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Abstract 
This paper introduces a general-purpose communication package built on top of MPI 

which is aimed at improving inter-processor communications independently of the 

supercomputer architecture being considered. The package is developed to support parallel 

applications that rely on computation characterized by large number of messages of various 

sizes, often small, that are focused within processor neighborhoods. In some cases, such as 

solvers having static mesh partitions, the number and size of messages are known a priori. 

However, in other cases such as mesh adaptation, the messages evolve and vary in number and 

size and include the dynamic movement of partition objects. The current package provides a 

utility for dynamic applications based on two key attributes that are: (i) explicit consideration of 

the neighborhood communication pattern to avoid many-to-many calls and also to reduce the 

number of collective calls to a minimum, and (ii) use of non-blocking MPI functions along with 

message packing to manage message flow control and reduce the number and time of 

communication calls. The test application demonstrated is parallel unstructured mesh adaptation. 

Results on IBM Blue Gene/P and Cray XE6 computers show that the use of neighborhood-based 

communication control leads to scalable results when executing generally imbalanced mesh 

adaptation runs. 

 

Keywords 
Asynchronous communication; MPI; Dynamic data migration; Parallel algorithms; Overlapping 

communication and computation 

 

1. Introduction 

A number of parallel computing applications devote substantial execution time in data 

communication between processors, which leads to degradation of parallel performance, 

especially on very large processor counts. In such applications load imbalance coupled with 

global communication is a key factor in loss of scalability. Moreover, exchanging a large number 

of small messages magnifies latency costs. One approach to reduce communication cost is to 

limit the number of collective calls. In a majority of scientific applications this is possible by 

effectively accounting for the fact that a substantial portion of the communication is within 

neighborhoods of processors. 

Consider applications with the distributed data where computation and decision making on 

each processor depends on the information available on another one. In order to provide the 

locally missing data, communication with possible data movement is required. Inter-processor 

decision making and data migration is based on the knowledge of the initial communication links 

(neighbors) between the set of processors requesting and receiving the data. Thus, it is possible 

to localize data exchange to only those processors within the neighborhood. A property of many 

of these computations is that as the total number of processors increases, the number of 

neighbors any processor will exchange local data with becomes bounded by a constant 

independent of the total number of processors. 



Maintaining balance of workload per processor is an obvious initial requirement for 

scalable parallel algorithms. There are many applications where the workload associated with the 

individual processors is either initially out of balance, or becomes unbalanced due to dynamic 

changes in the structure of the computation. To effectively continue the computation these 

applications must perform a substantial number of communications and determine how to 

improve load balance, typically by moving data between processors using appropriate migration 

routines. Data migration is dominated by irregular communications of (small) messages. Fast 

process migration and execution recovery while maximizing the task balance are critical in such 

applications, for example, parallel discrete-event simulation [1], distributed virtual environment 

[2], trading models [3], divide and conquer decomposition algorithms [4], dynamic load 

balancing [5, 6], adaptive mesh modification [7, 8, 9], etc. Another characteristic of applications 

with dynamic processes is the fact that much of the communication and migration is local in the 

sense that one processor does most, or all, of its communication to a set of neighboring 

processors. 

As an example of operations of the type just indicated, consider adaptive mesh 

modifications [7] on unstructured meshes that include mesh coarsening and entity swapping. The 

parallel algorithms for the execution of these operations require the migration of mesh entities 

between neighboring processors [10, 11]. Figure 1 illustrates the basics of mesh migration in a 

simple two-dimensional setting with three parts where the elements shown are to be migrated 

among processors. The picture on the left represents an initial mesh with solid dots marking 

mesh entities which are requested to be migrated to P0, while open circles indicate entities to be 

migrated to P1. The picture on the right shows the mesh distribution after migration. 

 

Figure 1. A 2D illustration of parallel mesh migration. Dashed lines indicate inter-part 

boundaries. Solid dots indicate mesh entities to be on P0 after migration. Circles indicate entities 

to be migrated to P1. 

 

2. Related work 
Previous work has investigated various techniques to improve point-to-point 

communication performance. One important technique for extracting better application 

performance is overlapping communication with computation whenever possible to help hide 

communication delays [12, 13]. This approach works well irrespective of network topology since 

the major benefit of potential overlap is provided with computation which is independent of 

pending messages. The use of MPI [14] non-blocking functions increases hardware parallelism 

by supporting communication and computation overlap. 

One-sided communication [15] also supports overlap and lower overhead. It can avoid the 

protocol overhead in additional memory copying, matching of send and receive operations and 



remote process dependency. However, with dynamically changing processes and irregular data 

migration, it is difficult to efficiently compute the remote processor’s address space where the 

data could be modified to synchronize updates such that memory resources are properly 

managed and not overly allocated. Otherwise, the application might end up in uncontrolled 

memory growth during a communication step. 

The approach to exploit reusable communication patterns in order to not reset them during 

every communication step has been introduced in [16] and successfully utilized by the Zoltan 

team [17]. Each processor has some objects to send to other processors, but no processor knows 

what messages it will receive. The Zoltan’s unstructured communication package uses a data 

structure responsible for the encapsulation of the basic information about the communication 

operations. This information does not include the types of objects being transferred; only the 

number and destination are recorded. Thus, the same pattern can be used repeatedly to transfer 

different types of data as long as the number and destination of objects involved remains the 

same. 

In applications with unstructured and irregular process computation and migration, there 

can be potential performance degradation due to high latency cost associated with sending a 

significant number of small messages. To help reduce the number of messages in such cases 

message packing strategies can be applied. For example, the Autopack communication tool uses 

methods of packing small messages into larger packages and automatic management of sends 

and receives [18]. In Autopack, the application code need not be concerned with pending send 

requests other than to query the communication tool to determine if they have completed or to 

determine the number of pending requests. Although the package provides a way to determine 

the number of incoming messages without barrier synchronization, the implementation of the 

communication tool assumes the communication between all the processors during a specific 

communication step. Also, Autopack uses blocking receive calls while getting the incoming 

package. 

The dynamic sparse data exchange problem is stated in [19] and emphasizes the need to 

provide communications within neighborhoods of processors, when possible, to increase 

scalability of irregular applications at large scale. The scalable sparse communication protocol is 

described to improve the runtime of a neighborhood data exchange. Although the method utilizes 

non-blocking collective operations, it uses synchronous mode sends which only complete after 

the message has been received. Sparse collective operations are also described in [20] where 

authors suggest an API and describe functionality and a possible design of neighborhood 

collective operations for the MPI standard. However, the discussion of optimization/schedules 

makes an assumption that processes arrive at the sparse collective more or less at the same time, 

which is not suitable for the applications considered in the current study. Additionally, it has 

been studied that the process arrival patterns for MPI collective operations are usually 

imbalanced and can dramatically affect the performance even in a simple test case with a 

perfectly balanced load [21]. Moreover, neighborhoods can be very diverse in number and 

structure which makes it significantly difficult to optimize scheduling routines for message 

delivery. 

This paper introduces a general-purpose MPI-based communication package, the Inter-

Processor Communication Manager (IPComMan), which incorporates features of the tools 

discussed above and further aims to improve the scalability of data exchange costs by exploiting 

communications of a local neighborhood for each processor. The basic idea of this architecture-

independent package is to keep the message-passing within subdomains when possible, and 

eliminate all unneeded collective calls. The communication tool takes care of the message flow 

with a subset of MPI functions and takes advantage of non-blocking functions with 

asynchronous buffer management behavior from both sender’s and receiver’s sides. IPComMan 

automatically tracks the completion and delivery of send and receive requests posted while 

overlapping communication with computation. The package provides several useful features: i) 

automatic message packing, ii) management of sends and receives with non-blocking MPI 



functions, iii) communication pattern reusability, iv) asynchronous behavior unless the other is 

specified, and v) support of dynamically changing neighborhoods during communication steps.  

The paper is organized as follows. Section 3 describes the design of the tool to take 

advantage of neighborhood-based communications. Section 4 gives the implementation of 

IPComMan package. Section 5 presents test comparisons of simple communication routines 

using MPI and IPComMan obtained on the IBM Blue Gene/P and Cray XE6 systems. Section 6 

describes the current application of IPComMan in parallel unstructured mesh adaptation. Section 

7 discusses the results obtained with IPComMan on two different architectures. 

 

3. Design 
In a number of applications every processor involved in point-to-point communication 

exchanges data with only a small subset of other processors where the number of processors in 

the subset is not a function of the total number of processors being used. Each processor in the 

subset is called a neighbor, and the subdomain constructed from neighbors is called the 

neighborhood. Each processor has its own neighborhood, which is different from that of its 

neighbor(s). At the beginning of the communication phase, each processor knows its 

neighborhood for the messages to be sent. Communication costs can be reduced by the 

development of algorithms that eliminate all-to-all or many-to-many communication patterns by 

taking advantage of the fact that communications are limited to neighborhoods. 

Neighborhoods can be represented by a graph, where each graph node is a processor and 

each graph edge is a communication link. Figure 2 shows an example where P0’s neighborhood 

contains P1 and P2, P1’s neighborhood consists of P0, and P2’s neighbors are P0 and P3.  

 

 
 
Figure 2. Example of processor neighborhoods based on point-to-point communications. 

 

During the first communication phase the application identifies neighbors for each 

processor and provides this information to the communication package. With the initial 

neighborhoods constructed, the task is to execute the communication as efficiently as possible to 

reduce the communication-to-computation ratio. For these purposes knowing neighbors for each 

processor serves as a reusable communication pattern. The global collective calls are not needed 

to verify the status of the communication step, since each processor is aware of its neighbors and 

can control the message flow within the neighborhood. Moreover, there is no need to reset 

anything between communication rounds if the types of messages used are the same. If the 

messages are different, the communication pattern holds the same during each communication 

step by default and changes only with the application requirements. 

In general, neighborhoods stay untouched during a specific communication step, providing 

data exchange within neighbors only, which number is independent of the total communication 

links in the domain. This also includes the ability to know the number of messages which have to 

be received. Since there is no way to know this information ahead of time, this data should be 

available on the fly to avoid deadlock situations.  

There are scenarios when the migrated data impacts the information not available from the 

neighbors of the specific processor. In order to proceed, the processor with the requested data 

should join the neighborhood. Thus, the tracking and support of dynamically changing 

neighborhoods is also required. The application should be aware of such situations and let the 

communication package know that there might be new communication links created during the 

P1 

P0 

P3 P2 



specific communication step. This will switch the tracking of neighbors’ communication based 

on the information about global sends and receives. 

In most digital networks transmitting packets, the time to transmit a single packet is equal 

to some constant (latency) plus a factor (bandwidth) of the number of bits in the packet. Thus the 

time required to send multiple packets is a factor of the number of packets plus a factor of the 

total number of bits in those packets. The dependence of the first term on the number of packets 

is the reason why sending a single large packet is faster than sending multiple small packets, 

assuming the data is identical. Studies in this work indicate that the latency constants for the two 

architectures used are very significant, making small messages time-consuming. 

Since it can be expensive for parallel applications to send large number of small messages, 

it is important to group them in appropriate sized buffers and send them out in fewer inter-

processor communication steps, reducing latency, without incurring large overhead. There is no 

need to pack the size of each message if all messages in a buffer are of constant size during a 

specific communication round. Instead, the communication package should be aware of this 

situation to know which size of message should be extracted when the buffer is received. 

After packing the messages into buffers and sending them to the designated processors it is 

desirable not to wait for the buffers availability in order to pack the next set of messages on the 

sender side. At the same time on the receiver side the messages should be extracted as soon as 

they are available from the first arrived buffer. This scenario hides the communication delays, 

delivering the application the first available message to proceed with in terms of computation 

while it keeps receiving other data packages. In order to do this, all the sending and receiving 

calls must be non-blocking and asynchronous message-passing behavior should be granted such 

that there is no need to wait for the correspondent receive operation after the buffer is sent. 

All considerations given above are accounted for the implementation of the 

communication package described in the next section. 

 

4. Implementation 
In order to build an architecture independent package, IPComMan is written on top of MPI 

functions. It provides the necessary API to applications in order to utilize the burden of message 

passing calls which are wrapped into fewer ones. IPComMan is a portable interface which works 

with any MPI implementation. It is assumed that MPI’s operations are well optimized for the 

underlying network on a specific machine. 

Based on the design aspects, there are several issues to address the implementation of the 

communication package. The major ones include: i) efficient buffer management considering 

automatic message packing mechanism and memory optimization due to asynchronous non-

blocking communication, ii) a different communication behavior for a fixed neighborhood 

scenario as compared to a dynamically changing one, and iii) communication optimization and 

overlapping with computation. 

 

4.1. Buffer Memory Management 

IPComMan assembles messages in pre-allocated buffers for each destination, and sends 

each package out when its buffer size is reached. Upon arrival, the package is unpacked, and 

individual messages are extracted. This allows the user code to be written in a natural style while 

achieving higher performance without knowing anything about message packing or the MPI 

interface. 

One might be interested in why there is a need to pack and unpack messages as it seems to 

enforce an additional copy on the application side. MPI is designed to avoid this copy by 

offering a mechanism to manipulate data directly from the application buffers that don't have to 

be contiguous. Derived MPI datatypes allow applications to avoid explicit packing and 

unpacking. The application specifies the layout of the data to be sent or received, and the 

communication library directly accesses a noncontiguous buffer [14]. However, in certain types 

of applications the data required for communication is scattered between several data structures 



and some computational complexity is required to obtain the desired information in one place. 

Moreover, multiple functions on one processor may request the same data, and buffering allows 

duplicate messages to be sent with less communication overhead while eliminating the cost of 

checking for data duplication. 

IPComMan takes care of memory allocation for both sending and receiving buffers, and 

manages the ones that can be reused without additional allocation. The communication package 

stores messages going to the same processor in contiguous memory. Thus, when sending or 

receiving a buffer, no additional memory copying is needed. To avoid copying messages to the 

buffer during the send procedures, the message to be filled is given to the application as a pointer 

to the part of the buffer where the message begins, based on the amount of the message size 

requested. The application is responsible for not exceeding the message size it requested when 

putting the data in the buffer. At the same time, if the message size requested results in the buffer 

overflow, IPComMan sends the buffer to its designated processor and based on the buffer status 

either reuses it or allocates another one to fit the message. 

The user may specify whether the size of each message is constant or arbitrary during a 

specific communication step. The fixed message size is taken by the package and used while 

extracting the messages. The arbitrary message size is put together with every message into the 

buffer to correctly unpack the messages upon arrival. There is no specific pattern the application 

should follow in order to be able to send messages of arbitrary size. IPComMan treats each 

message as a separate instance and decides how to correctly manage one in a sending buffer 

based on its logic. Figure 3 illustrates the buffer view with a fixed message size and one with 

arbitrary size. 

 

 

 

 
Figure 3. Buffer view with different messages inside: (a) message size is fixed, (b) message size 

is arbitrary. NM is the number of messages in the buffer, NB is the total number of buffers put in 

the last buffer to be sent, msg denotes a message body and msize stands for its size. 

 

All message send and receive functions are non-blocking. When the package is sent (using 

MPI_Isend()) and another buffer is requested for the next set of messages, the already sent 

buffers are checked for their requests (using MPI_Request()). If any of them is satisfied, it is 

possible to reuse the correspondent buffer to fill it with new messages rather than allocating 

another one. If none of the buffers were completely sent, a new buffer is allocated, increasing the 

total number of packages, and the message is placed inside the allocated buffer. After several 

allocations, an optimal ring of buffers is formed, where, after the package is sent, there is always 

at least one buffer available for reuse.  

The same philosophy is used on the receiving side. When a new package arrives, the 

processor’s correspondent buffers are checked for the one from which all the messages were 

extracted. If there is such a buffer, it is overwritten by the new package. If all the arrived 

packages were not processed yet, another buffer is allocated for receiving the newly arrived one. 

It may take some time for the newly arrived package to be completely received. With non-

blocking receive operations (using MPI_Irecv()) the messages continue to be extracted from 

fully available buffers only, hiding the communication time required to completely receive a 

buffer. 

 

4.2. Communication Paradigm and Termination Detection 

There are two modes of operation of IPComMan during a step of communication: fixed 

neighborhoods and dynamically changing neighborhoods. At the beginning of each 

communication step the application can specify the termination detection method which allows 

IPComMan to finish its job correctly and receive all the messages appropriately. They are: i) 

(a)    NM  NB    msg 1     msg 2     msg 3    … (b)    NM  NB   msize 1  msg 1   msize 2    msg 2   … 



neighborhood communication validating the number of sends and receives within neighborhood, 

and ii) allreduce step to check the global number of sends and receives. The first method, which 

does not include any collective call, is more efficient and recommended when the neighbors are 

known and fixed during the communication step, whereas the second one must be used when 

there is a possibility of changing neighborhoods during a communication step. These termination 

detection modes are referred to as Neighborhood and Allreduce, respectively. 

The default specification of the package implies that neighboring processors are known by 

the application, provided to IPComMan and do not change within a communication round. For 

example, in case of a mesh partition neighbors are figured out by the application based on the 

information about entities on the inter-part boundaries and which processors they are shared with 

[11]. From that point, IPComMan concentrates on delivering messages between processor and its 

neighbors only, not touching other processors of the domain. There are no all-to-all and global 

synchronization calls during each communication round needed when the neighbors are fixed. 

There are situations when it is not possible to a priori identify all the neighbors for 

processors, i.e., new neighbors may be encountered during a communication step. In this 

scenario, the default strategy can not be used and another termination detection mode which 

requires additional checking and communication needs to be defined. This new mode of 

operation can be implemented in many different ways. The simplest option, which is the one that 

has been carried out, is to perform a global synchronization step (using MPI_Allreduce()) at the 

end of the communication round to figure out whether there are any messages to be received 

from unidentified neighbors. 

Consider the communication pattern presented in Figure 4. Processor P0 contains 

processors P1 and P2 in its neighborhood. P3 has P2 as the only neighbor, but after it has sent all 

the messages to P2 it finds out that there are some messages to be sent to P0. P3 includes P0 in 

its list of neighbors and begins to send packages to it. An increment of time before that, say P0 

finished sending to and receiving all the messages from P1 and P2, extracted them and 

proceeded to the next communication step. In that case packages from P3 to P0 would be lost, 

which will result in incorrect program behavior. To avoid such situations, the application must 

state the need for an Allreduce termination detection of sends and receives during a 

communication step. Using this method, one synchronization step at the end of communication 

round is performed to verify whether the global number of sends and receives match. In case 

they do not match, IPComMan continues to receive the messages identifying the new neighbors, 

since all the packages from existent neighbors are already received. 

 

 
 

Figure 4. Processor P3 tries to send messages to processor P0, when P0 already received all the 

messages from its neighbors. 

 

Once encountering a new member, the processor sends a message stating that it is 

becoming a new neighbor with another processor. The new neighbor receives the message about 

the additional member of its neighborhood, and becomes aware that it should check the sends 

and receives, if any, for the additional processor in the current communication round. This 

mechanism allows figuring out new neighbors before the end of the communication round, with 

no more than one synchronization step for message validity. 

At any point of time the application is able to set up neighbors for a specific processor 

using a correspondent IPComMan function which has the same functionality as 
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MPI_Dist_graph_create() [14]. However, IPComMan adds neighbors independently from the 

communicator and manages them based on neighborhood interactions. The application is 

responsible for providing correct neighborhoods such that the connection graph is valid in terms 

of if processor i is a neighbor with processor j, the opposite also holds true. This will not be an 

issue if allreduce termination detection is used since IPComMan automatically catches new 

neighbors and adds them to the correspondent neighborhoods. At the same time, incorrectly set 

up neighborhoods and neighborhood termination detection will most likely lead to deadlock 

situations. 

 

4.3. Communication Optimization 

Dynamic and irregular computation often results in an unpredictable number of messages 

communicated among the processors. Using IPComMan, there is no need for the application to 

additionally verify and send the number of packages to be received at the end of the sending 

phase. The last message sent from the processor to a neighbor contains the number of buffers 

expected to be received by the neighbor. The neighbor then continues to receive buffers from the 

processor until it gets all the designated packages. If the processor has nothing to send to its 

neighbor during a particular communication round, a constant is sent to the neighbor notifying 

that the communication between those two processors is done. The control to the application is 

returned every time the message is extracted from a buffer assuming that the receiving loop is 

originated from the application side (see the example below). While the application processes the 

currently available message, it exploits communication to computation overlap which gives time 

to satisfy requests for other buffers being received. When the processor receives all the messages 

from its neighbors, IPComMan finishes the communication step by returning the last message, 

cleaning up all the allocated internally data for buffers and requests, and notifies application 

about the completion with a special constant. 

IPComMan does not follow the message order rule where for a given set of messages sent 

among the processors, the destination processors may not receive the messages in the same 

sequence. Instead, to save communication time, the package acts asynchronously and processes 

the first available buffer. When buffers have different size, which is often the case (especially 

with the last buffers whose size can be significantly different from other completely filled ones), 

the smaller buffer request for being received is satisfied earlier, and it can be processed earlier 

than the first buffer sent from the same processor. If there is a need to exploit message ordering 

with respect to each neighborhood, IPComMan provides a convenient way to guarantee the same 

sending and receiving sequence of packages, although it incurs additional memory and 

performance costs. 

Message flow control in IPComMan is mostly based on the interaction of the following 

MPI functions: MPI_Iprobe() checking for the next available package to be received and 

MPI_Test() letting to know if a specific request is satisfied. Each new request posted for the 

buffer is added to the back of the request queue, such that the earlier added request is the first 

candidate for being satisfied. There is also a unique mapping between buffers being processed 

and their requests for both send and receive phases. Once satisfied, the request can be reused for 

the next operation with the first available buffer, and its correspondent buffer gets in the high 

priority buffer queue to be rewritten with new messages in the sending step or for message 

extraction in the receiving phase. This way IPComMan strives to fill in and send buffers without 

additional allocation, quickly find available buffers to reuse, and at the same time deliver 

messages to the application from the first available buffer. 

To avoid confusion when receiving a message, the information of what the application 

should to do with the data needs to be embedded in the message itself. When the message is 

extracted, its size is returned along with the data. If message size is not the key thing to 

understand how the massage should be processed, the application should put specific information 

into the message about what should be done with it upon its receival. IPComMan is not 

responsible for message recognition since it is the application's need, but is rather concerned 



about proper packing and fastest ways of message delivery. IPComMan sending and receiving 

mechanism covers all the suggested neighborhood communication functions described in [20] 

except for MPI Neighbor reduce(). The default behavior of the communication package 

corresponds to functions MPI Neighbor_alltoall(), MPI_Neighbor_alltoallv() and 

MPI_Neighbor_alltoallw() depending on the number and size of messages sent. Since 

IPComMan manages message flow internally, it provides the application with only one function 

for sending and one function for receiving of each message. Such operations as neighborhood 

broadcast, scatter and gather are easily described following the same send and receive pattern. 

Moreover, the application should never be concerned about the type of neighborhood 

communication operation since IPComMan automatically tracks neighbors which do not send 

and / or receive a message during a specific communication round and appropriately notifies 

those processors that no communication will be involved. Also, the application should not have a 

priori information about how messages follow one after another and try grouping them based on 

message sizes as IPComMan takes care of message packing and unpacking. Ultimately, the 

communication package allows the application code to be written in a natural style and achieve 

higher communication performance without knowing anything about message packing or the 

MPI interface. 

 

4.4. IPComMan Usage and Example 

The initialization of the communication object is as follows: 

IPComMan::IPComMan(comm, nbrs, tag, max_buf_size), 

where comm is an MPI communicator (handle), nbrs - list of neighbors, containing processors 

with which a given processor is going to communicate, tag – initial tag value for messages, 

max_buf_size – desired buffer size (in bytes) the package has to reach by putting messages into 

it, before sending to the designated processor. 

The communication package is built on top of MPI functions. The basic IPComMan API 

consists of three major functions: IPComMan::send() for sending a message, 

IPComMan::finalize_send() for closing and sending final buffers, and IPComMan::receive() for 

receiving the message. The call to IPComMan::finalize_send() function is needed at the end of a 

communication round after the last message is sent, as the buffer containing the last message 

includes the total number of outgoing buffers to the designated processor. The destination 

processor extracts this number, and by evaluating the amount of processed buffers, it knows 

when it is done with extracting all the messages without further communication. Additional 

functions of IPComMan are auxiliary ones for tuning up the correct behavior of the package. 

Among them, for example, IPComMan::set_Nbrs() for setting up a neighborhood of a specific 

processor, IPComMan::set_fixed_msg_size() for adjusting a fixed or an arbitrary size of a 

message and IPComMan::set_comm_validation() for choosing a termination detection mode. 

The example in Figure 5 explains the use of IPComMan with two different communication 

protocols: one with the fixed message size and neighborhood, and another with messages of 

arbitrary size and dynamically changing neighborhood during communication step. With the 

initial neighborhood set for each correspondent processor, the IPComMan object is allocated. 

The first communication round is provided for the fixed neighborhoods, therefore no collective 

calls are needed. The application sets the correspondent value for the neighborhood mode of 

message validation. It also lets the communication package know that all messages within the 

current communication step will have the same size. After that the application starts filling in 

and sending the messages to the designated processors. When all sends are done, the function for 

finalizing sends is called, and each processor starts receiving and processing messages. The 

communication round ends on a specific processor when a variable responsible for the received 

message size indicates that all messages have been received. The other type of communication 

protocol has a similar flow of function calls. The difference is that since the neighborhoods are 

dynamically changing, the allreduce communication validation mode is used. Also the 



application does not send fixed message sizes anymore and has to explicitly request allocation 

for each message using the desired message size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. IPComMan usage example. 

 

5. Performance of simple communications with MPI implementation vs IPComMan 
To measure IPComMan performance and understand if it is a good candidate for generally 

unbalanced simulations, simple communication tests have been studied on two supercomputers 

with different CPU and network architectures: Shaheen IBM Blue Gene/P [22] at King Abdullah 

University of Science and Technology and Hopper Cray XE6 [23] at National Energy Research 

Scientific Computing Center. Blue Gene/P is a 32-bit architecture with four 850-MHz PowerPC 

450 CPUs per node, with 3 cache levels, 4 GB DDR2 SDRAM per node. It has five different 

networks: 3D torus with 425 MBps in each direction, global collective with 850 MBps, global 

barrier and interrupt, JTAG, and 10 Gigabit Ethernet (optical). Hopper is configured with 2 

twelve-core AMD 'MagnyCours' 2.1 GHz processors per node, with separate L3 caches and 

memory controllers, 32 GB or 64 GB DDR3 SDRAM per node. Hopper has Gemini interconnect 

with 3D torus topology. 

The Blue Gene has a separate high-bandwidth hardware-supported global collective 

network. Its MPI implementation uses the Deep Computing Messaging Framework (DCMF) 

[24] as a low-level messaging interface. DCMF takes advantage of the direct memory access 

(DMA) hardware to offload message passing work and achieve good overlap of computation and 

… 

nbrs = {pid 1, pid 2, pid 3};                                       // initial set of neighbors for the specific processor 

IPComMan CM = new IPComMan(MPI_Comm_Current, nbrs, tag1, max_buf_size);  // initialize IPComMan object 
… 

// Communication step with fixed neighborhoods where collective calls are not needed 

CM->set_comm_validation(IPComMan::Neighbors);       // communication is done when all the messages from neighbors are received 

CM->set_fixed_msg_size(msg_size);                          // setting the fixed size of the message 

for (some computational work) 

{ 

        msg_send = CM->get_msg_ptr(pid);                   // get the pointer to the part of the buffer to place the message 

        fill in msg_send; 

        CM->send(pid, msg_send);                                // sending the message 
} 

CM->finalize_send();                                                 // finalizing sends 

recv_bytes = CM->receive(msg_recv, pid_from);        // get the pointer to the part of the buffer with the received message  
                                                                                         // (mesg_recv) and the number of bytes in the message (recv_bytes) 

while (recv_bytes != All_Messages_Received) 

{ 
        process msg_recv; 

        recv_bytes = CM->receive(msg_recv, pid_from);     // no collective call is performed while receiving messages 

} 

… 

// Communication step with dynamically changing neighborhoods 

CM->set_comm_validation(IPComMan::All_Reduce);    // communication is done when global number of sends and receives are equal 

CM->set_tag(tag2);                                                    // use different tag from the last communication step 

CM->set_fixed_msg_size(0);                                     // setting the arbitrary size of the message 

for (some computational work) 

{ 

        msg_send = CM->get_msg_ptr(pid, msg_size);   // get the pointer to the part of the buffer to place the message 

        fill in msg_send; 

        CM->send(pid, msg_send, msg_size);                 // sending the message 

} 
CM->finalize_send();                                                 // finalizing sends 

recv_bytes = CM->receive(msg_recv, pid_from);        // get the pointer to the part of the buffer with the received message  

                                                                                         // (mesg_recv) and the number of bytes in the message (recv_bytes) 
while (recv_bytes != All_Messages_Received) 

{ 

        process msg_recv; 
        recv_bytes = CM->receive(msg_recv, pid_from);    // a collective call is performed after all the messages from neighbors are received 

} 

… 

delete CM; 

… 

 



communication. Also, the Blue Gene/P has a 3D torus topology for point-to-point 

communication and its MPI implementation supports three different protocols depending on the 

message size [22]. 

Each dual-socket node of the Cray XE6 is interfaced to the Gemini interconnect through 

HyperTransport™ 3.0 technology. An internal block transfer engine is available to provide high 

bandwidth and good overlap of computation and communication for long messages [23]. The 3D 

torus topology provides powerful bisection and global bandwidth characteristics as well as 

support for dynamic routing of messages. 

All available cores per node were requested on both machines during the runs, and 1024 

cores were used to introduce diverse neighborhoods and keep relatively high density of message 

flow. The simple tests are designed to simulate data exchange during one communication round 

when each processor sends to and receives multiple small messages of the same size from its 

neighbors. MPI sparse exchange pattern is implemented with the use of non-blocking send and 

receive calls for each processor’s list of neighbors in a similar way as in [20]. There is a barrier 

at the end of the communication step for both MPI implementation and IPComMan tests such 

that the maximum communication time is measured. MPI neighborhood data exchange pattern 

implementation is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Generic MPI implementation of neighborhood data exchange. 

 

It is usually the case that each supercomputer has its own MPI implementation in order to 

optimize a specific architecture network performance which can significantly vary across the 

platforms. For the same reason, each MPI implementation has a different set of limitations on 

key variables internal to the library, like the number of allocated requests. After receiving errors 

when running a test case allocating more than 130k requests for the same amount of messages, 

the authors contacted Hopper technical support. The reply stated that it is possible to modify 

MPI implementation maximum number for requests, number of buffers, buffer space, etc.; 

however one should be very careful when doing that since the defaults were chosen for a reason 

and tuned, thus changing the numbers might lead to an incorrect behavior of a program. It was 

also stated that “sending small messages is also an inefficient way to send data because of the 

large start-up cost of sending any message.  It is better to send large messages than small 

messages.  Additionally, if your program relies on sending many non-blocking small messages 

you might find that your program is not very portable across systems.” IPComMan’s ability to 

reuse satisfied requests allowed it to handle more sent and received messages. However, to make 

fair conclusions and in order to understand IPComMan’s performance and its impact with 

different number of neighbors, the tests in this section compare pure MPI calls with IPComMan 

wrapped MPI function manipulations to manage the data flow of small messages within 

neighborhoods. Real simulation test cases and their scalability with the use of IPComMan and its 

full functionality are presented in Section 7. 

In the first test each processor sends messages of 8 bytes to two of its neighbors such that it 

also receives identical messages from them. If the rank of a processor is mypid, then the 

... 

for (i = 0; i < no of iterations; i++) 

{ 
  for (j=0; j<no of neighbors; j++) 

  { 

    msg number = j + i*no of neighbors 
    MPI_Isend(sendbuf + msg number, 1, MPI_DOUBLE, neighbor[j], tag, comm, send_request + msg number); 

    MPI_Irecv(recvbuf + msg number, 1, MPI_DOUBLE, neighbor[j], tag, comm, recv_request + msg number); 

  } 
} 

 

MPI Waitall(no of neighbors * no of iterations, send_request, MPI STATUSES IGNORE); 

MPI Waitall(no of neighbors * no of iterations, recv_request, MPI STATUSES IGNORE); 

MPI_Barrier(comm); 

... 



neighborhood of mypid consists of {mypid-1, mypid+1}. The base test run (base_run) repeats 

1024 sends and receives for each neighbor. At the end of the test, MPI_Waitall() performs 

termination detection (see Figure 6). The time is measured from the beginning of the data 

exchange loop until after the call to MPI_Barrier() to measure the maximum communication 

time spent during a tested communication round. IPComMan’s buffer is set to 8 bytes such that it 

does not do any additional buffering. It is expected that IPComMan behaves slower and takes 

more time to complete the data exchange tasks with the increase of the number of iterations for 

sending and receiving messages since without buffering it carries out computational overhead in 

tracking of message delivery. Figure 7 presents results for the simulation described, where time 

scale is normalized by the base time of first 1024 sends and receives divided by the factor 

multiple of 1024 iterations (normalized_time[i] = time[i] / (base_run_time * iterations[i]/1024)) 

for the correspondent architecture and implementation. This normalization gives an estimate of 

how much time it needs for each 1024 iterations with a growing number of total iterations. 

Ideally, if there were no penalties in the network for number of sends, receives and requests 

being satisfied, the graph with the described normalized time should give a straight line parallel 

to the x axis (number of sends and receives) where each normalized_time[i] equals to 1. 

 

 
Figure 7. Sending 8 byte messages to neighborhood of each processor consisting of two 

neighbors. The time is normalized by the run time with 1024 iterations of sends and receives. 

 

IPComMan is 1.5 times faster than pure MPI implementation on Cray in the base test of 

1024 send and receive iterations, and 43.5 times faster for 61440 iterations. On the contrary, 

IPComMan is 2.75 times slower than pure MPI implementation on Blue Gene/P for 1024 

iterations and 5 times slower for 61440 iterations. Note that normalized time indicated for Cray 

pure MPI implementation is 10 times smaller in Figure 7 than the original time indicators such 

that its performance amplitude does not dominate other results. It can be inferred from the figure 

that pure MPI implementation on Cray takes about a factor of 190 times more run time for each 

1024 send and receive iterations with a total number of 61440 sends and receives. Meanwhile, 

MPI test on Blue Gene/P has a time penalty factor of 7. IPComMan’s performance does not vary 

across architectures significantly, and the difference between the biggest times is a factor of 2. 



The second test case gives an understanding about IPComMan’s ability to save 

communication time with automatic message packing and unpacking support. The number of 

neighbors is the same as in the previous test and the number of iterations is fixed to 61440 since 

it resulted in the longest time execution for the test case described above. Figure 8 shows how 

much time is saved when using message buffering with a correspondent buffer size for each 

architecture. In other words, time factors in the figure reflect how much faster it takes for the test 

to be finished with the same amount of sent and received data. 

 

Figure 8. Using IPComMan’s buffering ability to understand time savings for the same amount 

of data being transferred. 

 

It can be found from Figure 8 and previous test description that initial time for pure MPI 

test implementation on Blue Gene/P is roughly 5 times faster than the one with IPComMan’s 

implementation and buffer size of 8 bytes which is equal to a message size. However, increasing 

buffer size to 256 bytes gives a factor of 67 times speedup which is roughly 13.5 times faster 

than pure MPI implementation. Continuing to increase the buffer size up to 64 kbytes does not 

produce much more speedup and comparing to the initial run with 8 bytes buffer runs 79 times 

faster. Cray experiences bigger overhead when the buffer size is 64 kbytes, but it should be noted 

that the simulation time for 64 kbytes buffer takes an average of 0.091 seconds and there is 

hardly any computation involved to hide communication delays by communication to 

computation overlap. 

IPComMan’s message packing mechanism gives a significant time improvement to a 

simple small data exchange simulation and at the same time keeps the speedup factor consistent 

across architectures such that the difference in time gain between Blue Gene/P and Cray does not 

exceed a factor of 2. Additional studying of the communication package buffering mechanism 

advantage for real applications is done in Section 7 where message sizes are not equal and more 

than one communication step is involved in the simulation. 

The next simulation is designed to test the message flow control in a pseudo-unstructured 

neighborhood environment such that the communication across the domain is imbalanced. For 

these purposes a tiling mechanism is used which defines a semi-regular connectivity graph. 



Semi-regular definition means that the connectivity within neighborhoods is irregular enough 

that optimal scheduling is very difficult, while at the same time being regular enough such that 

each processor can compute its neighborhoods without global communication or reading a file. 

 The mechanism of tiling is as follows: the connectivity graph is defined as a set of 

identical tiles connected together in a 2D grid. The tiles and the resulting grid are square for 

simplicity. The tiles being tested contain 4 x 4 or 16 processors, but in general any square is  

usable. A single tile is defined by hand, constructing a moderately complex connectivity graph. 

Authors also define the connectivity between a tile and its adjacent tiles. This definition is small 

enough to be easily stored within the executable code. Each process then computes the position 

of its local tile using its processor rank and the total number of processors. The processor can 

then compute its neighborhood based on the tile definition. 

 All of the tasks related to the tile-based definition are handled by a single class which 

stores the tile definition and provides neighborhoods. The neighborhood returned by this class 

can then be passed directly to IPComMan or used in the pure MPI implementation. Figure 9 

shows neighborhoods defined for each processor on a tile diagonal. The rest of the 

neighborhoods are calculated knowing the tile pattern. Dashed lines in Figure 9 represent a tile 

boundary. The correspondent processor is depicted as a dotted circle, solid circles define its 

neighbors, and non-neighbors are represented as hollow circles. 

The tile pattern presented results in seven different neighborhood sizes. If the number of 

processors in the domain is equal to N, the distribution of the neighborhoods is the following: 

N/4 processors has 2 neighbors, N/8 processors has 3 neighbors, N/4 processors has 4 neighbors, 

3N/16 processors has 5 neighbors, N/16 processors has 9 neighbors, N/16 processors has 14 

neighbors, and N/16 processors has 36 neighbors. The described neighborhood density results in 

imbalanced communication load which is difficult to optimize scheduling for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Neighborhoods for the diagonal processors of a tile. Note that 3 neighbors are not 

shown for the (3,3) tile rank as they are located in further locations of adjacent tiles. 

 

To make fair comparisons and measure IPComMan’s ability to improve data flow control 

with neighborhood connectivity imbalance, its buffer size is set to 8 bytes which is equal to the 

message size being sent and received. The test case follows the same pattern as the first one 

presented in this section and runs a number of data exchange iterations. The base test run has a 

loop over 64 sends and receives for each neighbor in the correspondent neighborhood. The base 

Figure 10 shows results of a tiling simulation where time scale is normalized the same way it is 

described in the first test, namely, by the base time of first 64 sends and receives divided by the 

factor multiple of 64 iterations. 

Neighborhood for 

the (2,2) tile rank 

Neighborhood for 

the (3,3) tile rank 

Neighborhood for 

the (0,0) tile rank 

Neighborhood for 

the (1,1) tile rank 



 
Figure 10. Sending 8 byte messages to neighborhood of each processor consisting of number of 

neighbors defined by the tiling algorithm. The time is normalized by the run time with 64 

iterations of sends and receives. 

 

IPComMan is 1.25 times faster than pure MPI implementation on Cray in the base test of 

64 send and receive iterations, and 145 times faster for 2048 iterations. On Blue Gene/P, 

IPComMan is 2.1 times faster than generic MPI implementation on Blue Gene/P for 64 iterations 

and 102 times faster for 2048 iterations. Note that normalized time for Cray and Blue Gene/P 

pure MPI implementation is 10 times smaller in Figure 10 than the original time indicators such 

that their performance amplitude does not dominate other results. It can be inferred from the plot 

that generic MPI implementation on Cray takes a factor of 108 more time for each 64 send and 

receive iterations with a total number of 2048 sends and receives, whereas Blue Gene/P performs 

with a factor of 65 slower for the same amount of send and receive iterations. Meanwhile, 

IPComMan’s performance incurs negligible penalty on Cray with the increase of transferred 

data, and experiences a factor of 1.33 time increase on Blue Gene/P with 2048 send and receive 

iterations. It also should be noted that IPComMan’s time increase factors are relatively similar 

across architectures, and the difference between the biggest of them is a factor of 1.5. 

The tests provided in this section show that IPComMan is able to reduce communication 

time with automatic buffering taking care of smaller messages, and perform a neighborhood 

optimization with the use of internal data flow control described in Section 4. It appears that the 

communication package achieves efficient data exchange independently of the architecture 

chosen. The last test results are a promising indication that IPComMan is able to successfully 

deal with neighbors which are not structured in any way, completely dictated by the application, 

with a connectivity graph of a very high complexity such that structured scheduling of data 

exchange is nearly impossible for communication purposes. The next two sections define in 

detail problems having highly unstructured neighborhoods and continue discussion about 

IPComMan’s performance on real test scaling studies run on generally imbalanced routines. 

 

 

 



6. Mesh Adaptation and Migration 
The application of adaptive finite elements for reliable numerical simulations requires they 

be executed in an automated manner with explicit control of the approximations made [25]. In 

these applications, meshes are used to discretize the problem domains. Since there are no reliable 

a priori methods to control the approximation errors, adaptive methods must be applied [7, 26, 

27, 28]. Adaptive meshing procedures provide a powerful tool for attacking problems such as 

fluid flows that can develop highly anisotropic solutions and can only be located and resolved 

through adaptivity [25, 8]. These problems can involve complicated geometries and complex 

physics resulting in discretizations so large that only large-scale simulation (e.g., petascale) 

offers the resources required for obtaining a solution in a relevant time frame. Adaptive methods 

modify the mesh and dramatically increase and/or decrease the number of mesh entities over 

portions of the problem domain [29, 30] to be sure the mesh has a nearly optimal layout. To run 

adaptive analysis in parallel, both the analysis step and mesh adaptation steps must be run in 

parallel on distributed meshes partitioned into parts over multiple processors [7]. 

The function of mesh adaptation is to convert a given mesh into the desired mesh 

consistent with the adaptive mesh improvement information provided. A mesh modification 

based procedure has been developed that accepts a mesh size field which is defined by entity 

level error estimates or correction indicators evaluated on the previous solution step. The mesh 

size field is used as an input to initiate mesh refinement and coarsening operations on the mesh 

to yield a mesh that satisfies the requested mesh size field [10, 8, 29].  

Adaptive mesh modification operations increase the number of entities on some processors 

while reducing the number on other processors. To make mesh entity parts balanced, dynamic 

load balancing including appropriate mesh migration is required [31]. At the same time, mesh 

migration can take a significant fraction of the entire mesh adaptation time especially in cases 

where coarsening and/or swapping are the dominant operations as compared to other mesh 

modification operations. Thus, in mesh adaptivity software, a good initial partition is not 

sufficient to assure performance. Since the operations just indicated involve irregularly 

structured messages of a small size, scalability depends on effectively controlling the underlying 

message-passing processes. 

Figure 11 illustrates the migration process for edge collapse operation. Assume an edge 

around the vertex indicated with solid dot (on processor P0) is to be collapsed. P0 requests from 

processors P1-P3 all the faces/triangles (regions in 3D) connected to the circled vertex. The 

appropriate mesh entities are migrated to P0 which can then collapse an edge around the circled 

vertex. In mesh modification cases dominated by coarsening, mesh migration operations can take 

up to three quarters of the entire mesh adaptation time. 

 

 
Figure 11. Mesh migration to support distributed coarsening. 

 

During mesh migration the communication can be unbalanced. Some processors may 

exchange a substantial number of mesh entities, others do not need to communicate at all. Each 

processor does not have to exchange data with everybody to result in the up-to-date state of the 



mesh validity. To quantify in advance the amount of computation and communication associated 

with mesh migration would consume time equivalent to the execution time of the entire 

procedure, therefore increasing the load imbalance and communication. Thus efforts in this area 

need to focus on making the communication as efficient as possible and reducing 

synchronizations that magnify the load imbalance.   

Since mesh migration uses information about shared entities, the maximum number of 

neighbors for any processor is the union of the processors sharing at least one mesh entity with 

it. Therefore, a subdomain communication pattern can be applied to minimize or eliminate 

synchronization steps. As the mesh migration process changes the boundary of parts, processors 

which were not neighbors before can begin to share mesh entities, thus become neighbors that 

require communication. This is why the ability of IPComMan to dynamically track and update 

new neighbors described in Section 4 is a critical functionality. 

There are several communication steps within a migration routine. Some of them require 

entity updates and unification across the inter-part boundary and the Neighborhood method 

should be used to minimize the communication costs. At the same time, during the entity 

migration phase new neighbors might be introduced to the neighborhoods, thus the Allreduce 

verification must be applied to complete all the needed communication correctly and not lose 

data while there is a possibility of dynamic change in neighborhoods. Non-blocking sends and 

receives, and the ability of IPComMan to extract the message from the first available buffer 

helps hide communication delays and tolerate the execution imbalance caused by irregular 

computation and communication within mesh migration routines. 

 

7. Application results 

The mesh modification procedure is applied to two examples to measure the performance 

of mesh adaptation using the IPComMan communication package. The first example considers a 

mesh size field that represents a planar shock on cube geometry (CUBE). The second example 

includes a mesh size field that represents the motion of air bubbles in a uniform flow 

(BUBBLE). These tests involve substantial coarsening and associated mesh migration. 

Figure 12 shows the CUBE test with the initial uniform mesh of 136 million tetrahedra, 

and the final mesh of 10 million tetrahedra. Figure 8 represents the BUBBLE test, involving 

movement of five air bubbles by a distance of 1/5
th

 of their radius, with the initial mesh having 

165 million tetrahedra, and the final mesh having 188 million tetrahedra. 

 

 
Figure 12. Parallel mesh adaptation on cube geometry.  

 



 
Figure 13. Parallel mesh adaptation for moving air bubbles. 

 

The same set of supercomputers described in Section 5 is used to measure mesh adaptation 

performance results. All available cores per node were requested on both machines during the 

runs. For the strong scaling studies, the same buffer size for the message packing (10 kilobytes) 

is used. The tests were executed on 1,024 to 32,768 processors, where scaling is based on the 

execution time on 1,024 processors with respect to each supercomputer and defined as (nproc-base 

* timebase) / (nproc-test * timetest). Figure 14 demonstrates  the scaling of mesh adaptation for the 

CUBE test case and the corresponding run times are given in Table 1. Figure 15 depicts the 

scaling for the BUBBLE test case for both architectures with the execution times represented in 

Table 2.  

 

 
Figure 14. Mesh adaptation scaling results for the CUBE test case. 



 

 
Figure 15. Mesh adaptation scaling results for the BUBBLE test case. 

 

Table 1. Mesh adaptation time and scaling results for the CUBE test case. 

Architecture N/proc 1024 2048 4096 8192 16384 32768 

BG/P 
Time 470.06 262.57 164.59 93.91 63.36 44.38 

Scaling 1 0.90 0.71 0.63 0.46 0.33 

Cray 
Time 126.30 76.38 47.55 26.97 17.99 12.52 

Scaling 1 0.83 0.66 0.59 0.44 0.32 

 

Table 2. Mesh adaptation time and scaling results for the BUBBLE test case. 

Architecture N/proc 1024 2048 4096 8192 16384 32768 

BG/P 
Time 368.22 188.10 109.98 79.36 40.08 26.57 

Scaling 1 0.98 0.84 0.58 0.57 0.43 

Cray 
Time 138.36 56.59 34.40 22.65 16.82 7.27 

Scaling 1 1.22 1.01 0.76 0.55 0.59 

 

Figure 14 shows that the CUBE test case, which is highly loaded with mesh migration, 

behaves in a similar way for both considered architectures. IPComMan performs better on Blue 

Gene/P with smaller processor count, but becomes almost the same with Cray on higher numbers 

of cores. The Cray was able to perform superlinear scaling for two steps in the BUBBLE test 

case. This happened due to the fact that the mesh was repartitioned in a way where a larger part 

of the communication intensive process appeared to be on the same nodes resulting in the faster 

inter-node data exchange. 

To understand the advantage of packing smaller messages into pre-allocated buffers, 

predictive load balancing routines [32] were tested with different buffer sizes. Predictive load 

balancing was used to repartition the mesh in the BUBBLE test case such that each mesh part 

has approximately the same number of entities at the end of mesh adaptation. The rebalancing 



procedures resulted in a migration of 60 million entities with the average of 8Mb of data sent and 

received by each processor. 1,024 cores were used to test the IPComMan’s performance with 

respect to the buffer size since the smaller number of cores results in a bigger amount of data 

exchange between processors. 

 

 
Figure 16. Predictive load balancing routines time normalized by the run time with 10kbytes 

buffer size. 

 

Figure 16 shows the timings for the predictive load balancing routines applied on the 

BUBBLE test case with different buffer sizes. The time is normalized by the run time of the test 

with 10kbytes buffer size for the correspondent architecture. It can be found that the run time 

decreases significantly on Cray architecture (13 times) as the buffer size increases. The load 

balancing run times become almost equal on the correspondent supercomputer with the buffer 

size above 5kbytes. As indicated before, Blue Gene/P and Cray have different networks and 

message routing protocols. Blue Gene/P has three different protocols to optimize a delivery of 

smaller messages. However, the ability to pack messages into buffers and control of the buffer 

size allows IPComMan to unify network features and provide desirable performance on different 

architectures without being dependent on their message delivery strategy. 

Regardless of the architecture, the IPComMan’s ability to localize communication to 

neighborhoods and being independent of the total number of processors, buffer size control and 

its use of non-blocking functions allows it to provide good results as the number of processors 

increases, for generally computationally imbalanced procedures. However, since the tests 

provided address a fixed size problem, with the core count increase the larger percentage of the 

mesh entities are shared between inter-part boundaries. This leads to the growing number of 

entities to be migrated during mesh adaptation procedures and more inter-processor 

communication is needed, whereas the computational work is reduced with mesh parts becoming 

less loaded.  This explains why the scaling for the process does fall with increased processor 

count. It is also important to note that the mesh adaptation process is not well balanced from the 

very beginning in terms of the communication load per part and neighborhood. Even though the 



number of entities on each part is balanced, the difference of computational work can easily be 

more than a factor of two. 

 

8. Closing Remarks 

The need for IPComMan emerged with the dramatic increase in processor count on today’s 

parallel computers, where the approach relying on the global synchronous communication is not 

acceptable anymore. IPComMan is a general-purpose MPI-based communication utility aimed at 

improving inter-processor communications regardless of the architecture by using explicit 

consideration of the neighborhood communication pattern. The results obtained with the use of 

the package in mesh adaptation routines indicate that the neighborhood approach together with 

automatic message packing and non-blocking functions leads to excellent results on two 

different supercomputers. With a fixed size problem even though the communication load rises 

substantially on each part with the processor count increase, the ability not to use global 

collectives when neighborhoods do not change, preserves the program runs from significant 

growth in execution time. 

It is shown that packing of smaller messages in buffers is essential in order to optimize the 

communication layer features on different supercomputer architectures. This is beneficial in both 

reducing the number of packages sent and resulting in communication and computation overlap 

when performing non-blocking function calls. IPComMan takes full control of message 

receiving while providing the first extracted message from the buffer to the application. 

Additional efforts on the scalability of specific applications using IPComMan are desired. 

The motivation is to continue to investigate the communication and computation overlap tradeoff 

from the communication package standpoint. This includes automatic change of buffer size for 

messages individually on each processor, according to the architecture chosen, and a processor 

loading in terms of number of messages for each communication step. Another significant aspect 

for improving the scalability is making IPComMan completely free of the Allreduce method, 

which is applied when the dynamic change of neighborhoods take place. At a minimum, 

MPI_Iallreduce() [33] should be used to take a full advantage of non-blocking MPI functions. 

However the scenario of changing neighbors should be taken care of without putting a burden on 

the application side such that it decides which method of message control should be used. At the 

same time, the free of Allreduce neighborhood approach must be designed in such a way that it 

does not introduce redundant neighbors while trying to catch new processors coming to the 

neighborhood. The neighborhoods should be limited to the number of actively communicating 

processors only such that they are independent of the total number of processors within the 

domain.  

 

9. IPComMan source code availability 
IPComMan is an open source software and its code is available for download under the 

following link: http://redmine.scorec.rpi.edu/anonsvn/ipcomman/trunk. The communication package 

webpage is located at the following address: http://www.scorec.rpi.edu/IPComMan. IPComMan has 

a BSD license for academics, US government labs and researchers. Commercial use requires a 

license that can be discussed by contacting Scientific Computation Research Center office at 

office@scorec.rpi.edu. 
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