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Purpose: The Monte Carlo method is an accurate model for time-resolved quantitative fluorescence

tomography. However, this method suffers from low computational efficiency due to the large

number of photons required for reliable statistics. This paper presents a comparison study on the

computational efficiency of three Monte Carlo-based methods for time-domain fluorescence

molecular tomography.

Methods: The methods investigated to generate time-gated Jacobians were the perturbation Monte

Carlo (pMC) method, the adjoint Monte Carlo (aMC) method and the mid-way Monte Carlo

(mMC) method. The effects of the different parameters that affect the computation time and statis-

tics reliability were evaluated. Also, the methods were applied to a set of experimental data for

tomographic application.

Results: In silico results establish that, the investigated parameters affect the computational time

for the three methods differently (linearly, quadratically, or not significantly). Moreover, the noise

level of the Jacobian varies when these parameters change. The experimental results in preclinical

settings demonstrates the feasibility of using both aMC and pMC methods for time-resolved whole

body studies in small animals within a few hours.

Conclusions: Among the three Monte Carlo methods, the mMC method is a computationally pro-

hibitive technique that is not well suited for time-domain fluorescence tomography applications.

The pMC method is advantageous over the aMC method when the early gates are employed and

large number of detectors is present. Alternatively, the aMC method is the method of choice when

a small number of source-detector pairs are used. VC 2011 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3641827]

Key words: Monte Carlo, time resolved, fluorescence tomography, small animal imaging

I. INTRODUCTION

Small animal imaging is emerging as a powerful tool in bio-

logical research and medical diagnosis to observe in vivo the

biochemical, genetic, or pharmacological processes under

study. Optical techniques utilizing fluorescent substances for

small animal imaging have received steady attention in the

last decade. The emitted photons from the fluorescently la-

beled targets can provide functional and molecular informa-

tion by locating and tracking the bio-distribution of the

targets in tissue, which is extremely valuable in drug devel-

opment. Of particular importance is the combination of fluo-

rescence imaging with tomographic techniques allowing

three-dimensional visualization and quantification of bio-

markers in vivo.

To perform quantitative fluorescence tomography, it is

essential to employ an accurate mathematical model to describe

the propagation of light in biologic tissues. The Monte Carlo

method is a statistical method that tracks individual photons as

they propagate. In the case of optical imaging, the interactions

of the photon with the tissue are dependent on the scattering

properties (scattering length and anisotropy), the absorption

properties and in case of fluorescent the fluorophores properties

(quantum yield, lifetime, quenching, etc.). This method is con-

sidered the gold standard to accurately model light propagation

in either diffusing or nondiffusing media with flexibility to

model arbitrary boundaries.1 It is selected as the most accurate

forward model to validate newly developed algorithms (based

on the diffusion equation or the radiative transport equation)

for fluence/flux prediction, and has been studied for years in

spectroscopy and bulk optical properties reconstruction.2–4

However, owing to the statistical nature of the Monte Carlo

method, the propagation of a large number of photons must be

simulated to attain reliable results. This makes the Monte Carlo

method a computationally expensive technique for tomographic

reconstruction. This computational burden, along with the

memory constraints in early computers, has hindered the use of

the Monte Carlo method as a forward model for tomographic

reconstruction, since tomography requires simulating numerous

source-detector (SD) pairs translating to orders of magnitude

increase in calculation time. However, there is renewed interest

in implementing the Monte Carlo method for tomographic use

because of its appealing accuracy in modeling light transport

for preclinical studies.5–8 For instance, continuous wave weight

functions based on the Monte Carlo simulations in an adjoint

form have been applied to tomographic reconstructions in asso-

ciation with unmixing techniques fitting the decaying part of

the time-domain data.5,6 The perturbation Monte Carlo (pMC)

method, utilizing the time-gated Jacobian of the forward Monte
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Carlo simulations with respect to the spatial fluorophore distri-

bution as the weight function, has also been successfully

applied to fluorescence tomography in a computational efficient

manner.7

It is noteworthy that the direct time-domain dataset (time

gates) has unique benefits in fluorescence tomography due to

the rich information content it carries which can improve

quantitative accuracy, resolution9,10 and perform lifetime

multiplexing without the use of unmixing algorithms.7,11

The Monte Carlo method is crucial when employing time-

gated data not only due to its accuracy for a broad range of

optical properties but also for modeling the early rising com-

ponent (photon counts less than 50% of the maximum) of

the temporal point spread function (TPSF), where the

approximation to the transport equation, namely the diffu-

sion equation, fails.1 However, photons are split into small

time-bins (gates) in time-domain Monte Carlo implementa-

tions, leading to a significant increase in computation time to

achieve reliable statistics for each individual gate. With the

recent progress in parallel computing, tomography employ-

ing time-gated Monte Carlo method is becoming viable

thanks to the acceleration based on massively parallel com-

putation.7 Besides the pMC method, the forward-adjoint

Monte Carlo (aMC) method, and the mid-way Monte Carlo

(mMC) method have been previously used to optimize the

efficiency of the forward Monte Carlo calculations, however,

to our knowledge, implementation in time-gated tomography

has not yet been reported. In this work, we have extended

the aMC and mMC methods to time domain for the calcula-

tion of direct Jacobians and benchmark them with our previ-

ously developed the pMC method, in terms of the time

efficiency for full tomographic reconstruction settings. We

report herein the computational comparison of these three

Monte Carlo methods in generating time-gated Jacobians for

full tomographic reconstructions on the same computational

platform for time resolved FMT applications.

II. METHOD

The distribution of the fluorophore can be reconstructed

by solving an inverse problem that relates the detected sig-

nals collected at the surface of the sample to the local

fluorophore-related parameters. In FMT applications, the Ja-

cobian of the forward operator with respect to these parame-

ters is commonly used to form a discrete linear inverse

system. The fundamental difference of our three investigated

Monte-Carlo-based techniques resides in the methods to

form the Jacobian, which are conceptually depicted in Fig. 1.

The aMC method [cf. Fig. 1(a)] calculates the Jacobian by

multiplying the resulting light fields from a forward simula-

tion with photons propagating from the source position rs and

another one with an assumed source at the detector position rd

(adjoint simulation).12 In the pMC method [cf. Fig. 1(b)], the

Jacobians for multiple detectors can be directly generated

from the stored photon path information in a single forward

simulation for the source rs. The mMC method [cf. Fig. 1(c)]

employs a half-space forward simulation and a half-space

adjoint simulation for one SD pair. These simulations treat all

subsurfaces on the mid-surface as detectors, and calculate

Jacobians and photon responses for all of them. For a certain

subsurface, the half-space Jacobian calculated in the forward

simulations is multiplied by the response generated from the

adjoint simulation, and vice versa. Then, an integration of all

these Jacobians over the mid-surface results in the final Jaco-

bian for this SD pair. The three methods are described in

detail in Secs. IIA-IIC.

II.A. Forward-adjoint Monte Carlo method

The aMC method has been proven efficient when the

sources and detectors are small relative to the target volume,

such as the point sources and detectors widely used in

tomography.5 However, because the Jacobian is the product

of the source field and the detection field, this method can

suffer from high variance on the boundaries.13 The forward-

adjoint Monte Carlo method is readily expanded to the

time-domain method by introducing a time variable t.14

According to the transport theory, the fluorescence intensity

measured at rd and time t for an impulsive excitation at rs

and t0¼ 0 can be written as:

UFðrs; rd; tÞ ¼
ð

X
dr

ðt

0

dt0
ðt0

0

dt00 Gxðrs; r; t
0 � t00Þ

� Gmðr; rd; t
00ÞgðrÞe�ðt�t0Þ=s: (1)

where the integration domain X is defined as the entire imag-

ing volume and g(r) is the yield distribution. The Green’s

functions Gx and Gm are the time-dependent background

Green’s functions for light propagation at the excitation and

emission wavelengths, which can be solved analytically or

numerically. Equation (1) can be written in a more concise

linear form:

FIG. 1. The schematic diagram of the three Monte Carlo-based methods to

create the sensitivity map of photon propagation with respect of the fluores-

cence change.
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UFðrs; rd; tÞ ¼
ð

X
dr Wðrs; rd; r; tÞgðrÞ; (2)

where W(rs, rd, r, t) is the weight function of the measure-

ment UF(rs, rd, t) with respect of g(r):

Wðrs; rd; r; tÞ ¼
ðt

0

dt0 e�ðt�t0Þ=s
ðt0

0

dt00

� Gxðrs; r; t
0 � t00ÞGmðr; rd; t

00Þ: (3)

Note in Eq. (3) a double convolution in time is required to

calculate the full weight function, which affects the time effi-

ciency of this method. In this study, the Monte Carlo method

is employed to calculate the Green’s functions G(x,m) instead

of the ubiquitous diffusion equation at the excitation and

emission wavelength. To calculate Gx(rs, r, t), a forward

Monte Carlo simulation with particles starting at a source

and traveling toward the detector is applied. Conversely, the

adjoint Monte Carlo simulation calculates Gm
n r; rd; tð Þ fol-

lowing backward propagating photons from the detector to

the target volume based on the general reciprocity theorem

and originates when the transport from r to the rd is replaced

by adjoint transport from rd to r.15

II.B. Perturbation Monte Carlo method

The time-gated pMC method for fluorescence tomogra-

phy has been recently presented by directly utilizing the pho-

ton path information in the forward Monte Carlo method for

fluorescence generation.7 The double convolution in Eq. (3)

can be written as two separate equations:

Wðrs; rd; r; t
0Þ ¼

ðt

0

dt0 W0ðrs; rd; r; tÞe�ðt�t0Þ=s (4)

and

W0ðrs; rd; r; t
0Þ ¼

ðt0

0

dt00 Gx
nðrs; r; t

0 � t00ÞGm
n ðr; rd; t

00Þ (5)

In the pMC method, assuming the same optical properties at

the excitation and emission wavelength, the background

weight function W
0
can be calculated implicitly based on

W0ðrs; rd; r; t
0Þ ¼

Xn

i¼1

wx
i ðrs; rd; t

0Þlx
aðrÞliðrÞ; (6)

where n is the total number of photons propagating from rs,

passing through r and detected by the detector rd at time t, wi

is the detected weight of the ith (i¼ 1,…,n) photon, and li(r)

is the path length that the photon passes at r. Thus, the

weight function is the weighted average of the photon paths

at each sub-region and time-bin. If the absorption coeffi-

cients are different between the excitation and emission

wavelengths, Eq. (6) can be modified to accommodate the

difference by adding a correction term:

W0ðrs; rd; r; t
0Þ ¼

Xn

i¼1

wx
i ðrs; rd; t

0Þlx
aðrÞliðrÞ

� exp

�
�
Xqi

j¼piþ1

DlaðrjÞ
�
; (7)

where Dla ¼ Dlm
a � Dlx

a is the difference between the

absorption coefficients at emission and excitation wave-

lengths, rj(j¼ 1,…,qi) are the regions that the ith photon

passes from rs to rd and the pith region is r. Since the Monte

Carlo simulation stores the path histories for each sub-region

within the volume of interest, any distribution of absorption

coefficient at the excitation and emission wavelengths can

be rapidly simulated. Moreover, this formulation allows to

compute fluorescence Jacobians for all the detectors and

time simultaneously in a computationally efficient manner

by allocating the memory to store the time-resolved weight

matrix for each detector.

II.C. Mid-way Monte Carlo method

In either the forward or the adjoint run in the mMC

method, the photons propagate up to a customized midway

surface that spatially separates the source and the detector.

The detector response can then be estimated by an integral

of the product of the radiation current of the forward and the

adjoint functions on the midway surface. Up till now, the

method has been developed for time-dependent forward

problems and validated for several test cases.16,17 It has been

shown to be particularly efficient in problems that involve

deep penetration and/or complex paths taken by the radiation

as it moves from source(s) to detector(s), which can be also

encountered in the optical tomography. Assuming isotropic

pairing at the surface, the method can be expressed as

UFðrs; rd; tÞ ¼
ðt

0

dt0
ðt0

0

dt00
ð

S

drS wðrs; rS; t
0 � t00Þ

� wðrd; rS; t
00Þe�ðt�t0Þ=s; (8)

where S denotes the midway surface, w(rs/rd,rS,t) is the

response at t, and at a subsurface rS on S due to a source

located at rs/rd. Note that the midway surface totally encom-

passes the source/detector but excludes the detector/source,

hence, the calculation for w only occurs in part of the vol-

ume. In order to generate the Jacobian using this method, we

expand w as a linear function of g over the partial volume

Xs/Xd including rs/rd:

wðrs=rd; rS; tÞ ¼
ð

Xs=Xd

dr W0ðrs=rd; rS; r; tÞgðrÞ; (9)

where W
0

can be calculated by Eqs. (4),(6), or (7). Since

using the adjoint method [Eq. (5)] requires simulating every

subsurface at S as a source, we used the pMC method to cal-

culate the Jacobian for all the subsurfaces simultaneously.

That is, to save the paths for every subsurface on the midway

surface, then pair the photons that reach the subsurface in

the forward run and the adjoint run. In this implementation,

we stored the paths on the computer hard disk to create the

matrix for every subsurface.

II.D. Computational settings

The BlueGene cluster at the Computational Center for

Nanotechnology Innovations (CCNI) at Rensselear Polytech-

nic Institute was employed for all computations herein. This
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cluster consists of 16,384 nodes with two single-thread 700-

MHz PowerPC 440 CPUs and 512 or 1024 MB of DDR

DRAM per node. The interconnect network structure is a

three-dimensional torus with a transfer speed of 175 MBps

in each direction and global collective rate of 350 MBps

with 1.5 ls latency.

The forward Monte Carlo simulations in this work were

based on the conventional forward Monte Carlo routine for

light propagation.18 That is, the photons are propagating from

an initial position then scattered based on the Henyey–-

Greenstein phase function, while the photon weights are

decreasing along the travel paths. The method was imple-

mented in C and incorporated with the communication proto-

col MPI for parallel computing on clusters/supercomputers

and compiled on a 32-bit UNIX-like proprietary operating sys-

tem for BlueGene. In the pMC and mMC approaches, several

nodes were allocated to store the photon paths and the number

of these nodes was adapted to the size of the problem and

memory of the node. Since the Monte Carlo approach is

highly parallizable, the increase in time efficiency is approxi-

mately linear to the increase of the calculating nodes. In this

particular work, the number of total nodes used for Monte

Carlo calculations was fixed to 4096, which is the maximum

for job requests on BlueGene.

Besides the hardware/software settings, there are various

parameters affecting the time cost of Monte Carlo simulations

to generate the Jacobians. In this study, simulations with dif-

ferent numbers of photons, numbers of sources/detectors,

numbers of gates, gate widths, voxel sizes, and optical proper-

ties, were evaluated to compare the time efficiency. The

objective of this investigation was to reveal the relationship of

the time cost changes with respect to any change of these pa-

rameters for the different methods of Jacobian calculation.

The range for each parameter was selected, according to gen-

eral preclinical system settings and listed in Table I. These pa-

rameters are independent to each other, thus the evaluations

were conducted by changing one or two parameters at a time

while keeping the other parameters constant. The fixed values

are also listed in Table I. It is noteworthy that for the optical

properties, only the scattering coefficient ls was considered as

a parameter affecting the time efficiency, because any changes

in la can be easily scaled by using the stored photon paths

when the scattering is fixed.19 In investigating the effect of ls,

simulations with a series of l0s were evaluated with la¼ 0.3

cm�1, g¼ 0.9, and n¼ 1.37, which are all typical values for

mouse tissue in the Near-infrared (NIR) spectral region.20 A

4� 4� 2 cm slab was employed in all the simulations

(cf. Fig. 2), where the thickness of the model was mimicking

the maximum thickness of a murine model.

II.E. Statistical criteria for computational efficiency
comparison

Like the forward Monte Carlo simulations, the accuracy

in Monte Carlo-based reconstruction approaches is fully de-

pendent on the spatial and temporal statistical characteristics

of the Jacobian. However, the statistical characteristics of

the Jacobians calculated by the methods investigated herein

may be different utilizing the same number of photons.

Moreover, changes in scattering may also lead to a change in

statistics, due to altered photon paths distribution. Therefore,

analyzing only the time cost with the same number of pho-

tons is not sufficient. Lastly, different selections of gate

widths and voxel sizes may cause variation in statistics.

Hence, it is critical to determine the least number of photons

for each approach to generate Jacobians reaching the

required fidelity for stable and accurate reconstructions.

Hence, we compared the generated Jacobians for the cen-

tral SD pair at the middle plane (cf. Fig. 2) to a precomputed

reference Jacobian. We employed an objective error metric

where the error � at position r was defined as

�ðrÞ ¼ j vðrÞ � vrefðrÞ
vrefðrÞ

j � 100%: (10)

In Eq. (10), v(r) and vref(r) were the values at r of the gener-

ated and reference Jacobians, respectively. The average of �
for the middle plane voxels was denoted as ��. The Jacobian

using the pMC method with 1010 photons was chosen as the

reference, as the difference between two independent calcu-

lations with 1010 photons leads to an error (��) less than 1% in

CW. Additionally, based on a previous study, the pMC

method using 109 photons can provide a stable and accurate

reconstruction in time-gated FMT (Ref. 7) with an average

error around �� ¼ 5% in the Jacobian. Thus, when �� reduces

to 5%, we consider the Jacobian to be statistically stable for

reconstructions.

First, we investigated the performance of the three meth-

ods in continuous wave mode (CW) with different l0s to

obtain an initial estimate of the required Nphoton. The CW

TABLE I. Parameter range for time efficiency evaluation.

Parameter Notation Range Fixed value

Number of photons Nphoton 105�109 109

Number of sources Ns 1–256 1

Number of detectors Nd 1–1024 1

Number of gates Ngate 1–60 60

Gate interval Tshift 20—60 ps 40 ps

Gate width Tgate 200—800 ps 200 ps

Voxel size Vvoxel 0.53–23 mm3 1 mm3

Scattering coefficient l0s 5—25 cm�1 15 cm�1 FIG. 2. The slab geometry used in the middle plane statistics comparison.

An example Jacobian for the assigned SD pair is shown too.
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Jacobian was generated by integrating the excitation photons

arriving at the detectors over a 2 ns span (in simulations after

2 ns the detected excitation photons is typically less than

0.5% of the total). Second, in order to determine Nphoton for

statistically stable time-domain reconstruction, we tested our

approaches on the same geometric settings. We employed

200 ps gates with 20 ps interval between gates, which is the

highest temporal resolution our imaging platform can

achieve for a full time window of 4 ns for fluorescence signal

detection. The number of the photons in time-domain simu-

lations was increased by 10 over the CW case based on the

ratio of the CW time span and the gate width. The effect of

different Tgate and Vvoxel on statistics was then investigated

for the time-domain data.

II.F. Reconstructions based on experimental data

To demonstrate the effect of different statistical charac-

teristics of the Jacobians on reconstructions under a practical

scenario, the performances of the methods were also eval-

uated experimentally for time-resolved whole body FMT.

The data were acquired from an in vivo experiment using a

newly developed time-resolved wide-field tomography plat-

form at RPI [cf. Fig. 3(a)].21 The system employed a tunable

femtosecond laser as the source and a time-gated ICCD cam-

era as the detector. A pico-projector module was used for

source pattern generation allowing rapid acquisition of spa-

tially and temporally dense measurements. The experiment

was performed on an euthanized mouse implanted with a flu-

orescent capillary filled with Indocyanine green (ICG) [cf.

Fig. 3(b)].10 We limited the volume to be imaged to the chest

section (36� 24 mm). 64 half-space patterns sliding along

with x- and y-axis were employed as illumination source,

with 97 detectors having a separation of 1.5 mm under a

transmittance geometry on the platform. We acquired a pro-

file covering 4.6 ns with 40 ps shift between the gates, result-

ing in 115 gates recorded. The gate width were set to 300 ps

to achieve an adequate signal-to-noise ratio and also retain

high sensitivity to the short lifetime.21

The outer shape of the mouse was extracted as the bound-

ary for photon transport in the Monte Carlo simulations. The

optical properties for the whole mouse were set to the aver-

age background properties of small animals (la¼ 0.3 cm�1,

l0s ¼ 15 cm�1). Combining these surface measurements, a

linear system was formed based on the born normalization

form of Eq. (2) to minimize the effect of the heterogeneous

background. The conjugate gradient method was applied to

solve this linear system, with a fixed iteration number of 50.

Note that all the simulations and reconstructions were

employed without any internal structural information as a
priori constraint.

III. RESULTS AND DISCUSSION

In Sec. III A, the required Nphoton for each method in CW

is estimated. The effects of the efficiency-related parameters

for time-gated calculations are then evaluated in Sec. III B

and the Nphoton for stable time-gated reconstruction is deter-

mined in Sec. III C. The time cost for generating Jacobians

for multiple SD pairs for tomography is evaluated subse-

quently in Sec. III D. Lastly, whole-body tomographic

reconstructions in a small animal model using the aMC and

pMC methods are provided in Sec. III E for comparison for

the three methods.

III.A. Computational efficiency in CW

We first investigate the effect of the change in Nphoton

and l0s on the Jacobian statistics for the central SD pair.

Figure 4 presents the result of increasing Nphoton vs mean

error at the middle plan (��) for different background l0s in

CW. For all methods, an increase of Nphoton results in a

reduction of the average error ��, implying an improvement

in statistics. The rate of change in �� is decreasing with

respect to the increase of Nphoton. That is, when Nphoton is

relatively small (105–106), an increase in Nphoton results in

a marked decrease of error. However, when �� reaches a

certain level (e.g., 5%), an increase in Nphoton does not

reduce �� significantly. Thus, the threshold of Nphoton (for

�� < 5%) is important to avoid the calculation burden, as

simulating more photons does not lead to a significant

improvement in Jacobian statistics, and hence reconstruc-

tion quality.

FIG. 3. (a) The experimental platform for the whole body time-resolved FMT in small animals. (b) Anatomical data of the mouse acquired by Micro CT.
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For the average murine l0s ¼ ð15 cm�1Þ, the aMC method

requires �20% (107� 2) of Nphoton compared to the pMC

method (�108) to reach the same level of statistics

(�� < 5%). This difference of required Nphoton for aMC and

pMC methods stands from the fact that, for one source and

detector, only the photons received by the detector are

recorded in the pMC method, but all the simulated photons

(in the forward run and adjoint run) are recorded in the aMC

method and contribute to the statistics. However, the statis-

tics of the Jacobian generated by the pMC method can be

improved by increasing the size of the detector to receive

more photons, which is appealing for the recent implementa-

tion of wide-field detection.22 The statistics changes at the

middle plane using the mMC and aMC methods are close to

each other (<5% difference), due to the similarity of the two

methods, that is, the forward and adjoint simulations and the

convolution in time are involved in calculation for both

methods. We only show up to 107 photons for the mMC

method due to the lengthy calculation time to generate the

Jacobian using this method (Table II).

The change of background l0s has an important influence

on the statistical characteristics of Jacobian. As expected, an

increase in l0s results in an increase of error, that is, with

higher l0s, significantly more photons are required in the

Monte Carlo simulations to achieve reliable statistics. This

can be explained by the fact that the higher l0s the more uni-

formly the photons distribute in the examined region, leading

to a less photon count in a certain sub-region thus a decrease

in statistics. This result suggests that the optimal number of

photons used for generating the Jacobian should vary accord-

ing to l0s to assure an satisfying reconstruction.

The time cost for CW simulations for average murine op-

tical properties producing results with less than 5% error at

the middle plane are listed in Table II. The computation time

for the aMC method to calculate the Green’s function using

107 photons is about 4–5 s for a single source or detector (10

s for one SD pair). For tomography applications, the number

of simulations is linear to both Ns and Nd based on the for-

ward adjoint formulation as all simulations for sources and

detectors are independent and additive. The time cost for the

pMC method using 108 photons is �1 min for one SD pair.

However, the time cost for the pMC method remains almost

constant (under 6% change) when the number of detectors

increases. This is because, the photon paths are transferred

to different nodes corresponding to different detectors there-

fore reducing the waiting time for data transfer at the calcu-

lation nodes. This transfer process results in an increase of

5%–15% to the time cost for an aMC simulation at the same

source with the same number of photons. In summary, the

aMC method is more efficient for a small number of Ns and

Nd, and the pMC method is more efficient when a large Nd is

employed.

Conversely, the mMC implementation to generate the Ja-

cobian for tomography use is practically difficult. In this

study, voxel-size subsurfaces are used at the middle plane

and the number of the subsurfaces (40� 40) is greater than

Nd used in tomography (<500). Therefore, the main con-

straint is the hardware memory capacity that limits the size

of the volume that can be reconstructed. On the other hand,

if the photon paths are stored on the disk, as in this imple-

mentation, it leads to lengthy writing and reading times.

From Table II, the time cost using the mMC method with

107 photons is more than 10 h for a small number of SD pairs

(36� 36), due to the time-consuming process to read and

pair the photon paths at the mid-plane. This process is even

more unpractical in the time-domain for which the pairing of

the photons should be done per time-gate. Therefore in the

rest of this paper, we disregard the mMC method.

III.B. Time-domain computational efficiency

The observed effects of the parameters listed in Table I

on the computational time are summarized in Table III for

time-domain simulations. The big- O notation is used for

analyzing the correlation between the examined parameter n
and the calculation time. It represents the order of the domi-

nant term for n when n tends toward the maximum value

listed in Table I. Overall, the effect of these parameters on

the total time cost is O(n2) (quadratic), O(n) (linear), or O(1)

(constant). For instance, Nphoton is linearly related to the

FIG. 4. The mean error at the middle plane of the Jacobian (��) along with

the increase of photons for different Monte Carlo approaches in CW.

TABLE II. Total time cost for same level of statistics (CW).

Ns Nd aMC (107) pMC (108) mMC (107)

1 1 �9 s <1 min <10 min

1 64 �5 min <1 min �5 h

1 256 �18 min �1 min �25 h

36 36 �5 min �30 min �10 h

36 64 �7 min �30 min �15 h

36 256 �21 min �30 min �40 h

36 1024 �75 min �32 min —

TABLE III. The effects of different parameters on total time cost.

Nphoton Ns Nd Ngate Tshift Tgate l0s Vvoxel

aMC O(n) O(n) O(n) O(n2) O(1) O(1) O(n) O(n)

pMC O(n) O(n) O(1) O(1) O(1) O(1) O(n) O(n)
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calculation time due to the additive nature of simulating

more photons. As expected, the relationships of simulation

time cost with Ns and Nd remain the same as in CW as these

parameters are not related to time. The effect of Nd for the

aMC and pMC simulations can also be observed in Figs.

5(a) [O(n)] and 5(b) [O(1)]. However, the total time cost for

generating the Jacobian using the aMC method includes not

only the simulation time [cf. Fig. 5(a)] but also the convolu-

tion time [cf. Fig. 5(c)]. The convolution time increases line-

arly with the increase of Nd, which is the same as for the

simulation time. Thus, the effect of Nd on the total time is

linear [O(n)]. The effect of Ngate on the time cost is however

different for the simulation time and convolution time. The

time for simulations using the aMC method tends toward

constant [O(1)] along with increasing Ngate because most of

the photons have propagated outside of the tissue after a cer-

tain time point (for 20 ps Tshift, gates later than gate 50

receive <2% of the total photons). The convolution time

when using the aMC method has a quadratic dependence

[O(n2)] on Ngate. Moreover, it becomes more dominant when

the number of SD pairs increases. The time cost for the pMC

method [cf. Fig. 5(b)] only consists of the forward simula-

tion time thus increases toward constant [O(1)] along with

increasing Ngate, similarly. For increasing Tshift and Tgate, the

calculation time also tend to a constant (the CW calculation

time) once the combination of Tshift, Tgate, and Ngate covers

all photons time of flight. The change in l0s is linearly related

to the change of the average number of scattering in Monte

Carlo simulations so as to the calculation time [cf. Fig. 5(d)].

An increase of scattering coefficient from 5 to 25 cm�1

results in an increase of the calculation time by �60%. For

the average scattering coefficient 15 cm�1, the calculation

time is around 8 min (480 s) for the pMC method (109) and

�48 s for the aMC method (108, one forward or adjoint sim-

ulation). By increasing Vvoxel, the calculation time linearly

decreases due to the increased density of grid. However, this

change is not significant (�8%) because the photon paths are

not changed statistically.

III.C. Statistics of time-domain Jacobians

The result of statistics comparison for time-gated Jaco-

bian calculations for the aMC and pMC methods using 10

times the required number of photons to obtain stable CW

Jacobians (107 and 108) is shown in Fig. 6 (108 and 109).

The Jacobians calculated by the aMC method have a marked

FIG. 5. The computational time for simulations with Ns¼ 1 and Nd¼ 16, 64, 256, and 1024 using the (a) aMC and (b) pMC methods. (c) The calculation time

for the convolution in the aMC method. (d) Time cost using different l0s for the aMC method with 108 photons.
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decrease in error along with the gate position moving toward

the late gates, for which the Jacobian is calculated by con-

volving more gates based on Eq. (1). The double convolution

in time summing up the photons detected in a full time span

gives an equivalent result in �� as in CW, thus �� for both aMC

calculations reaches a value close to that in CW using the

corresponding number of photons. By increasing Nphoton, the

statistics becomes better as expected. The �� for the pMC cal-

culations reaches the minimum at around the 25% rising

gate. This result does not exactly follow the rule that the sta-

tistics are only dependent on the number of photons that the

detector receives. This is because, based on the defined sta-

tistics criteria, the sum of the percentage error is averaged to

the whole middle plane. The statistics of �ðrÞ, which is de-

pendent on the number of photons at r, thus becomes worse

around the boundary of the Jacobian. However, the shape of

the Jacobian is expanding as time increases due to the

increased probing area of photons detected by later gates [cf.

Fig. (7)]. With more photons probing the boundary, more

voxels with worse statistics are encountered at the late gates,

resulting in an increase of ��. The statistics of Jacobian calcu-

lated by the pMC method with 109 photons is stable (almost

all around the 5% line) after the �25% rising gate compared

to that with 108 photons. The change of �� in this range is

within 4%, which makes it more suitable for reconstructions

using gates at any position of the whole time span. �� reaches

5% for the aMC method with 108 photons after the maxi-

mum gate, whereas for the pMC method with 109 photons at

around 25% rising gate. The Jacobians for early and late

gates are shown in Fig. 7. At the early gate, Jacobian by the

pMC method (109) shows closer statistics to the reference

[cf. Figs. 7(d) and 7(e)] compared to that by the aMC

method(108), whereas at the late gates, these two methods

have equivalent performances.

By increasing Tgate or Vvoxel, the statistics are improved

because more photons are accumulating in a wider gate or a

larger volume, as shown in Figs. 8(a) and 8(b), respectively.

However, the increase of photons does not affect the statis-

tics in the same way for the two Monte Carlo-based meth-

ods. For the aMC method, due to the convolution in time,

the Jacobian for a specific gate includes the information for

any gate earlier than it. Increasing the gate width results in

the photon path information recorded over a later time bin to

be added to the original gate. As a result, the decrease of

error for the early gate by increasing Tgate is greater than that

for the late gates, because for early gates, the photons

detected in the added time bin (toward maximum gate) are

more than that for late gates (toward later gate receiving less

photons). For the pMC method, the Jacobian for a gate only

contains the information of the photons detected in this gate

but not any gate ahead of it. For the early gate, increasing

Tgate from 200 to 400 ps will add the information for the

photons around the maximum gate (�320 ps) and the

improvement is significant with an error close to that for the

maximum gate. The improvement is small by increasing

Tgate afterward because the received photons are minimum

after t¼ 500 ps. This also explains that for late gates,

increase in Tgate does not change the error. The difference of

the Jacobians using 1 and 8 mm3 on statistics is fairly small

(within 6%), whereas by increasing the voxel size from

0.1253 to 1 mm3 the rate of change in error is significant.

This result implies that for this simulation setting, using

1 mm3 voxels is equivalent to using 8 mm3 voxels in statis-

tics, without decreasing the resolution in reconstructions.

III.D. Generating multiple Jacobians for tomography

In tomographic settings, dense source-detector pairs are

usually employed. Here, we examine the time efficiency of

the aMC and pMC methods in a manner that Nd¼Ns and

Nd¼Ns� 4 to mimic measurements acquired by CCD cam-

eras. Figure 9 shows the time costs to generate a full set of

Jacobians for reconstruction for all the gates (the aMC

FIG. 6. The mean error at the middle plane of the Jacobian (��) at different

time-gates for the aMC and pMC methods.

FIG. 7. A slice of the normalized Jacobians at the 25% rising and decaying gates, calculated by the aMC and pMC methods with different Nphoton.
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method with 108 photons and the pMC method with 109 pho-

tons). Note that the convolution time for the adjoint method

becomes dominant when the number of SD pairs increases,

which implies that, even if the forward Monte Carlo simula-

tions are accelerated by using parallel computing, the

required convolution still takes long if the number of SD

pairs is large. The total time for the pMC method is less than

that for the aMC method when Ns¼Nd> 150. When Nd is

much greater than Ns, the two methods shows nearly identi-

cal time efficiency when Ns< 50, but the pMC method

shows superior efficiency otherwise. However, this is the

case when the Jacobian for all the gates is generated. If cer-

tain gates are selected for reconstruction, e.g., early gate for

resolution, the convolution time will decrease dramatically.

For a single gate, the convolution time will be 2%–6% of the

total convolution time, according to the position of the gate.

This fact makes the aMC method an appealing approach if

only a few gates are optimally selected for reconstruction.

Practically, 5–10 gates are usually selected for reconstruc-

tion. In this case, the time cost for convolution can be

reduced up to 90% leading to computational times almost

equivalent to that for only forward simulations (dotted lines

in Fig. 9), where the aMC method is more efficient than the

pMC method for these SD combinations. Moreover, the

computation for the convolution in the aMC method is

performed under MATLAB and can be optimized for greater

computational efficiency. The convolution time is expected

to be reduced significantly by optimized computational

methods, such as parallel acceleration using multicore CPU

or graphics processing unit (GPU).23 In summary, for tomo-

graphic systems with high spatial and temporal resolution,

the pMC method can be more efficient than the aMC

method, while for simpler fiber-based systems with the capa-

bility of acquiring less resolved signals, the aMC method is

more suitable.

III.E. Experimental comparison

The single gate (25% rising) reconstruction result for the

experimental data using the pMC and aMC method are

shown in Fig. 10. Both aMC (with 108 photons) and pMC

(with 109 photons) methods provide accurate reconstructions

in terms of the position and shape of the object. Although

there is a difference in the statistics for the two methods at

FIG. 8. The mean error at the middle plane of the Jacobian (��) using different (a) Tgate and (b) Vvoxel.

FIG. 9. The time cost to generate a full time-domain Jacobian when (a) Nd¼Ns and (b) Nd¼Ns� 4. The dashed lines in both figure represent the calculation

time for the forward simulations using the aMC method.
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this gate, the average for the voxels within the isovolume at

half of the maximum reconstructed value is within 6%. For

comparison, the result using the aMC method with 107 pho-

tons is also shown in Fig. 10. With this number of photons,

incorrectly reconstructed artifacts due to the noise can be

observed, demonstrating that reliable statistics is essential in

reconstructions.

The experimental platform with patterned illumination

allows for a relatively small number of sources while provid-

ing high-spatial sampling for high quality reconstruction10.

As expected, the total computation time for the pMC method

(with 109 photons, 7.3 h) is more than the aMC method

(with 108 photons, 2 h) for this specific gate used in recon-

struction. However, if more gates are selected in reconstruc-

tion, the pMC method can be faster due to the convolution

time in the aMC method. Moreover, the Ns/Nd ratio is 1.52

in this reconstruction, while all of the pixels from the CCD

(up to 1340� 1020) can be applied in reconstructions result-

ing in shorter calculation times for the pMC method com-

pared to the aMC method. Note that in the CW case, the

computational time for the pMC method is 43 minutes and

12 min for the pMC and aMC methods, respectively.

IV. CONCLUSION

In this work, we first demonstrate that the pMC and aMC

approaches can be employed for tomographic reconstruction

in a acceptable computational time frame, where as the

mMC method is computationally unpractical. Second, the

effect of different parameters on the statistics of the Jaco-

bians calculated by the aMC and pMC methods are eval-

uated. The influence of the number of photons on statistics is

different for the aMC and pMC methods. Increasing the l0s
will decrease the statistical stability. In time-domain, the sta-

tistics does not change significantly as gate position varies

for the pMC method while the aMC method shows a better

performance for late gates. Third, the pMC method is found

to be more efficient when a large number of detectors or full

time-gated dataset are employed, such as the data set

acquired by a CCD camera, while the aMC method is best

suited for smaller number of SD pairs (<50� 200) and less

number of gates. While wide-field tomography is emerging

in FMT with a smaller dataset containing comprehensive

information is acquired,22,24 the adjoint method might

be employed in reconstructions more intensively. Moreover,

with the recent progress of Monte Carlo simulation using

GPU (Refs. 25 and 26) (only for the aMC method), it is

expected that a full reconstruction can be finished on a typi-

cal personal computer in the time frame comparable to the

classic diffusion equation based models (� 1 h).
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