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Abstract: Time-resolved fluorescence optical tomography allows 3-
dimensional localization of multiple fluorophores based on lifetime contrast
while providing a unique data set for improved resolution. However, to
employ the full fluorescence time measurements, a light propagation model
that accurately simulates weakly diffused and multiple scattered photons
is required. In this article, we derive a computationally efficient Monte
Carlo based method to compute time-gated fluorescence Jacobians for
the simultaneous imaging of two fluorophores with lifetime contrast. The
Monte Carlo based formulation is validated on a synthetic murine model
simulating the uptake in the kidneys of two distinct fluorophores with
lifetime contrast. Experimentally, the method is validated using capillaries
filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a
diffuse media mimicking the average optical properties of mice. Combining
multiple time gates in one inverse problem allows the simultaneous recon-
struction of multiple fluorophores with increased resolution and minimal
crosstalk using the proposed formulation.
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1. Introduction

Optical methods offer the possibility to image numerous molecular targets with multiple dis-
tinct agents similarly to immunofluorescence microscopy and fluorescence cytometry. Current
in vivo fluorescence multiplexing studies are mainly conducted in pre-clinical settings with Flu-
orescence Reflectance Imaging (FRI) [1, 2]. However, due to the limited information collected
by FRI, the technique is unable to resolve the signal depth and hence to quantify it. Moreover,
due to the predominance of scattering, planar imaging suffers from low resolution. For these
reasons, FRI is mainly limited to superficial observations of subcutaneous flank xenograft mod-
els, surgically exposed organs or for intra-operative use, but is not appropriate to study advanced
disease models in internal organs. For such applications, Fluorescence Molecular Tomography
(FMT) techniques are required.

FMT acquires tomographic data sets to retrieve the 3D bio-distribution of the molecular
probe used [3]. Spectral multiplexing of fluorophores in optical techniques requires the col-
lection of dense spectral data sets for efficient unmixing of independent signals [4]. Such data
sets are acquired sequentially one wavelength at a time, leading to relatively long acquisition
times, especially for whole body applications. Alternatively, fluorophore unmixing can be per-
formed based on lifetime contrasts [5]. By recording time dependent fluorescence signals, it is
possible to distinguish and estimate the fractional contribution of multiple fluorophores with a
monochromatic data set, allowing for fast acquisition protocols. Hence, lifetime based multi-
plexing is the most promising approach to simultaneously image multiple biomarkers for whole
body applications in vivo.

Lifetime sensing is performed by employing Time Domain (TD) instruments. For optical
tomography applications, image reconstructions based on TD fluorescence measurements have
been primarily studied using the equivalent datatype in the frequency domain (FD), due to
the simplicity of the relationship between the fluorescence lifetime and the measured phase
in FD data [6, 7]. Recently, several studies have investigated the potential of performing FMT
directly using TD derived datatypes such as moments [8], or time gates [9]. In the case of life-
time multiplexed studies, unmixing algorithms applied to the decaying portion of the TPSFs
have been employed to recover the fractional contribution of the different fluorescence com-
ponents and perform FMT based on unmixed time-independent signals [10]. However, such
methodology suffers from the same limitation as the continuous wave (CW) technique, i.e.,
limited resolution and requires an unmixing algorithm where performances are not robust with
low photon counts [11]. Conversely, the use of discrete time gates spanning the full TPSF as
the data set for FMT should alleviate these drawbacks. It is well established that resolution of
the optical reconstructions can be improved by using the rising portion of the TPSFs (termed
early-gates) [12, 13] and such technique has been recently applied to FMT [14–16]. Moreover,
the use of time gates allows for simultaneous reconstruction of multiple fluorophores based
on lifetime contrast without the use of unmixing algorithms [17]. However, when considering
time-resolved studies in small animals based on full TPSF, it is critical to employ an accurate
light propagation model. Especially, for the early rising portion of the TPSF, a light propaga-
tion model that can accurately simulate the transition between minimally scattered photons and



diffuse photons is required [18–22].
To date, analytical models, such as the radiative transport equation (RTE) and its approx-

imation, the diffusion equation (DE), have been developed to solve the forward problem in
FMT [21, 22]. However, the small finite volumes and their associated complex boundary con-
ditions, the broad span of optical properties and potential low-scattering properties of certain
organs may limit the validity of DE based models in small animals [23]. Most importantly, the
early rising part of the measured TPSF which contains both minimally scattered photons and
diffuse photons [18, 20, 24] is not accurately modeled by the DE [15, 19, 21, 22]. Alternatively,
the Monte Carlo (MC) method is considered an accurate light propagation model without any
of the limitations of the DE to simulate pulse propagations in diffuse media [23]. A number of
studies focusing on Monte Carlo methods for fluorescence signal prediction have demonstrated
its accuracy using synthetic and experimental data [25–27]. However, time-resolved Monte
Carlo approaches have focused on spectroscopic applications but not tomographic ones. While
inversion strategies based on Monte Carlo models in CW and FD have been reported [10, 28],
no formulation for time-resolved fluorescence reconstruction based on Monte Carlo models has
been yet reported.

In this work, we investigate the feasibility of performing time-resolved FMT of multiple
fluorescence compounds based on Monte Carlo forward model and Time Gates. We derive a
computationally efficient model that enables the calculation of the weight functions for both
absorption perturbation and fluorophore distribution while simulating only the propagation of
excitation photons in the tissue. We apply this new model to the simultaneous reconstruction
of two fluorophores with lifetime contrast. We investigate for this purpose the information con-
tent imparted by single time gates and perform optical reconstructions based on multiple time
gates to simultaneously image two fluorophores. The relative merits of different gate sampling
strategies are compared and the validity of the model is experimentally established using a slab
phantom with objects containing two commercial fluorophores.

2. Methodology

2.1. Time-resolved Monte Carlo forward model

The Monte Carlo method is capable of modeling light propagation in diffuse media over a
broad spectral range, for small finite complex volume, for all the optical properties encountered
in bio-tissue and for non-scattering or low-scattering regimes [23]. In this work, we follow the
conventional forward-excitation and forward-emission model outlined by Welch et al. [29]. The
model has been extended to the time domain by assuming that the emission occurs immediately
after the absorption of the excitation photon. In this approach, two simulations of a complete
set of photons are required: one is the propagation of the excitation photons, the other one is
the isotropic emission and propagation of the emitted photons. The excitation simulation based
on the optical properties at the excitation wavelength λx is used to calculate the statistical accu-
mulation of the absorbed excitation light A(rs,r, t), defined as the absorbed photon weights by
the fluorophore at position r at time t, illuminated by a source at rs. The emission Monte Carlo
simulation with the optical properties for the emission wavelength λm is computed to obtain the
emission field E(r,rd , t) at detector rd and t. Here we define the total absorption coefficients as
μx

a and μm
a at λx and λm, respectively. The total absorption coefficient at λx is defined as the

sum of μx
ab, the background absorption, and μx

a f , the absorption coefficient contributed by the
fluorophore, which is linearly related to the concentration of the fluorophore and the extinction
coefficient. Then the effective quantum yield η(r) is defined as the probability of a photon to



be emitted upon absorption of a photon by the total absorption coefficient:

η(r) =
μx

a f (r)Φ
μx

a(r)
(1)

where Φ is the quantum yield. The time-resolved fluorescence signal without delay caused by
the lifetime of the fluorophore is then expressed as:

U ′
F(rs,rd , t

′) =
∫

Ω
dr3W ′(rs,rd ,r, t

′)η(r), (2)

where the integration domain Ω is defined as the entire imaging volume, and the background
weight function W ′ is given by:

W ′(rs,rd ,r, t
′) =

∫ t ′

0
dt ′′A(rs,r, t

′′)E(r,rd , t
′ − t ′′). (3)

Assuming single exponential time-decay for the fluorophore, the fluorescence emission de-
lay can be taken into account by convolving the temporal fluorescence signals with the decay
e−t/τ over time, where τ is the lifetime of the fluorophore. We can then write the fluorescence
intensity measured at rd and time t for an impulsive excitation at rs and t0 = 0 as:

UF(rs,rd , t) =
∫ t

0
dt ′U ′

F(rs,rd , t
′)e−(t−t ′)/τ . (4)

This general expression is used to compute the fluorescence forward model. In the case of
multiple fluorophores, the different fluorescent components can be independently computed
and summed to obtain the complex fluorescence time resolved measurements. In all the in
silico studies herein, the synthetic fluorescence measurements were based on this approach.

2.2. Calculation of the time-resolved Jacobians

The forward model described above can be casted into a tomography inverse problem to re-
construct the effective quantum yield. In order to compute the time-resolved Jacobians, or the
spatial and temporal sensitivity maps with respect to η(r), Eq. (4) is written as:

UF(rs,rd , t) =
∫

Ω
dr3W (rs,rd ,r, t)η(r), (5)

where W is the lifetime based weight function defined as:

W (rs,rd ,r, t) =
∫ t

0
dt ′W ′(rs,rd ,r, t

′)e−(t−t ′)τ , (6)

Equations (3) and (6) give the general expression of the lifetime based weight matrix using
Monte Carlo simulations. As Eq. (3) stands, the background weight function W ′ can be calcu-
lated knowing A(rs,r, t) and E(r,rd , t) explicitly. This time convolution is extremely computa-
tionally intensive, and simulations with numerous photons at each position r in the region of
interest are required to obtain statistically reliable calculation of E(r,rd , t). Thus this algorithm
is computationally inefficient especially in FMT applications where a large number of voxels
are considered. However, a more manageable formulation can be derived by considering an
assumption commonly employed in FMT, namely that the scattering coefficients are identical
at λx and λm. In the NIR spectral range, the scattering coefficient is expected to vary less than
20% over the Stokes shift gap of organic fluorophores [30]. Furthermore, under the condition



of isotropic scattering, it can be assumed that all fluorescence photons follow the trajectories of
the excitation photons after generation [25]. Consider the ith photon in an excitation simulation
that propagates from a discrete source point rs and then detected at the detector position rd at
time t. Following the White Monte Carlo (WMC) [31] approach, if the photon reaches r at time
ts,r, the weight of the ith excitation photon wx

i at r has decreased to:

wx
i (rs,r, ts,r) = wi,0 exp(−

pi

∑
j=1

μx
a(r j)l(r j)), (7)

where wi,0 is the initial weight of this photon, r j( j = 1, ..., pi) are the sub-regions that the photon
consequently passes through from rs to r, and li(r j) is the path length that the photon passes
at r j. Note that the total number of pi is photon dependent and the sub-regions for different
photons are not necessarily the same. At r, the absorbed photon weight is given by:

Ai(rs,r, ts,r) = wx
i (rs,r, ts,r)(1− exp(−μx

a(r)li(r))). (8)

The absorbed weight multiplied by η(r) is then converted to the initial weight of the fluores-
cence photon. We can calculate the final weight of the fluorescence photon detected at rd as:

wm
i (r,rd , tr,d) = Ai(rs,r, ts,r)η(r)exp(−

qi

∑
j=pi+1

μm
a (r j)li(r j)), (9)

where tr,d is the time that the photon passes from r to rd and r j( j = pi +1, ...,qi) is the photon
path from r to rd . Note that sum of ts,r and tr,d is the total time t that the excitation photon
travels from rs till is detected, and that the sub-regions r j( j = 1, ...,qi) denote the total photon
path. By summing up n detected emission photons for rs and rd , we can obtain U ′

F defined in
Eq. (2). Comparing Eq. (9) to Eq. (2), we have:

W ′(rs,rd ,r, t) =
n

∑
i=1

Ai(rs,r, t)exp(−
qi

∑
j=pi+1

μm
a (r j)li(r j)). (10)

Inserting Eqs. (7) and (8) to Eq. (10), then we have:

W ′(rs,rd ,r, t)=
n

∑
i=1

wi,0 exp(−
pi

∑
j=1

μx
a(r j)li(r j))×(1−exp(−μx

a(r)li(r))×exp(−
qi

∑
j=pi+1

μm
a (r j)li(r j)).

(11)
According to Eq. (11), the background weight matrix for excitation source rs and detector rd

at time t can be easily calculated using the photon paths and the absorption coefficients. This
formulation should be employed in the case that the absorption coefficient at the excitation sig-
nificantly differs from that at the emission wavelength, which might be the case for wavelengths
below 700nm. However, the absorption optical spectra of bio-tissues is relatively flat in tissue
in the NIR window [32]. Thus for simplicity, and following standard assumption in FMT, we
assume that the absorption coefficients at the excitation and emission wavelengths are identical,
that is, μx

a = μm
a . We therefore obtain:

W ′(rs,rd ,r, t) =
n

∑
i=1

wx
i (rs,rd , t)(1− exp(−μx

a(r)li(r)), (12)

where wx
i (rs,rd , t) is the final weight of the ith excitation photon from rs and detected by rd at

t, defined as:

wx
i (rs,rd , t) = wi,0 exp(−

qi

∑
j=1

μx
a(r j)li(r j)). (13)



If μx
a f (r)li(r) is small, which is the case in the voxelized geometry, from Taylor expansion, we

can further simplify Eq. (12) to:

W ′(rs,rd ,r, t) =
n

∑
i=1

wx
i (rs,rd , t)μx

a(r)li(r). (14)

Integrating Eq. (14) over time results in a CW reconstruction algorithm similar to the method
proposed by Zhang et al. [28], that the photon paths weighted by their final fluence rate seen by
the detector is the sensitivity function. Note also that the background weight matrix for fluores-
cence calculated by Eq. (14) is precisely the weight function for absorption perturbations [33].
This indicates that the absorption and fluorophore distribution can be estimated by using the
same weight matrix calculated by one excitation Monte Carlo simulation. Moreover, it is note-
worthy that if there are different fluorophore species existing in the region of interest, only one
excitation simulation is required to obtain the weight matrices Wk (k = 1, ...,NF , where NF is
the number of species) for different lifetimes τk(k = 1, ...,NF) according to Eq. (6). This allows
for a fast and efficient computational implementation to simultaneously reconstruct multiple
fluorophores based on one forward simulation. Note that for simplicity, all the above equations
use rs and rd as discrete points, but they can be extended to any illumination or detection strate-
gies applied to complex boundaries by collecting the photons generated or detected inside the
areas. In this study, we employed an original broad field illumination strategy which is a new
technique that we are currently developing [34], as described in Sec. 3 and 4.

2.3. Inverse problem

To cast the inverse problem, we employed a Born formulation in which the emission field is
normalized by the excitation field [35] by normalizing the experimental time-domain emission
measurements to the CW excitation flux at the same position. We therefore have:

Mm(rs,rd , t)
Mx(rs,rd)

=
α

Ux(rs,rd)

NF

∑
k=1

∫
d3rWk(rs,rd ,r, t)ηk(r), (15)

where α incorporates unknown constants associated with wavelength-dependent gains and at-
tenuations that can be measured once for every imaging system, Mm(rs,rd , t) is the total sig-
nal from all fluorophores with different lifetimes at the emission wavelength measured at the
boundary position rd and t excited from the source at rs, Mx(rs,rd) and Ux(rs,rd) are the meas-
ured and simulated, respectively, total excitation flux measured by a photo-detector at rd . This
normalization efficiently mitigates the dependence of the detected fluorescent signal on the
optical properties of the examined tissue [35, 36], thus we do not model the absorptive hetero-
geneities associated with the different organs in our synthetic murine model.

The normalized fluorescence signals corresponding to different source-detector (S-D) pairs
and time gates (left term in Eq. (15)) can be stacked up as a vector γ ∈ RNm (Nm is the total
number of measurements, that is, the product of the number of S-D pairs and the number of
time gates) where it can be used as part of an inverse problem. Similarly, the kth effective
quantum yield for the entire imaging volume can be written as ηΩ

k = [ηk(r1), ...,ηk(rNV )]
T ,

where NV is the total number of voxels in the region of interest. Overall, the forward problem
can be expressed in a matrix form:

⎡
⎢⎣

γ1
...

γNm

⎤
⎥⎦=

⎡
⎢⎣

β1W Ω
1,1 . . . β1W Ω

1,NF
...

. . .
...

βNmW Ω
Nm,1 . . . βNmW Ω

Nm,NF

⎤
⎥⎦
⎡
⎢⎣

ηΩ
1
...

ηΩ
NF

⎤
⎥⎦ , (16)



where W Ω
s,k is the weight function for the sth(s = 1, ...,Nm) measurement and the kth fluorophore

species over the volume Ω, and βs = αs/Ux
s is the normalization factor for the sth measure-

ment and the corresponding weight function. The above equation has a general form Ax = b,
then x = [ηΩ

1 , ...,ηΩ
NF
]T can be computed by solving this linear system of equations. Notice

here the reconstructions for all fluorescent species provided herein are simultaneous based on
monochromatic data and the measurements employed are direct measurements that are not de-
rived from a pre-processed unmixing algorithm. Because of the ill-posedness of the inverse
problem, the reconstruction method in fluorescence tomography usually sets up a least square
optimization problem minimizing an objective function given by:

Ψ = ‖Ax−b‖2 +‖λ (r)x‖2, (17)

where λ (r) is a spatially variant regularization parameter to compensate for the spatial depen-
dence of the contrast and resolution in the reconstruction [37].

2.4. Reconstruction algorithm

In summary, our approach to reconstruct the effective quantum yield is schematically depicted
in Fig. 1. The capital letters shown in the square brackets below refer to the individual steps in
this scheme. [A] represents a time-resolved Monte Carlo simulation for excitation photons, fol-
lowing the WMC approach to analytically compute the light transport in tissue. This simulation
can be adapted to different illumination and detection strategies.

MC for excitation

� �a x���s at

Background weight
matrix W’

Lifetime based
weight matrix Wk

Minimization of the

objective funcition �

Fluorescence
Measurements

Fluorophore

distribution r��� 	k

[A]

[B]

[C]

[D]

Fig. 1. Block diagram summarizing the steps to perform fluorescence reconstruction.

To calculate the background weight matrix in [B], we directly add the weighted paths to
the weight matrix along with the Monte Carlo simulation, instead of storing all the photon
trajectories. This reduces the post processing time for weight matrix calculation as well as the
storage space for the huge number of photon paths. Note that any of Eqs. (11), (12) and (14)
can be used in [B]. It should be noted that Eq. (14), wherein the absorption coefficient at λx and
λm are assumed to be identical, can be used for computational efficiency. The lifetime-based
weight matrices are then calculated by Eq. (6) in [C]. Knowing the experimental measurements,
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Fig. 2. (a) The mouse model geometry and arrangement of sources (top) and detectors
(bottom) used for the simulations. The fluorescent kidneys are marked as red and black,
according to different lifetimes. (b) The illumination patterns (red: on, black: off).

a conjugate gradient method is applied in [D] to minimize the objective function defined in
Eq. (17) and obtain the fluorescence yield distribution. The fluorescence measurements in this
study are either from an actual experiment or an emission Monte Carlo simulation at λm based
on the absorption probability calculated in [A].

3. In silico study

3.1. Simulation setup

We first validated the proposed algorithm in silico in a model replicating small animal fluo-
rescence imaging. The Monte Carlo simulations were performed on a mouse geometry with
the kidneys and the skin shape extracted from a whole-body atlas [38] (Fig. 2(a)). The entire
field of view consisted of 89× 33× 19 voxels with size 1mm3. The optical properties were
set to μx

ab = 0.3cm−1, μ ′x
s = 25cm−1, μm

a = 0.36cm−1, μ ′m
s = 20cm−1 over the entire body,

to simulate the different optical properties of mouse tissues at different wavelengths in the
NIR window [32]. The kidneys were considered to be labeled with two distinct fluorophores
with lifetime of 0.5ns (black) and 1ns (red), respectively. The μa f for both kidneys were set
to 0.1 times of the background absorption coefficient μx

ab, and the quantum yield was set to
1. 36 bar-shaped patterns were used as the source with each pattern illuminating half of the
imaged surface along the x and y axes independently (Fig. 2(b)). A grid of 64 point detectors in
transmission geometry were arranged covering a 31mm×27mm×18mm volume spanning the
abdomen. The sources and detectors are projected to the surface along the z axis. The initial
positions of the photons were randomly spanned (that is, uniformly distributed) over the illu-
minated area to accommodate the broad field illumination. The detectors had a 2mm separation
along the y axis and a 2.2mm separation along the x axis with a radius of 1mm.

In the Monte Carlo simulation, 109 photons were consecutively launched for each pattern
source on a massively parallel environment (blue gene, CCNI at RPI [39]) to calculate the ex-
citation and fluorescence measurements as described in Sec. 2.1. Under the assumption that the
optical properties are equal at λx and λm (Eq. (14)), the time-resolved Jacobians for FMT were
simultaneously computed by convolving the excitation field Jacobians by the lifetime decay.
The temporal profile was recorded over a 6ns time window with 20ps resolution and a gate-
width of 200ps (total of 120 gates). These parameters were selected to replicate the operating
characteristics of our pre-clinical imaging platform [16] and correspond to the typical mini-
mum gate width. Note that we do not explicitly include noise in the simulation data. However,
the Poisson noise inherent in time-resolved studies also exists in Monte Carlo simulations. As
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Fig. 3. (a) Representative simulated signals from the fluorophores with τ1 = 0.5ns (blue)
and τ2 = 1ns (red), and the total fluorescence signal (black) used in the reconstructions.
All the signals are generated using the mouse phantom and a single transmittance S-D pair
as shown in (b) and (c). (b) Weight matrices for τ = 1ns at the 3 gates (gray) presented
in (a). (c) The direct detector readings from the region of interest (black boxes) from the
simulation on the mouse phantom. The bars in (b) and white boxes in (c) indicate the
illumination pattern and the crosses in (b) and (c) indicate the detector used in (a).

the excitation measurements and fluorescence measurements are both directly simulated in this
work (not computed through the multiplication of a Jacobian with a synthetic phantom), both
measurements have an uncorrelated Poisson noise that replicates experimental conditions.

The average calculation time for an excitation or emission MC simulation for one pattern
source and all detectors and gates was less than 8 minutes (on 4096 nodes). Figure 3 shows
typical simulated fluorescence signals and the background weight matrices calculated using
Eq. (14) at different time gates.

3.2. Gate information content for fluorophore multiplexing

In order to quantitatively assess the information content at single gates, we need to es-
tablish quantitative performance metrics. We investigated the quantification, crosstalk and
resolution based on the reconstructions using one gate from 0.2ns to 2.9ns (opening of
the gate) at an interval of 0.1ns. The quantification of the reconstructed η1 is defined as
Q1 = max[η1(Ω1)]/H1(Ω1), where Ω1 denotes the known location of the inclusions with
lifetime τ1 = 0.5ns and H1 denotes the expected value of η1. The crosstalk is defined as
X1 =max[η2(Ω1)]/max[η1(Ω1)] to quantify the separability of the two inclusions with lifetime
contrast. The quantification and yield crosstalk for the 1ns component was similarly evaluated.
Note that Q and X are overestimated using the definitions based on only maximum value in
the region of interest. The spatial resolution is measured as the full width at half maximum
(FWHM) of the point spread functions (PSF). PSFs are created by simulating a perturbation at
a single point. The simulated perturbation, xsim, is a vector of zeros except for one target pixel
at the center of the reconstructed volume with a value of one. We then generated simulated
measurements ysim = Axsim and reconstructed the image. The cube root of the volume of vox-
els within half the peak reconstructed value is defined as FWHM. Plots of the quantification,
crosstalk and FWHM of PSFs are shown in Fig. 4. Note that for all these reconstructions, the
inverse problem size was identical and that the same iteration number (150) was used in the CG
algorithm. This ensured consistency between the different reconstructions.
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Fig. 4. Information content evaluation based on single gate reconstructions in terms of (a)
quantification, (b) crosstalk and (c) resolution.

From the plots of performance metrics, it is clear that for the reconstructed object with the
shorter lifetime, the quantitative accuracy is decreasing with time while the crosstalk is increas-
ing. Conversely, for the reconstructed object with the longer lifetime, an opposite behavior is
observed with equivalent quantification and crosstalk around the maximum gate. It is notewor-
thy that the reconstruction using the latest gate (t = 2.8ns) results in the most accurate quantifi-
cation and the least crosstalk for the compound with the longer lifetime, implying the necessity
of the late gates for effective separation of the objects with lifetime contrast. It is impossible to
achieve the best quantification and minimum crosstalk using only the early gates because of the
comparable contribution of the two fluorophores at the early time points (Fig. 3). As expected,
the steadily increasing FWHM of PSFs with time indicates that the early gates provide im-
proved resolution when compared to the late gates [7, 15]. The better resolution at early gates
is due to the narrower probing volume by photons detected at the early time points, as seen
in Fig. 3(b). However, there is no significant reduction in the resolution of the reconstructed
yield distributions for the two lifetimes when using gates later than the maximum gate. The
reconstruction at the 10th gate (t = 0.2ns) does not follow the trend due to the poor statistics
of the weight matrix at the early gates, where the number of detected photons is insufficient
to generate reliable statistics. It results in increased artifacts in the reconstructions when using
very early gates. From the above analysis, we conclude that multiple fluorophores with lifetime
contrast cannot be efficiently separated with minimal crosstalk if a single gate of the TPSF is
used.

3.3. Lifetime multiplexing tomography based on multiple gates

To utilize the various information carried by different gates, we investigated reconstructions us-
ing multiple gates simultaneously. In this regard, 5 sets of time gated measurements consisting
of 5 gates each were considered. The number of gates was limited to 5 to reduce the memory
burden as all the gates are simultaneously used in one inverse problem. The 5 different sets
simulated in this study are illustrated in Fig. 5(a). Sets 1, 3, 5 have gates spaced at uniform
intervals covering different time ranges, corresponding to the early to the maximum gate, full
span, and the maximum to the end of the TPSFs. Sets 2 and 4 span the full time range, with non-
uniform spacings exponentially scaled towards the rising and the decaying edges of the TPSFs
respectively. This is a heuristic but straightforward approach to investigate the reconstruction
performance using multiple combined gates. The reconstructions using combined gates of set
1 and set 5 are displayed in Fig. 5(b) and 5(c), respectively.

Table 1 summarizes the quantitative metrics described in the previous section for the 5 sets
investigated. It should be noted that the introduction of late gates improves the quantification
of both fluorescence yields. Moreover, significantly less crosstalk than any of the single-gate
reconstructions was achieved by using combined gates. The reconstruction using early gates
(Set 1) has superior resolution compared to the reconstruction using late gates. However, the



Fig. 5. (a) Sets of time gates investigated in multi-gate reconstructions. (b) and (c) display
the reconstructions using combined gates of set 1 and set 5, respectively.

crosstalk for this case, is significantly higher than those applying late gates. For sets 2-4, the
quantification and crosstalk are improving with the gate selection shifting to late gates, with
similar performance in resolution due to the use of an early gate. It should be noted that the most
accurate quantification and minimum crosstalk is obtained for both lifetimes when using the
maximum and late gates (Set 5). However, without applying any early gates in reconstruction,
the resolution is worsened by 20% compared to the other cases.

In order to ascertain the effect of assuming equal optical properties at excitation and emission
wavelengths, a second set of time-resolved Jacobians were computed for the same set of gates
using Eq. (11) (A-E). The reconstruction results when using sets are also given in Table 1.
Comparing sets 1-5 and sets A-E, it is determined that the assumption of equal optical properties
at excitation and emission wavelengths results in less than 5% quantification error for all three
criteria.

Table 1. Quantitative Comparison of the Multi-Gate Reconstructions
Set Quantif. (%) Crosstalk (%) FWHM (mm)

τ1 τ2 τ1 τ2 τ1 τ2

1 44.53 45.65 39.74 50.43 2.33 2.44
2 45.89 49.22 35.69 36.50 2.52 2.64
3 46.98 52.19 32.25 33.42 2.69 2.78
4 49.04 53.96 29.20 30.66 2.74 2.85
5 49.77 63.05 24.92 24.10 3.21 3.16
A 47.64 45.72 37.19 49.19 2.19 2.32
B 48.59 50.21 33.34 33.98 2.43 2.46
C 49.35 53.40 31.01 31.45 2.63 2.67
D 50.47 54.39 27.34 30.05 2.72 2.76
E 55.76 66.45 21.77 23.19 3.17 3.11



4. Experiment

4.1. Diffuse optical tomography system

The lifetime based Monte Carlo algorithm was experimentally validated by using a
time-domain small animal molecular imaging system, which is schematically depicted in
Fig. 6(a) [16, 40]. A tunable (690nm - 1020nm) Ti-Sapphire laser is used as the light source in
the system. The laser source is expanded and projected on a digital micro-mirror device (DmD)
based DLP board (Discovery 1100, Texas Instruments). 36 binary sliding-bar patterns similar to
Fig. 2(b) are reflected on the programmable DmD chip and projected on the imaging chamber
to provide an illumination area of 35mm × 20mm (matching the dimensions of a small animal
torso). The transmitted signal is detected by a time-gated intensified CCD (ICCD) camera (Pi-
costar HR, LaVision) with a time resolution of 40ps in the interest of a shorter acquisition time
(24 minutes total using 36 patterns at excitation and emission wavelengths). A gate width of
300ps was selected to avoid temporal errors due to jitter when employing 200ps gates [41]. Pho-
ton measurements at the excitation and fluorescence wavelengths were acquired consecutively
using bandpass filters. The incident fields for excitation and the fluorescence data for excitation
were collected at 780nm and 832nm, respectively. The laser power was independently opti-
mized for both the excitation and fluorescence measurements to maintain a maximum signal
level of 4000 counts. Further, the acquired images are post-processed to generate 1mm × 1mm
detector measurements by averaging over 7×7 pixels.

4.2. Phantom setup

A polycarbonate slab phantom (Fig. 6(b)) that consisted of two tubes having an inner diameter
of 1.5mm was used to experimentally assess the performance of the algorithm. To achieve
lifetime contrast, tube I, II were filled with 2.5nmol of Indocyanine Green (τ1 = 0.45ns) and
IRDye 800CW (τ2 = 0.8ns) dissolved in 180μL ethanol, respectively. The effective quantum
yields of the two tubes was externally calibrated and tube I was found to have 1.5 times the
yield of tube II. The tank was filled with a mixture of Intralipid-20% (Sigma-Aldrich) and a
water-soluble NIR Dye (Epolight 2717, Epolin) diluted in water to simulate the average optical
properties (μa = 0.16cm−1 and μ ′

s = 17cm−1) of murine models.
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Fig. 6. (a) Schematic of the TD fluorescence tomography system. LS: laser; PC: power
control; FBC: fiber-beam coupler; BE: beam expander; DMD: DmD-based DLP chip; IL:
imaging lens; IC: imaging chamber; CCD: intensified CCD camera; HRI: high rate imager;
TDU: trigger delay unit; TG: trigger generator. (b) Phantom setup. The red box shows the
pattern illumination area. All dimensions are in mm.



Fig. 7. Experiment results using (a) TD data and (b) CW data. The images are normalized
to the maximum of the reconstruction.

4.3. Experimental reconstruction

For the MC computation, the phantom was digitized into a 28 × 40 × 14 volume image with
1mm × 1mm × 1mm voxels. A background weight matrix as defined in Eq. (14) covering the
field of view of 24 × 34 × 14 area, resulting in a total of 11,424 voxels, was calculated. The
accuracy of the inverse model with experimental data is affected by the heterogeneous spatial
distribution of the experimental pattern on the phantom. The illumination spatial heterogeneity
is taken into account in the Monte Carlo simulation by scaling the initial photon weight to
the illumination intensity at the injection position using experimental calibration patterns. The
system impulse response functions (IRF) for all sources was convolved into the model before
tomographic inversion, to match the model prediction with the experimental measurements.
Since the lifetimes are known in advance in this controlled phantom experiment, the weight
functions are generated using the shorter lifetime at τ1 = 0.45ns (ICG) and the longer lifetime
at τ2 = 0.8ns (IRdye™) using Eq. (6). In in vivo applications, the lifetime of the dye within a
control animal should be separately estimated due to the possible fluctuation of the fluorophore
lifetime under different micro environments.

To achieve better separation between the two fluorophores while maintaining resolution, we
selected the measurements at 20% of the rising edge, 75%, 35%, 20% and 15% of the decaying
edge of the convolved TPSFs (mimicking gate set 4 in Sec. 3) to recover the fluorescence yield
distribution based on the analysis of the simulated result. Gates with less than 400 photons (10%
of the max for transmittance detector) were discarded in the reconstruction process to maintain
an appropriate signal-to-noise ratio (SNR). This SNR led to a reduced size of the dataset by 8%.
For comparison, we also reconstructed the fluorophore distribution using CW data at the same
emission wavelength. The CW weight functions for the inversion were calculated by integrating
the corresponding TD weight functions over time and the TPSFs were integrated over time to
obtain the CW datatype.

The reconstruction results are shown in Fig. 7(a), similar as the 3D visualization of the in
silico results. The two objects are separated with crosstalk X1 = 28.51% and X2 = 26.24%. The
ratio of the mean reconstructed yields within the 50% isovolume of tube I and II was found to
be 1.52. The average dimension of the reconstructed tubes was 34.5% larger along the x axis
and 85% larger along the z axis (depth). This difference in resolution is due to the transmittance
arrangement of the S-D pairs, which smears the resolution along the z axis. Hence, the diameter
of the reconstructed isosurface is approximately 2 times bigger than the actual diameter due
to the loss in the depth dimension, which can be attributed to the high scattering, and to the
position of the two objects in the middle of the phantom, where the weight matrix has the least
sensitivity. The CW reconstruction using one wavelength presented in Fig. 7(b), shows poor
resolution (103% increase in depth) and no separation (100% crosstalk).



5. Discussion

In this work we have proposed a new formulation to compute time-resolved fluorescence Ja-
cobians for FMT. We validated this MC formulation for time-gated datatype to simultaneously
image two fluorophores using in silico and experimental studies. The formulation is compu-
tationally efficient and offers three distinct advantages. First, once the excitation simulation is
computed, it can be used to rapidly calculate the weight functions for multiple fluorophores with
different lifetimes. Thus this method becomes attractive for lifetime multiplexed studies. Sec-
ond, this scheme can be extended to multi-spectral imaging where the absorption coefficients
can be modified in Eq. (14) to accommodate the changes in extinction coefficients at different
wavelengths without the need of simulating another set of absorption coefficients. Third, using
Eq. (11) the difference between μx

a and μm
a can be taken into account, noticing that there are

no significant increase of computational burden using Eqs. (11) and (14) thanks to the WMC
method [31]. Such flexibility in incorporating differences in spectral absorption allows its use
for compounds with relatively large Stokes shift (e.g. quantum dots). Here we investigated a
20% change in the in silico study and an improvement less than 5% was achieved using the cor-
rected μm

a , implying the proposed approach is robust for reconstructions in the NIR window. On
the other hand, the scattering coefficient cannot be rescaled like the absorption coefficient due
to the transmittance geometry employed in this work [31]. While an inaccurate estimation of the
scattering coefficient will result in errors in the reconstruction, μs varies more slowly (seldom
more than 20%) over the spectral range in the NIR window [30]. Previous studies have reported
that 20% change in μs will result in less than 15% error in diffuse optical tomography [42] and
similar results are expected in FMT.

We validated the proposed formulation by reconstructing two different compounds simul-
taneously based on one excitation/emission wavelength pair without using an lifetime based
unmixing algorithm on the diffuse measurements. We employed the time-gated datatype to
retain the appeal of time-resolved measurements, improved resolution and lifetime contrast un-
mixing. While using early gates increases the resolution, the crosstalk between fluorophore is
significant due to their equal contribution to the signal when used alone. The introduction of
late gates in reconstruction is required to improve separation and quantification of fluorescent
probes with lifetime contrast. The combination of early and late gates allows one to trade off the
advantages and disadvantages of different time gates and thereby obtain enhanced resolution
and crosstalk simultaneously. Employing 5 gates, the fluorescent inclusions were accurately re-
solved in the region of interest with minimal crosstalk. However, not all the individual metrics
are optimal as an emphasis was put on reduction of crosstalk in this work due to the particular
application considered. In the case of applications with only one compound, it will be prob-
ably possible to identify a set of gates that allow superior resolution and quantification [15].
Moreover, a reconstruction scheme, in which the spatial a priori information derived from an
early gate reconstruction is incorporated in reconstruction based only on late gates (or even CW
datatype for enhanced SNR), could provide superior results. Also, in the experiment conducted
herein, the two compounds were spatially separated. The method proposed here however does
allow the reconstruction of the concentration of two fluorophores that are co-localized. This
cannot be achieved when employing methods that reconstruct both quantum yield and lifetime.
And this provides a new method to monitor the multiple markers in vivo.

6. Conclusion

In this work we have developed a new formulation to perform time resolved FMT based on
the Monte Carlo forward model. The formulation derived allows to compute fluorescence Ja-
cobians within the fluorescence Born formulation in a computationally efficient manner. Based
on standard assumption in the field of FMT, i.e. that the optical properties are similar at the



excitation and emission wavelength, the time-resolved fluorescence Jacobians for multiple flu-
orophores can be computed from one excitation simulation. We have investigated the use of this
new formulation in the context of simultaneous tomographic imaging of multiple fluorophores
without using any unmixing algorithm. We considered the use of time-gated datatypes span-
ning the full TPSFs, including the early gates for which the diffusion equation is known to be
inaccurate when compared to the MC. The in silico and experimental studies demonstrate that
this new formulation can simultaneously reconstruct two fluorophores with improved resolu-
tion and reduced crosstalk when multiple gates are employed, whereas the two fluorophores
cannot be resolved if only early gates are employed.
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