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A new method for generating equilibrated configurations of polymer melts is presented. In this
method, the molecular weight of an equilibrated melt of polymers is successively doubled by
affinely scaling the simulation box and adding beads along the contour of the chains. At each stage
of molecular weight doubling, compressive deformations are produced on all length scales, while
the random walk nature of the polymers is preserved, thereby requiring relaxation times significantly
smaller than the reptation time to fully equilibrate the melt. This method preserves the topological
state of individual polymers in the melt and its effectiveness is demonstrated for linear polymers
with molecular weight N up to 1024, and cyclic polymers with N up to 8192. For the range of N
studied, the method requires simulation time that scales as N2 and is thought to be applicable to a
variety of polymer architectures. © 2010 American Institute of Physics.
�doi:10.1063/1.3493329�

I. INTRODUCTION

In polymer melts, the difficulty involved in directly ob-
serving entanglements, or directly measuring quantities such
as the conformational free energy in an experiment makes
computer simulations an indispensable tool. Coarse-grained
molecular dynamics �CGMD� is an extensively used tech-
nique that can take advantage of parallel computing. Indeed,
the Kremer–Grest bead-spring model1 has been used to ob-
tain the primitive path network,2 calculate the tube potential,3

separate the roles of chain orientation and interchain en-
tanglement in polymer glasses,4 study the development of
entanglements in disentangled polymer melts,5 examine
atomic stresses in polymer glasses,6 and investigate polymer
crystallization.7 The starting point for most studies of poly-
mer melts is a well-equilibrated system of entangled chains.
A popular method of equilibration involves generating an
initial configuration using a random walk or a self avoiding
walk. This initial configuration is then allowed to evolve, as
dictated by the Hamiltonian. The system is considered equili-
brated after the polymer chains have diffused a distance
comparable to their size. This brute-force method of equili-
bration is suitable only for relatively low molecular weights,
as the longest relaxation time of an entangled polymer melt
scales as the third �or higher� power of the molecular weight.

As a result, alternate techniques, such as Monte Carlo
�MC� methods, are used to produce partially equilibrated
configurations that are then fully equilibrated by CGMD. Ex-
amples of these MC methods include phantom chain growth
by McKechnie et al.8 and geometric embedding by Müller et
al.9 Other MC algorithms proposed by Vettorel et al.10,11 em-
ploy nonlocal moves such as kink translocation, whose va-
lidity has been questioned.12 Some MC methods produce
configurations with overlapping beads. The overlaps can be

removed using soft potentials, such as the modified
Lennard-Jones8 or cosine potentials.13 Employing these soft
potentials has been shown13,14 to deform longer chains,
which relax only after they have diffused a distance compa-
rable to their size.

The double-bridging algorithm proposed by Karayiannis
et al.,15 and studied in detail by Auhl et al.,13 is a rapid
equilibration method applicable to both lattice methods �such
as the bond-fluctuation model�,16,17 and CGMD methods
�such as the bead-spring model�. Double-bridging exchanges
bonds between a pair of chains, thereby creating two new
chains that can be substantially different from the original
two. Intramolecular double-bridging is also possible, when
bonds are exchanged between atoms belonging to the same
chain. While double-bridging has been extended to H-shaped
polymers,18 and three-arm stars,19 it is nevertheless difficult
to extend double-bridging to polymers whose topological
state must be preserved, such as cyclic polymers �CPs�.

Other equilibration techniques, inspired by the dynamics
of polymerization have been proposed.20,21 In these methods,
the starting point is a dense melt of monomers, which are
treated as radicals, and begin to capture other free mono-
mers. Even with these methods, topology preservation is dif-
ficult.

In this study, a method for generating equilibrated con-
figurations of polymer melts is presented. This successive
molecular weight doubling �SMWD� method preserves the
topological state of the individual polymers within the net-
work. It was tested on both linear polymers �LPs� and CPs,
but is general enough to be extended to polymers with other
chain architectures, such as comb, H, pom-pom, and star. In
the following sections, the model and procedures used for
brute-force equilibration and SMWD are described. The
structure of melts generated by both methods is characterized
by measuring statistics of polymer dimensions, internal dis-
tance between beads, and the primitive path network. A re-a�Electronic mail: gsub@scorec.rpi.edu.
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cently published scaling argument11,12 for the size of CPs in
a melt is also confirmed: it is shown that the mean square
radius of gyration of CPs in a melt varies as Rg

2�N2�, where
as the molecular weight N increases, the exponent � de-
creases from 0.4 and attains the limiting value of 1/3.

II. SIMULATION METHOD

A. Model

Polymers are represented using the coarse-grained bead-
spring model1 with beads of mass m. Excluded volume in-
teractions are included through a Lennard-Jones potential
given in Eq. �1�.

ULJ�r� = �1 + 4����/r�12 − ��/r�6� , r � Rc

0, r � Rc.
� �1�

The quantities � and � set the length and time scales of
the simulations. The fundamental units of mass, length, time,
and temperature are, respectively, m, �, �=��m /��1/2, and
T=� /kB. The cutoff distance is chosen as Rc=21/6�, making
the potential purely repulsive in nature. Consecutive beads
on a polymer chain are connected by a finite extensible non-
linear elastic �FENE� potential given in Eq. �2�.

UFENE�r� = �− 0.5kRo
2 ln�1 − �r/Ro�2� , r � Ro

� , r � Ro.
� �2�

The parameters were chosen to be k=30� /�2 and Ro

=1.5�. These parameters have been used in the past1,13 and
ensure that the bonds between consecutive beads along a
polymer are short enough, so that in conjunction with the
strong repulsion between beads, chains are prevented from
crossing each other.22 The equations of motion are integrated
using a velocity Verlet algorithm with a timestep 	t
=0.006�. The temperature of the system is rescaled to unity
every ten timesteps by rescaling the velocities of the beads in
the system �drift of the simulation cell caused by this ther-
mostat was on the order of 10−7�, which shows that the
so-called “flying ice” phenomenon does not develop in the
time scales considered in this study�. In subsequent sections,
integration of the equations of motion along with the tem-
perature rescaling is referred to as evolution. The number
density of beads in the simulation box is 
=0.85�−3 through-
out, except in the initialization stage for CPs, as described
below.

B. Brute-force equilibration

A preliminary configuration for LPs was generated by
growing them as random walks in a cubic simulation box
with periodic boundary conditions. For CPs, the preliminary
configuration was generated in a cubic simulation box large
enough to accommodate all CPs without any overlaps be-
tween them. CPs were grown by placing beads along the
circumference of a circle. The center of this circle was
placed at a randomly chosen point in the simulation box and
the plane of the circle was rotated to have a random orienta-
tion. CPs were placed in such a manner that the bounding
cuboids of CPs did not overlap. Growing CPs as circles en-
sures that all CPs are the trivial knot, or unknot. Placing

them such that bounding cuboids do not overlap ensures that
there are no catenated CPs. For CPs with N=1024, the num-
ber density of the preliminary configuration was on the order
of 10−3�−3.

The energy of the preliminary configuration for both LPs
and CPs was minimized until the total energy of the simula-
tion box dropped below 1�10−30�. Following the energy
minimization, the system was allowed to evolve for approxi-
mately 3�104 timesteps. In the case of CPs, the size of the
simulation box was reduced during this run to attain a final
length that yields a bead number density of 
=0.85�−3. The
resulting system was taken to be the initial configuration.
This initial configuration was allowed to evolve, and the au-
tocorrelation of the end-to-end vector �for LPs�, and the dia-
metrical vector �for CPs� was monitored. These autocorrela-
tion functions are defined in Eq. �3�.

pi�t� =
	Ree�t� · Ree�0�


	Ree
2 �0�


. �3�

For LPs �i=L�, pL is obtained by setting Ree�t�=RN�t�
−R1�t�, the vector connecting the end beads of an LP. For
CPs �i=C�, pC is obtained by setting Ree�t�=RN/2�t�−R1�t�,
the diametrical vector of a CP. At any given time t, the dia-
metrical vector of a CP was computed using the position
vectors of the same two beads that were used to compute the
diametrical vector at t=0. Systems were considered equili-
brated when pi�t� had decayed past zero.

C. Successive molecular weight doubling

The SMWD method is a multistage process. A fully
equilibrated system with molecular weight Nold is taken to be
the initial configuration for each stage. Each stage consists of
scaling and equilibration. The scaling is shown schematically
in Fig. 1 for a single LP and a single CP. Here, the simulation
box of the initial configuration, along with the polymers, is
scaled affinely by a factor of 21/3. This affine scaling yields
the new coordinates �x� ,y� ,z�� of an arbitrary point �x ,y ,z�
according to �x� ,y� ,z��=21/3�x ,y ,z�. This scaling ensures
that the length of every arbitrary vector in the simulation box
is multiplied by the scaling factor, and that the angle between
every arbitrary pair of nonzero vectors remains unchanged.
Thus, the affine scaling preserves the topology of the en-
tanglement network.

In this scaled simulation box, every polymer is replaced
by a new polymer of molecular weight Nnew=2Nold, by plac-
ing beads of the new polymer along the contour of the old
polymer. The normalized coordinate along the contour of the
scaled old polymer is denoted by s. For LPs, s=0 corre-
sponds to one end bead, and s=1 corresponds to the other
end bead. Nnew equally spaced beads are then placed over s
� �0,1�. For CPs, s=0 and s=1 both denote the bead that
was designated as bead 1 in the simulations. Nnew+1 equally
spaced beads are then placed over s� �0,1�. The bead cor-
responding to s=1 is removed, as it is identical to the bead
with s=0. The bonds of the new polymers are then updated
appropriately.

The affine scaling and adding beads is a synthetic con-
struct that has been used, as far as the author is aware, for the
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very first time, as a device for rapid equilibration. It is in-
spired by the chain explosion process described by
deGennes,23 where upon rapid melting, a crystalline polymer
with a low entanglement density reaches equilibrium in a
time that scales as N1/2. Nevertheless, it must be mentioned
that the effect of molecular weight on the chain explosion
process is a subject of some debate. Experimental
studies24–26 suggest that slow melting of a disentangled melt
leads to formation of the “heterogeneous melt” state, which
relaxes in a reptation time, while computational studies, us-
ing both the Bond fluctuation model,27 and the Kremer–Grest
bead-spring model5 have not been able to convincingly rep-
licate this phenomenon. This might be in part because the
heterogeneous melt state is observed for high molecular
weight polymers, which are computationally expensive to
model.

The construct used in the present study generates a new
simulation box with the same density �
=0.85�−3� as the old
one, assured by the choice of scaling factor. The random
walk nature of the polymers is preserved, albeit with a dif-
ferent step length. The entanglement density, on the other
hand, is reduced by a factor of 2. The end-to-end vector of
the new polymers is scaled by a factor of 21/3, which results
in compressed LPs, and compressed low molecular weight
CPs. This synthetic construct does not correspond to any real
phenomenon and is used to bypass the long relaxation times
associated with polymer melts. For CPs, the scaling of poly-
mer size produced by the affine scaling is consistent with the
natural scaling of CP size11,12 for large molecular weights,
and thus relaxations are required only on the smaller length
scales. LPs, on the other hand, are deformed at all length
scales, but the lowered entanglement density is expected to
produce an acceleration in the equilibration time. However,

as was rightly pointed out by a reviewer, the time required to
fully equilibrate a melt of affinely scaled LPs is somewhat
uncertain. In this study, the period for which equilibration of
the affinely scaled polymer melt is performed is referred to
as the transition period. For CPs, which have faster
dynamics,28 the transition period was set to be 1.5�R. For
LPs, the transition period was set to be 5�R. It will be shown
that this duration of the transition period is sufficient for
equilibrating the molecular weights considered in this study.
The melt produced at the end of the transition period then
serves as the initial configuration for the next stage of dou-
bling. The procedure is repeated until the desired molecular
weight is reached.

The Rouse time was computed as �R=�e�Nnew /Ne�2.
Here, �e is the relaxation time of an entanglement segment
and Ne is the number of beads between entanglements. These
latter quantities were estimated from melts of LPs generated
using the brute-force method. By assuming that the reptation
time for LPs with molecular weight N is equal to the time
taken for pL�t� to decay to zero, the relaxation time of an
entanglement segment was estimated as �e�104�. From the
primitive path analysis of equilibrated LPs, the number of
beads between entanglements was estimated as Ne�90. This
is slightly higher that the value of Ne�86 reported by Hoy
et al.29

D. Primitive path analysis

A slightly modified version of the annealing method of
Everaers et al.2 was used to obtain the primitive paths �PPs�
and is briefly summarized. The end beads of the LPs were
held stationary in the simulation box, while all other beads
were free to move within the extent permitted by the FENE
bonds and pairwise LJ interactions. Temperature rescaling
was turned off, and a viscous dissipative force given in Eq.
�4� was applied to each bead to slowly drain the energy of
the system.

Fd = − �v . �4�

Here, the damping coefficient was set as �=1 �the
choice of � does not significantly affect the results of the PP
analysis, as it is essentially an energy minimization�. The
energy and extent of intrachain pairwise interactions �� and
�� were reduced linearly to zero in a short period of time
�2.5�, while interchain pairwise interactions were kept un-
changed. Since the minimum of the FENE potential is at r
=0, a melt of LPs will slowly evolve toward a state where
the chains pull themselves taut. From a practical standpoint,
however, it would take infinite time for a system to reach this
minimum energy configuration. Thus, the system was al-
lowed to evolve �without temperature rescaling� until the
temperature dropped below 10−3� /kB. The FENE bonds were
then replaced by stiff harmonic bonds with a potential given
in Eq. �5�.

Uharmonic�r� =
K

2
�r − Rh�2. �5�

The parameters of the stiff harmonic bond were set as
Rh=0; K=600� /�2. This resulted in the polymer chains be-

FIG. 1. Schematic of the SMWD method applied to LPs and CPs for Nold

=8. The original polymers at the top �red� are affinely scaled and replaced
by new polymers �blue� with Nnew=2Nold. In CPs, since the number of bonds
is equal to the number of beads, the contour of the new CP exactly follows
the contour of the scaled old CP.
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ing pulled taut, and the resulting polymer contours were
taken to be the primitive paths. The average number of en-
tanglements Z, and the average number of beads per en-
tanglement Ne were then computed as

Z =
Lpp

2

Ree
2 , Ne =

N

Z
, �6�

where Lpp is the mean contour length of the primitive paths.
The CPs in this study are noncatenated and unknotted.

Annealing a system of pure CPs, as performed by Subrama-
nian and Shanbhag,30 where none of the beads of a CP are
permanently fixed, would lead to all CPs in the system col-
lapsing to a single point, and thus, the primitive path analysis
was not performed on CPs. It must be noted here that it is
nevertheless possible to perform PP analysis for CPs by fix-
ing, for example, two diametrically opposite beads, but this
is the topic of some debate, as the notion of primitive path
for CPs is somewhat poorly defined.

III. RESULTS

The subscripts L and C are used to distinguish between
quantities pertaining to LPs and CPs, respectively. All simu-
lations were executed using LAMMPS,31 with a few custom
modifications. The systems simulated in this study are sum-
marized in Table I, along with the mean square radius of
gyration of the polymers. For all systems, the simulation box
size is at least twice Rg. Figure 2 shows a plot of decay of the
autocorrelation function for LPs and CPs with molecular
weight N=1024 over the course of brute-force equilibration.
CPs were seen to relax faster than LPs, and the configura-
tions obtained after pi�t� had decayed past zero were consid-
ered fully equilibrated. The average bond length in these
systems was then measured as b=0.9650.002�. The char-

acteristic ratio was obtained as C�=1.770.03 by fitting the
mean square radius of gyration data for LPs obtained using
brute-force equilibration to the expression32

�Rg
2�L = 1

6C�b2�N − 1� . �7�

These values for the average bond length and character-
istic ratio are consistent with values obtained previously.1,13

This indicates that for purposes of studying static properties,
the number of polymers in each system is sufficient, and that
the systems are well-equilibrated. It is corroborated by the
results on the internal length scales, and primitive path sta-
tistics, presented later on in this section. Nevertheless, it
must be noted that measuring dynamic properties of these
systems might produce artifacts resulting from polymers in-
teracting with themselves other across the periodic bound-
aries.

A. Polymer dimensions and entanglement statistics

The overall size of the polymers generated in this study
is given in Table I. LPs display a Gaussian scaling of size,
and for both LPs and CPs, the results from both equilibration
methods are in good agreement. Figure 3 shows a plot of Ree

2

and Rg
2 for CPs. The scaling of CP size follows �Rg

2�C�N2�,
where ��0.4 for low molecular weights, and seems to as-
ymptotically approach ��1 /3 for large N. �The actual fits
obtained are �Rg

2�C�N0.840.02 for N�1024, and �Rg
2�C

�N0.690.01 for N�1024.� This confirms the scaling seen in
other studies.11,12

In addition to the overall size, polymer conformations at
all length scales can be probed simultaneously by computing
the mean square internal distance between beads. For a sys-
tem with molecular weight N, let R�i� and R�j� denote the
coordinates of beads i and j, respectively, �i� j� of the same
polymer. Setting n= �i− j�, the mean square internal distance
at scale n is given as

TABLE I. Summary of molecular weight �N�, number of polymers �Np�, and
mean square radius of gyration �Rg

2� for the systems studied. The number
density for all simulations is 
=0.85�−3. The average bond length and char-
acteristic ratio were obtained as b=0.9650.002� and C�=1.770.03.

N

Brute-force SMWD

Np Rg
2 Np Rg

2

LPs
64 50 17.161.0 200 17.230.1
128 50 37.422.3 200 36.040.2
256 50 77.824.8 200 74.150.3
512 50 153.2510.9 200 152.000.4
1024 50 283.3318.1 200 289.241.5

CPs
64 50 8.430.3 50 8.220.3
128 50 15.650.6 50 16.820.6
256 50 29.531.4 50 30.161.2
512 50 49.262.1 50 53.992.0
1024 50 90.783.9 50 88.013.6
2048 ¯ ¯ 50 147.535.8
4096 ¯ ¯ 50 244.729.7
8192 ¯ ¯ 50 400.1116.2

10000 1e+06 1e+08
Time t/τ

0

0.5

1

p
i
(t

)

LPs
CPs

FIG. 2. Decay of the autocorrelation function defined in Eq. �3� during
brute-force equilibration for LPs and CPs with molecular weight N=1024.
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R2�n� = 	�R�i� − R�j�� · �R�i� − R�j��
 , �8�

where the average is computed over all possible beads i and
j that belong to a polymer with n= i− j, over all polymers in
the system. Analytically, the mean square internal distance
for Gaussian LPs and CPs �Ref. 32� is given as

�L =
�R2�n��L

n
= C�b2, �9�

�C =
�R2�n��C

n�1 − n/N�
= C�b2. �10�

Plots of �L and �C obtained from both equilibration
methods are shown in Figs. 4�a� and 4�b�, respectively. The
inset of Fig. 4�a� shows the results obtained for N=1024 in
SMWD, along with the so-called target function used by
Auhl et al.13,33 For CPs, in order to collapse the results from
all molecular weights onto the same horizontal axis, �C is
plotted as a function of n /N. The results obtained from both
equilibration methods are in good agreement. The noncatena-
tion constraint imposed on the CPs manifests itself as a
“pressure” that increases with molecular weight,34–36 forcing
CPs to adopt compact conformations. LPs, on the other hand,
are not subjected to the same topological constraints and
therefore display Gaussian behavior at all but the smallest
length scales.

Figure 5 shows a plot of Ne, the average number of
beads between entanglements, obtained by PP analysis of LP
melts generated using both equilibration methods. Also
shown are values of Ne obtained from studies that use the
bead-spring model with the same parameters used in this
study and the same annealing PP analysis. For LPs generated
using both equilibration methods, the number of beads be-
tween entanglements seems to asymptotically approach Ne

�90.

B. Evolution of quantities in the transition period

As mentioned previously, the transition period of
SMWD is the period over which a newly generated polymer
system of molecular weight Nnew is allowed to evolve and
reach equilibrium. At the beginning of the transition period,
t=0, the system with molecular weight Nnew has just been
generated, and the polymers are maximally deformed. For
well-equilibrated Gaussian LPs, the radii of gyration of the
two different molecular weights are related by Rg

2�Nnew�
=2Rg

2�Nold� or a factor of 2. The affine scaling that generates
Nnew from Nold changes Rg by a factor of 21/3, or equivalently
changes Rg

2 by a factor of 22/3. Thus, in the transition period,
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FIG. 3. Dimensions of CPs generated in this study using brute-force equili-
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�inset: target function obtained by Auhl et al. �Ref. 13� �broken line�, along
with the results for N=1024 �solid line�� and �b� CPs. In the main figures,
symbols denote melts generated by brute-force equilibration and solid lines
denote melts generated by SMWD. Broken black lines denote the Gaussian
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for large t, the ratio Rg
2�t� /Rg

2�t=0� should approach 21/3. Fig-
ure 6 shows the evolution of the mean square radius of gy-
ration over the transition period. The ratio Rg

2�t� /Rg
2�t=0�

seems to reach the expected value of 21/3�1.26 in a period
on the order of one Rouse time and fluctuates about the
mean.

The evolution of the internal length scales also follows a
scaling similar to the mean square radius of gyration. The
affine scaling increases all length scales by the factor 21/3.
The internal length scales of a polymer melt before and after
the scaling �at t=0� are given by

�R2�n�
n


new

= 22/3�R2�n�
2n


old

= 2−1/3�R2�n�
n


old

. �11�

This corresponds to the plateau of �L being scaled down
by 26% due to the affine scaling, which is corrected during
the transition period. Figure 7 shows a plot of �L for the
molecular weight N=1024 at a few selected values of t,
along with the target function from Auhl et al.13 It is seen
that the LPs generated by SMWD are maximally deformed
�by 26%� at all length scales at t=0, and expand to reach
their equilibrium conformation in a time on the order of one
Rouse time. The smaller scales seem to reach equilibrium
before the larger scales. The equilibrium conformation is
Gaussian at all but the smallest length scales, and fluctuates
about the mean as the simulations are continued beyond one
Rouse time.

Figure 8 shows the variation of the average number of
entanglements on LPs over the course of the transition pe-
riod. The number of entanglements reaches equilibrium in
approximately one Rouse time and fluctuates about the
mean. However, the actual value of Z�t� /Z�t=0� is less than
2 for lower molecular weights and seems to approach 2 as N
increases. This behavior is consistent with the expectation
that for polymers with N�Ne, with a doubling of molecular
weight; the ratio Z�t� /Z�t=0� is expected to approach a value
of 2.

For low-molecular weight CPs, on the other hand, for
large t, the ratio Rg

2�t� /Rg
2�t=0� is expected to reach approxi-

mately 1.09. For higher molecular weights, this ratio is unity,
and the desired increase in CP dimensions is produced by the
affine scaling alone. For CPs generated using SMWD, as the
number of polymers was Np=50, this 9% �or less� increase in
size was not significant enough to be reliably detected, and
thus, these results are not shown. However, the internal
structure of the CPs undergoes rearrangement, as evidenced
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by the mean square internal distance between beads. Figure 9
shows a plot of �C as a function of n /N for the molecular
weight N=1024 at three different values of t. This interme-
diate molecular weight was chosen because it is large enough
to be entangled and small enough to allow for sufficient av-
eraging at all length scales. The solid black line shows the
results obtained from melts of CPs generated by brute-force
equilibration. At the beginning of the transition period, the
conformations of newly generated CPs are somewhat close
to equilibrium and slowly evolve to reach their equilibrium
conformations in a time on the order of one Rouse time.

IV. DISCUSSION

The transition period for SMWD was originally thought
to be on the order of a Rouse time of an LP of molecular
weight Nnew. Looking at the evolution of polymer dimen-
sions and entanglement statistics, the reason for this choice
becomes somewhat clearer. The affine scaling used in the
SMWD method preserves the large-scale random walk na-
ture of polymers in the melt, albeit with the incorrect scaling
of the end-to-end distance �this error is about 26% for LPs
and significantly lower for CPs�. At the beginning of the
transition period, polymers are thus more compact than their
equilibrium counterparts. In a mean field sense, an LP at the
beginning of the transition period is constrained to move
within the confines of the tube formed by preexisting en-
tanglements. The compact nature of LPs, coupled with the
constraints posed by the tube drives an LP to expand along
the tube. From the point of view of entanglements, LPs at the
beginning of the transition period have approximately half as
many entanglements as their equilibrium counterparts. New
entanglements are expected to introduce themselves in be-
tween preexisting entanglements by the ends of other poly-
mers in the melt, in a manner which is the opposite of
constraint-release.39,40 Conversely, the segment of the chain
between pre-existing entanglements is free to move within
the constraints posed by the self-avoiding nature of the beads
and is unhindered by the presence of entanglements.

Thus, in a time on the order of �R, the segments of the
chains between pre-existing entanglements are expected to
reach equilibrium. The data presented in Figs. 6–9 all bear
out this expectation with regard to internal length scales and
number of entanglements on a chain. A melt of pure CPs, on
the other hand, is unentangled and has faster dynamics than a
melt of pure LPs. Therefore, the transition period for pure
CPs is less than the transition period for pure LPs.

The total time required by the successive molecular
weight doubling method, �total�N�, to generate an equilibrated
melt of polymers with molecular weight N can now be esti-
mated. The molecular weight of the seed configuration for
the first stage of SMWD is denoted by No and the molecular
weight at stage i is given by

Ni = 2iNo. �12�

If the total number of stages is denoted by m, the final
molecular weight N is obtained by setting i=m in the above
expression. At each stage, the duration of the transition pe-
riod is on the order of the Rouse time of the molecular
weight Ni, given by

�R�Ni� � �e�Ni

Ne
�2

. �13�

Neglecting the time taken to generate the seed configu-
ration with molecular weight No, and the time taken to scale
the simulation box and add beads, the total time is the sum of
the time taken for each transition period, and can be written
as

0 1 2 3 4 5
t / τ

R

1

1.5

2

2.5

Z
(t

)
/

Z
(t

=
0

)
N

new
= 128

N
new

= 256

N
new

= 512

N
new

= 1024

FIG. 8. Evolution of the average number of entanglements on LPs during
the transition period. For large N, a doubling of molecular weight leads to a
doubling of Z in approximately one Rouse time.

0 0.2 0.4 0.6 0.8 1
n/N

1

1.2

1.4

λ C

t’ = 0.0
t’ = 0.5
t’ = 1.2
Brute force

FIG. 9. The evolution of the internal distance between beads during the
transition period for CPs with molecular weight Nnew=1024. The solid black
line indicates CPs obtained by brute-force equilibration in this study.
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�total�N� = �
i=1

m

�R�Ni� = ��e�No

Ne
�2�

i=1

m

22i. �14�

The terms in the summation on the right hand side form a
geometric progression, and for 22m�1, the total time can be
written as

�total�N� = ��e�No

Ne
�24

3
�2m�2 =

4

3
�R�N� � N2. �15�

This expression also indicates that tripling or quadrupling the
molecular weight at each stage might not produce a signifi-
cant speed-up, as only the prefactor associated with the total
time changes.

While the data presented here all seem to indicate the
viability of the SMWD method, it is important to mention
outstanding issues and possible sources of error that may
need further investigation. Judging the quality of equilibra-
tion of a polymer melt is a complex, many-body problem.
This study has used only three of a variety of possible met-
rics to compare equilibration methods. The metrics used in
this study are, at the time of writing, three of the most com-
mon metrics used to characterize polymer structure, and for
LPs, �L is considered an extremely robust metric. Neverthe-
less, it is possible that other metrics might indicate that the
SMWD method may not yield good quality melts, and that a
transition period different from �R might be required for each
stage.

Secondly, the segment of the polymer chain between
preexisting entanglements is assumed to be capable of mov-
ing freely. Strictly speaking, as the affinely scaled configu-
ration evolves, entanglements will introduce themselves in
the originally free segment, hindering its motion. However,
these new entanglements are thought to be introduced by
chain ends, and therefore, the hindrance to motion should not
be significant. Thus, the proper transition period might be a
multiple of the Rouse time. It is also possible that by some
mechanism similar to the slow melting that produces hetero-
geneous melts, the proper transition period might scale with
the molecular weight to a power higher than 2.

Finally, the distribution of entanglements along a poly-
mer chain and the mechanism by which entanglements intro-
duce themselves over the course of the transition period are
two topics that warrant further investigation. Since the pur-
pose of this paper is to outline the SMWD method and es-
tablish the relevant computational framework, these topics
are delegated to a future study.

V. CONCLUSIONS

A new, topology-preserving method for the generation of
equilibrated polymer melts was presented. This successive
molecular weight doubling method was used to generate
melts of linear and cyclic polymers. Melts generated by
SMWD were compared with melts generated by brute-force
equilibration. As indicated by the metrics used in this study,
the quality of melts generated by both methods is compa-
rable. For the molecular weights considered in this study, the
SWMD method generates equilibrated polymer melts �along
with all intermediate molecular weights� in simulation time

that scales as N2, as opposed to brute-force methods that
scale as N3.4 for linear polymers, and is thought to be appli-
cable to a variety of polymer architectures.
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