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An Iterative Method for Producing Equilibrated
Symmetric Three-Arm Star Polymer Melts in
Molecular Dynamics
Gopinath Subramanian*
Melts of symmetric three-arm stars are generated using a novel iterative method. In this
method, an equilibrated lowmolecular weight configuration is used to generate progressively
higher molecular weights by affine scaling and equilibration. At each stage in the progression,
the synthetically lowered entanglement density allows
bypassing of the exponentially large relaxation times of
branched polymers. The quality of equilibration was
assessed by measuring the mean dimensions, distri-
bution of dimensions, and internal length scales of the
polymers. The total time required to generate the pro-
gression of equilibrated configurations was seen to scale
as the Rouse time of the highest molecular weight.
1 Introduction

Coarse-grained computational studies of polymers are

useful in observing phenomena that are ordinarily difficult

to directly observe in experiments. At the time of writing,

the Kremer–Grest bead-springmodel[1] is a popular coarse-

grained model that has been cited over 900 times, and has

been used to study the effect of cross-link density in tensile

failureofglassypolymers,[2] studyorientational coupling in

equilibrium polymer melts,[3] examine the abilities of

polymerbrushes to tunesurfaces,[4] andstudy thecrossover

regime between Rouse and reptation dynamics.[5] Formost

computational studies of polymers, a well-equilibrated

initial configuration is a prerequisite. Equilibrated systems

can be generated by first generating a preliminary

configuration, typically using a random walk, or a self-

avoiding walk. Following an energy minimization, the

equations of motion are integrated. After polymers in the
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systemhave diffused, on average, a distance comparable to

their size, the system is considered fully equilibrated.

This brute-force method of equilibration performs

adequately for dilute solutions and low molecular weight

melts, but poses serious difficulties for entangled long-

chainbranchedpolymers, suchas stars, and combs. In these

branched polymers, the branch point remains anchored at

time scales less than the arm relaxation time. Thermal

fluctuations occasionally cause an arm to retract comple-

tely, freeing the branch point to execute a hop in a random

direction. A series of such hops leads to self-diffusion of the

branched polymer. The arm retraction potential, in the

absence of dynamic dilution, is a quadratic function of the

arm molecular weight,[6,7] and therefore, the terminal

relaxation time of branched polymers has an exponential

dependence on arm molecular weight. Thus, even with

moderndayparallel computers, brute-forceequilibrationof

well-entangled branched polymers can be prohibitively

expensive. In order to overcome the long timescales
library.com DOI: 10.1002/mats.201000062
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associated with brute-force equilibration, alternative

methods, similar to the polymerization process have been

used.[8,9] Another setof long-standingmethods includes the

chain connectivity altering algorithms, that have been

studied for almost two decades,[10–24] and recently general-

ized for application toH-shaped, pom-pom, and short-chain

branchedpolymersbyBaigetal.[25] Thesebridgingmethods

all employ aplethora of complexmoves that canbedifficult

to implement.Moreover, itmaynot be easy to extend these

bridgingalgorithmstocyclicpolymers,whichhaverecently

gained some attention.[26–40]

In this study, a novel method of generating equilibrated

configurations of symmetric three-arm star melts is

presented. While the method presented here is not

necessarily faster or more efficient than the bridging

methods mentioned above, it is conceptually simpler, easy

to implement, not restricted to short-chain branched

polymers, and can be easily generalized to potentially a

widevarietyofbranchedpolymerarchitectures. Thescaling

algorithm presented in this study is a generalization of the

successive molecular weight doubling (SMWD)method,[41]

which has been successfully used to generate equilibrated

conformations of both linear and cyclic polymers. In the

originalmanuscript, itwasshownthatanequilibratedmelt

of cyclic polymers could be generated in approximately one

Rouse time, and for reasons that are still unclear,

equilibrated linear polymer melts could also be generated

in a timescale on the order of one Rouse time. While it was

mentioned that the SMWD algorithm could be applied to

branched polymers, the timescales required for generating

equilibrated branched polymers are a priori unknown.

Thus, the purpose of this manuscript is the following:

(1)generalize theSMWDmethod– i.e., showthat thescaling

algorithm is not restricted to a doubling of molecular

weights; (2) demonstrate that although the dynamics of

branched polymers can be very different from those of

linear polymers, the scaling algorithm can be used to

generate three-armstarmelts, and that it is not restricted to

short-chain branched polymers; and (3) establish the

timescales associated with the scaling algorithm applied

to three-arm stars. In the following sections, the model is

defined and the methods for generating equilibrated melt

configurations are described. The quality of equilibration is

examined by measuring the mean size of polymers, the

mean internal length scales of the arms, and for the first

time, the distribution of arm size.
2 Methods

2.1 Model

Polymers are represented using the coarse-grained bead-

spring model[1] with beads of mass m. Excluded volume
www.MaterialsViews.com
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interactions are incorporated using the Lennard-Jones

potential given in Equation 1. Consecutive beads on a

polymer chain are connected by the finite extensible

nonlinear elastic (FENE) potential given in Equation 2.
l. 2011,

H & Co
ULJ rð Þ ¼ 1þ 4" s=rð Þ12� s=rð Þ6
h i

; r � Rc

0; r > Rc

(
(1)

UFENE rð Þ ¼ �0:5kR2
o ln 1� r=Roð Þ2

h i
; r � Ro

1; r > Ro

(
(2)
In this model, the fundamental units of mass, length, time,

and temperature are, respectively,m, s, t ¼ s m="ð Þ1=2, and
T ¼ "=kB. All quantities are presented in reduced units, and

are therefore dimensionless. The cutoff distance for the

Lennard-Jones potential is chosen as Rc¼ 21/6, making it

purely repulsive in nature. The parameters of the FENE

potential were chosen to be k¼ 30 and Ro¼ 1.5. These

parameters prevent excessive separation of consecutive

monomers along a chain, and prevent chain crossing.[42,43]

Evolution of the system is accomplished by integrating the

equations of motion using a velocity Verlet algorithm[44,45]

with a time step Dt ¼ 0:006. During integration, the

system temperature is rescaled to unity every 10 time

steps by rescaling velocities of the beads in the system

(errors associated with this thermostat are not significant

for purposes of this study – see Appendix). The number

density of beads in the simulation box is maintained at

r¼ 0.85 throughout.
2.2 Generation of Three Arm Star Melts

In this study, the molecular weight of each arm of a star

(excluding the branchpoint) is denoted byN. Themolecular

weightofa starpolymer is thereforegivenbyNstar¼ 3Nþ 1.

The number of polymers in all systems is chosen to be

Np¼ 100.

The seed configuration for the scaling algorithm is awell-

equilibrated low molecular weight melt with N¼ 32. This

molecular weight is low enough to ensure that the

polymers are unentangled. Thus, the seed configuration

is generated using the brute-force method as follows: in a

simulation box of side Lwith periodic boundary conditions,

Np branch points are placed at random locations. Fromeach

branch point, three-arms, each of molecular weight N¼ 32

are grown as random walks. In order to remove overlaps

betweenbeads, the energy of the system isminimizeduntil

the total energy drops below 1� 10�30. The equations of

motion are integrated, and the system is allowed to evolve.

The center of mass of each polymer is tracked, and the seed

system is considered equilibrated after the mean distance
20, 46–53
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traveled by the polymers is three times their radius of

gyration.

From this equilibrated seed configuration, an iterative

process is used to generate systems with a geometric

progression of armmolecularweights, characterized by the

common ratio rc. The iterative process consists of affine

scaling, replacement, and equilibration. Affine scaling and

replacement are used to produce a new simulation box

with polymers of arm molecular weight Nnew ¼ brcNoldc
(here, b c denotes the floor function). Setting rc¼ 2 reduces

the scaling algorithm to the SMWD method.[41] Figure 1

shows a schematic of the affine scaling and replacement of

a three-arm starwithN¼ 10, rc¼ 1.1. The coordinates of the

beads, alongwith thesimulationboxareaffinelyscaledbya

factor kA. The scaling factor kA is chosen such that the new

simulation box has the same number density of r¼ 0.85 as
Figure 1. Schematic of affine scaling and replacement of a three-
arm star with N¼ 10, rc¼ 1.1. The old polymer is affinely scaled by
a factor kA. New beads are then placed along the contour of the
scaled old polymer. The broken circle indicates a location where a
local topological change might occur, when new beads are close
to the mid points of the old bonds.
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the old one. This affine scalingmultiples the position vector

of each bead in the simulation box by the scaling factor kA.

Asa result, theanglebetweeneveryarbitrarypair ofvectors

remains unchanged, and the length of every arbitrary

vector in the simulation box is multiplied by the factor kA.

Thus, the affine scaling preserves the topology of the

system. Each polymer is then replaced by a newpolymer as

follows: the normalized coordinate along the contour of an

arm, including the branch point, is given by s. The

coordinates of the end bead of an arm, and the branch

point, are given by s¼ 0 and s¼ 1, respectively. The Nold

beads along the contour of every arm are replaced by Nnew

beads, such that the new beads, along with the branch

point, are equally spacedalong the contour of thearm in the

interval s2 0; 1½ �.
For the value of rc¼ 1.1 shown in Figure 1, the contour of

the new arm does not exactly follow the contour of the old

arm. In particular, when two consecutive beads of the new

armare located close to themidpoints of bonds fromtheold

arm, the deviation of the new arm from the contour of the

old arm can be significant. One such configuration is

indicated by a broken circle in Figure 1. If two such

configurations (from two different arms, or even the same

arm)are close to eachother, it is possible that chain crossing

might take place during replacement. However, in the

equilibration of three-arm stars, or any other polymerwith

ends, it is not vital to prohibit chain crossing during

equilibration. In fact, chain crossing has been used in the

past[46] to facilitate equilibration. This is because in well-

equilibratedmelts, the topologiesof chains thatareallowed

to cross are statistically indistinguishable from chains

whose crossing is forbidden. It will also be seen that

ignoring the effects of possible chain crossing does not

affect the melt quality of three-arm stars. However, for

polymers without ends, such as cyclic polymers, chain

crossing will violate topological constraints, such as non-

catenation and knotting. For such polymers, higher values

of rc would be preferable. Other constraints that force the

contour of the new chain to follow the contour of the scaled

old chain can be imposed. For example, the spacing of new

beads in the interval s2½0; 1� could be staggered such that

the new chain exactly follows the contour of the scaled old

chain. These are, however, implementation details, and

thus not explored in this study.

Theaffinescalingand replacementpreserves the random

walk nature of polymers in the system, produces deforma-

tions at all length scales, and reduces the entanglement

density. Thus, further equilibration becomes necessary.

However, due to the lowered entanglement density, the

equilibration time required is thought to be less than the

terminal relaxation time. However, the actual time

required to relax these deformations is somewhat unclear,

as pointed out earlier.[41] In this study, each system

produced by scaling and replacing the beads was allowed
l. 2011, 20, 46–53
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Figure 2. Brute-force equilibration of three-arm stars with
arm molecular weight N¼ 32. At the end of the equilibration
period, the stars have diffused a distance comparable to their
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toequilibrate for twoRouse times (this timeofequilibration

will be shown to be sufficient). At the end of this

equilibration period, polymer melts with arm molecular

weightNnewwere taken to be equilibrated, and used as the

seed configuration for the next iteration. It must be noted

here, as was pointed out by a reviewer, that since the bead-

spring model is relatively soft, excess energy produced by

the affine scaling and replacement can easily be absorbed.

However, for hard models, such as fully atomistic, or even

thebead-springmodelwith stiffer springs, at the very least,

an intermediate energy minimization step may be

required.

The Rouse time of a three-arm star was taken to be

tR ¼ te Nstar=Neð Þ2. This computationof the Rouse time is an

overestimate, as three-arm stars adopt more compact

conformations than linear polymers of equal molecular

weight. The quantities relevant to calculating the Rouse

time were obtained from separate simulations on linear

polymers[41] as molecular weight between entanglements

Ne¼ 90a, and relaxation time of an entanglement segment

te¼ 104.

size.
3 Results & Discussion

All simulations were executed using a modified version of

LAMMPS.[50] Choosing the number of polymers asNp¼ 100

ensures that the simulation box size L is at least three times

the average radius of gyration. The system with arm

molecular weight N¼ 32 was generated using brute-force

equilibration, during which time, the center of mass Rcm of

all polymers was tracked. The mean square distance

diffused by the center of mass of polymers in the system

was computed as
a The
the
met
yield

www.M
g3 tð Þ ¼ RcmðtÞ�Rcmð0Þ½ �2
D E

(3)
where the average is taken over all polymers in the system.

Figure 2 shows a plot of g3(t), along with the evolution of

the mean square radius of gyration R2
gðtÞ

D E
. Polymers

generated using random walks are initially compressed,

and quickly expand to reach their equilibrium dimensions.

Since the average distance diffused by the polymers is

greater than their average size, the systemwas considered

equilibrated. This seed configuration was used to generate

two different progressions of molecular weights, corre-

sponding to rc¼ 1.1 and rc¼ 1.5, and the system para-

meters, along with the mean square radius of gyration

obtained are summarized in Table 1. For all systems, the
molecular weight between entanglements is computed using
annealing primitive path analysis of Everaers et al.[47] Other
hods of obtaining the primitive path, such as the Z-code[48]

slightly different estimates for Ne
[49].
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simulation box size is large enough to avoid artifacts

resulting from polymers interacting with themselves

across the periodic boundaries.

The size of stars generated in this study was compared

with the Zimm–Stockmayer expression[51] for the contrac-

tion factor g. For symmetric three-arm stars, the following

expression is obtained:
l. 2011,

H & Co
g ¼
R2
gðNÞ

D E
star

R2
gð3N þ 1Þ

D E
linear

¼ 7

9
(4)
This expression relates the mean square radius of gyration

of symmetric three-arm stars having arm molecular

weight N (or equivalently, polymer molecular weight

Nstar¼ 3Nþ 1), to the mean-square radius of gyration of

linear polymers with molecular weight Nstar. Rearranging,

an expression for the mean square radius of gyration of

stars as a function of arm molecular weight is obtained as
R2
gðNÞ

D E
star

¼ 7

18
C1b2N (5)
Figure 3 shows the mean square radius of gyration of

three-arm stars generated in this study, along with the

Zimm–Stockmayer prediction. The results are in excellent

agreement for both progressions of molecular weights.

Equilibration quality of the melts was also assessed by

measuring the size of the internal length scales of the arms,
20, 46–53
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Table 1. Summary of systems simulated. For all systems, the bead
number density, and number of polymers is r¼0.85, and
Np¼ 100, respectively. The simulation box size (L) is at least three
times the mean radius of gyration.

rc¼ 1.1

N L R2
g

D E

32 22.51 21.07� 0.79

35 23.19 22.81� 0.55

38 23.83 24.63� 0.46

41 24.43 26.72� 0.52

45 25.20 29.61� 0.63

49 25.92 32.12� 0.82

53 26.60 35.11� 0.72

58 27.41 36.82� 0.87

63 28.17 43.57� 0.84

69 29.03 45.50� 1.32

75 29.85 51.11� 1.23

82 30.74 55.59� 1.03

90 31.71 60.06� 0.89

99 32.73 66.75� 2.69

108 33.69 68.62� 1.22

118 34.70 78.03� 2.48

129 35.74 83.87� 1.55

141 36.81 97.29� 2.76

155 37.99 108.11� 3.98

170 39.17 115.00� 5.61

rc¼ 1.5

N L R2
g

D E

32 22.51 21.07� 0.79

48 25.74 31.86� 0.67

72 29.45 47.27� 0.93

108 33.69 75.52� 3.21

162 38.55 114.74� 2.68

243 44.12 174.69� 3.02
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Figure 3. The mean-square radius of gyration of three-arm star
polymers obtained in this study as a function of the arm mol-
ecular weight. Also shown is the Zimm–Stockmayer prediction.
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Figure 4. The mean square distance between beads on an arm for
a few selected arm molecular weights. The solid black line is the
target function from Auhl et al.,[42] and the broken black line is
the Gaussian expectation.
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defined as
l nð Þ ¼ R nð ÞR nð Þh i
n

(6)
where R(n) is the vector connecting two beads on an arm

that are separated by n bonds, and the average is taken

over all possible combinations of such beads. This metric is

an excellent indicator of arm configuration at all length
Macromol. Theory Simu
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scales, and the results are shown in Figure 4 for a few

selected arm molecular weights. Also shown is the so-

called target function of Auhl et al.,[42] and the Gaussian

expectation. It is seen that the arms are Gaussian at all

except the smallest length scales. This is because the core

region of the stars is negligibly small due to the small

number of arms,[52] and therefore, the arms themselves
l. 2011, 20, 46–53
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display dimensional characteristics of linear polymers.

These results indicate that the stars have attained their

equilibrium dimensions at all length scales, and the

structure of the polymer melt has equilibrated.

The results presented above measure the mean sizes of

the polymers. Normally, this is considered sufficient to

establish equilibrium. However, it is possible that the

systems generated in this study, while having the same

mean dimensions as at equilibrium, might have a

distribution different from equilibrium. Thus, in order to

further probe the quality of equilibration, the distribution

of arm dimensions was measured. Since the arms behave

like linear polymers, the distribution of sizes can be

comparedwith readilyavailable results for linearpolymers.

Following Koyama,[53] the normalized radius of gyration,

and the normalized end-to-end distance of a linear polymer

are defined as
b) 1.5
Simulation, rc = 1.1
Simulation, rc = 1.5
Gaussian prediction

1.5

0.5 1 1.5 2
Normalized radius of gyration rg

www.M
rg ¼ Rg

R2
g

D E1=2 (7)

ree ¼
Ree

R2
ee

� �1=2 (8)
1

(r
ee

)

0.5

1

The probability density function (PDF) of the squared

radius of gyration of linear polymers was given by

Fixman,[54] and is re-written in terms of the normalized

radius of gyration as
0 0.5 1 1.5 2 2.5 3
Normalized end-to-end distance ree

0

0.5

Φ

0 0.5 1 1.5 2 2.5 3
0
F rg

� �
¼ rg

4p

Z 1

�1
K sð Þexp �

isr2g
4

 !
ds (9)

K sð Þ ¼ sinZ

Z

� ��3=2

(10)

Z ¼
ffiffiffiffi
is

p
(11)
Figure 5. PDFs of the normalized (a) radius of gyration, rg (b) End-
to-end distance, ree, of the individual arms of stars. The solid line
shows the prediction for Gaussian linear polymers for the radius
of gyration,[53,54] and the end-to-end distance (Equation 12) Inset:
results obtained for N¼ 243.
The PDF of rg is then obtained from these expressions by

direct numerical integration.

The PDF of the normalized end-to-end distance, F(ree), is

obtained from the PDF of the Gaussian end-to-end vector,

F(R, N),[55] as
F reeð Þ ¼
ffiffiffiffiffiffi
54

p

r
r2ee exp � 3

2
r2ee

� �
(12)
Figure 5 shows plots of the PDFs of the normalized arm

dimensions for polymers generated in this study. Here, the

data for all molecular weights in a single progression are

collapsed onto a master curve. The inset of these figures

shows results obtained for the largest molecular weight

generated in this study, viz. N¼ 243. For both progressions
aterialsViews.com
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of molecular weights, and for N¼ 243, the obtained

distribution of arm sizes agrees well with the predicted

distribution of linear polymer dimensions. There is some

scatter in the data, especially for rc¼ 1.5, but this is

thought to be a result of insufficient sampling.

The total time taken to generate a progression of

equilibrated configurations is simply the sum of equilibra-

tion times required after each affine scaling and replace-

ment. The time taken to generate the seed configuration is
l. 2011, 20, 46–53
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Figure 6. Distance traveled by the center of mass of simulation
cells over the course of equilibration.
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small, and can be neglected. Since the systems are

equilibrated for a time on the order of one Rouse time,

the sumof equilibration timesof ageometric progressionof

molecular weights is on the order of the Rouse time of the

largest molecular weight.[41] Thus, irrespective of the value

of rc, the total time taken to generate a system ofmolecular

weight Nstar (and all the intermediate molecular weights)

scales as the Rouse time of the molecular weightNstar. This

is a significant savings in timewhen comparedwith brute-

force methods that require a total time that scales

exponentially with the molecular weight.

While the above results indicate that melts generated in

this study arewell-equilibrated, it is important to point out

outstanding issues and questions. First, topology preserva-

tion in three arm stars is not guaranteed, but as shown

above, it is not important. In situations where topology

preservation is vital, the iterative method presented here

will need some modifications that ensure that the new

polymer follows the contour of the scaled old polymer. At

the very least, the probability of chain crossing can be

minimized by choosing a larger value of rc.

The armsproducedbyaffine scaling and replacement are

compressed at all length scales. During the equilibration

period, they expand, presumably along the contour of their

respective confining tubes, to reach their equilibrium

dimensions. Thepathbywhich the arms reach equilibrium,

and the mechanism by which entanglements are intro-

duced onto the arms warrant further investigation.

Lastly, the fact that a timescale on the order of one Rouse

time is sufficient to generate equilibrated configurations of

three very different topologies of polymers, viz. three-arm

star (this work), cyclic, and linear polymers[41] is an

indication that there isaunifyingunderlyingphenomenon.

4 Conclusion

It was shown that symmetric three-arm star melts, whose

dynamics can be very different from those of linear

polymers, can be efficiently generated using the method

presented in this manuscript. The timescales associated

with this scaling algorithmare on the order of a Rouse time,

which is a significant savings over the exponentially large

relaxation timescales characteristic of branched polymer

melts. While the scaling algorithm is not necessarily faster

than the bridging algorithms, themethod presented here is

simple, and can potentially be extended with minimal

modifications to polymerswith other architectures, such as

pom-pom, H, and comb.

5 Appendix: Drift of Simulation Cell

The temperature rescaling thermostat used in this study is

known to generate a flying-ice cube.[56] In this phenom-
Macromol. Theory Simu

� 2011 WILEY-VCH Verlag Gmb
enon, kinetic energy associatedwith the internal degrees of

freedomisgradually transferred to themacroscopicdegrees

of freedom, and the entire systemeventually translates as a

rigid body, with a velocity that is consistent with the

prescribed temperature. The root causeof thisphenomenon

lies in the improper sampling of the distribution of

velocities by individual beads. As system size increases,

the sampling of velocities improves considerably, and the

flying-ice problem becomes less significant.

In order to determine the extent to which the flying-ice

phenomenon develops in this study, the center of mass

(COM) of the simulation box, denoted as rcm, was tracked.

The distance traveled by the COM was computed as
l. 2011,
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tÞ�rcm 0ð Þjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcmðtÞ�rcmð0Þ½ � rcmðtÞ�rcm 0ð Þ½ �

p
(13)
Figure 6 shows a plot of distance traveled by the COM over

the course of the simulations, for a few selected molecular

weights. The x-axis is normalized by the total equilibration

time, teq. The center of mass of the longest running system

(withN¼ 243) considered in this study was seen to move a

distance of less than 1.25� 10�8 reduced distance units,

which is about eight orders of magnitude lower than the

simulation box size. Thus, for the timescales of the

simulations presented in this work, drift of the center of

mass is not expected to change the results significantly.
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