fixed Eulerian grid and the
solid domain is constructed independently with a Lagrang-
ian mesh. The two major contributions of the immersed finite
element method are: (1) the solid structure occupies volume
space in the fluid domain and can be described using realis-
tic material constitutive laws and (2) the reproducing kernel
function [43–45] is introduced as the interpolation function
in replace of the Dirac delta function to accommodate for
nonuniform background meshes which are typically used in
enhancing interfacial solutions. A new set of governing equa-
tions is derived and it allows the solid and fluid domains to
be solved independently.

Due to the fact that the fluid and the solid computational
domains are constructed independently, i.e. non-conforming
mesh, an interpolation function is needed to interpolate or
map the solutions at or near the interface from one domain
to another. In both the immersed boundary method and the
immersed finite element method, this interpolation function
must satisfy the reproducing condition which requires that in
the limit as the discretized size tends to be zero, the approxi-
mation should represent the given point value after the inter-
polation. The discretized Dirac delta function used in the
immersed boundary method and the reproducing particle
method used in the immersed finite element method satisfy
this condition. However, it is computationally expensive to
generate and solve for infinitesimally small grids; as the grid
size gets larger, the interpolated region gets large, the inter-
facial solutions to be interpolated get smeared over several
layers of fluid grids during the interpolation process, which
numerically thickens the fluid–structure interface. Besides
the reduced solution accuracy at the interface, these interpo-
lation functions also cause problems when the solid boundary
comes close to the fluid boundary, where a sufficient number
of grid layers are required to reproduce the solutions.

Therefore, in this paper, we propose and implement a
finite element interpolation function for non-uniform back-
ground fluid grid to capture a sharper fluid–structure inter-
face than the reproducing kernel interpolation function used
in the immersed finite element method and the Dirac delta
function used in the immersed boundary method. They are

interpolated through only one element layer instead of smear-
ing to several elements. Using finite element interpolation
function will produce sharper interfaces, capture expected
pressure jumps without explicitly imposing solution jumps
at the interface, and avoid the issue raised when the interface
comes near the computational boundary. These advantages
can be further enhanced when refined unstructured grids are
used near the interface. The finite element interpolation func-
tion is easy to implement and it naturally satisfies the repro-
ducing condition.

Furthermore, through the examples, a detailed conver-
gence test will be conducted in this paper. We will also thor-
oughly examine the mesh ratio requirement for the solid and
the fluid domains. When constructing independent fluid and
solid meshes, the mesh size ratio between the fluid and the
solid domains must be chosen with care. A heuristic esti-
mation of mesh ratio of 2.0 is needed in order to prevent
any ‘leaking’ phenomenon to occur [41]. The finding of this
study can also be applied to other immersed boundary related
methods.

The outline of this paper is as follows. In Sect. 2, we will
present the formulations, review the discretized Dirac delta
function and the reproducing kernel interpolation function,
and introduce the proposed finite element interpolation func-
tion. In Sect. 3, two examples with detailed analysis will be
shown. The solutions are examined thoroughly and compared
with other published results. The convergence test will be
performed and a range of allowable mesh size ratios between
the fluid and solid domains will be identified. Finally, con-
clusions are drawn in Sect. 4.

2 Formulations

In this section, we will review the existing interpolation func-
tions, i.e. the discretized Dirac delta function and the repro-
ducing kernel function. We will then present the algorithm
for the finite element interpolation function that produces
sharper interface. The formulations are implemented based
the immersed finite element method. However, it can be
applied to any derived immersed methods that we discussed
in the introduction section as long as the fluid and the solid
domains are constructed independently and interpolation
functions are required for any interface communications. For
completeness, the original algorithm of the immersed finite
element method is reviewed first.

2.1 Immersed finite element method algorithm

The fluid is assumed to be incompressible and fulfills the
entire computational domain� that is composed of two dis-
tinct domains: the actual fluid (� f , x) and the immersed solid
(�s, x). Since the fluid is everywhere in the domain, the solid

123

Comput Mech (2010) 45:321–334 323

volume is also occupied by the fictitious fluid. With the cur-
rent configuration of the solid xs and its velocity vs at time
t, the fluid–solid interaction force in the solid domain f F SI,s

is derived as:

f F SI,s = −(ρs − ρ f)üs + ∇ · σ s − ∇ · σ f

+ (ρs − ρ f)g in �s, (1)

where ρs and ρ f are the solid and fluid densities; σ s and σ f

are the internal stress of solid and fluid, respectively; us is the
solid displacement and g is the body force. The internal stress
of the solid σ s is determined by the material constitutive law.

The interaction force obtained from the solid domain
Eq. (1) is then distributed to its surrounding fluid domain
through an interpolation procedure as follows:

f F SI, f =
∫

�s

f F SI,sφ(x − xs)d�, (2)

whereφ(x−xs) is the interpolation function, which is a func-
tion of the distance between a solid node and its surrounding
fluid nodes in its influence domain.

After the force distribution, the interaction force acts as an
external force in the fluid domain. The governing equations
for the fluid domain are the Navier–Stokes equations:

∇ · v f = 0, (3)

ρ(v f
,t +v f · ∇v f)=−∇ p f +µ f ∇2v f +f F SI, f , in �. (4)

The fluid velocities v f and pressure p f are solved implic-
itly with stabilized galerkin method. The fluid velocities are
then interpolated back to the solid domain using the same
interpolation function as in Eq. (2):

vs =
∫

�

v f φ(x − xs)d�. (5)

Once the nodal solid velocities are obtained, the nodal dis-
placement can be updated explicitly in time:

us,n+1 = vs,n+1�t. (6)

The entire procedure is then repeated for the next time step
starting from Eq. (1). Both solid and fluid equations are
solved using finite element method with linear elements.

2.2 Interpolation functions

The interpolation function, φ, to be used in Eqs. (2) and
(5) must satisfy the following conditions: 1. The continu-
ity of φ is imposed across the fluid–solid interface to sat-
isfy the continuity of velocity and forces to be interpolated.
2. The interpolation functions must be complete and repro-
ducible, i.e.

+∞∫

−∞
φ(x − y)dy = 1, (7)

and the reproduced function u(x) is:

+∞∫

−∞
u(y)φ(x − y)dy = u(x), (8)

where x is the Lagrangian solid domain and y is the Eulerian
fluid domain. The discretized forms of the above conditions
become:∑

I

φI = 1, (9a)

∑
I

u IφI = uh, (9b)

where I is the index for the number of nodes in the sup-
port domain. This support is typically bounded. The goal is
to have the smallest possible support in order to maintain
the sharpness of the interface for accuracy and to conserve
computational efficiency.

To ensure the conservation of energy, the interpolation
functions in both distribution of forces and interpolation of
velocity field must be the same at each time step, i.e. the sup-
port of a solid point has to be identical in the distribution and
interpolation processes [19].

There are many ways to generate an interpolation func-
tion that can satisfy all the above mentioned conditions. The
choices depend on several factors: (1) the nature of the fluid
mesh, whether it has structured or unstructured grids; (2)
the size of the support, which results in varying degrees of
interface sharpness; (3) easiness in implementation and effi-
ciency. The following describes three different interpolation
functions: the discretized dirac delta function, the reproduc-
ing kernel function, and our proposed finite element interpo-
lation function.

2.2.1 Discretized Dirac delta function

In the original immersed boundary method, a discretized
Dirac delta function φ(r), is used as the interpolation func-
tion, where r is the distance between a solid node and a
surrounding fluid node normalized by the mesh size h. In
Ref. [19], the function is defined such that:

φ(r) = 0 for |r | ≥ 2, (10a)∑
jeven

φ(r − j) =
∑
jodd

φ(r − j) = 0.5 for all real r, (10b)

∑
j

(r − j)φ(r − j) = 0 for all real r, (10c)

where j is an integer value for uniform grid index. The sup-
port is bounded to a 2-grid shift on each side of the point x.

123

324 Comput Mech (2010) 45:321–334

In a 1-D domain, the support covers 4 grid units. These equa-
tions are to maintain the reproducing conditions listed in
Eq. (9) for uniform grid size. This function has C0 conti-
nuity and is only appropriate when structured fluid mesh is
used.

The above equations can be stipulated in a simpler form as
the interpolation function in the immersed boundary method
for uniform fluid background meshes [19],

φ(r) =
{

1
4

(
1 + cos

(
π |r |

2

))
, |r | ≤ 2

0, |r | > 2.
(11)

In a 3-D model, the discretized Dirac delta function δh(x)
becomes

δh(x) = 1

h3φ
(x1

h

)
φ

(x2

h

)
φ

(x3

h

)
, (12)

where x1, x2, and x3 are the distance between a solid node
and a surrounding fluid node in the x, y, z directions, respec-
tively.

2.2.2 Reproducing kernel function

In the immersed finite element method, the reproducing ker-
nel interpolation function is employed to acquire a higher
order interpolation and it is also suitable for both uniform
and nonuniform meshes. This reproducing kernel particle
method was first proposed as one of the meshfree methods
[43,44,46,47]. A dilation parameter is introduced to control
the size of the window function or the support size. When
it is used as an interpolation function, this constant scales
and controls the size of the fluid–solid interface. Users need
to define this constant prior to the simulation in order to
achieve the desired fluid–solid interfacial thickness. How-
ever, the interfacial thickness cannot be too small because a
sufficient number of surrounding nodes are required to com-
pute the interpolation function. For both Dirac delta function
and reproducing kernel function interpolations, the size of
the influence domain �φ is at least 4 element-layers when
uniform mesh is used. Larger influence domain will induce
a smoothed or smeared velocity and force fields at the inter-
face after the interpolations, which is not desired when more
accurate interfacial solutions are required. Moreover, a search
algorithm must be completed in each time step in order to
identify new sets of neighbors after the solid advances to a
new position from the previous time step.

As illustrated in Ref. [48], both wavelet and smooth par-
ticle hydrodynamics (SPH) methods belong to a class of
reproducing kernel methods where the “reproduced” func-
tion u R(x) is derived as:

u R(x) =
+∞∫

−∞
u(y)φ(x − y)dy, (13)

with a projection operator or a window function φ(x).
The reproducing condition requires that up to nth order

polynomial can be reproduced, i.e.,

xn =
+∞∫

−∞
ynφ(x − y)dy. (14)

To satisfy the reproducing condition, a correction function
C(x; x − y) is introduced in the finite domain of influence
or support, so that the window function yields:∫

�

C(x; x − y)a−1φ

(
x − y

a

)
d� = 1 (15)

where a is the dilation parameter or refinement of the win-
dow function and x − y is the distance between the node x
and its support node y. The additional constant, a−1, scales
the window function so that the integral over the domain of
support equals one such that

∫
�
φ(x)d� = 1. An example

of a high order window function φ(x) for uniform grids is a
cubic spline,

φ

(
x − y

a

)
=

⎧⎪⎪⎨
⎪⎪⎩

2
3 −(x−y

a

)2
(

1 − |x−y|
2a

)
, 0 ≤ |x−y|

a < 1

1
6

(
2 − |x−y|

a

)3
, 1 ≤ |x−y|

a ≤ 2

0, otherwise.

(16)

The discretized reconstruction of the delta function for non-
uniform spacing can be written as

φI (x) = C(x; x − xI)a
−1φ

(
x − xI

a

)
�xI . (17)

The correction function C needs to be derived for nonuni-
form grids, as shown in [46]. The window function is used as
the interpolation function for the interpolation of the nodal
velocities and the distribution of the nodal forces between
the fluid and solid domains.

2.2.3 Finite element interpolation function

In this section, we will introduce the finite element interpola-
tion function that is capable of (1) producing sharp fluid–solid
interface, (2) handling nonuniform or unstructured mesh,
and (3) obtaining accurate interfacial solutions without the
requirement of a minimum number of element layers in
between a solid boundary and a fluid boundary. (This is
explained further in the examples.)

The finite element basis function naturally satisfies the
reproducing conditions. Therefore, no correction function is
needed in the implementation. The influence domain of a
solid node can be easily identified by locating the fluid ele-
ment that the solid node resides in. Most importantly, it does
not require a minimum number of elements near the bound-
ary in order to produce enough grid layers for the interpola-
tions when the interface approaches a fluid boundary, shown

123

Comput Mech (2010) 45:321–334 325

Fig. 1 Comparison of influence domains identified by a finite element interpolation function (�ψ) and b reproducing kernel interpolation function
(�φ) in a nonuniform fluid mesh

Fig. 2 Construction of finite element interpolation function for a point
in a 2-D triangular element

in Fig. 1. The solid domain is always contained in the fluid
domain, so the finite element interpolation functions can be
constructed based on the relative position of the solid point
within a fluid element.

The whole procedure can be performed in three steps: (1)
identify the fluid element that contains a particular solid node;
(2) calculate interpolation functions, and (3) conduct veloc-
ity interpolation or force distribution. At every time step, a
search algorithm is performed to identify the corresponding
fluid element that a solid node I resides in. The search algo-
rithm is built based on “point in triangle test” for 2-D [49]. It
can be easily extended as a point in tetrahedral test for 3-D or
other types of elements (quadrilateral and hexahedral) due to
the fact that these elements can always be divided into combi-
nations of triangles or tetrahedrals. The element is considered
as its influence domain �ψ I . The symbol ψ is to represent
finite element interpolation influence domain. An example
is shown in Fig. 2 where P is a solid node with coordinate
(xs

I , ys
I) contained in a trianglular element with local node

numbers J , which are labeled as 1, 2, 3 and coordinates of
(xe

1, ye
1), (x

e
2, ye

2), (x
e
3, ye

3), respectively.
The local interpolation function N e

J must satisfy the repro-
ducing conditions such that:

3∑
J=1

N e
J = 1 xJ ∈ �ψ I , (18a)

3∑
J=1

N e
J xe

J = xs xJ ∈ �ψ I , (18b)

3∑
J=1

N e
J ye

J = ys xJ ∈ �ψ I . (18c)

We can then assemble them into a matrix form as: NeMe = P,
where

P(xs, ys) = (
1 xs ys

)
,

Me=
⎛
⎝1 xe

1 ye
1

1 xe
2 ye

2
1 xe

3 ye
3

⎞
⎠ .

Finally, the finite element interpolation function Ne can be
solved as:

Ne(xs, ys) = P(xs, ys)(Me)−1. (19)

It is noted that when the solid node happens to be on the
edge of a fluid element, the inverse of Me becomes singular.
However, as long as the distance from the solid point to an
element boundary is larger than certain machine precision,
e.g. 10−6, the interpolation function can be solved without
any difficulty. Once the finite element interpolation function
is constructed, the force can be distributed from the fluid
nodes to the solid nodes and the nodal solid velocities can be
interpolated from the fluid velocities as:

vs =
∑

J

NJ v f
J xJ ∈ �ψ I , (20a)

f F SI, f
J = NJ f F SI,s xJ ∈ �ψ I . (20b)

123

326 Comput Mech (2010) 45:321–334

Fig. 3 A deformable wall in a
cavity driven flow: a initial
configuration (problem
statement) and b steady state
solution with streamlines
(′+′ represent the interface
obtained by Dunne [50])

3 Examples

3.1 Example 1: an elastic wall in a lid-driven cavity flow

In this example, we study the deformation of a flexible wall
that is placed at the bottom of a lid-driven cavity filled with
fluid. This study was first presented in Ref. [50] using the
Arbitrary Lagrangian Eulerian method. It was then repeated
and confirmed by Zhao et al. in Ref. [51]. For validation pur-
poses, we first compare our steady-state solution with the
ones reported in Ref. [50] and then focus our study
on the solutions captured at the fluid–solid interface, espe-
cially the pressure jump that is yielded by using the finite
element interpolation shape function. A comprehensive con-
vergence study of this fluid–structure interaction algorithm
is also performed.

A hyperelastic wall with height 0.5 cm and width 2 cm is
located at lower bottom of a cavity with size 2 cm × 2 cm.
The space above is filled with fluid, as shown in Fig. 3a. The
top lid of the cavity is driven by spatially dependent velocity
functions:

u =0.5

⎧⎨
⎩

sin2(πx/0.6), x ∈ [0.0, 0.3];
1, x ∈ (0.3, 1.7);
sin2(π(x − 2.0)/0.6), x ∈ [1.7, 2.0].

(cm/s)

(21)

The time step used is 0.05 s. The fluid has density of ρ f =
1.0 g/cm3 and viscosity of µ f = 0.2 dyn· s/cm. The solid
is described as Neo-Hookean hyperelastic material. For a hy-
perelastic material with Mooney-Rivlin [34] or Neo-Hookean
description, the strain energy function W is given as:

W = C1(J1 − 3)+ C2(J2 − 3)+ κ

2
(J3 − 1)2, (22)

with

J1 = I1 I −1/3
3 , J2 = I2 I −2/3

3 , J3 = I 1/2
3 , (23)

in which C1, C2, and κ are the material constants and I1, I2,
and I3 are functions of the invariants of the Cauchy-Green
deformation tensor C which is defined as Ci j = Fim Fjm .
When C2 and κ are 0, the Mooney-Rivlin description can be
reduced to Neo-Hookean description. Here, Neo-Hookean
material is used with C1 = 0.1 dyn/cm2. When large dis-
placements and deformations occur, the second Piola-Kirch-
hoff stress Si j can be derived based on the Green-Lagrangian
strain Ei j :

Si j = ∂W

∂Ei j
and Ei j = 1

2
(Ci j − δi j). (24)

The first Piola-Kirchhoff stress Pi j can be transformed from
the second Piola-Kirchhoff stress Si j by applying Pi j =
Sik Fjk . The Cauchy stress σ can be transformed from the
first Piola-Kirchhoff stress, P. The transformations between
stresses can be found in Ref. [52].

The deformed wall reaches a steady state at t = 8 s, shown
in Fig. 3. The streamline of the fluid is also presented. As
shown on the figure, the steady state solution is nearly iden-
tical with the one reported in [50].

3.1.1 Sharp interface solutions

To examine the accuracy of the solutions at the interface from
the interfacial thickness, we will focus on the pressure jump
occurring at the fluid–solid interface. This pressure jump is
expected to exist at any x-value along the fluid–solid inter-
face. If the interpolation function does not produce a sharp
interface, then this pressure difference is smeared through
several layers of grids and the solutions at this interface can-
not be captured accurately. Here, we examine the pressure

123

Comput Mech (2010) 45:321–334 327

Fig. 4 Comparison of pressure profiles at x = 0.5 cm along y-axis
using finite element interpolation and reproducing kernel interpolation
function with both uniform and nonuniform mesh

at the interface by choosing an arbitrary location, say x =
0.5 cm, at the steady state. The interface is located at y =
0.55 cm when x = 0.5 cm.

Four results are compared: (1) using finite element inter-
polation with slight refinement near the interface while hav-
ing slight coarser mesh size everywhere else (nonuniform
grid), (2) using finite element interpolation with uniform grid,
(3) using reproducing kernel interpolation function with non-
uniform grid, and (4) using reproducing kernel interpolation
function with uniform grid. The pressure profiles from these
four cases along x = 0.5 cm are shown in Fig. 4.

The results show that by applying nonuniform mesh with
finer mesh around the solid-fluid interface, the interface is
sharper comparing with the uniform mesh while maintain-
ing the overall accuracy everywhere else. When the finite
element interpolation function is used as compared to the
reproducing kernel interpolation function, it again yields a
more defined interface. As the interface gets narrower, the
distribution of the forces and the interpolation of the veloc-
ities are only spread within a thin layer, which reduce the
errors generated during the interpolation processes and yield
more accurate solutions. When uniform mesh is used, using
finite element interpolation function can reduce the interfa-
cial thickness by as much as 65.4% comparing to that of the
reproducing kernel interpolation function. It can be further
reduced by 80.3% when nonuniform mesh is used.

We can further look into the pressure jump by calculating
the derivative of the pressure from these three cases. Ideally,
this pressure jump should produce a Dirac delta function for
the pressure derivative. As shown in Fig. 5, the finite element
interpolation function with nonuniform mesh yields a very
narrow band and has the maximum peak value, which has

the closest resemblance of a Dirac delta function. From this
result, we observe that the finite element interpolation can
capture a sharper interface with a smaller support domain
while conserving the reproducing condition. It can be fur-
ther improved when nonuniform mesh is used.

3.1.2 Convergence studies

A comprehensive convergence test is performed using this
example. We pay special attention to the allowable fluid–
solid mesh size ratios that can be used to yield convergent
solutions. For a coupled fluid–structure problem, the con-
vergence rate is computed independently with Lagrangian
mesh element size and Eulerian grid spacing. Since there is
no analytical solution for this problem, the errors of fluid
velocity and solid displacement are calculated based on the
solution obtained from a finely discretized system. The con-
vergence of the solid displacement is calculated by refining
the Lagrangian mesh while keeping the Eulerian mesh fixed
at a refined state. Similarly, the convergence of the N-S solver
is studied by refining the fluid mesh while keeping the solid
mesh at a very fine resolution. Both components are per-
formed with uniform mesh spacings for consistencies. Errors
in the fluid velocity and solid displacement are calculated in
L2 norms for steady state solutions.

The error in the fluid velocity field, ev f is defined as:

ev f =
⎛
⎜⎝ 1

A� f

∣∣∣∣∣∣∣
∫

� f

(v2 − ṽ2)d�

∣∣∣∣∣∣∣

⎞
⎟⎠

1/2

, (25)

where v is the velocity field to be examined; ṽ is the velocity
of the reference solution. The error is then normalized with
the total area of the fluid domain A� f . The discretized form
is as follows:

ev f =
(∣∣∣∣∣

1

N

∑
I

vI
2 − 1

Ñ

∑
J

ṽ2
J

∣∣∣∣∣
)1/2

, (26)

where I and J are the nodal index in the fluid domain for the
solutions to be examined and the reference solutions, respec-
tively. The sum of the kinetic energy in each solution is then
normalized by the number of nodes used in the fluid domain
where N is the number of nodes in the mesh to be examined
and Ñ is the number of nodes in the reference mesh.

The error in the solid displacement, eds is defined as:

eds =
⎛
⎝ 1

l�F SI

∫

x

(ys − ỹs)2dx

⎞
⎠

1/2

, (27)

where l�F SI represents the total length of the fluid–solid inter-
face in the reference solution �F SI . The errors are evaluated
on the position of the interface in the y-direction along the

123

328 Comput Mech (2010) 45:321–334

Fig. 5 Interface width or pressure jump can be observed from the deriv-
ative of pressure across an interface. a Finite element interpolation with
nonuniform mesh. b Reproducing kernel interpolation with nonuniform

mesh. c Finite element interpolation with uniform mesh. d Reproducing
kernel interpolation with uniform mesh

x-axis, i.e. from x = 0 to x = 2. ys and ỹs are the y-coordi-
nates of the fluid–solid interface obtained from the mesh to
be examined and the reference mesh, respectively.

The discretized form is as follows:

eds =
(

1

N s

∑
J

(yh
J − ỹh

J)
2

)1/2

, (28)

where N s is the number of solid nodes at the fluid–solid
interface in the reference mesh and J is the nodal index of
these point. yh

J and ỹh
J are the y-coordinate of the solid node

at a particular x-position along the interfaces obtained from
the mesh to be examined and the reference mesh, respec-
tively. When studying the convergence of the fluid mesh with
a fixed finely-discretized solid mesh, the number of solid
nodes remain the same on the interface. However, for the
convergence study of the solid mesh with varying solid mesh
size, the number of solid nodes are different. To calculate the
error at any x with the finely-discretized reference mesh, the
displacement solution of the mesh to be examined is interpo-

lated, denoted by h, for that particular x along the continuous
interface.

The convergence of the fluid mesh is examined by using
a series of discretized fluid meshes (from 16384 to 256 ele-
ments) while keeping the solid mesh fixed. The data is listed
in Table 1. The convergence of the fluid mesh element size
is shown in Fig. 6. The error in the fluid velocity field in
L2 norm yields a convergence rate of O(h0.8) and the error
in the solid displacement in L2 norm has a convergence rate
of O(h1.0).

Similarly, the convergence of the solid mesh is performed
through a series of discretized meshes (from 8192 to 1296 ele-
ments) while the fluid mesh is fixed. The data used is shown
in Table 2. The convergence of the solid mesh is shown in
Fig. 7. The error in the fluid velocity field in L2 norm yields
a convergence rate of O(h1.2) and the error in the solid dis-
placement in L2 norm yields a convergence rate of O(h1.7).

When constructing independent fluid and solid meshes,
the mesh size ratio between the fluid domain and the solid
domain must be chosen with care. A heuristic estimation of
mesh ratio of 2.0 is needed in order to prevent any ‘leaking’

123

Comput Mech (2010) 45:321–334 329

Table 1 Data used for convergence test of the fluid mesh (with solid mesh 128 × 64)

Fluid mesh 128 × 128 120 × 120 110 × 110 100 × 100 90 × 90 80 × 80 70 × 70 64 × 64 32 × 32 16 × 16

Mesh ratio 2.0 2.33 2.77 3.4 4.14 5.2 6.85 8 32 128

Error(v f) (10−2 cm/s) Reference 1.1 1.4 1.6 1.8 2.0 2.2 2.4 3.7 5.8

Error(ds) (10−3 cm) Reference 2.39 2.40 2.41 2.52 2.54 3.00 3.48 3.86 8.19

Fig. 6 Convergence test of the fluid mesh. a Error in fluid velocity field. b Error in solid displacement

Table 2 Data used for convergence test of the solid mesh (with fluid mesh 128 × 128)

Solid mesh 128 × 64 128 × 32 120 × 30 100 × 25 88 × 22 80 × 20 72 × 18

Mesh ratio 3.4 1.64 1.43 1.0 0.78 0.64 0.52

Error(v f) (10−4 cm/s) Reference 0.08 0.09 0.12 0.16 0.17 0.2

Error(ds) (10−3 cm) Reference 0.14 0.15 0.24 0.31 0.36 0.52

phenomenon to occur [41]. This ‘leaking’ refers to the numer-
ical artifact that appears when the fluid element size is much
smaller than that of the solid. This issue has never been inves-
tigated in detail. Through a series of tests, we found this mesh
ratio to be approximately 0.5. If the fluid element is smaller
than half of the solid element, then we indeed observed the
fluid to ‘penetrate’ into the solid domain. This numerical
error, of course, leads to unrealistic physical behavior of the
interaction. This size ratio is found to be very consistent for
all sets of mesh resolutions regardless of being coarse or fine.
Here, we compare the pressure fields from 2 sets of meshes
with mesh ratios of 3.4 and 0.025, respectively (Fig. 8). It is
obvious that the one with mesh ratio of 3.4 yields the correct
pressure distribution while the one from mesh ratio of 0.025
has the wrong solution. A source of ‘leaking’ is found in the
middle of the solid domain to yield an unrealistically high
concentrated pressure spot.

3.2 Example 2: disk in a lid-driven cavity

In this example, we study a deformable disk in a lid-driven
cavity. The cavity is 1 cm by 1 cm and the radius of the disk
is 0.2 cm centered at (0.6 cm, 0.5 cm) in the cavity, as shown
in Fig. 9.

The top lid starts to move horizontally at a constant speed
of U0 = 1 cm/s at t = 0 s. The fluid viscosity is µ f =
0.01 dyn · s/cm2. The solid material is modeled as hyper-
elastic model with Neo-Hookean description that has a mate-
rial constant ranging from C1 = 5.0 dyn/cm2 (hard) to
0.05 dyn/cm2 (soft). This example was briefly illustrated
in Ref. [51]. In our study, we perform a more thorough anal-
ysis and examine the motion and deformation of the disk as
time progresses. The snapshots of the solid deformation at
different time steps are shown in Fig. 10. It is apparent that
the hard disk deforms much less than the soft disk.

123

330 Comput Mech (2010) 45:321–334

Fig. 7 Convergence test of the solid mesh. a Error in fluid velocity field. b Error in solid displacement

Fig. 8 a Pressure contours at steady-state when mesh ratio is 3.4 (>0.5). b Pressure contours when mesh ratio is 0.025 (<0.5)

The trajectories of the disc centroids for both the hard and
the soft disks are tracked, shown in Fig. 11. The result shows
that both disks eventually settle down at a fixed position in
the fluid as they reach the steady states. It takes the hard disk
approximately 60 s while the soft disk takes only 40 s. The
centroid of the soft disk comes closer to the top boundary
since the soft disk deforms more near the top region of the
cavity. Similar observations are also reported in [51,53].

3.2.1 Incompressibility constraints

In the cluster of the immersed methods, there exists a com-
mon numerical issue when dealing with a solid object
immersed in an incompressible fluid domain. When the fluid
is incompressible the solid must remain incompressible in
the fluid as well, due to the fact that the solid must always

remain immersed in the fluid domain. The detailed discus-
sion can be found in [42]. In some cases, a volume correc-
tion algorithm is required to enforce the incompressibility
constraints. In the soft disk case example, it can be clearly
seen in Fig. 12 that without the correction, there is a sig-
nificant stretching of the soft disk as time progresses. The
volume change is particularly noticeable as it comes close to
a moving boundary, which induces large velocity gradients,
hence high pressure, between the fluid boundary and solid
boundary. In this case, constraining the incompressibility in
the fluid domain alone is no longer sufficient in maintain-
ing the solid volume, instead, a volume correction algorithm
is needed. With the volume correction, the relative volume
change is significantly reduced.

A comparison of the relative volume change from before
and after applying the volume correction algorithm is shown

123

Comput Mech (2010) 45:321–334 331

Fig. 9 A deformable disk in a lid-driven cavity

in Fig. 13a. Without the volume correction, the soft disk can
increase as much as nearly 20% of its original volume by
t = 5 s.

For the hard case, it is expected that the disk deforms
much less compared to the soft case. We observed that as the
solid material gets more stiff, the volume change is much less
severe. The maximum volume change reaches only 1.6%, as
shown in Fig. 13b. We, again, noticed that during t = 4.0 s
to t = 6.0 s, when the disk is near the top region of the cav-
ity, the volume changing rate increases sharply. This study
confirms that when the solid-fluid interface is near a moving
fluid boundary that can generate a large velocity gradient the
volume correction algorithm is needed.

Even though the magnitude of the volume correction is
small, it does introduce slight numerical error. Thus, it should
be used only absolutely necessary. Softer material requires
more frequent volume corrections. Applying this algorithm
can also be computationally costly, especially with dense
solid mesh. To avoid using this volume correction step, we
can also consider using smaller time steps and refining fluid
mesh near the driving boundary. However, these choices can
also be computationally expensive.

3.2.2 Capturing the interface near the boundary

Using finite element interpolation, the solid interface can
be interpolated through one grid layer, unlike using other
interpolation function where several layers are required to

Fig. 10 Deformation of the disk and the streamlines of the fluid in a lid-driven cavity for hard (C1 = 5 dyn/cm2) and soft (C1 = 0.05 dyn/cm2)
disks

123

332 Comput Mech (2010) 45:321–334

Fig. 11 Trajectories of the soft and hard disks in a lid-driven cavity
from t = 0 s to t = 40 s

construct the function. This is especially useful when the
fluid–solid interface comes near a fluid boundary. The loca-
tion of the solid cannot be predicted a-prior to construct
enough layers between the interface and the fluid boundary.
With finite element interpolation, this restriction is allevi-
ated. As the solid boundary comes near the top boundary, the
distance between the solid boundary and the top boundary of
the fluid domain can be slightly larger than one fluid element
layer with finite element interpolation. Figure 14 shows the
detailed mesh resolution as it reaches the fluid boundary for
both soft and hard cases.

4 Conclusions

In this paper, we reviewed the interpolation functions used in
the immersed boundary method and the immersed finite ele-
ment method, i.e. the discretized Dirac delta function
and the reproducing kernel function. We then proposed a

Fig. 12 Soft disk deformation in a lid-driven cavity without volume correction

Fig. 13 Relative volume change versus time with and without volume corrections. a C1 = 0.05 dyn/cm2, b C1 = 5.0 dyn/cm2

123

Comput Mech (2010) 45:321–334 333

Fig. 14 Velocity fields as the disk comes near the top boundary of the cavity. a Soft case at t = 4.9 s. b Hard case at t = 5.3 s

straightforward finite element interpolation function that is
capable of producing sharper interface that preserves the
accuracy in interface solutions and to be used on unstructured
background fluid meshes. The finite element interpolation
function naturally satisfies the reproducing condition and it is
easy to implement. Comparing to the previously mentioned
techniques, the thickness of the interface can be narrowed
by approximately 65% when using uniform grids, and can
be improved even further when nonuniform or unstructured
grids are used.

Through the example problems, we performed a thorough
convergence test and examined the mesh size compatibility
requirement for the fluid and solid domains. We found a mesh
size ratio of 0.5 is required for the fluid and solid discretiza-
tion to avoid numerical issues. If the fluid mesh size is less
than half of the solid mesh size, then a leaking phenomenon
would occur and lead the solutions to diverge. This value is
consistent for several mesh resolutions. We also observed a
relatively large volume change when the solid comes near a
moving fluid boundary that generates large velocity gradient.
A volume correction algorithm is imposed to enforce this
incompressibility constraint. This correction algorithm can
dramatically improve the durability of the incompressibility
assumption and enhance the performance of the simulation.
In summary, this paper introduces a finite element interpo-
lation function to be used in the immersed finite element
method and closely examines and resolves several detailed
numerical issues that are present in the current non-conform-
ing techniques. It provides a more accurate and a more reli-
able approach to be used in the simulations of fluid–structure
interactions.

References

1. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite
element computations involving moving boundaries and inter-
faces -The DSD/ST procedure: I. The concept and the preliminary
numerical tests. Comput Methods Appl Mech Eng 94:339–351

2. Johnson A, Tezduyar TE (1995) Numerical simulation of fluid-par-
ticle interactions. In: Proceedings of the international conference
on finite elements in fluids, Venezia, Italy

3. Johnson A, Tezduyar TE (1997) 3D simulations of fluid-particle
interactions with the number of particles reaching 100. Comput
Methods Appl Mech Eng 145(3–4):301–321

4. Johnson A, Tezduyar TE (1999) Advanced mesh generation and
update methods for 3D flow simulations. Comput Mech 23:
130–143

5. Stein K, Benney R, Tezduyar TE, Potvin J (2001) Fluid–structure
interactions of a cross parachute: numerical simulation. Comput
Methods Appl Mech Eng 191:673–687

6. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eule-
rian Finite Element formulation for incompressible viscous flows.
Comput Methods Appl Mech Eng 29:329–349

7. Liu WK, Ma DC (1982) Computer implementation aspects for
fluid–structure interaction problems. Comput Methods Appl Mech
Eng 31:129–148

8. Huerta A, Liu WK (1988) Viscous flow with large free surface
motion. Comput Methods Appl Mech Eng 69:277–324

9. Liu WK, Chang H, Chen J, Belytschko T (1988) Arbitrary
Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear
continua. Comput Methods Appl Mech Eng 68:259–310

10. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simula-
tions of fluid–solid systems using the arbitrary Lagrangian-Euleri-
an technique. J Comput Phys 169:427–462

11. Zhang LT, Wagner G, Liu WK (2003) Modeling and simulation of
fluid structure interaction by meshfree and FEM. Commun Numer
Methods Eng 19:615–621

12. Fortin M, Glowinski R (1983) Augmented Lagrangian Method:
applications to the numerical solution of boundary-value problems.
North-Holland, Amsterdam

13. Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed
Lagrange multiplier/fictitious domain method for particulate flows.
Int J Multiphase Flow 25:755–794

14. Glowinski R, Pan TW, Hesla TI, Joseph DD, Périaux J (2001) A
fictitious domain approach to the direct numerical simulation of
incompressible viscous flow past moving rigid bodies: Applica-
tion to particulate flow. J Comput Phys 169:427–462

15. Wagner J, Moës N, Liu WK, Belytschko T (2001) The extended
finite element method for rigid particles in stokes flow. Int J Numer
Methods Eng 51(3):293–313

16. Chessa J, Smolinski P, Belytschko T (2002) The extended finite
element method (XFEM) for solidification problems. Int J Numer
Methods Eng 53:1959–1977

17. Chessa J, Belytschko T (2003) The extended finite element method
for two-phase fluids. ASME J Appl Mech 70:10–17

18. Peskin CS (1972) Flow patterns around heart valves: a numerical
method. J Comput Phys 10:252–270

19. Peskin CS (2002) The immersed boundary method. Acta Numer
11:479–517

20. Peskin CS (1977) Numerical analysis of blood flow in the heart.
J Comput Phys 25:220–252

123

334 Comput Mech (2010) 45:321–334

21. McCracken MF, Peskin CS (1980) A vortex method for blood flow
through heart valves. J Comput Phys 35:183–205

22. McQueen DM, Peskin CS (1983) Computer-assisted design of piv-
oting-disc prosthetic mitral valves. J Comput Phys 86:126–135

23. Peskin CS, McQueen DM (1989) A three-dimensional computa-
tional method for blood flow in the heart. I. Immersed elastic fibers
in a viscous incompressible fluid. J Comput Phys 81(2):372–405

24. Peskin CS, McQueen DM (1992) Cardiac fluid dynamics. Criti-
cal reviews in biomedical engineering. SIAM J Sci Stat Comput
20(6):451–459

25. Peskin CS, McQueen DM (1994) Mechanical equilibrium deter-
mines the fractal fiber architecture of aortic heart valve leaflets.
Am J Physiol 266(1):H319–H328

26. Peskin CS, McQueen DM (1996) Case studies in mathematical
modeling-ecology, physiology, and cell biology. Prentice-Hall,
Englewood Cliffs

27. LeVeque RJ, Li Z (1994) The immersed interface method for ellip-
tic equations with discontinuous coefficients and singular sources.
SIAM J Numer Anal 31(4):1091–1094

28. LeVeque RJ, Li Z (1997) Immersed interface methods for stokes
flow with elastic boundries or surface tension. SIAM J Sci Comput
18(3):709–735

29. Fogelson AL, Keener JP (2000) Immersed interface method for
Neumann and related problems in two and three dimensions. SIAM
J Sci Comput 22(5):1630–1654

30. Lee L, LeVeque RJ (2003) An immersed interface method for
incompressible Navier–Stokes equations. SIAM J Sci Comput
25(3):832–856

31. Li Z, Lai MC (2001) The immersed interface mehtods for the
Navier–Stokes equations with singular forces. J Comput Phys
171:822–842

32. Wiegmann A, Bube KP (1998) The immersed interface method
for nonlinear differential equations with discontinuous coefficients
and singular sources. SIAM J Numer Anal 35(1):177–200

33. Wiegmann A, Bube KP (2000) The explicit-jump immersed inter-
face method: finite difference methods for PDEs with piecewise
smooth solutions. SIAM J Numer Anal 37(3):827–862

34. Wang X, Liu WK (2004) Extended immersed boundary method
using FEM and RKPM. Comput Methods Appl Mech Eng 193:
1305–1321

35. Boffi D, Gastaldi L (2003) A finite element approach for the
immersed boundary method. Comput Struct 81:491–501

36. Boffi D, Gastaldi L, Heltai L (2007) On the CFL condition for the
finite element immersed boundary method. Comput Struct 85:775–
783

37. Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed
finite element method. Comput Methods Appl Mech Eng
193:2051–2067

38. Liu WK, Liu Y, Zhang LT, Wang X, Gerstenberger A, Farrell D
(2004) Immersed finite element method and applications to bio-
logical systems. In: Finite element methods: 1970’s and beyond.
International Center for Numerical Methods and Engineering

39. Liu Y, Liu WK (2006) Rheology of red blood cell aggregation in
capillary by computer simulation. J Comput Phys 220:139–154

40. Gay M, Zhang LT, Liu WK (2006) Stent modeling using immersed
finite element method. Comput Methods Appl Mech Eng 195:
4358–4370

41. Liu WK, Liu Y, Farrell D, Zhang LT, Wang S, Fukui Y, Patankar N,
Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2006) Immersed
finite element method and its applications to biological systems.
Comput Methods Appl Mech Eng 195:1722–1749

42. Zhang LT, Gay M (2007) Immersed finite element method for
fluid-structure interactions. J Fluids Struct 23:839–857

43. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle
methods. Int J Numer Methods Fluids 20:1081–1106

44. Liu WK, Chen YJ (1995) Wavelet and multiple scale reproducing
kernel method. Int J Numer Methods Fluids 21:901–932

45. Zhang LT, Wagner GJ, Liu WK (2002) A parallized mesh-
free method with boundary enrichment for large-scale CFD.
J Comput Phys 176:483–506

46. Liu WK, Chen Y, Chang CT, Belytschko T (1996) Advances in
multiple scale kernel particle methods. Comput Mech 18(2):73–
111

47. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of
unity. part I: formulation and theory. Comput Methods Appl Mech
Eng 145:251–288

48. Liu WK, Chen Y, Uras RA, Chang CT (1996) Generalized multiple
scale reproducing kernel particle methods. Comput Methods Appl
Mech Eng 139:91–158

49. Bradley CJ (2007) The algebra of geometry: cartesian, areal and
projective coordinates. Highperception Ltd, Bath, UK

50. Dunne T (2006) An Eulerian approach to fluid–structure inter-
action and goal-oriented mesh adaptation. Int J Numer Methods
Fluids 51:1017–1039

51. Zhao H, Freund BJ, Moser DB (2008) A fixed-mesh method for
incompressible flow-structure systems with finite solid deforma-
tions. J Comput Phys 227:3114–3140

52. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements
for continua and structures. Wiley, New York

53. Sugiyama K, Takeuchi S, Ii S, Takagi S, Matsumoto Y (2008) Full
Eulerian finite difference computation for fluid–structure coupling
problem. In: The 61st annual APS division of fluid dynamics, San
Antonio

123

	Interpolation functions in the immersed boundaryand finite element methods
	Abstract
	1 Introduction
	2 Formulations
	2.1 Immersed finite element method algorithm
	2.2 Interpolation functions

	3 Examples
	3.1 Example 1: an elastic wall in a lid-driven cavity flow
	3.2 Example 2: disk in a lid-driven cavity

	4 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

