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ABSTRACT

The high-order finite element methods have the advantage of being able to achieve

an exponential rate of convergence in the application to problems of interest that

is superior to the linear rate of convergence of conventional finite element methods.

However in order to fully realize the benefits of high-order finite elements for large

scale simulations over general 3D curved domains, properly curved finite elements

must be generated.

The work in this thesis aims to develop reliable and efficient parallel curved

meshing techniques to support large scale simulations using higher-order finite el-

ement methods. The mathematical fundamentals of the Bézier polynomial based

shape representation for high-order curved elements are reviewed. Based on the

shape representation, a hybrid shape metric is proposed to serve for both linear

straight-sided elements and high-order curved elements. Novel extensions to the

Bézier control point based element validity check method are proposed and devel-

oped. Numerical experiments have shown results that they are effective with almost

neglegible addition to the computational cost.

Technical developments of parallel curved meshing have been presented in

terms of creating and adapting partitioned curved meshes. Two alternative ap-

proaches to create large partitioned curved meshes have been developed. Efforts

have been made to extend linear straight-sided mesh modification procedures to

work with high-order curved meshes in parallel. The approach starts from the exist-

ing functionalities of parallel linear mesh adaptation and serial mesh curving, both

of which have been developed in the SCOREC MeshAdapt software.

xi



CHAPTER 1

Introduction

1.1 Background and Historical Review

In the area of numerical analysis of partial differential equations, several classes

of numerical methods have been extensively studied, such as the finite difference

methods, finite volume methods and finite element methods [71, 29, 5], etc. Among

those methods, the finite element methods (FEM) have gained the most popular-

ity. There are several reasons that make it superior compared with other numerical

methods. It deals with problems defined over general domains as long as the do-

main can be correctly decomposed into small ‘elements’. Very little or even no code

modification is needed if boundary conditions or physical parameters change [29].

Therefore, numerous simulation software packages have been implemented with fi-

nite element methods and are widely used in both academic research and industry.

The mathematical properties of the finite element methods have been well

established, which involves the process of discretize the problem domain by piecewise

continuous functions. Extensive theoretical studies have shown that the accuracy of

the numerical solution and efficiency of the analysis process depend closely on the

quality of the discretization called a finite element mesh [37, 42, 43].

In an adaptive simulation, the initial mesh is generated based on some a priori

knowledge of the desired solution field over the domain of interest. One can evaluate

the accuracy of the solution field based on the initial mesh using error estimators

[4, 76, 77]. In the cases which the solution is not accurate enough, mesh adaptation

techniques are used to modify the discretization based on an error estimator and/or

correction indicator. The accuracy and efficiency of an adaptive simulation relies

greatly on the capability of mesh generation and adaptation. Mesh adaptation

procedures can be roughly categorized into h-version [13, 37], p-version [42, 43,

44] and hp-version [16, 17], etc. The h-version modifies the size of the element

while the p-version alters the polynomial degree. The hp-version combines the two

together. Recently as the isogeometric analysis is being studied, a so-called k-version

1
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adaptivity is proposed as well [30]. The work presented in this thesis focuses on the

p-version mesh adaptivity to support the high-order finite element methods.

1.2 Motivation and Challenges

The high-order finite element methods have the advantage of being able to

achieve an exponential rate of convergence in the application to problems of interest

that is superior to conventional methods [71, 5]. However in order to fully realize

the benefits of high-order finite elements for large scale simulations over general

3D curved domains, properly curved finite elements must be generated [43]. Such

curved meshes must have at least validity elements, and preserve sufficiently accurate

geometric approximation to the curved domain boundary. Furthermore, for the

problems that require the numerical solution to have really high resolution and

accuracy, meshes with extremely large amount of entities are desired. Such meshes

can only be created using distributed computing systems in parallel, which requires

effective and efficient parallel meshing techniques to be developed [14].

There have been extensive studies in the area of automatic mesh genera-

tion and adaptation. However, the majority efforts have been focused on dealing

with standard lower-order meshes with straight-sided elements. To approximate 3D

curved domains with linear meshes, one has to sufficiently refine the mesh in the

vicinity of key features of interest, which usually results in large number of elements

[37]. The use of properly constructed curved mesh entities could effectively approx-

imate the domain with relatively small meshes. Literatures can be found studying

and proposing meshing techniques for higher-order curved meshes [43, 58].

Recent developments in parallel computing facilities and paradigms have en-

abled large scale simulations in the areas of molecular dynamics, computational fluid

dynamics, and electromagnetic simulations etc. In order to fully make use of the

computing resources to reach desired solution accuracy and resolution, these simu-

lations can require billions of degrees of freedom. Therefore extremely large meshes

have to be generated using multiple processors in parallel [73]. To date, research of

parallel mesh generation and adaptation has been primarily focused on the linear

straight-sided meshes.
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The work in this thesis aims to develop reliable and efficient parallel curved

meshing techniques to support large scale simulations using higher-order finite el-

ement methods. The current approach starts from the existing functionalities of

parallel linear mesh adaptation and serial mesh curving, both of which have been

developed in the SCOREC MeshAdapt software. When constructing curved mesh

entities, interactions with the underlying CAD modeling engines are essential in

order to approximate the geometric model boundaries more closely. In the parallel

distributed computing environment, extra considerations are needed to make sure

the correct information can be exchanged among the communicating processors. In

addition, the entities shared by multiple processors must be carefully synchronized

to maintain global consistency.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the mathematical

foundation of a Bézier polynomial based shape representation of high-order curved

tetrahedrons, and discusses various properties of Bézier polynomials. Following that,

Chapter 3 then presents a criterion for determining validity of a general high-order

curved tetrahedron, and a validity check algorithm is presented. A novel shape

metric is also proposed to be generally applicable in the cases where both linear

and curved elements exist. Chapter 4 and 5 focuses on technical aspects of parallel

curved meshing procedures. The design and implementations of the algorithms are

discussed along with several examples. Chapter 4 focuses on the generation of a

valid curved mesh starting from a given valid linear mesh, and Chapter 5 focuses on

the adaptation of a given curved mesh. Applications of the parallel curved meshing

techniques are given in Chapter 6. The most successful application so far is to

support the parallel high-order finite element simulation techniques developed at

SLAC National Accelerator Laboratory for the design of next generation large scale

particle accelerators. Conclusions and future works are discussed in Chapter 7.

1.4 Nomenclature

The nomenclature used in this chapter follows what has been defined in [43]:
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Ωυ Domain of interest, υ = G, M where G denotes the geometric

model and M denotes the mesh model

∂Ωυ Boundary of the domain Ωυ

Ωυ Closure of the domain, Ωυ = (Ωυ ∪ ∂Ωυ)

Gd
i ith geometric model entity of dimension d.

Md
i ith mesh entity of dimension d. d = 0, 1, 2, 3 and represents mesh

vertex, edge, face and region respectively.

@ Classification symbol used to indicate the association of one or

more entities from the mesh model M with the geometric model G.

Md Unordered group of mesh topological entities of dimension d.

Mdi
i {Md

j } First order adjacency sets of individual mesh entity Mdi
i defined as

the set of mesh entities of dimension dj adjacent to mesh entity Mdi
i .

b
(n)
i (t) the ith Bernstein basis polynomial of degree n.

P
(n)
i (Md

j ) the ith control point of a nth order Bézier polynomial associated

with the mesh entity Md
j .

X(n)(M3
j ) the nth order Bézier polynomial representation of a general tetra-

hedron.



CHAPTER 2

Overview of the Parametric Representation of High-order

Curved Finite Element Volumes

2.1 Introduction

Driven by the developments of high-order finite element analysis and applica-

tions, for instance the p-version FEM, effective curved mesh generation and adap-

tation techniques have become an important ingredient to construct adaptive loops

of automatic finite element simulations. However, compared with linear straight-

sided meshing techniques, generating and adapting high-order meshes meets more

complicated constraints in terms of approximating the geometry of domain bound-

aries. Therefore it requires more carefully designed metric to represent the curved

entities and determine the validity of the mesh. A parametric representation for

curved tetrahedral elements based on the Bézier polynomials has been developed

and implemented [43, 44].

2.2 The Bernstein Polynomials and Bézier Curves

In computer aided geometric design, Bézier polynomials are frequently used

to construct 3-dimensional curves and surface patches in parametric forms [19]. For

example, a single-variable Bézier polynomial with vector-valued control points can

be used to construct a general curve in the 2D or 3D physical space. In general, a

nth order Bézier curve can be expressed as:

B(t) =
n∑

i=0

b
(n)
i (t)P

(n)
i , t ∈ [0, 1] (2.1)

In the equation above, b
(n)
i (t) is the ith Bernstein basis polynomial of degree

n,

5
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b
(n)
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, ..., n; (2.2)

(
n

i

)
=

n!

i!(n− i)!
. (2.3)

and P
(n)
i is the ith control point of a nth order Bézier curve.

A single-variable Bézier polynomial maintains a mapping between the repre-

sentations of a curve in the physical space and parametric space. If the control points

are in 3D, i.e. Pi = (Px, Py, Pz)
T ∈ R3, then B(t) maps a one-dimensional para-

metric coordinate system (t ∈ R) to a 3D Cartesian coordinate system (B(t) ∈ R3),

and vice versa.

Bézier polynomials have some very useful properties [19]. Key ones of impor-

tance to the development of curved mesh algorithms are listed as follows:

1. The Convex Hull Property. The max and min values of a Bézier polynomial

evaluated within the domain are bounded by the max and min values of its

corresponding control points,

2. The derivatives of a Bézier polynomial are still Bézier polynomials. The prod-

uct of a mth order Bézier polynomial and a nth order Bézier polynomial is also

a Bézier polynomial of order (m + n),

3. Easy to perform subdivision or degree elevation. This property is useful in the

h- and p-version mesh adaptation.

2.3 Bézier Polynomial Based Representation of High-order

Tetrahedral Volume

It is not difficult to generalize the Bézier polynomial to represent a parametric

surface or volume. Using the notation in [44], the qth order Bézier polynomial based

volume representation of high-order tetrahedrons can be expressed by making use

of the volume coordinates as follows:
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Figure 2.1: 2nd-order tetrahedron

X(n)(M3
j ) = X(n)(ξ) =

q∑
i=1

P
(n)
i b

(n)
i (ξ) (2.4)

where b
(n)
i (ξ) are the Bernstein polynomials with ξ = {(ξ1, ξ2, ξ3, ξ4)|ξ1+ξ2+ξ3+ξ0 =

1 and ξi ∈ [0, 1]}. q is the total number of control points for a nth order Bézier

polynomial in 3D.

More specifically in the case of a 2nd-order curved tetrahedron, the Bézier

representation is:

X(2)(ξ1, ξ2, ξ3, ξ4) =
4∑

i=1

P(2)(M0
i )C1ξ

2
i

+
6∑

j=1

P(2)(M1
j )C2ξmξn (2.5)

where P
(2)
i (M0

j ) are four control points associated with the vertices, and P
(2)
i (M1

j )

are six control points associated with the edges. Ci = 2!
i!

are the coefficients of the

second order Bernstein polynomials.

The Bézier representation above is a vector-valued polynomial. Each value
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corresponds to a point within the volume of the tetrahedron.

The Jacobian matrix is defined as the first-order partial derivatives of the

physical coordinates with respect to the parametric coordinates (using indicial no-

tation):

J =
∂Xi

∂ξj

, i, j = 1, 2, 3; (2.6)

and its determinant is:

det(J) =
∂X

∂ξ1

× ∂X

∂ξ2

· ∂X

∂ξ3

(2.7)

The determinant of Jacobian at a given point gives important information

near that point. For instance, a continuously differentiable function is invertible

near a point P if the determinant of Jacobian at P is non-zero. Furthermore, if the

determinant of Jacobian at P is positive, then the function preserves orientation

near P ; if it is negative, the function reverses orientation. The absolute value of the

determinant of Jacobian at P gives us the factor by which the function expands or

shrinks volumes near P.

In the specific case of a 2nd order tetrahedron, the derivatives with respect to

ξ1, ξ2 and ξ3 are first order Bézier polynomials:

∂X

∂ξ1

= 2(P (M0
2 )− P (M1

1 ))ξ1 + 2(P (M1
2 )− P (M1

3 ))ξ2

+ 2(P (M1
5 )− P (M1

4 ))ξ3 + 2(P (M1
1 )− P (M0

1 )ξ4 (2.8)

∂X

∂ξ2

= 2(P (M1
2 )− P (M1

1 ))ξ1 + 2(P (M0
3 )− P (M1

3 ))ξ2

+ 2(P (M1
6 )− P (M1

4 ))ξ3 + 2(P (M1
3 )− P (M0

1 ))ξ4 (2.9)

∂X

∂ξ3

= 2(P (M1
5 )− P (M1

1 ))ξ1 + 2(P (M1
6 )− P (M1

3 ))ξ2
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+ 2(P (M0
4 )− P (M1

4 ))ξ3 + 2(P (M1
4 )− P (M0

1 ))ξ4 (2.10)

Denote the vector coefficients in front of ξ1, ξ2, ξ3 and ξ4 as ai, bi, ci, di, i =

1, 2, 3 respectively.

det(J) is the product of the three first order Bézier polynomials, and therefore

is a 3rd order Bézier polynomial, and its a scalar polynomial:

det(J) =
20∑
i=1

P
(3)
i b

(3)
i (ξ) (2.11)

The control points of this 3rd order Bézier polynomial with respect to their

corresponding Bernstein basis terms are given in Table 2.1. There are 20 control

points in total, including 4 for the vertices, 12 for the edges, and 4 for the faces.
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Table 2.1: The 20 control points and polynomial terms of a third-order
three-variable Bézier polynomial

Control Points P
(3)
|i| Polynomials terms b

(3)
|i|

Vertex point 1: (a1 × a2 · a3), ξ3
1

Vertex point 2: (b1 × b2 · b3), ξ3
2

Vertex point 3: (c1 × c2 · c3), ξ3
3

Vertex point 4: (d1 × d2 · d3), ξ3
4

Edge point 1: 1
3 [(a1 × a2 · b3) + (a1 × b2 · a3) + (b1 × a2 · a3)], 3ξ2

1ξ2

Edge point 2: 1
3 [(a1 × b2 · b3) + (b1 × a2 · b3) + (b1 × b2 · a3)], 3ξ1ξ

2
2

Edge point 3: 1
3 [(a1 × a2 · c3) + (a1 × c2 · a3) + (c1 × a2 · a3)], 3ξ2

1ξ3

Edge point 4: 1
3 [(a1 × c2 · c3) + (c1 × a2 · c3) + (c1 × c2 · a3)], 3ξ1ξ

2
3

Edge point 5: 1
3 [(a1 × a2 · d3) + (a1 × d2 · a3) + (d1 × a2 · a3)], 3ξ2

1ξ4

Edge point 6: 1
3 [(a1 × d2 · d3) + (d1 × a2 · d3) + (d1 × d2 · a3)], 3ξ1ξ

2
4

Edge point 7: 1
3 [(b1 × b2 · c3) + (b1 × c2 · b3) + (c1 × b2 · b3)], 3ξ2

2ξ3

Edge point 8: 1
3 [(b1 × c2 · c3) + (c1 × b2 · c3) + (c1 × c2 · b3)], 3ξ2ξ

2
3

Edge point 9: 1
3 [(b1 × b2 · d3) + (b1 × d2 · b3) + (d1 × b2 · b3)], 3ξ2

2ξ4

Edge point 10: 1
3 [(b1 × d2 · d3) + (d1 × b2 · d3) + (d1 × d2 · b3)], 3ξ2ξ

2
4

Edge point 11: 1
3 [(c1 × c2 · d3) + (c1 × d2 · c3) + (d1 × c2 · c3)], 3ξ2

3ξ4

Edge point 12: 1
3 [(c1 × d2 · d3) + (d1 × c2 · d3) + (d1 × d2 · c3)], 3ξ3ξ

2
4

Face point 1: 1
6 [(a1 × b2 · c3) + (a1 × c2 · b3) + (b1 × a2 · c3) 6ξ1ξ2ξ3

+(b1 × c2 · a3) + (c1 × a2 · b3) + (c1 × b2 · a3)],
Face point 2: 1

6 [(a1 × b2 · d3) + (a1 × d2 · b3) + (b1 × a2 · d3) 6ξ1ξ2ξ4

+(b1 × d2 · a3) + (d1 × a2 · b3) + (d1 × b2 · a3)],
Face point 3: 1

6 [(a1 × d2 · c3) + (a1 × c2 · d3) + (d1 × a2 · c3) 6ξ1ξ3ξ4

+(d1 × c2 · a3) + (c1 × a2 · d3) + (c1 × d2 · a3)],
Face point 4: 1

6 [(d1 × b2 · c3) + (d1 × c2 · b3) + (b1 × d2 · c3) 6ξ2ξ3ξ4

+(b1 × c2 · d3) + (c1 × d2 · b3) + (c1 × b2 · d3)],



CHAPTER 3

Hybrid Element Quality Metric and Validity Check for

High-order Tetrahedron

This chapter overviews the common mesh quality metrics and a validity check

method based on the Bézier shape representation of high-order curved tetrahedral

elements. A quality metric that combines a straight-sided and a curved shape metric

is proposed and its properties discussed. An adaptive validity check is developed

using the new shape metric.

3.1 Overview of Common Quality Metrics for 3D Tetrahe-

dron

There has been substantial effort trying to put a precise definition to what

an a priori (element geometry only) mesh quality metric is. A general definition

given by Knupp [32] states that a mesh quality metric is a scalar function that

measures some geometric property of that given element. Another more specific

definition for tetrahedron proposed by Dompierre et al in [18] requires the metric

to 1) be invariant under translation, rotation, reflection and uniform scaling of

the tetrahedron, 2) have unique maximum for equilateral tetrahedron and unique

minimum for degenerated tetrahedron. A number of element quality metrics that

conform to the above definitions have been proposed and studied. Each metric

targets certain parameters of a tetrahedron, such as edge length, dihedral angle,

non-dimensional ratio parameters, etc. Regardless of what parametera are selected,

a desired mesh quality metric should be 1) effective to detect all kinds of poorly

shaped elements, 2) efficient in terms of computational cost, and 3) informative

to drive the mesh adaptation procedures to improve the mesh quality. Since any

complete measure of element quality must consider a posteriori information, the

term poorly shaped element used here is primarily concerned with elements whose

shape is such that the Jacobian over the element is likely to introduce numerical

11
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problems into calculations performed using that element.

3.1.1 Quality Metrics for Straight-sided Tetrahedral Elements

Given a straight-sided tetrahedral mesh, the geometric shape of an element

is uniquely defined once the positions of its four nodes are determined since the

edges are straight lines and faces are flat planes. It is straight-forward to calculate

various geometric quantities, such as edge length and solid angle, etc. Therefore, a

host of mesh quality metrics for straight-sided elements have been proposed which

were based upon geometric quantities. Several commonly used ones are reviewed as

follows.

1. Edge Ratio:

The Edge Ratio r is defined to be the ratio of the shortest edge over the longest

edge in a given tetrahedron [18]:

r =
mini=1..6 l(M1

i )

maxj=1..6 l(M1
j )

, (3.1)

where l denotes the length of one of six edges. See Figure 3.1.

It is obvious that 0 ≤ r ≤ 1 for all elements, and r reaches 1 for an equilateral

tetrahedron. On the other hand, if r is very small or even close to 0, it indicates

that the tetrahedron might be highly anisotropic with one or many edges being

relatively shorter/longer than others. However, this shape metric fails in cases

where the element is indeed flat while none of its edges are degenerated to zero

length as shown in Figure 3.2. It also can not detect inverted elements. This

metric only uses mesh edges and calculates their length, therefore it is one of

the most computationally efficient metrics.

2. Dihedral Angle:

In a given tetrahedron, each of the six edges is used by two mesh faces. The

dihedral angle θ is defined to be the angle of two intersecting faces [18]. It

can be obtained by adding a perpendicular plane to the edge and measure the

angle between the two intersecting lines. See Figure 3.3.
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Figure 3.1: Definition of the edge ratio metric

Figure 3.2: An example of a flat element in plane P

The dihedral angle is an effective metric to detect sliver and flat elements

as θ approaches 0 or π. However it lacks information of the length scale of

the element. A variant of the dihedral angle is discussed in [27] that non-

dimensionalize the quantity by computing

q = sin(θ), (3.2)

Figure 3.3: Definition of dihedral angle
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Figure 3.4: An example of needle-shaped straight-sided tetrahedron

Figure 3.5: Definition of the aspect ratio metric

This metric targets at elements with small or large dihedral angles but does

not detect needle-shaped tetrahedron as shown in Figure 3.4. The example

tetrahedron is highly distorted, however the dihedral angles are still in an

acceptable range. In addition, evaluation of the angles requires calculating

trigonometric functions which is usually more expensive than normal floating

point arithmetics such as additions or multiplications. Therefore this metric

is more expensive than the Edge Ratio metric.

3. Aspect Ratio:

The aspect ratio is defined as the ratio between the minimum altitude and the

length of the longest edge of a given tetrahedron.

ρ =

√
6hmin

2lmax

(3.3)

where hmin is the smallest altitude, lmax is the longest edge length. See Fig-

ure 3.5.

Its normalized inverse form is also used as a quality metric and is discussed
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in [27]. The aspect ratio metric ranges from 0 to 1 for a valid element and is

able to effectively detect slivers as well as highly anisotropic elements in which

case hmin is much smaller than lmax. Therefore it is a metric that is able to

detect all types of poorly shaped elements. And if hmin is defined to be a

signed height, i.e. negative values are allowed, then it detects invalid elements

as well.

4. Mean Ratio:

The definition of the mean ratio metric takes into account the length of all six

edges and the volume of the tetrahedron [39, 40, 18]. It is computed as:

η = K
V (M3)2∑6
i=1 l(M1

i )
3 (3.4)

For a valid element, K is a scaling factor that multiplies to rescale η to the

range [0, 1]. In the optimal case, an equilateral tetrahedron has η = 1 under

this metric. A flat or degenerated element has zero volume which leads to

η = 0. In the cases that an element is inverted, η becomes negative since the

volume of the element is negative. Therefore, this metric has also been shown

to be able to detect all types of poorly-shaped and invalid elements [27].

Since both Aspect Ratio (AR) and Mean Ratio (MR) metrics are desired in

terms of effectiveness, it is worthwhile to further compare the computational cost

of both metrics. Studies have shown that MR is less expensive than AR in terms

of the number of basic computations (+,−,×,÷) and square roots [57]. Also, AR

requires evaluation of face areas in order to obtain hmin while MR does not and it

has been studied in [6, 65] that in unstructured tetrahedral meshes the number of

mesh faces is larger that the number of edge by a ratio of about 12
7
. Therefore, MR

is generally more efficient than AR in terms of computational cost.

Aside from measuring the mesh quality by the mesh entity geometric quanti-

ties, there is another type of geometric quality metrics focusing on evaluating the

Jacobian and related matrices of a mesh element, which is referred to as algebraic

mesh quality metrics in a set of publications by Knupp et al [32, 33].
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In vector calculus, the Jacobian relates the derivatives of a set of variables in

one coordinate system to the derivatives of the same variables in a second coordinate

system. For 3D finite element analysis, the Jacobian matrix is a 3×3 square matrix

defined as the first-order partial derivatives of the physical coordinates (x1, x2, x3),

with respect to the parametric coordinates (ξ1, ξ2, ξ3):

J(ξ) =
∂Xi

∂ξj

, i, j = 1, 2, 3; (3.5)

and its determinant can be calculated as:

det(J) =
∂X

∂ξ1

× ∂X

∂ξ2

· ∂X

∂ξ3

(3.6)

In theory, an essential requirement for a FE analysis to be performed is that the

mapping between the physical space and parametric space remains one-to-one and

onto over each mesh element [29], which requires the determinant of the Jacobian

matrix det(J) to be positive for the element. Consequently, if a negative det(J) is

found anywhere in the element, it is identified as invalid.

In the case of straight-sided tetrahedral meshes and piece-wise linear shape

functions, the mapping between X and ξ is linear, in which case the Jacobian is

constant over the element domain and easy to calculate. Important information

can be derived from a Jacobian in terms of the shape, dilatation, orientation of

an element in physical space with respect to its reference in the parametric space.

Therefore the Jacobian and related matrices provide appropriate information for

building mesh quality metrics. Determinant, trace and norm are useful operators

that relate matrices to scalar quantities. Based on those operators, various Jacobian-

based algebraic quality metrics have been developed. Several typical ones are [32,

33, 34]:

• Determinant: τ = det(J),

• Volume: τ 2,

• Frobenius norm: |J |2 = trace(JT J),

• Condition number: κ = |J ||J−1|.
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More detailed discussions of their property and applications in mesh smoothing

and adaptation can be found in Knupp [32, 33] and Bucki et al [10].

3.1.2 Quality Metric for High-order Curved Tetrahedron

There are far fewer geometric mesh quality metrics proposed to date for high-

order curved tetrahedral elements than for straight-sided elements, partially due to

the difficulties to calculating the geometric quantities such as length of a curved edge

or area of a curved surface. Besides that, none of the geometric entity based quality

metric discussed above account for the influence of the mapping of high-order curved

elements on the properties of the numerical system. Although the Jacobian based

algebraic quality metrics do provide knowledge about the mapping of the elements,

the ones in Knupp[refs here] can not be easily applied to high-order curved elements

since the Jacobian is not constant through the element domain when elements have

curved geometry. It is generally a function of position in the parametric coordinates.

Although many geometric and/or algebraic parameters can not be readily

used for measuring the quality of a high-order tetrahedral element, the Jacobian

matrix remains one of the most influential factors as it is explicitly used in the

numerical integration of the stiffness matrix over the element. It is well-known

that negative determinant of Jacobian det(J) evaluated at integration points could

easily compromise solution accuracy and case the solver to halt prematurely [67,

43, 71, 29]. Elements with such Jacobian matrix are identified as invalid. Even

with positive det(J), large variations of det(J) over the element will contribute to

numerical stiffening which will cause the solution to converge very slowly [67]. Such

elements are categorized as poorly-shaped.

A type of quality metrics for high-order curved tetrahedron has been proposed

and studied by Shephard et al which identifies the invalid as well as poorly-shaped

high-order curved elements by evaluating the scaled variations of the determinant

of Jacobian over the element domain [67, 16, 17, 44]. The metric is defined as:

qc =
minξ∈Ωe det(J(ξ))

maxξ∈Ωe det(J(ξ))
(3.7)

This metric normalizes the variations of the determinant of the Jacobian by
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rescaling the minimum value with respect to the maximum. Its range is within

[0, 1] for valid curved elements, while being negative for invalid elements. It gives

information about how distorted the specific tetrahedron is in the physical space.

However, this scaled metric only considers the shape deviation of a curved element

with respect to its underlying straight-sided counterpart, it does not consider the

shape quality of the straight-sided element itself. Therefore, if a high-order tetrahe-

dron has all straight-sided edges, then its det(J) is again constant over the volume.

Consequently the metric qc reports the optimal value 1, even if the straight-sided

tetrahedron is highly anisotropic or even close to being degenerated. Therefore, qc

alone does not capture all element geometric shape concerns.

3.2 The Hybrid Shape Quality Metric

In order to overcome the issue discussed above and effectively measure the

quality for both straight-sided and curved meshes, a hybrid quality metric is de-

veloped which combines a straight-sided mesh quality metric and a curved mesh

quality metric.

Let qs be any selected quality metric for straight-sided elements and qc for

curved elements. m and n are selected weighting constants. The hybrid metric

computes the mesh quality of curved elements as a simple product:

Qsc = qm
s × qn

c (3.8)

This quality metric effectively combines the quality metrics for both straight-

sided and curved elements. In the case of straight-sided elements where qc = 1,

Qsc = qs functions alone to measure the element shape. For curved elements, qc

will be computed and contribute to Qsc together with the underlying straight-sided

shape quality qs. The two power constants m and n can be tuned as needed to

change the influence of either qs or qc on the overall metric Qsc. Note that in the

case that qs and qc are normalized metrics within range [0, 1], m and n has to be

non-negative in order for Qsc to also be a normalized metric.

Differentiating Equation 3.8 with respect to either of the component quality



19

Figure 3.6: Plot of Qsc with respect to qc for different weighting constant
n, assuming qs = 1

metrics, say qc, while holding the other fixed, in this case qs. We get:

Q,c =
∂Qsc

∂qc

= Cqn−1
c (3.9)

where C = nqm
s .

Assuming C > 0, Equation 3.9 computes the slope of Qsc with respect to

the curved quality component. For example, if one selects n = 1, then Q,c = C

is constant with respect to variations in qc. Therefore it is equally sensitive to the

curved element quality within range [0, 1]. If n > 1 is selected, Q,c is large in the

high quality range of qc, and Qsc drops very rapidly as qc starts to degrade from

very good quality to relatively poor quality, which leads to higher sensitivity of Qsc

to the curved element distortion, therefore detects poorly-shaped curved elements

very effectively. On the other hand, if 0 < n < 1, Qsc starts to rapidly decrease

as qc approaches truly low quality that is close to 0. Therefore it is generally less

strict on curved element distortion than the n > 1 cases and focuses on detecting

the poor quality element affected by its straight-sided component. See Figure 3.6

for examples of the three situations.

In Chapter 4, this quality metric serves as the basis to support the explicit

nodal repositioning algorithm to identity poorly-shaped tetrahedral elements and
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improve element shape quality.

3.3 The Validity Condition of Curved Element

To identify a valid curved tetrahedral element regardless of the numerical

integration scheme being used, it is sufficient to make sure positive determinant of

Jacobian throughout the domain of the tetrahedron.

det(J)|(ξ1,ξ2,ξ3,ξ4) > 0 (3.10)

However, it is not feasible in practice to go through each and every point of

the volume to check directly the value of determinant of Jacobian. Therefore an

alternative method is used to consider the bounds of the determinant of Jacobian.

According to the Convex Hull property of the Bézier representation of a high-

order curved tetrahedron discussed in Chapter 2, the determinant of the Jacobian

det(J) can also be represented as a Bézier polynomial of order 3(p − 1) over the

tetrahedron, where p is the order of the tetrahedral element. Therefore it is bounded

by the maximum and minimum values evaluated at the control points of the order

3(p− 1) Bézier polynomial. In the case of a second-order tetrahedron, the following

inequality holds:

min{P (3)
|i| } ≤ det(J) ≤ max{P (3)

|i| } (3.11)

where P
(3)
|i| represents the value at the ith control point.

Consequently, a sufficient condition to ensure positive determinant of Jacobian

for a pth order curved tetrahedron is that the minimum value of all control points

min{P (3(p−1))
|i| } is positive. More specifically for a quadratic tetrahedron:

min{P (3)
|i| } > 0 (3.12)

3.4 The Uniform Validity Check Method

The uniform validity check algorithm is based on the above condition by check-

ing all the control points of a Bézier representation. The total number of control
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points of a Bézier polynomial is uniquely determined by its order. In the case of

second-order curved tetrahedral element, the Bézier polynomial representing det(J)

is of order 3. The total number of control points is 20. The algorithm is described

as follows:

Given a second-order curved tetrahedron

1. Get the Bézier control points of the curved tetrahedron,

2. Calculate the vectors ai, bi, ci, di, i = 1, 2, 3 as defined by Equations 2.8, 2.9

and 2.10 in Chapter 2,

3. Compute the control points P
(3)
|i| (scalar) for the 3rd order Bézier polynomial

det(J) according to Table 2.1 in Chapter 2,

4. Find min{P (3)
|i| } among the 20 control points. If min{P (3)

|i| } > 0, the 2nd order

curved tetrahedron is valid.

This algorithm is computationally efficient and is independent of the numerical

integration schemes compared with evaluating the real determinant of Jacobian at

the quadrature points based on the integration rules. However, due to fact that this

algorithm uses a sufficient condition that evaluates the lower bound of det(J), it

can be overly-conservative in cases where the lower and upper bounds are not very

tight. In such cases, the actual det(J) could still be positive over the entire volume

of the tetrahedron even if min{P (3)
|i| } is negative.

The degree of conservativeness of the lower and upper bounds obtained by this

validity check algorithm depends upon various factors. Essentially, they depend on

the number of control points used to represent the polynomial, the fewer the number

of control points is, the more conservative the measure is. Besides that, the conser-

vativeness also depends on the classification of the control point where the minimum

value is reached. The validity check algorithm is accurate if minimum value is found

at an interpolation point where min{P (3)
|i| } = min{det(J)}, while conservative if

minimum is at non-interpolating points where min{P (3)
|i| } ≤ min{det(J)}. Details

are discussed in the next two subsections.

Note that for a tetrahedron of order higher than quadratic, the order of the

Bézier polynomial representation for det(J) is higher than 3rd order and the total
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number of control points is more than 20 consequently. The above stated algorithm

can be generalized to apply to the higher-order cases which still focuses at monitoring

the minimum value of all control points of the corresponding Bézier polynomials.

3.4.1 min{P (3)
|i| } at an Interpolating Point

According to the convex hull property given by Equation 3.11, the minimum

value among the control points is generally no greater than the actual minimum of

the det(J), i.e. min{P (3)
|i| } ≤ min{det(J)}. Also, it is known that the control points

at the ends of a Bézier polynomial are interpolation points, which gives det(J) = P
(3)
|i|

at these particular control points. Therefore, in the cases that min{P (3)
|i| } is found

at a mesh vertex control point, which is indeed an interpolating point, the minimum

determinant of Jacobian can be accurately obtained be to min{det(J)} = min{P (3)
|i| }.

In other words, if the value of min{P (3)
|i| } is negative at any of the vertex control

points, the uniform validity check method is no longer conservative and is able to

effectively detect the invalidity.

3.4.2 min{P (3)
|i| } at a Non-interpolating Point

In the cases where min{P (3)
|i| } is found at a non-interpolating point, e.g. edge/face

control point for a quadratic tetrahedron, the uniform validity check method be-

comes conservative for curved element geometry. Note that it is still accurate if

the quadratic tetrahedron is straight-sided in which case all the control points are

interpolation points. If min{P (3)
|i| } ≥ 0 for a particular tetrahedron, it is sufficient to

determine that the element is valid according to the condition discussed in Equation

3.12. However in the cases where min{P (3)
|i| } ≤ 0, one could not necessarily conclude

that the tetrahedron is invalid. In fact in some applications, such cases have been

reported that negative min{P (3)
|i| } are found for valid curved elements with large

curvature, which means the uniform control point based validity check needs to be

refined to deal with such cases.
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3.5 The Adaptive Validity Check Methods

Both degree elevation and subdivision algorithms of a Bézier polynomial in-

creases the number of control points and the control points converge to the actual

polynomial [64, 19]. Thus either method can be used to obtain tighter bounds.

Taking advantages of this property, two approaches to refine the uniform validity

check method are proposed and studied in the following subsections.

It is worth mentioning that although the uniform validity check becomes over

conservative and loses accuracy in some cases, it is still an effective method to

determine the key mesh entity with which the potential invalidity is associated.

Given a curved tetrahedron of order p with min{P (3(p−1)
|i| } < 0 reported at a non-

interpolating control point, the mesh entity associated with that particular control

point is identified as the key mesh entity of possible invalidity.

By determining the key entity, we can avoid doing degree elevation or subdi-

vision uniformly to all the element entities. Instead, only the key entity of interest

is elevated or subdivided in an appropriate manner.

3.5.1 Adaptive Check Using Degree Elevation

After identifying a potentially invalid element and its key entity determined by

doing the uniform validity check, a degree elevation check applies degree elevation

algorithm to the key entity to refine the control polygon of its Bézier representation

to give a tighter lower bound. For example, if min{P (3(p−1)
|i| } < 0 is reported at

an edge control point, the degree elevation check will elevate the degree of the

polynomial representing that edge based on all the control points associated with it.

For a quadratic curved element, the original representation of det(J) is a 3rd-order

Bézier polynomial, therefore 4 control points are associated with an edge, i.e. P
(3)
|3000|,

P
(3)
|2001|, .P

(3)
|1002|, P

(3)
|0003|. The control points after one step of degree elevation from 3rd-

to 4th-order can be calculated by:

P
(4)
|4000| = P

(3)
|3000|

P
(4)
|3001| = 1

4
P

(3)
|3000| +

3
4
P

(3)
|2001|
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Figure 3.7: Convergence of Degree Elevation
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P
(4)
|0004| = P

(3)
|0003| (3.13)

This can be generalized to obtain control points of any degree n elevated

from degree n− 1. According to [59, 49], the authors showed that the convergence

rate is O( 1
ν
), where ν is the polynomial order. A picture from [64] illustrates the

convergence process of degree elevation to a 2D Bézier curve. See Figure 3.7.

As shown in the figure, as the polynomial degree gets elevated step by step,

the number of control points increases and the control polygon becomes closer to

the actual curve, and therefore gives tighter lower and upper bounds.

3.5.2 Adaptive Check Using Subdivision

In addition to degree elevation algorithm, a subdivision algorithm can also

produce more control points and tighter control polygon while maintaining the shape

of the original Bézier polynomial. Take an edge as the key entity again, the check

will subdivide the original 3rd-order Bézier polynomial associated with the edge

as the addition of two 3rd-order sub-polynomials using the de Casteljau algorithm

[19, 64]:
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Figure 3.8: Convergence of Subdivision
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The new sets of Control points for the two sub-polynomials are then: {P (3)
|3000|,

P 1
0 , P 2

0 , P 3
0 } and {P 3

0 , P 2
1 , P 1

2 , P
(3)
|0003|}. Note that P 1

1 is not used as a new control

point.

It is also straight-forward to obtain more control points if one keeps doing

subdivision recursively. And a picture from [64] gives an example of a 2D Bézier

curve and its control polygons after several steps of subdivision. See Figure 3.8.

It is obvious that the control polygon gets closer to the curve after each step

of subdivision, and according to [59, 49], it eventually converges to the curve with

the rate of convergence O( 1
2i ), where i is the number of subdivision steps.

3.5.3 The Stopping Criteria the Algorithm Description

The goal of the adaptive validity check algorithm is to effectively determine

whether a given curved tetrahedron is a valid element. If min{P (n)
|i| } is found to be

positive, the element is valid. On the other hand, the element is invalid if negative
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min{P (n)
|i| } is found at any interpolating point during the checking process. In both

cases, the algorithm will stop accordingly. However if negative min{P (n)
|i| } appears

at a non-interpolting point while no invalidity is found at all interpolating points

during finite steps, it is also necessary to terminate the algorithm without doing

infinite loops of checking and refinement. The current stopping criterion for such

situation is based on evaluating the increment of the lower bound ∆ min{P (n)
|i| } after

each step. If negative min{P (n)
|i| } is still reported after ∆ min{P (n)

|i| } < ε, where ε

is a prescribed tolerance, then the element is regarded as invalid and the algorithm

stops at the current step.

It is worth noticing that the subdivision algorithm gives more interpolation

points in addition to the vertex control points. Because after each step of subdi-

vision, the original control polygon is divided into two parts and each part has its

own interpolation points at the ends. See Figure 3.8 as an example. This gives an

alternative to get the exact value of det(J) at arbitrary parametric locations of mesh

edges and faces by subdividing the corresponding control polygons at that location.

This property could also serve as an addition to the stopping criterion. If any of the

newly-computed interpolation control points after a subdivision step has negative

value, it indicates that det(J) at this point is negative and the adaptive check stops

and reports the element as invalid.

A pseudocode description of the algorithm is given in Algorithm 1. The input

is a quadratic curved tetrahedral mesh.
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Data: A quadratic curved tetrahedral mesh, prescribed tolerance for

relative increments ε

1 loop over the elements of the input mesh and process each of the elements;

2 for the current element to be processed, compute min{P (n)
|i| } ;

3 if min{P (n)
|i| } > 0 then

4 return: the element is VALID ;

5 else

6 if negative min{P (n)
|i| } is at a interpolation point then

7 return: the element is VALID ;

8 else

9 while relative increment > ε do

10 get the mesh entity associated with the negative control point ;

11 apply subdivision to the mesh entity ;

12 update the new min{P (n)
|i| } ;

13 if min{P (n)
|i| } > 0 then

14 return: the element is VALID ;

15 else

16 if new negative min{P (n)
|i| } is at a interpolation point then

17 return: the element is INVALID ;

18 else

19 compute the relative increment of this step ;

20 if relative increment < ε then

21 return: the element is INVALID ;

22 else

23 update the new relative increment ;

24 end

25 end

26 end

27 end

28 end

29 end

Algorithm 1: Algorithm for the termination of the adaptive subdivision

validity check method
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Table 3.1: Numerical results of the fixed and adaptive validity checks on
four test regions.

Element min{det(J)} max{det(J)} min{P (3)
|i| } max{P (3)

|i| }
Region1 0.2809 12.7292 -0.4283 12.7292
Key entity E2 4 V3 E2 4 V3
Region2 0.5324e-3 2.4996 0.5324e-3 2.4996
Key entity V4 V1 V4 V1
Region3 36.0230 176.0338 -0.2049 176.0338
Key entity E2 4 V3 E2 4 V3
Region4 0.7574 13.5732 -0.1702 13.5732
Key entity E2 4 V1 E2 4 V1

(V1: vertex 1; E2 4: Edge defined by vertex 2 and 4)

Element min{P (3)
|i| } after sub.div. min{P (4)

|i| } ( 4th-order ) min{P (7)
|i| } ( 7th-order )

Region1 0.6952e-1 -0.1459 0.1755e-1
Region2 0.5324e-3 0.5324e-3 n/a
Region3 26.4814 15.6570 n/a
Region4 0.6762 0.7857e-4 n/a

3.6 Numerical Results and Observations

A serial test mesh of around 45k tetrahedral elements including second-order

curved tets was loaded and partitioned into 4 parts. Numerical experiments were

done to study the 4 worst-shaped regions of the 4 parts ( one on each part ) reported

by the 20-point validity check. In each case, a brute-force search was used to evaluate

the exact value of det(J) at a large number of sample points, and min{det(J)}
was found so that we can compare the results with our check. For the ones with

min{P (3)
|i| } found at an edge, the refined adaptive checks using both degree elevation

and subdivision algorithms were applied.

In all four cases, min{P (3)
|i| } appeared at the control point associated with

either a mesh vertex or a mesh edge denoted as key entity. In each case, the key

entity (vertex or edge) determined by min{P (3)
|i| } of the 20-point validity check was

consistent with the key entity found by the brute-force search of min{det(J)}. This

shows the effectiveness of the 20-point check to determine key entities.

In the second case that min{det(J)} was found at a mesh vertex by brute-force

search, the min{P (3)
|i| } had the exact same value at the control point of the vertex

as min{det(J)}. This is consistent with what was discussed in previous section
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since the control points at the vertices are interpolation points. Therefore when

the invalidity (min{det(J)} ≤ 0) happens at a vertex, the 20-point validity check

method is able to accurately detect it, and is not conservative in those cases.

In the first, third and fourth cases that min{det(J)} were at a mesh edge and

were all positive, min{P (3)
|i| } gave conservative lower bounds with negative values.

The extended adaptive checks were called to iteratively refine the control polygons

and tighten the lower bounds. The stopping criterion was set to stop the refinement

after the step in which all positive valued control points were obtained.1 In the third

and fourth cases, only one step of refinement (degree elevation or subdivision) was

needed to obtain all positive control points (i.e. positive min{det(J)}). However,

in the first case, four steps of degree elevation were needed to raise the polynomial

representation to 7th-order to get all positive control points. In this same case, only

one step of subdivision was needed to get all positive control points. One could

also observe that in these three cases, after one step of refinement, subdivision

always gave a tighter lower bound than what degree elevation gave. The results

are consistent with the theoretical rate of convergence for subdivision and degree

elevation algorithms, i.e., subdivision converges faster than degree elevation [59, 49].

In terms of the efficiency of the extended adaptive checks, one could also

estimate the additional cost by counting the flops required. Doing the original 20-

point validity check requires to perform 1 × 4 = 4 box products at mesh vertices,

3 × 12 = 36 box products at the edges. and 6 × 4 = 24 at the faces, which is

64 box products in total. On the other hand, the subdivision or degree elevation

algorithm is essentially calculating the weighted average of the 3rd-order control

points. Therefore, if only one step of adaptive refinement is needed based on the

20-point check, the added computational cost is not substantial at all.

A test case that compares the performance of the 20-point validity check and

the one with adaptive subdivision was conducted on a test mesh with 60,390 curved

elements. Four repeated runs were done for both check methods and the performance

results in terms of mesh reading, writing and validity check are given in Table 3.2

1Note that this criterion is different from the one being discussed in the previous section and
can be used only in such particular cases that the element is in fact valid since it could eventually
stop. In other cases, the incremental criterion should be used.
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Table 3.2: Timing results of non-adaptive validity check (units: sec)

Test1 Test2 Test3 Test4 Average Percentage
Read 2.298 2.318 2.311 2.297 2.306 27.6%
Check 1.156 1.185 1.165 1.164 1.167 14.0%
Write 4.844 4.881 4.787 4.958 4.867 58.4%

Table 3.3: Timing results of adaptive check with subdivision (units: sec)

Test1 Test2 Test3 Test4 Average Percentage
Read 2.282 2.287 2.271 2.275 2.278 27.1%
Check 1.232 1.229 1.237 1.221 1.229 14.6%
Write 4.979 4.895 4.829 4.919 4.905 58.3%

and Table 3.3. Slight increase of computation time for the adaptive validity check

is observed from 14.0% of the total time to 14.6%, which is small compared with

the time spent in mesh reading and writing operations.



CHAPTER 4

Parallel High-order Curved Mesh Adaption

In this chapter, technical developments of parallel mesh adaptation procedures for

partitioned high-order curved meshes are presented. Various operations of entity

geometry modification and local mesh modification procedures are reviewed. Algo-

rithms of high-order curved mesh adaptation are presented. Parallelization of those

algorithms for partitioned high-order curved meshes is discussed.

4.1 Introduction

Adaptive finite element analysis using unstructured 3D meshes relies on the

capability of locally changing the topology and/or geometry of a set of elements of

the mesh, called mesh cavity, dictated by a mesh size field produced by a posteriori

error estimation and indication procedures. One general approach to obtain such a

mesh with the desired element sizes is to regenerate the mesh using size-controlled

automatic mesh generation techniques. The drawbacks of this approach are 1)

computationally expensive, and 2) require application of more expensive yet less

accurate solution transfer procedures. An alternative, and more efficient, approach

is to use local mesh modification procedures to refine and/or coarsen selected mesh

cavities. Such procedures can be performed effectively in a desired order, and since

the mesh modifications are local, the issue associated with local solution transfer

can be effectively addressed [14, 23, 36, 37, 72].

4.2 Entity Geometry Modification Operations

The entity geometry modification operations focus on the geometric shape of

mesh entities. It changes the shape of mesh edges and/or faces to curve the orig-

inal straight-sided/planar entities, or relocates the mesh vertices. The topology of

a local mesh cavity subject to such operations remains unchanged. In general, the

entity geometry modification operations are used to 1) increase geometric approxi-

mation accuracy to the curved model domain, 2) eliminate mesh invalidity, and/or

31
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Figure 4.1: An example of curving a mesh edge to a model edge

3) improve mesh shape quality.

4.2.1 Curving Mesh Entities Classified on Curved Model Boundaries

The mesh curving operation modifies the geometry of a given mesh entity.

One means to convert an initially linear geometry mesh entity to a curved one is

the introduction of high-order nodes that are then positioned as desired. For mesh

entities classified on curved model boundaries, their nodes are moved to the curved

geometry to achieve a better geometric approximation to that geometry.

Dey et al present a mesh curving algorithm in [17] which interacts with ge-

ometric models through the underlying CAD modeling engine and calculates the

proper position of a high-order node on its classified model boundary entity based

on parametric interrogations.

For example, as shown in Figure 4.1, to properly curve a straight-sided mesh

edge M1 classified on a curved model edge G1 using a quadratic Lagrange interpola-

tion, a third point of the mesh edge has to be determined and placed properly onto

the model edge. During the mesh generation process, if a mesh vertex is classified on

a model edge or face, the parametric coordinates ζ of the mesh vertex with respect

to the parametric space of its classified model entity are stored in the mesh data.

If ζ0 and ζ1 are the parametric coordinates of the end vertices M0
0 and M0

1 , their

physical coordinates being x0 and x1 in the physical space, then by evaluating the

mapping from parametric to physical coordinates x(ζ) through the CAD modeler,
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Figure 4.2: Curving boundary mesh entities by parametric interrogation.
(a) is a straight-sided mesh face classified on a geometric
model face in the physical space. (b) shows the mesh face in
the 2D parametric space of the model face. The parametric
coordinates of the edge mid-point are calculated in this space
and given to the CAD modeler. (c) shows the mapping from
the parametric coordinates to the physical space to get the
Cartesian coordinates and the mesh face curved accordingly

the physical position of the mid-point of the mesh edge is obtained.

x2 = x(
ζ0 + ζ1

2
) (4.1)

Therefore a high-order node associated with the mesh edge can be introduced and

placed to that location. Also see Figure 4.2 for an example of curving a planar mesh

face on a curved model face.

The curving of the boundary mesh entities may lead to self intersections which

make elements invalid. In such occasions, either selected interior mesh entities are

curved as well to correct the invalidity or other mesh modifications that eliminate

the self intersections must be applied. For example in a 2D case shown in Figure 4.3,

mesh edges M1
0 and M1

1 are curved to model edge G1
0. However elements M2

0 and

M2
1 become invalid (Figure 4.3(b)). In this case, the interior edges M1

2 and M1
3
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Figure 4.3: Curving interior mesh edges to resolve the invalidity caused
by curving boundary edges

can be curved (Figure 4.3(c)) to ensure element validity. The procedures for such

element curving are discussed in Section 4.2.2.2.

4.2.2 Reshaping Mesh Entities to Improve Mesh Quality

The mesh entity reshaping operation alters the local mesh geometry by relo-

cating the position or changing the shape of selected mesh entities under specific

mesh validity and boundary geometry constraints. It is typically used to improve

element shape quality without altering the local mesh topology. The cavity of such

an operation is defined as M i{M3} depending on the dimension of the entity to be

operated on. The possible mesh entity can be a vertex M0, an edge M1, or a face

M2.

4.2.2.1 Vertex Repositioning to Improve Straight-sided Element Quality

For a linear straight-sided element, the shapes of its edges and faces are

uniquely defined by the end vertices. In this case one can only reshape a straight-

sided mesh entity by repositioning its end vertices. Generally speaking, determining

the optimal location of a vertex to be repositioned is a constraint optimization prob-

lem in terms of a set of carefully selected objective functions. And there has been
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extensive efforts devoted to develop various algorithms for the vertex repositioning

operation, such as in [12, 21, 22, 34].

One of the algorithms which is fairly efficient and yields “better-looking”

meshes is the Constraint Laplacian smoothing method. It moves the target ver-

tex to the centroid of its cavity defined as M0{M3} under the constraint of the

geometric approximation. Assume there are n vertices in the cavity in addition to

the vertex to be repositioned, the target location can be evaluated as:

x0 =

∑n
i=1 xi

n
(4.2)

If the vertex to be repositioned is classified on a boundary entity of the geometric

model, it is only allowed to move on the model boundary to ensure geometric ap-

proximation accuracy. In such cases, the computed centroid location needs to be

projected back to the model entity.

Unfortunately this algorithm does not always improve the shape of some ex-

tremely poorly shaped elements [37]. In these cases an alternative vertex reposi-

tioning algorithm that guarantees a better overall mesh quality is the explicit vertex

smoothing method. An effective design of such an algorithm has been introduced in

[12]. However a major drawback of this algorithm is that it is computationally more

demanding than the Laplacian smoothing approach. The algorithm is summarized

in Algorithm 2:
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Data: A list of straight-sided elements, shape quality threshold Qth,

maximum number of iterations allowed imax

1 initialize an empty list that stores mesh vertices ;

2 traverse the list of elements and for each element compute the shape

quality Qs ;

3 if Qs < Qth then

4 put the four vertices of the element into the vertex list and avoid

duplication;

5 end

6 traverse the vertex list and process each vertex in turn ;

7 evaluate the shape quality of the elements connected to the current vertex

M0{M3} and get the minimum value Qmin ;

8 find a direction of movement that will improve the shape quality of the

element whose shape is Qmin ;

9 define an interval of uncertainty along this direction of movement ;

10 search the interval of uncertainty for a new location of the current vertex

to move to, where the local maximum of Qmin of the cavity M0{M3} can

be reached;

11 if Qmin can not be improved according to the search then

12 do not move the current vertex and proceed to the next one ;

13 end

14 repeat line 1 - 13 when the end of the vertex list is reached ;

15 if the vertex list is empty then

16 exit the algorithm ;

17 end

18 terminate the algorithm after imax iterations ;

Algorithm 2: An explicit vertex repositioning algorithm introduced in [12]

The first step of the explicit vertex repositioning algorithm is to create a list of

candidate vertices to be processed. The vertices are selected from all the elements

whose shape quality is below a given threshold Qth (lines 1 - 5). The next step is

to process the vertices one by one, and explicitly search for a local optimal location
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for each vertex to move (lines 6 -13). This process involves the determination of

a direction of movement and an interval of uncertainty for searching. In [12], the

direction of movement is defined as a straight line by the original position of the

vertex and the ideal position for the vertex to move to such that the most poorly

shaped element it bounds is improved to its optimal shape. The interval for searching

is defined as a segment along the direction of motion from the original position of

the vertex to the position where the shape of any element of M0{M3} drops below

the original minimum value Qmin. A bisection or golden search is performed on

the interval to find the local optimal position. Since this algorithm is targeting to

improve the overall shape quality of a local mesh cavity, it is allowed to have the

shape of shaped elements in a cavity degrade so long as the worst shaped element

gets better and the overall quality get elevated.

Note that the vertex repositioning algorithm can be extended to deal with

curved elements as well. However the shape of a curved element depends not only

on its end vertices but also other shape parameters such as edge/face control points

for a Bézier representation. Such additional shape parameter has to be considered

when moving vertices of curved elements therefore increases the complexity of the

optimization problem.

4.2.2.2 Curved Entity Reshaping to Improve Curved Element Quality

For a high-order curved mesh, the shapes of the curved mesh edges and faces

depend not only on the position of the end vertices, but also the high-order nodes

associated with the mesh entities or other entity shape parameters. For example,

the shape of a second-order curved mesh edge is uniquely determined when the po-

sition of its two end vertices plus a high-order node on the edge is fixed. Therefore

the vertex repositioning operation itself is no longer sufficient to effectively manip-

ulate the geometry of curved mesh entities. In this subsection, an entity reshaping

algorithm (see Algorithm 3) is developed for the curved mesh edges and faces to

improve the element shape quality of high-order curved meshes.
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Data: A input mesh with curved elements, hybrid shape quality threshold

Qth and straight-sided shape quality threshold qth

1 traverse the mesh and for each element compute the hybrid shape quality

Qsc by Equation 4.3 ;

2 if Qsc < Qth then

3 put the element into the list to be processed ;

4 end

5 traverse the element list and process each element in turn ;

6 compute straight-sided shape quality qs ;

7 if qs < qth then

8 remove the element from the current list ;

9 add the element to another list for straight-sided shape improvement

procedures ;

10 else

11 compute curved shape quality qc by Equation 4.4 ;

12 get min{det(J(ξ))} and max{det(J(ξ))} ;

13 find the mesh edges associated with min{det(J(ξ))} and

max{det(J(ξ))} ;

14 for a candidate mesh edge, determine the line of motion ;

15 define the interval of uncertainty for searching ;

16 perform an explicit search algorithm such as golden search ;

17 find the local optimal position to reshape the edge ;

18 end

Algorithm 3: An explicit entity reshaping algorithm

The input to the algorithm is a list of poorly-shaped curved tetrahedrons whose

shapes are evaluated by the hybrid element quality metric

Qsc = qm
s × qn

c (4.3)

discussed in Chapter 3, where qs represents shape quality of the straight-sided part

of a given tetrahedron and qc represents the curved part. m and n are taken to be
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1 for the sake of simplicity.

The algorithm processes the list of tetrahedrons as the following steps:

Step 1: Retrieve one tetrahedron from the list, and compute the correspond-

ing shape quality measurement qs and qc respectively.

Note that, there are multiple choices for the shape metric qs of a given straight-

sided tetrahedron as discussed in Chapter 3. The explicit smoothing algorithm works

independently of such choices. The shape metric qc for a curved tetrahedron in this

algorithm uses the scaled variations of the determinant of Jacobian over the element

domain defined by Equation 3.7 in Chapter 3.

Step 2: Determine whether this tetrahedron should be considered for the

curved entity reshaping operation. See lines 7 - 9 of Algorithm 3.

Given a shape quality threshold qth for straight-sided element shape, if qs <

qth, it indicates the straight-sided shape component is not acceptable under such a

threshold, and it takes a higher priority to improve qs first for the current element.

Therefore, this tetrahedron will not be considered for the next steps. It will be

removed from the current list and will be put into another list of tetrahedrons

for a straight-sided-element shape improvement procedure. On the other hand, if

qs ≥ qth, it shows that the straight-sided shape component qs of this region is good

enough. Thus, considerations are given to improving the curved component of the

shape quality qc. And the algorithm continues with the next steps.

Step 3: Choose the candidate mesh entities to be reshaped. (See lines 11 -

13)

Once it is determined that the curved shape quality qc is to be improved, it is

critical to pick the proper candidate entity for reshaping. The curved shape quality

qc is defined in Chapter 3 as the following.

qc =
minξ∈Ωe det(J(ξ))

maxξ∈Ωe det(J(ξ))
(4.4)

It is obvious that one should either increase min{det(J(ξ))} or decrease max{det(J(ξ))}
in order for qc to be improved. Therefore the candidate mesh entity should be the

one(s) directly associated with the maximum or minimum value of det(J(ξ)).

By using the Bézier polynomial representation introduced in Chapter 2 for a
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second-order curved tetrahedron, one can easily evaluate the value of det(J(ξ)) at

20 distinct control points associated with the mesh vertices, edges and faces, and

get min{det(J(ξ))} and max{det(J(ξ))}.
Depending on which control point the maximum or minimum is at, differ-

ent candidate mesh entities are chosen. If the control point is associated with a

mesh vertex M0, then the edges connected to the vertex are the candidate entities

M0{M1}. If the control point is associated with a mesh edge M1, this particular

edge M1 is the candidate entity. If the control point is associated with a mesh face

M2, the bounding edges of the mesh face are candidates M2{M1}.
Note that, the current algorithm only deals with the reshaping operation in

the physical space, therefore the edges that are classified on model boundaries are

not included as candidate edges since it involves the mapping of the entity shape

between the physical space and the parametric space of model entities.

Step 4: Determine the line of motion and the interval of uncertainty (Lines

14 -15)

After having chosen the candidate mesh entity/entities to apply the reshaping

operation, the next step is to determine how to reshape the entity. For the curved

element shape metric qc, the optimal value is always reached when a given tetra-

hedron is straight-sided, in which case, the value of det(J) is a constant over the

tetrahedron and qc = 1. This indicates that for a given curved tetrahedron without

further geometric constraint, it is always the best choice to reshape the curved enti-

ties back to be straight-sided. As an example in Figure 4.4(a), the optimal position

for P to move to is P ′ so that M1 becomes a straight-sided edge therefore qc’s for

the two triangular elements reach 1.

However when reshaping a mesh entity of a curved tetrahedron with certain ge-

ometric constraints (for example some of the edges and/or faces of that tetrahedron

are already curved because they are classified on curved geometric model bound-

aries), it is usually no longer the best choice to place the high-order node(s) of the

curved entity to the mid-point position of its imaginary straight-sided counterpart.

Instead, one needs to search for a local optimal location in a certain direction of

motion. In order to efficiently find a local optimum, this algorithm limits the type
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Figure 4.4: Two cases of 2D mesh edge reshaping. (a) without further
geometric constraints, (b) one additional edge classified on
model boundary G1

of motion of the high-order node(s) to be on a straight line and consequently defines

the line of motion by the current position of the high-order node to be moved and

the mid-point position of the imaginary straight-sided entity.

r = P + (P−P′) · t (4.5)

See Figure 4.4(b) for example.

As the high-order node moves along the line of motion to improve the shape

quality of current tetrahedron, the shape quality of the neighboring tetrahedrons in

the cavity changes, and is very likely to become worse at some point. The worst

scenario is when the high-order node reaches a position that lies on another mesh

entity, in which case, the current mesh entity associated with the high-order node

will intersect with the other entity leading to mesh invalidity. Therefore the non-

intersecting segment of the line of motion is considered as the interval of uncertainty

for finding the local optimal position. For instance, the dash-dot line in Figure 4.4(b)

is the interval of uncertainty for P to move along.

Step 5: Search the interval of uncertainty for the local optimal location.

(Lines 16 -17)

With the interval of uncertainty being determined, one needs to find the op-
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timal location on the line of motion for the high-order node to be moved to. As

stated previously, reshaping a candidate mesh entity affects the shape quality of its

neighboring tetrahedrons in the cavity, and it is very likely that the shape quality of

a certain affected tetrahedrons will drop even below the lowest shape quality among

the tetrahedrons of the original cavity. To avoid such situation from happening,

the objective function for the search is picked to be the lowest shape quality of the

tetrahedrons within the cavity defined by the entity to be reshaped. Therefore the

local optimal location for the entity to be reshaped is where the lowest shape quality

of the cavity is improved to the highest possible.

The golden section algorithm in [12] is used here to perform the search. This

algorithm evaluates the objective function starting at the two ends of the interval of

uncertainty. By comparing the values, about 38% of the interval is discarded each

time and the rest serves as the interval of uncertainty for the next round of search.

A piece of pseudo code is given to discribe the algorithm (see Algorithm 4).
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Data: beginning and end of the initial interval of uncertainty P0 and P1,

predefined tolerance ε

1 compute the length of the initial interval l0 = P1 − P0 ;

2 get the two golden section points P2 = P1− 0.61803× l0,

P3 = P0 + 0.61803× l0 ;

3 evaluate the objective function f2 = f(P2); f3 = f(P3) ;

4 set the current length of interval l = l0 ;

5 while l/l0 > ε do

6 if f2 > f3 then

7 P1 = P3; P3 = P2; f3 = f2 ;

8 l = P1 − P0 ;

9 P2 = P1 − 0.61803× l ;

10 f2 = f(P2) ;

11 else

12 P1 = P2; P2 = P3; f2 = f3 ;

13 l = P1 − P0 ;

14 P3 = P0 + 0.61803× l ;

15 f3 = f(P3) ;

16 end

17 end

18 if f2 > f3 then

19 Pmax = P2 ;

20 else

21 Pmax = P3 ;

22 end

Algorithm 4: Algorithm for the golden section search

4.3 Local Mesh Modification Operations for High-order Curved

Meshes

In addition to purely geometric mesh modification operations, local mesh mod-

ification operations that change the local mesh connectivity as well as geometry have
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been proved to be effective and efficient in mesh adaptation.

The local mesh modification operations used in this work consist of three unit

operations: 1) splitting, 2) collapsing and 3) swapping, as well as several compound

operations which combine the unit operators in an ordered sequence [23, 36, 37].

4.3.1 Split Operation

Typically, A split operator works on edges, faces and regions in three dimen-

sional cases by inserting one or more new vertices to a target entity and subdivide

the entity itself and the higher dimensional entities it bounds.

An edge split operation breaks an edge into two edges by introducing a new

vertex to the middle of the edge, and also splits each of the connected higher order

entities into two entities (See Figure 4.5). The new vertex inherits the classification

of the split edge. A face split operation divides a face into three new faces. For

3D meshes, it divides each region bounded by the face into three new regions. To

perform a face split, a new vertex is created inside the face. Three new faces are

created by connecting the new vertex to two vertices of the original face in turn. If

the face has tetrahedrons connected to it, each of the new faces is combined with the

fourth vertex of the tetrahedron to form a new region (three new regions in total)

[23]. See Figure 4.6 for an illustration. A region split divides a region into four new

regions. The new regions are formed by each of the faces of the original element

and the newly-created vertex. The newly created vertex can be classified only on

the interior [23, 37]. See Figure 4.7.

In cases of edge/face split operations, if the target mesh edge or face (either

straight-sided or curved) to be split is a boundary entity that approximates the

curved geometric model boundary, the newly-created vertex should to be snapped

onto the model boundary [36, 37]. The new edges and faces will also be curved

accordingly to confirm to the curved geometry if high-order meshes are considered

[17, 43]. If the geometric approximation is based on Lagrange interpolation points,

the snapping and curving process are essentially the same in the sense that they

both compute the mid-point(s) of a given mesh entity on model boundary. And the

process is done by 1) retrieving the coordinates of the end points of the entity to
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Figure 4.5: Split operator on a mesh edge. (a) M1
0 is targeted to be split

by introducing a new vertex M0
2 , (b) after edge split, new

entities have been created

Figure 4.6: Split operator on a mesh face. (a) mesh face M2
0 is targeted to

be split, (b) a new vertex M0
3 is introduced and M2

0 has been
split into 3 sub-faces, other new entities have been created
accordingly
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Figure 4.7: Split operator on a mesh region. (a) region M3
0 is targeted to

be split, (b) a new vertex M0
4 is introduced and M3

0 is split
into 4 sub-regions

be split (or curved) in the parametric space that contains the geometric boundary

entity, 2) computing the location of the splitting vertex (or high-order node) in that

parametric space, and 3) mapping the location back to physical space.

There are also situations when splitting interior high-order curved mesh enti-

ties is desired. In such cases, the interior entity can be parametrized using the Bézier

representation discussed in Chapter 2. Based on the parametrization, the splitting

process is essentially the same as splitting a boundary entity, and the geometry is

preserved during the splitting.

4.3.2 Collapse Operation

An edge collapse operation eliminates a target edge by collapsing one of the

two end vertices into the other, and the high dimensional entities being bounded by

the edge and vertices will be modified accordingly. For a collapse operation, a local

mesh cavity is defined as the regions which are using either one of the two vertices

of the target edge [37]. In Figure 4.8, vertex M0
1 is collapsed to vertex M0

0 . It can

be viewed as moving M0
1 to the position of M0

0 . It is obvious that such movement

will cause certain entities to overlap and certain entities to degenerate. By merging
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the overlapping entities and eliminating the degenerated entities, the local mesh

configuration becomes valid after collapsing.

Different from the split operation, a collapse operation is not always per-

formable due to various topological constraints to ensure compatability. Therefore

a set of procedures will be performed to check the constraints before such an op-

eration is applied. As an example, if the two end vertices M0
d and M0

r belong to

two different model faces, edge collapsing cannot be performed without violating

the validity of the mesh. More details about the constraints and topological checks

are discussed in [23, 37].

In the context of high-order curved meshes, collapsing a curved boundary

edge should consider the effect to the geometry approximation of model domain

it will introduce. The curved edge collapse operation can be viewed as appending

a set of mesh curving operations at the end of the straight-sided edge collapse

operation. More specifically, when a curved boundary edge is to be collapsed, the

topological modifications made to the mesh cavity stay the same as if it were a

straight-sided mesh cavity. After obtaining a new cavity after collapsing, all the

boundary edges that M0
1 bounds will be processed and reshaped to conform to the

model boundary using the same steps of parametric interrogations discussed in the

previous section. If in some cases invalid self-intersecting elements are introduced by

the newly curved boundary edges, curving of selected interior edges is necessary to

correct the invalidity. Details of the curving process is discussed in Section 4.2.2.2.

4.3.3 Swap Operation

Swap operations change the connectivity of a local mesh cavity defined by

all the regions that use the target entity (usually an edge or a face) Md
i {M3}, d =

1, 2. It is a reconnection procedure that effectively deletes the target entity and

its connected elements and re-triangulates the polygon or polyhedron without the

deleted entity [36, 37]. An example of the edge swap operation is given in Figure 4.9,

edge M1
0 is swapped to become a new edge M1

1 .

If an edge to be swapped is classified in a model region in 3D, the number of

possible swap configurations can be determined by the number of regions the edge



48

Figure 4.8: Example of an edge collapse operation. (a) before collapse,
(b) after collapse

Figure 4.9: Example of an edge swap operation. (a) before swap, (b)
after swap
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Figure 4.10: Another example of an edge swap operation

bounds (M1{M3}). Let n be the number of regions in cavity M1{M3}, formulas

for the total number of possible swap configurations is given in [37, 23, 15] as

Nn =
n∑

i=3

Ni−1 ×Nn+2−i, n > 2 (4.6)

N2 = 2

It is clear that when n increases, Nn increases dramatically, which leads to

very expensive computational cost to determine from all the configurations. In [37],

Li proposed to a limit for n for efficiency (n ≤ 6 is used in current implementation).

Similar to the collapse operation, when swap operation is to be performed on

high-order curved mesh entities classified on geometric model boundary, one should

consider the new entity shapes after swapping to ensure that the mesh geometry

still properly approximates the geometric model. Same as for curved edge collapse

operation, various topological modification operations will be performed at first and

the newly-introduced entities being classified on curved model boundary will be

processed and curved properly after that. Same as for collapse, selected interior

edges are curved accordingly if invalid self-intersecting elements are introduced by

the newly curved boundary edges.
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4.4 Compound Operations

There are cases that single unit local mesh modification operator is not ca-

pable of producing the desired mesh configuration. The compound operators are

designed to deal with such cases by carefully combining a set of unit operators.

Three compound operators found to be most useful [36, 37, 72] are:

• Double Split + Collapse

Used for eliminating sliver tetrahedrons

• Split + Collapse

Used for eliminating sliver triangular faces

• Collapse + Swap(s)

Used in case that single edge collapse yields poorly shaped or even invalid

tetrahedrons, swaps will be used to improve the local mesh quality

Typically, the compound operators are used to eliminate sliver tetrahedrons in

3D or sliver mesh faces in 2D. In some occasions, they are also needed to make space

for vertex/nodal smoothing or boundary mesh curving procedure. The compound

operations are not the focus of this work, nevertheless, interested readers could refer

to [36, 37] in which more detailed discussions and use cases can be found.

4.5 High-order Curved Mesh Adaptation Strategy

The high-order curved mesh adaptation algorithm is built as an extension of

the general straight-sided mesh adaptation procedure with specific invalidity correc-

tion and shape improvement procedures for curved meshes added.

4.5.1 Overall Procedure

Given an initial mesh of the domain and a desired mesh metric field defined

over the domain, the goal of the curved mesh adaptation process is to produce

a valid high-order curved mesh that satisfies the metric field while preserving the

geometric approximation to the right order. The overall procedure consist of three
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Figure 4.11: Overall procedure of high-order curved mesh adaptation

main stages (see Algorithm 5): 1) curved mesh invalidity correction (lines 1 - 4), 2)

coarsening and iterative refinement (lines 5 - 8), and 3) shape quality improvement

(lines 9 - 17). A flowchart is given in Figure 4.11.
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Data: Initial curved mesh, geometry domain, and mesh metric field

Result: Adapted curved mesh satisfying the metric field

1 traverse mesh regions and create a list of all invalid elements;

2 while the list is not empty do

3 eliminate the invalidity through curved mesh correction procedures;

4 end

5 traverse mesh edges and determine the edges with length shorter than

Llow;

6 perform coarsening algorithm to those edges;

7 traverse mesh edges and determine the edges with length longer than Lup;

8 perform iterative refinement algorithm to those edges;

9 traverse mesh regions and create a list of regions that have shape quality

Qsc < Qthreshold;

10 while there is still unprocessed region(s) in the list do

11 evaluate the best local mesh modification operations applicable to

improve the shape of the region;

12 if no operation is applicable then

13 tag the region as processed;

14 end

15 end

16 create a list of of the regions still with quality Qsc < Qthreshold;

17 perform entity shape smoothing by geometry modifications to improve

shape quality;

Algorithm 5: Overall algorithm of curved mesh adaptation

4.5.2 Invalidity Detection and Correction for the Initial Input Mesh

Due to the limitations of many current curved mesh generation techniques,

there are often times that a curved mesh to be adapted has some invalid elements.

Since the mesh adaption processes assume a valid initial mesh, such invalidity can

undermine the proper execution of subsequent adaptation operations. Therefore it

is critical to eliminate all invalid elements before performing mesh modifications to

satisfy the mesh size field. The algorithm used here for curved mesh correction is
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presented in Algorithm 6.

input : Initial curved mesh with invalid curved elements

output: Corrected curved mesh without invalidity

1 traverse mesh regions and create a list of all invalid elements;

2 while there is still unprocessed invalid element(s) in the list do

3 check if region collapse operation is applicable to eliminate invalid

sliver regions at model boundary;

4 check if edge collapse is applicable to eliminate invalid elements;

5 check if edge/face swap is applicable;

6 check if one of the compound operations such as double split plus

collapse, collapse plus swap(s) is applicable;

7 if all the above checks fail then

8 perform local refinement and append newly created invalid

elements in the list and tag them as processed;

9 end

10 end

11 repeat the while loop for a number of iterations;

12 create a new list of the remaining invalid curved elements;

13 Uncurve the invalid curved elements to straight-sided elements;

Algorithm 6: Curved mesh correction algorithm

The order of the operations in the above algorithm is designed in consideration

of cost effectiveness and likelihood of elimination of the invalidity under considera-

tion. A operation will be applied as soon as it passes the checks and is determined

to be applicable, therefore the cost to evaluate subsequent operations can be saved.

The algorithm first checks the unit operations of collapse and swap, and as

discussed previously, swap operation generally has multiple possible configurations

that requires additional efforts to evaluate. Therefore it is evaluated if collapse is

not possible. The compound operations combine multiple unit operations, so the

cost to evaluate increases consequently. They are examined if simple collapse or

swap is not successful.

The local refinement step is of importance to eliminate topological and/or
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geometric constraints of an invalid curved element, and gives more possibilities for

the application of the other local mesh modification operations.

4.5.3 Coarsening and Iterative Refinement

Given a valid curved mesh, this stage is adopted from a straight-sided coarsen-

ing/refinement strategy introduced in [37, 38], with the addition of two aspects that

account for curved meshes: 1) validity check for curved elements in the local cavities

and 2) boundary mesh entity reshaping to conform to geometric model boundary

as well as selective interior mesh curving to ensure validity. The coarsening with

validity check and reshaping is given in Algorithm 7:

1 traverse mesh edges and create a list of edges whose length L(M1
i ) < Llow;

2 put the end vertices of the edges to a vertex list and avoid duplication;

3 traverse the vertex list;

4 while there is unprocessed vertex in the list do

5 get an unprocessed vertex M0
i and the shortest edge it bounds M1

j ;

6 evaluate the edge collapse of M1
j with M0

i removed;

7 if the local cavity defined by the edge collapse has new entities

classified on curved model boundary then

8 curve the new entities to the model boundary;

9 check the validity of the curved elements in the cavity;

10 if invalidity is detected then

11 do not apply collapse operation;

12 tag the vertex as processed;

13 end

14 end

15 end

Algorithm 7: Algorithm of curved mesh coarsening

Since the coarsening process can create new mesh entities that are classified

on curved geometric model boundary, it is necessary to curve those entities to the

boundary. In general, this process can cause other connected curved elements to

become invalid. Therefore curved element validity checks are used to detect potential
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invalidity. The coarsening operation is not allowed to be apply if such invalidity

happens.

The curved refinement algorithm used here is almost the same as discussed in

[38] for the straight-sided meshes. It creates the new entity in a bottom-up fashion,

i.e., edges first, then faces, regions last. The only difference happens in the cases

that curved entities are to be refined. In such cases, the newly-introduced entities

after refining the original curved entities should also be curved properly. This is

done by calculating the coordinates of the new vertices and/or high-order nodes in

the parametric space using either parametric interrogation through CAD modeler or

the Bézier parameterization of high-order tetrahedrons discussed in Chapter 2. This

not only ensures geometric approximation accuracy of curved boundary entities, but

also rules out the possibility of introducing new invalidity to the mesh after the

refinement stage.

4.5.4 Curved Element Quality Improvement

After getting a satisfactory mesh configuration conforming to the desired size

field, this stage is performed to further improve mesh quality by curved local mesh

modifications and explicit smoothing of the mesh entity geometry (see Algorithm 8).
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input : Initial curved mesh with poorly-shaped curved elements, User

specified quality threshold Qth

output: Improved curved mesh

1 traverse mesh regions and create a list of elements with Qsc < Qth;

2 while there is still unprocessed element(s) in the list do

3 evaluate possible curved local mesh modification operations;

4 compare the worst shape quality among the elements of the local

cavity before and after a specific local mesh modification operation;

5 if there is at least one operation that improves the shape then

6 apply the best operation that improves the worst shape quality to

the highest;

7 append newly-created elements whose Qsc < Qth to the list as

unprocessed;

8 end

9 if all the local mesh modification operations fail to improve the worst

shape then

10 perform explicit vertex/node smoothing operation;

11 append newly-created elements whose Qsc < Qth to the list as

unprocessed;

12 tag the current element at processed;

13 end

14 end

Algorithm 8: Curved mesh quality improvement algorithm

Note that in the evaluation of local mesh modification operations, the order is

the same as in the mesh correction stage.

The explicit smoothing operation, as discussed previous section, is the most

computationally demanding operation due to the golden search procedure to find

the best location. Therefore, it is used at the end in the situation that all the other

operations fail to apply. Nevertheless, it guarantees the elevation of shape quality

of the local mesh cavity.
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4.6 Parallelization

This section discusses the parallelization of the local mesh modification op-

erations for distributed curved meshes. The developments are based on the basic

parallelization process used for parallel straight-sided mesh modification procedures.

The key technical issues that have been addressed in parallelizing straight-

sided mesh modification procedures are 1) evaluating and executing mesh modifi-

cations on or near partition boundaries and 2) the dynamic mesh load balancing.

The Flexible distributed Mesh DataBase (FMDB) [20, 65] has been used to support

the parallel operations of mesh entities including communications between mesh

partitions, migration of mesh entities and the Zoltan [78] library is used to support

dynamic load balancing.

In this section, the issue of effective evaluation and execution of curved mesh

modification operations on partition boundaries is discussed. The dynamic load

balancing is not considered here.

4.6.1 Parallel Curved Split Operation

In the case of splitting a curved mesh entity, the geometric shape of the target

entity needs to be considered in addition to the topology, that is, the resultant

entities created by subdividing the target entity have to be curved as well. When an

entity to be split is at the partition boundary of multiple mesh parts, the strategy

being used to keep the shared information consistent is that the owner copy of

the target entity always makes the decision in terms of how to perform the split

operation while the remote copies always follow the decision made by owner and

accept the data sent from the owner copy.

Take the example of a quadratic curved edge shared by two mesh parts P0 and

P1. If a split operation is to be performed by inserting a new vertex at the middle

of the edge in the parametric space, the algorithm can be described in the following

steps:

1. Calculate the x,y,z coordinates of the edge middle point for the new vertex to

be introduced. See Figure 4.12(a).
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Figure 4.12: Curved edge split operation: (a) curved element to be split,
(b) split the element uniformly and treat the newly created
edges as straight-sided, (c) curve the new edges which are
classified on curved geometric model boundary

2. Create a new vertex at the target location, two new edges connecting the new

vertex and the other two existing vertices, and other new sub-faces. This is

done for the owner and all the remote copies. See Figure 4.12(b).

3. For the owner copy, attach high-order nodes to the new edges and place the

nodes properly based on the geometric model or the mesh geometry. See

Figure 4.12(c).

4. Synchronize the remote copies with the owner across the parts to update the

high-order node information. See Figure 4.13.

4.6.2 Parallel Curved Collapse and Swap

If the target edge or either one of its end vertices is on a partition boundary,

the local mesh cavity is distributed on more than one mesh part. In order to avoid

communication overheads, the entities of the cavity will be migrated to a single mesh

part first. FMDB [20] supports such migration operations by calling the migration

callback functions defined for high-order curved entities.

The idea of extending the edge swap operator to deal with parallel high-order

curved meshes is essentially the same as for the edge collapse operator in the sense

that (i) geometric approximation accuracy needs to be considered when curving
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Figure 4.13: Synchronize curved entities on partition boundary: (a) be-
fore sync, owner determines the target location of edge mid-
dle point. (b) after sync, remote copies receive date from
owner and update their local copy

newly created entities, and (ii) curved entity migrations will be needed for the cases

that the cavity is across partition boundaries.

The overall algorithm for parallel curved edge collapse and swap operations

can be summarized into three general steps:

1. Determine if the operator is performable by topology and geometry checks.

2. If the local mesh cavity is across part boundary, migrate the entities to a single

part by curved mesh migration operations

3. Perform topological modifications: collapse/swap the target entity and modify

the connectivity of the cavity.

4. Perform geometric modifications if the original cavity has high-order curved

entities. Properly curve the newly created entities based on the geometric

model information or the mesh geometry.

Figure 4.14 demonstrates a 2D example of a combination of parallel mesh

curving and curved edge swap operations.
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Figure 4.14: A 2D example of parallel mesh curving and curved edge
swap operation (a) an initial straight-sided 2D mesh, (b)
the mesh is distributed to two parts, (c) boundary mesh
edges M1

0 , M1
1 , M1

2 are curved to conform to the geometric
model edge G1

0, interior mesh edge M1
3 is curved to avoid

element invalidity, (d) the remote copy of M1
3 is synchronized

by its owner to also be curved, and to further improve the
mesh quality, M1

3 is to be swapped, (e) the distributed mesh
entities are migrated to form a local cavity on a single part,
(f) M1

3 is swapped and the new edge M1
4 has been curved

accordingly

4.6.3 Parallel Curved Compound Operations

The three compound operations discussed in previous section – Double Split

plus Collapse (DSPC), Split Plus Collapse (SPC) and Collapse plus Swap(s) – have

also been parallelized for partitioned curved meshes. Since the operations simply

chains the split, collapse and swap operations together, the steps are therefore per-

formed together in an ordered sequence. Note that collapse operation requires mesh

migration to construct local cavity, therefore migration is performed for DSPC and

SPC in advance of splitting the mesh edges.
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Figure 4.15: An example of parallel curved split operations on a two part
distributed mesh: (left) before refinement, (right) after re-
finement

Figure 4.16: An example of parallel curved edge swap on a two part mesh

4.6.4 Examples Meshes

Parallel curved mesh examples are presented in this section to demonstrate

the capability of the curved local mesh modification and adaptation procedures.

Figure 4.15 gives an example of parallel curved split operations over a 2-part

distributed mesh. Parallel curved edge split, face split and region split operations

have been exercised extensively in this example.

Figure 4.16 shows an example of the unit operation of parallel curved edge

swap. The edge to be swapped is on a partition boundary shared by two partitions.

Therefore the local mesh cavity defined the edge is migrated before the curved edge

swap operation is performed within a local partition.

Figure 4.17 shows a parallel curved mesh refinement process. The geometry
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Figure 4.17: An example of parallel curved mesh refinement on a four
part mesh

is a linear accelerator cavity. The mesh to be refined on the left is of a relatively

coarse global mesh size with finer mesh being generated locally at regions of large

curvature. The parallel refinement focuses at the coarse mesh regions and brings the

global mesh to a finer size while keeping the locally refined mesh regions unchanged.



CHAPTER 5

Application: Parallel Automatic Adaptive Accelerator

Simulations

The Advanced Computations Department (ACD) of the SLAC National Accelerator

Laboratory (SLAC) is developing a new generation of high-order finite element pro-

cedures (ACE3P) [1] for accelerator simulations that have demonstrated the ability

to accurately model a variety of accelerator problems. Due to the nature of the

ACE3P solvers, it requires properly designed high-order finite element discretiza-

tions using curved elements [44]. Moreover, the level of discretization (mesh size)

to obtain reliable predictions in ACE3P simulations often requires meshes with up-

wards of hundreds of millions of elements, therefore massively parallel computing

technologies are of critical importance.

Since available finite element meshing software does not properly deal with

meshes with curved elements and there is very limited parallel meshing tools even

for linear straight-sided meshes, SCOREC in collaboration with Simmetrix is work-

ing with SLAC on providing the full range of parallel curved mesh generation and

adaptation tools needed to work with the ACE3P simulation tools.

5.1 Desired Workflow for Automatic Adaptive Simulations

The desired workflow for an adaptive simulation starts with a definition of the

problem domain of interest. In accelerator design the best domain definition is a

solid model constructed in a CAD system. The various analysis attributes (loads,

boundary conditions, material properties) are best specified with respect the solid

model. Initial mesh control attributes that guide the mesh generation process can

also be specified with respect to the solid model [7, 8, 68]. Based on the CAD model

and attributes, a suitable discretization – an initial mesh – can be generated with

desired geometric approximation accuracy to the model.

In case of a parallel simulation, load balancing is performed to maintain bal-

anced distribution of work loads among the multiple processes thus ensuring the

63
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Figure 5.1: An schematic of the desired workflow for parallel adaptive
simulations

efficiency of the workflow. The finite element analysis procedures compute the solu-

tion fields of interest. To adaptively improve solution accuracy, error estimation and

correction indication procedures are used to extract information from the computed

solution fields and that information, in the form of a mesh size-field, is used to drive

the mesh adaptation procedures to obtain a better discretization – an adapted mesh.

After dynamically balancing the work loads, the finite element analysis procedures

can be performed again with the adapted mesh and a new set of solution fields

can be obtained with improved resolution and accuracy. The adaptive simulation

loop continues until desired solution accuracy is achieved. Finally the results of the

solution fields can be post-processed and visualized.

Figure 5.1 shows an schematic of the desired workflow.

5.2 Contributing Components

The interacting functional components for such an adaptive simulation work-

flow are:

• geometry modeling engines,

• attributes management component,

• mesh generation software,
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• finite element analysis procedure,

• error estimation and correction indication component,

• mesh adaptation procedure with local solution transfer,

• dynamic load balancing procedure.

5.2.1 Desired Features

The application of this workflow on massively parallel computing systems re-

quires that each individual component operates in parallel and can interact with

parallel representations of information (such as partitioned mesh) in a consistent

manner. A robust parallel mesh generator is essential to produce valid initial curved

meshes in parallel used as input for the parallel FEA procedures. The components

of dynamic load balancing, parallel FEA, error estimation, and parallel mesh adap-

tation come together as an integrated loop of the adaptive simulation workflow, as

shown in the dash-line box in Figure 5.1. Note that to properly represent the ge-

ometry, the parallel mesh adaptation procedure must interact with the CAD model

in parallel to perform basic geometric queries. A user-friendly graphical interface is

necessary for attributes management and specification.

To effectively integrate the various components together as a complete work-

flow, a set of interoperable interface functions is needed for the components that

provide consistent interactions with the mesh and solution data being carried on

during the simulation process. Such interactions are desired to be carried out, ulti-

mately, through the internal data structures that do not require inter-component file

I/O. The design and implementation of such interfaces requires that all components

provide runtime access to their information, especially the meshing and solution

components.

The subsections that follow introduce pieces of software that have been, or

continue to be, developed to support the individual functional components.
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Figure 5.2: Simmetrix attribute management [8]

5.2.2 Geometry

As mentioned in section 5.1, the geometry of the problem domain is best

defined by a solid model constructed in CAD systems. There are several CAD kernels

that are widely used in solid modeling, such as ACIS, Parasolid, OpenCascade, with

ACIS and Parasolid being used by popular commercial CAD modeling systems such

as SolidWorks [70], NX [53], and also used in specific DOE tools (e.g. the CUBIT

meshing system employs ACIS for geometry).

5.2.3 Attributes

To fully define an analysis problem, additional information is needed besides

the geometric domain such as loads, material properties, boundary conditions and

the like. Such information is defined as attributes to the CAD model [7, 8]

CUBIT [11] is a DOE mesh generation toolkit developed by Sandia National

Lab (Sandia) that interacts with the ACIS kernel. It supports a way of specifying

analysis attributes such as material properties and boundary conditions to the CAD

model by grouping model faces and regions as “sidesets” and “blocks” and labeling

the groups with reference IDs. These IDs are then associated with specific analysis

attributes defined separately from CUBIT.

The Simmetrix Simulation Modeling Suite (SimModSuite) [69] consists of a set
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of components that also have capabilities of geometry access, simulation attribute

management as well as mesh generation and adaptation. GeomSim is one of the

components which integrates with multiple CAD kernels (e.g. ACIS, Parasolid,

OpenCascade) and provides a unified access to geometry and topology of CAD

models. Although it does not support model construction, it is capable of loading

given CAD models and supporting query geometric and topological information

about the models as well as automated tools for geometry clean-up in preparation

for meshing.

SimModSuite also provides a component named GeomSim Attributes that

introduces an object-oriented way of specifying and managing attributes directly

off the CAD model. Analysis attributes in GeomSim Attributes are managed in

two levels. An abstract level defines the concept and properties of various types of

attributes as informational nodes, e.g. displacement as a first order tensor. When

assigning an attribute to a model entity, such as displacement of a model surface, an

instance of the abstract node is created with specific functions [7]. Figure 5.2 gives

an illustration of the structure. Such an object-orient way is intuitive and general,

and the abstraction of attributes can be easily customized or extended.

5.2.4 Meshing

CUBIT has unstructured initial mesh generation in serial with straight-sided

elements [24, 25]. It also supports curving those tetrahedrons in serial [11]. Together

with the ACIS modeling capability, CUBIT has been utilized by the SLAC ACD

team to generate curved initial meshes for ACE3P simulations. Figure 5.3 shows

a simple example. However, invalid elements are often found in the curved initial

meshes that harm the stability and efficiency of the ACE3P solvers. Additional

efforts are required to fix the mesh invalidities.

The automatic mesh generation component of SimModSuite, named MeshSim

[69], is able to generate valid curved meshes for general non-manifold geometric

models. It fully supports the generation of valid meshes with curved quadratic

elements in serial. Parallel generation and adaptation of distributed straight-sided

meshes is currently supported and with the extensions needed for curved meshes
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Figure 5.3: Screenshot of an example mesh generated by CUBIT

Figure 5.4: Screenshot of the Simmetrix GUI showing the attribute def-
initions on the left, CAD model in the middle and mesh of it
on the right

under development. It also has the capability to create structured boundary layer

meshes with mixed topology elements. The input data that MeshSim supports can

be CAD models, image data or discrete (mesh) models. Figure 5.4 shows an example

of the Simmetrix graphical user interface (GUI) that demonstrates the geometry,

attributes and mesh.
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5.2.5 Finite Element Analysis Procedure

The ACE3P is SLAC’s suite of 3D parallel finite element based electromagnetic

simulation codes for accelerator modeling [1]. It contains a set of solvers that perform

time and frequency domain calculations, particle tracking and simulations as well

as multiphysics simulations.

The list of ACE3P simulation codes includes [1]:

• Omega3P – Eigenvalue solver for finding the normal modes in an RF cavity

• S3P – S-parameter solver to calculate the transmission properties of open

structures

• T3P – Time-domain solver to calculate transient response of driven fields and

beam excitations

• Track3P – Particle tracking code with surface physics

• Pic3P – Particle-in-cell code to simulate self-consistent electrodynamics of

charged particles

• TEM3P – Multi-physics module for integrated electromagnetic, thermal, and

mechanical analysis

Implemented to work on parallel computing environment, the ACE3P suite has

demonstrated state of the art capability for accelerator simulations and produced

results of great interest to accelerator designs [35, 52].

5.2.6 Error Estimation and Correction Indication

Simmetrix provides a component, named FieldSim, for error estimation based

on application-specified solution fields. The error estimation procedure supported is

based on the superconvergent patch recovery method (SPR) which has been applied

to electromagnetic analysis [76, 77]. Alternative error estimation procedures have

also been considered and are easily introduced.

SCOREC has similar error estimation procedure based on the SPR method. In

additional to that, a Hessian based strategy for error estimation has been developed
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to extract directional information of error distribution [61]. The method obtains

the directional information by computing the field’s second derivatives and convert

that information into a mesh metric field which prescribes the element size and

orientation for adaptation [62, 63].

5.2.7 Mesh Adaptation

SCOREC and Simmetrix both have been developing mesh adaptation proce-

dures driven by an anisotropic mesh sizefield. The SCOREC MeshAdapt software

[47] adapts an unstructured mesh using various geometry modification and local

mesh modification operations until it satisfies the prescribed mesh metric field. The

metric field to be satisfied can be either isotropic or anisotropic [23, 38]. Both

serial and parallel mesh adaptation procedures have the capability to work with

meshes with curved quadratic-shaped elements. Detailed discussions about the par-

allel curved mesh adaptation strategy and operations can be found in Chapter 4.

A version of MeshAdapt also supports the adaptation of structured layers of mesh

elements at model boundary called boundary layer meshes [62, 63].

The Simmetrix mesh adaptation software components, MeshSim Adapt and

Parallel MeshSim Adapt, also work with isotropic and anisotropic mesh metric fields.

MeshSim Adapt allows the adaptive refinement and coarsening of meshes created

by MeshSim in serial while Parallel MeshSim Adapt allows adaptive refinement

of partitioned meshes in parallel. MeshSim Adapt also supports serial boundary

layer mesh adaptivity for wedge element boundary layers [69]. Parallel versions of

boundary layer and curved mesh adaptation are under development.

5.2.8 Dynamic Load Balancing

Massively parallel adaptive simulations at large core counts require that the

mesh be distributed across the processors with equally balanced workload to ensure

efficiency and scalability of all steps of the analyses.

A number of algorithms and software packages have been developed for un-

structured mesh partitioning. The most popular approaches by far are the graph- or

hypergraph-based algorithms. Zoltan [78] is a software package being developed at

Sandia that employs the graph/hypergraph-based partitioning algorithms. However,
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specific issues are observed for parallel applications at extreme scale. For example,

typical graph/hypergraph-based partitioners only consider balancing the workload

based on mesh elements (or regions), which may result in vertex imbalance and

consequently imbalance of degrees of freedom (DOFs) for the FEA solver. Study

shows such imbalance can be as high as 20% [75].

To address the issues, ParMA [55], a parallel iterative mesh partition improve-

ment algorithm, is being developed to account for load balance of all mesh entities

of interest. By migrating selected mesh entities from relatively heavily loaded parts,

with respect to mesh entities of interest, to less loaded neighboring parts using the

mesh adjacency information, ParMA can effectively eliminate heavily loaded parts

(referred to as spikes) and maintain a balanced workload [75]. Results have demon-

strated the ability of ParMA operating to large meshes with billions of mesh regions

on massively parallel systems with more than 100,000 processors [74].

5.3 Current CUBIT-based Workflow

To both support the current user base, and be able to move forward to the

desired adaptive simulation loop, two workflows are being developed simultaneously.

One is based on the serial meshing capability of the CUBIT mesh generator currently

utilized by SLAC, and the other focuses on taking advantage of the parallel meshing

and curved mesh capabilities of Simmetrix MeshSim.

The ACIS geometry modeling kernel with the CUBIT CAE interface and mesh

generation toolkit have been used by SLAC, and a CUBIT based workflow is in place

to support ACE3P simulations. The workflow can be summarized as the following

steps:

1. geometric model read into or constructed in CUBIT,

2. attribute management and serial initial straight-sided mesh generation is ex-

ecuted using the tetrahedral meshes [24] in CUBIT,

3. the straight-sided mesh has midside nodes added and moved to the CAD

geometry,
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4. curved element invalidity detection and correction is executed using a version

of the SCOREC MeshAdapt software,

5. FE analysis using ACE3P solvers.

A prototype adaptive loop has been developed by the SCOREC team in a

component-based manner for this workflow [46]. To supplement the existing steps,

key developments have been made to incorporate the error estimation and size driven

(isotropic) mesh adaptation procedures into the workflow to form a complete loop.

The error estimation procedure was based on the superconvergent patch recovery

method [76, 77]. The mesh adaptation was based on the well-established straight-

sided mesh adaptation procedures [37, 38] and was extended to deal with curved

meshes [46].

5.3.1 Initial Curved Mesh Generation And Element Invalidity Issue

In the applications of the CUBIT-based workflow, several issues have been

observed and incremental developments have been made to address the issues and

support the workflow. One of the issues has to do with the initial curved mesh

generation and element invalidity.

The CUBIT meshing capability does not guarantee generation of valid curvilin-

ear meshes to meet the basic requirements of ACE3P solvers (or any other solvers).

Moveover, in some cases that a given CAD model is too complex and contains un-

desirable small feature, CUBIT fails to generate any meshes at all. SCOREC has

worked with SLAC and developed a curved mesh validity check and invalidity cor-

rection procedure to effectively detect mesh invalidity and fix the invalid curved

elements [45]. The validity check applies the Bézier representation introduced in

Chapter 2 and the specific methods are discussed in Chapter 3. The mesh correc-

tion procedure uses various mesh modification operations discussed in Chapter 4.

The procedure is implemented as part of the SCOREC MeshAdapt. It has been ap-

plied to ensure the creation of valid curvilinear meshes for the ACE3P applications

and helps to obtain stable simulations with improved efficiency. See Figure 5.5 for

an example.
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Figure 5.5: Curved mesh for an accelerator cavity, close up mesh before
and after applying invalid element correction procedure [45]

Besides the combination of CUBIT mesh generation capability and SCOREC

mesh correction procedure, an alternative and more straight-forward approach to

obtain a valid curved initial mesh is to use the Simmetrix software components.

As introduced previously, the Simmetrix MeshSim is a software component that is

capable of effectively generating curved initial meshes from a given CAD geometry

and it guarantees the validity of the generated meshes. Integrated with GeomSim,

which is able to clean up small features in the CAD model to ensure successful

mesh generation, it is the only working approach that has worked for the cases

when CUBIT fails to generate any meshes from some complex CAD models with

undesirable small features. The use of Simmetrix software instead of CUBIT results

in a more reliable workflow which is discussed for a fully parallel version in Section

5.4.

Tests have shown the effectiveness and efficiency of Simmetrix curved mesh

generation capability on various complex CAD geometries. Figure 5.6 shows an

example CAD model of a complex geometry. CUBIT fails to generate initial meshes

from the model while Simmetrix is able to automatically clean up the undesirable

feature of the model and successfully generate valid curved meshes.
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Figure 5.6: A complex geometry with undesirable small features simu-
lated by ACE3P. (Left) an overview. (Right) close-up view
of some small features

5.3.2 Additional Incremental Improvements to the CUBIT-based Work-

flow

Although the aforementioned issues of serial curved meshing and element in-

validity can be resolved, such a workflow still has major drawbacks that prevents

the application from going to massively parallel systems. The main limiting factor

is that it is based on the serial meshing capability. The total number of elements

in an initial serial mesh is limited by hardware constraints of a single computer,

such as memory limits. Thus it can not reach the scale of hundreds of millions of

elements required by some ACE3P simulations.

Section 5.4 discusses the efforts on the development of a fully parallel workflow

in which interoperable component operates in parallel. Since that workflow is not

yet fully in place, and there is a need to maintain the CUBIT-based workflow for

the current user community, several incremental developments have been carried

out. The first development is a procedure that partitions a serial curved mesh

into distributed mesh parts and effectively increase the total number of elements

by mesh refinement steps in parallel. In this procedure, the SCOREC Flexible

distributed Mesh DataBase (FMDB) [20] is used to serve as the underlying mesh

database to support various mesh based operations such as entity creation, deletion

and migration. The mesh partitioning and load balancing are supported by the

Zoltan and ParMETIS packages.

In the partitioning process, the shape parameters of a curved mesh entity
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Figure 5.7: Curved mesh parts after partitioning

(such as high-order nodes or edge mid-points) are retrieved and attached to the

entity itself. During the migration process of the curved entity, the attached data

is migrated along with the edge from one processor to another. See Figure 5.7 for

an example of the surface mesh for a curved partitioned mesh.

After partitioning the serial curved mesh, refinement steps are performed to

increase the number of mesh entities simultaneously on each mesh part to reach

the desired amount. The SCOREC MeshAdapt is used to perform the parallel

refinement. For the simplest case that no size field information or boundary layer

structure is prescribed, the most effective way is to uniformly refine the mesh.

To support the mesh refinement process, the parallel curved split operations

are used based on the algorithm described in Section 4.6.1. If the geometric modeling

engine is available, the new vertices and new edges on curved model boundaries are

reshaped to be placed on the appropriate model entity according to the results

of parametric interrogations to the CAD model. The algorithm in this case is:

(Figure 4.12 illustrates the curving process.)

1. Get the coordinates of vertices V1, V2, V3 in parametric space by querying the

modeling engine,

2. compute the parametric coordinates of the mid-points to be added as the average

of the two vertex parametric values,

3. map the parametric coordinates back to coordinates in Cartesian space, using a

query to the modeler,

4. attach the mid-point coordinates to the edges.
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Figure 5.8: Partitioned curved mesh after uniform refinement

If the geometric model is not available the shape information of the original

mesh edge is used. The algorithm is defined as the following: (One can still refer to

Figure 4.12(b) and (c).)

1. Get the Cartesian coordinates of vertices V1, V2, V3,

2. fit a parabola to V1, V2, V3 by Lagrange interpolating polynomials, and parame-

terize the curve to 1D space [0, 1],

3. compute the Cartesian coordinates at parametric value 0.25 and 0.75, which corre-

sponds to the desired location of the mid-points of the new edges

4. attach the mid-point coordinates to the new edges.

Although both of the algorithms are implemented, the current workflow runs

with the latter version due to the fact that common CAD modeling engines are

normally not available on most of the parallel computing platforms. As soon as

the modeling engines become available, the latter algorithm can be easily replaced

by the former one. Figure 5.8 shows the surface of an example mesh after parallel

uniform refinement.

The mesh refinement procedure in MeshAdapt also serves as an important

component in supporting the request from SLAC to conduct convergence studies of

ACE3P analysis results. As a mesh generation software, CUBIT does not provide

mesh adaptation capability, one has to re-generating new meshes from scratch every

time when finer meshes are needed, which is time consuming and inefficient. By

integrating the mesh refinement procedure into the workflow, refined meshes can
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Figure 5.9: An example of the meshes generated by uniform refinement
for convergence study

be created based on existing coarse meshes, and a convergence study loop can be

executed incrementally and automatically. Figure 5.9 gives an example of the coarse

and refined meshes generated for convergence study.

5.3.3 Meshing Results

The serial initial mesh based workflow has been applied in several cases to

support the ACE3P simulations. Several example meshes are shown in previous

sections of this Chapter.

Figure 5.10 gives an additional example mesh generated over a geometry of

two linear accelerator cavities. The largest application so far has been a partitioned

curved mesh generated on 64 processors with more than 180 million curved tetra-

hedral elements. The initial serial curved mesh for this application has around 3

million elements and is partitioned to 64 parts. Two steps of uniform refinement

result in the final mesh.

5.4 Fully Parallel Workflow

The desired starting point of the fully parallel work flow is a CAD model of

the accelerator domain to be analyzed with the analysis attributes of loads ma-

terial properties and boundary conditions specified on that entities on that CAD

model. From there all steps of the simulation, starting with the generation of the

initial mesh, must be executed automatically, including adaptive error control, on

massively parallel computing systems. The ability to construct such a fully paral-

lel workflow requires each component operate in parallel, can interoperate with the
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Figure 5.10: Overview and close-ups of a partitioned curved mesh of lin-
ear accelerator cavities

other components in a consistent manner, and all components share a consistent view

of the parallel distribution of the information being worked on. The optimization

of the such a parallel workflow also requires having the greatest level of scalabil-

ity of the full set of interacting components and elimination of key unproductive

bottlenecks.

From the point of the initial mesh generation through all adaptive analysis

processes, the key information structure is the mesh. The parallel representation of

the mesh as a partition of parts is common to all these components and is supported

by the ITAPS iMeshP partition model specification [31]. Both Simmetrix [69] and

FMDB [20] implementations support the needs of this partition model. Efforts are

just underway to investigate making it a two level partition model to support future

high core count systems in which the intra-compute node level would be threaded

and the inter-compute node level would be message passing. Scalability of the entire

process requires the repeated application of dynamic load balancing as the mesh and

computations evolve. Currently Zoltan [78] is used when there large load imbalances

and ParMA [55] is used eliminate small imbalances and/or to account for multiple

criteria such as driven by the multiple steps of the analysis process. Investigation

is ongoing to see if the ParMA, which is very fast, can be extended to do complete

repartitions and still maintain a sizable speed advantage.

One obvious bottleneck in the construction of parallel adaptive simulation
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processes is when the interactions between components employ file I/O. The more

efficient alternative is to provide the information exchange between components

by directly extracting the information from the component data structures. Since

functional interfaces have been used in integrating components developed in this

work, even when just dealing with files, the overall approach is already in place to

eliminate unneeded file I/O steps. Doing this does require a more direct interaction

and access to the structures within the analysis components.

The efforts carried out to date have produced important steps toward the

construction of a fully parallel work flow. Parallel versions of all needed components

are either available, or will be by the end of 2011. However, specific additional efforts

are needed to actually put all the pieces together. These efforts are planned as part

of the future work jointly with Simmetrix.

A summary of these efforts and the components involved is as follows:

A full set of geometry-based analysis attributes can be applied directly to the

ACIS, or other CAD models using the Simmetrix attribute specification tools. A

consistent linkage between the analysis attributes and the model, and between the

model and the mesh are maintained. The graphical user interface that supports the

specification of the analysis attributes can also be used to quickly and easily set

mesh control parameters to be followed by the initial mesh generation procedure.

Initial parallel mesh generation of curved meshes of any desired numbers of

elements will be executed by MeshSim. In addition to the extension of the Sim-

metrix parallel mesh generator to produce valid curved element meshes, Simmetrix

is working on parallelization of aspects of the geometric model for the future cases

when it may be desirable to also distribute the geometric model.

As already indicated, Zoltan and ParMA will be used to support dynamic load

balancing.

Given an attributed mesh that is load balanced based on the needs of the

ACE3P simulation component to be executed, that analysis component can be ex-

ecuted in parallel to the highest possible scalability.

Once the analysis is completed the needed simulation results can be loaded

into a field structure (either Simmetrix FieldSim and SCOREC iFields) to make the
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information accessible for discretization error estimation and correction indication.

Currently both projection based error estimators and Hessian-based anisotropic cor-

rection indication procedures have been developed and used in various applications.

The results of the parallel error estimation and/or correction procedures are used

to specify the desired mesh size field over the current mesh.

Both SCOREC MeshAdapt and Simmetrix MeshSim Adapt operate in parallel

and will take a current mesh and associated mesh size field and perform the mesh

modifications needed to have the mesh satisfy the requested mesh size field, which

can be fully anisotropic [3, 38]. MeshAdapt fully supports these operations on

quadratic order curved meshes and Simmetrix MeshSim will also support quadratic

order curved meshes by the end of 2011.

The development of this fully parallel workflow will be executed in two passes.

In the first pass the interactions between the Simmetrix and SCOREC components

will be through API’s interacting directly with data structures while the interactions

with the ACE3P components will be using their existing file interfaces. On the

second pass we plan to work with the ACE3P developers to interact directly with

analysis component data structures thus eliminating the unneeded file interactions.
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Discussion and Conclusions

This thesis has presented techniques to construct controlled curved meshes of mil-

lions of elements for use with high-order finite elements methods. This chapter

summarizes the work done to achieve that goal and suggests directions for future

works.

6.1 Conclusions

In this thesis, we have reviewed the mathematical fundamentals of the Bézier

polynomial based shape representation for high-order curved tetrahedrons. The

Bézier representation provides an easy way mapping the parametric space to the

physical space. It also supports the effective evaluation of the determinant Jacobian,

which is the key factor for checking mesh validity.

Based on the Bézier shape representation, A hybrid shape metric has been

proposed to serve as a unified shape measure for both linear straight-sided elements

and high-order curved elements. The proposed metric takes the product of a selected

straight-sided metric with a curved metric. In this way, it is capable of capturing all

forms of badly-shaped elements, both straight-sided and curved. This metric serves

as the basis for the element validity checks as well as mesh modification operations,

such as the explicit entity reshaping operation introduced in this work.

Efficient methods for curved element validity checking have been developed

based on the Bézier shape representation and its control points. The adaptive

methods developed utilizes degree elevation or entity subdivision operations, to

adaptively refine the control polygon of the Bézier shape representation. Numer-

ical experiments have shown results that they are effective with almost neglegible

addition to the computational cost over the uniform validity check method.

Technical parallel curved meshing techniques have been presented in terms of

various mesh modification operations and overall mesh adaptation strategies. The

mesh modification operations include two major categories: entity geometry mod-

81
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ification and local mesh modification for curved meshes. For the entity geometry

modification operations, efforts have been devoted to develop entity reshape opera-

tions to explicitly resolve element invalidity and improve the shape quality of curved

elements. The local mesh modification operations for curved meshes are extended

from the operations for straight-sided meshes with additional considerations and

treatments to curve boundary entities and selected interior entities to ensure geo-

metric approximation to the model as well as element validity. The overall curved

mesh adaptation strategy is built on the existing strategy for straight-sided mesh

adaptation. Specific procedures such as validity check and shape improvement for

curved elements have been added. The above mentioned operations have been made

to work with partitioned curved meshes in parallel in order to support the applica-

tion of mesh based parallel high-order finite element simulations.

Applications of the parallel curved meshing technique has been under develop-

ment to support the automated adaptive accelerator simulations at SLAC National

Accelerator Laboratory (SLAC). A desired workflow for parallel automated adap-

tive simulations has been proposed. Various functional components, such as parallel

curved mesh generation and adaptation, have been discussed. In order to support

the current user community, efforts have been made to build a workflow utilizing

the DOE mesh generation software CUBIT. Several issues associated with such a

CUBIT-based workflow have been identified such as element invalidity and lack of

mesh adaptation capability. Incremental developments have been made to resolve

those issues. In the meantime, in order to support large scale simulations, a fully

parallel workflow for SLAC is being developed. The fully parallel workflow is de-

signed to take full advantages of the state-of-the-art techniques, such as parallel

mesh generation and adaptation, automatic geometry clean-up, dynamic load bal-

ancing. The various functional components of the workflow are designed to interact

with each other through component data structures to, in the future, eliminate the

major bottleneck in the parallel adaptive simulation processes – file I/O. Both the

current CUBIT-based workflow and desired fully parallel workflow are supporting

the accelerator simulations conducted at SLAC in a more reliable and efficient way.
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6.2 Future Work

Future developments of the work presented in the thesis include:

• Studying the mathematical properties of the proposed hybrid shape metric.

As summarized in Section 6.1, the multiplicative hybrid shape metric is capa-

ble of capture the characteristics of poorly shaped straight-sided and curved

elements. Further analysis and numerical experiments could be conducted to

reveal quantitatively how sensitive the metric is with respect to certain kinds

of poorly shaped curved elements such as sliver and close-to-self-intersecting

curved elements. Such a sensitivity study could provide insight to selecting the

most effective mesh modification operation to improve element shape quality.

• Incorporating size field driven adaptation to partitioned curved meshes based

on error estimation of analysis results. For an automatic adaptive simulation,

a mesh sizefield obtained by the error estimation and indication procedures is

the essential guide to the mesh adaptation procedure. The current implemen-

tation of the parallel adaptive mesh adaptation for curved meshes is capable

of performing tag driven refinement or adaptation driven by prescribed size

field based on the motion of domain of interest [44]. Therefore an error esti-

mator needs to be incorporated. An interface needs to be developed between

the error estimator and the mesh adaptation driver. The parallel curved mesh

adaptation has to be able to support mesh modification operations based on

the mesh sizefield provided by the error estimator.

• Continuing the development of the CUBIT-based and the fully parallel work-

flows for the accelerator simulations at SLAC. As stated before, the CUBIT-

based workflow has an existing user community therefore it is important to

continue to support the users. However the fully parallel workflow is more

promising in terms of reliability and scalability for further large scale simu-

lations. The future developments include developing missing functional com-

ponents such as parallel curved mesh generator and parallel error estimation

procedure, incorporating dynamic load balancing procedure into the parallel
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adaptive loop, and integrating the various components through interfaces that

employ fileless communications.
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