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Correlated heterogeneous deformation of entangled fiber networks
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We study the deformation of a network of entangled non-cross-linked semiflexible fibers subjected to
compression. We show that the deformation is intermittent, heterogeneous, and dominated by the occurrence of
avalanches. Avalanches imply relative fiber sliding and rearrangement and lead to a serrated stress-strain curve.
A large fraction of the fibers in the system contribute to an avalanche, and the amplitudes of the sliding events
are correlated spatially. This phenomenon is qualitatively similar in systems with and without friction between
fibers and is not due to frictional stick slip.
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I. INTRODUCTION

Systems composed of entangled fibers are central to a large
number of materials, both biological and man-made. One of
the most important biological applications is the cytoskeleton
of eukaryotic cells, which is composed of a complex protein
fiber network [1]. The F-actin filaments of the cytoskeleton
are semiflexible, i.e., their persistence length is larger than the
mean segment length of the network (segment between cross-
links). Another important biological example is connective
tissue whose mechanical properties are determined by collagen
fiber networks [2].

Fiber networks are the essential component of many man-
made materials. At present, composites made from entangled
carbon nanotubes are intensely studied [3], while entangled
fibers are used in many consumer products, such as wipes,
baby diapers, and clothing, having insulation, filtration, and
fluid absorption functions. Paper is one of the oldest man-made
materials based on semiflexible random fiber networks. In
all these systems and in view of the structural function of
the network, mechanics is important. In some applications, a
theoretical understanding, leading to modeling the mechanics
of fiber systems, is desirable. For example, modeling the
mechanics of the cytoskeleton is necessary in order to make
progress toward understanding cellular biochemical processes.

In mechanics, the classical view is that the deformation
of materials is a homogeneous process. Localization of
deformation in narrow regions, e.g., shear bands, is treated as a
separate phenomenon, more or less on the fringes of continuum
theories, very much like fracture. However, evidence is being
accumulated that the physics of deformation is different. An
example is provided by plastic deformation of crystalline
solids mediated by dislocations, which has been viewed as a
homogeneous flow. A fundamentally different picture emerged
during the past several years [4], that of a complex intermittent
phenomenon characterized by dislocation avalanches [5], time
correlations [6], and fractal patterns [7]. A similar view is
developing for the deformation of granular materials, which is
characterized by avalanches and intermittency [8].

In this paper, we show that the deformation of random
semiflexible non-cross-linked fiber systems is also heteroge-
neous and highly nonaffine with avalanches associated with
the relative sliding of fibers and fiber rearrangements.

II. MODEL

Here, semiflexible cylindrical fibers are modeled with the
bead-spring model frequently used in polymer physics [9].
Each fiber is represented by a chain of beads connected
by harmonic springs. The energy associated with the axial
and bending deformations of the fiber are given by Ua =
ka(r − r0)2/2 and Ub = kb(θ − θ0)2/2, respectively, where r
and r0 are the current and the reference distances between
successive beads and θ and θ0 are the current and reference
angles made by successive bonds along the fiber. A shifted
Lennard-Jones (LJ) potential is used for nonbonded interac-
tions Uc = 4ε[(s/r)12 − (s/r)6] + ε for r < r0 and Uc = 0 for
r > r0. The potential is truncated at its minimum r0 = 21/6s

to eliminate the cohesive effect, and θ0 = π , i.e., fibers
are straight when unloaded. s and e become the units of
length and energy of the problem, respectively. The axial
stiffness of the fiber is in the units of this model EA = kar0,
while the bending stiffness is EI = kbr0. E represented the
Young’s modulus of the fiber material, while A and I are
the cross-section area and the moment of inertia of the fiber,
respectively. The equivalence between the bead-spring model
quantities and the parameters describing the elasticity of a
cylindrical fiber is established via the contact between fibers.
The elastic contact between two cylinders of the same radius
is described by Hertz’s formula [10]. Requiring that the
contact energy computed with this continuum model equals
the energy of nonbonded interactions evaluated with the LJ
potential at same relative bead displacement (interpenetration
of fibers) leads to a relationship between the reduced Young’s
modulus of the fiber E/(1 − ν2) (ν is Poisson’s ratio) and
the energyconstant e : E/(1 − ν2) ∼ 420.4e/s3. Furthermore,
approximating 1 − ν2 = 1, one obtains, for the two constants
entering Ua and Ub, ka = 372.2ε/s2 and kb = 29.3ε. The ratio
of the bending to axial stiffness is lb = √

EI/EA = 0.28s.
These considerations allow mapping the discrete model of
a fiber to a continuous cylindrical Euler-Bernoulli beam of
diameter r0 [11]. Furthermore, the axial stiffness is large
enough for fibers not to cross each other. It was tested (by
increasing the bead number density along each fiber) that the
roughness due to the discrete representation used for fibers
does not lead to artificial friction or adhesion of fibers in
contact [11].
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Initial configurations are obtained by growing straight fibers
with random orientations in a large simulation box with
periodic boundary conditions. At this stage, the density ρ =
NL0A/L3 is low to minimize fiber interaction. N represents
the total number of fibers in the model, A = πr2

0 /4 is the
area of the fiber section, L0 is the fiber length, and L is
the size of the simulation box. Here, N = 1200, L0 = 50s,

and the size of the model when fibers are generated is L =
509.7s. The resulting configuration is subjected to stepwise
hydrostatic compression. In order to avoid artifacts introduced
by the periodic boundary conditions, the size of the simulation
box at the maximum density is kept larger than L0.

The system is loaded by imposing displacements along the
model boundaries; the fibers move as in molecular dynamics.
The equations of motion include a small damping term, which
cools down the system toward the zero Kelvin equilibrium
state. Coulomb friction between fibers may be included [11],
however, the results reported here correspond to a vanishing
friction coefficient μ = 0. The deformation is imposed in small
steps, and the system is allowed to reach its static equilibrium
state after each step. The sequence of these equilibrium
configurations is considered the quasistatic athermal trajectory
of the system.

The deformation is described by a spherical deformation
gradient tensor F = qI, where I is the identity matrix and q
is a variable parameter, and the resulting dilatation strain �,
which is the trace of the Green strain E, is � = (3/2)(q2 − 1).
Parameter q is related to the density as q = (ρ0/ρ)1/3, with
ρ and ρ0 being the current and reference densities (ρ0 = 1).
The Cauchy stress is evaluated as T = 1

det F F dÛ
d E FT , with Û

being the strain energy density that is computed by summing
up contributions of bending Ûb, axial Ûa , and contact Ûc

energies over all interactions. T results in a spherical tensor
with diagonal components given by σ = −3 ρ2

ρ0

dÛ
dρ

. Note that
σ is equal to the pressure.

During deformation, contacts are created between fibers.
The plane of a contact is the common tangent plane of the two
beads forming the contact. The sliding distance in the given
load increment in each contact S is defined as the norm of the
component of the vector of the relative displacement projected
in the plane of the contact. The mean sliding distance S̄ is
computed as the average over the entire population of contacts
in the current state.

III. RESULTS

As the network is compacted from the sparse state in
which fibers are created, it reaches geometric and then
stiffness percolation. These thresholds have been discussed
in the literature [12–14]. At higher densities, each fiber
makes multiple contacts, which define fiber segments. The
distribution function of segment lengths is Poisson [15]. The
mean segment length lc decreases as the density increases as
lc ∼ 1/ρ [15].

Figure 1 shows the variation of the stress σ with the
dilatation strain during compaction (red, continuous line). The
inset shows the same quantity in log-log coordinates and for a
broader range of the variable. Stiffness percolation takes place
at � ≈ 25 (vertical line in the inset). The stress-dilatation

FIG. 1. (Color online) Variation of the hydrostatic stress σ

(continuous red line and right vertical axis) and of the mean sliding
measure S̄ (dashed blue line and left vertical axis) with the dilatation
strain � (or density, top axis). The units for σ and S̄ are e/s3 and
s, respectively. The inset shows the stress-strain curve in log-log
coordinates evidencing the power law dependence of stress on
strain. The dashed-dotted black line in the main figure shows the
fit σ ∼ �−5.46 to the curve in the inset. Serrations in the stress-strain
curve and the spikes in the S̄ function are correlated.

curve is approximated by the power function σ ∼ �−5.46,
which, for this range of densities, is equivalent to σ ∼ ρ4.1.
The power law variation of the stress with the density was
confirmed experimentally [16,17] and numerically [14,18] and
was predicted theoretically based on mean field considerations
[19,20]. The value of the exponent depends on the nature of
the system, testing conditions, and likely on lb and ranges from
approximately 2 to 6 [16–18]. The models available [19,20]
predict an exponent of 3. The bulk modulus also scales in our
model as K ∼ ρ4.75, while the experimental modulus scales
as K ∼ ρm, where m increases from 3 to 5 as the sample mass
increases. The model predicts that interfiber friction has no
effect on the respective power law functions and exponents
[11] in agreement with the experiments. The curve in the main
figure exhibits large serrations once � decreases below 3.5.
These are not visible in the curve in the inset since those data
are collected less frequently.

The variation of the mean sliding S̄ is also shown in Fig. 1
(blue, dashed line). The striking feature of the plot is the
strong correlation observed between spikes in S̄ and the sharp
drops in the stress. This indicates that avalanches form as the
system is compressed, and hence, deformation is intermittent.
Avalanches are not observed when the density is small. For
� > 3.5, S̄ is approximately constant. Likewise, S̄ in load
increments between avalanches and for 2 < � < 3.5 is almost
independent of �.

This behavior is observed in earthquake mechanics where
many small tremors occur between large earthquakes. In
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FIG. 2. (Color online) Variation of the total strain energy density
Û with the strain �. Serrations are observed in the energy curve. The
inset shows the fraction of chains having at least a contact that slides
more than S′, n(S > S′)/N, versus S′, for two load steps with and
without avalanches.

metals, although the macroscopic deformation seems ho-
mogeneous, on the mesoscale, one observes avalanches and
intermittent dynamics [7]. Similar observations were made in
metallic micro- and nanopillars subjected to compression [21].
In solid solutions, heterogeneous plasticity is observed at
the macroscopic scale [22]. Sliding of two elastic bodies in
contact takes place by stick slip, which is another example of
intermittent dynamics.

The variation of the total strain energy density Û with � is
shown in Fig. 2. The function is smooth for � > 3.5 and exhibits
serrations for smaller �. The presence of these drops shows
that this slowly driven system evolves over a rough energy
landscape. The energy is purely elastic, and its dependence on
strain is not monotonic even at small deformations since the
relative positions of fibers may change.

A large number of fibers is involved in an avalanche.
The inset to Fig. 2 shows the fraction of all fibers in the
system containing at least a contact that slides more than
S = S′, n(S > S′)/N, versus S′. The two curves correspond
to the load step at � = 3.53, when an avalanche is seen, and
to the immediately following load step in which there is no
avalanche. While in the load step without an avalanche no
fiber slides more than S = 0.4s, during an avalanche 90% of
the fibers slide more than this threshold, and 1/3 of fibers slide
even more than 0.8s.

To gain further insight into the nature of avalanches, we
investigated the probability distribution function (PDF) of
S, the spatial correlation of S, and the spatial distribution
of sliding events during an avalanche. The PDF of sliding
amplitudes is shown in Fig. 3. Two curves are presented for a
step with and without an avalanche. Both distribution functions
are exponential and have different means. Given the nature of

FIG. 3. (Color online) PDF of the sliding distance S in a load
step in which an avalanche is observed (triangles and red curve)
and in a load step in which there is no avalanche (reversed triangles
and blue curve). Both PDFs are exponential. The inset shows the
autocorrelation function of S evaluated during an avalanche. The
mean segment length lc and the fiber length L0 are also indicated.

this PDF, the mean (curve S̄ in Fig. 1) fully characterizes the
sliding events in each load step.

One may inquire whether the occurrence of an avalanche
may be associated with a particular type of distribution of
contact energies in the previous load step. The PDF of contact
energies is also exponential, and no difference is seen between
states right before and right after an avalanche. The PDF
evolves with �, but for the small variation in the strain
discussed here, PDFs for various load steps are identical
within the statistical noise. This observation differs from the
discussion in Ref. [23] where it was concluded that contact
energies are power law distributed over a broad range of
energies. In Ref. [23], the contacts are not allowed to slide
and are stabilized by introducing stiff bonds; the strain energy
of these cross-linkers is considered contact energy. Our results
indicate that a power law distribution of contact energies is not
required in order to observe heterogeneous deformation.

The inset to Fig. 3 shows the autocorrelation function (ACF)
of S evaluated during the avalanche at � = 3.53. The ACF
is computed by considering values of S at all contacts in
the simulation and by averaging over multiple origins. The
sliding events are correlated up to a distance of approximately
half of the undeformed fiber length (L0/2). The value of the
mean segment length lc, at the given �, is indicated on the
horizontal axis for reference. Since many fibers are involved
in an avalanche (inset to Fig. 2), the ACF data indicate that the
sliding magnitudes of neighboring fibers are not long-range
correlated.

This conclusion is supported by the spatial distribution
of sliding events. The pair distribution function g(r) of sites
where sliding takes place is evaluated. The distinction between
contacts that do not slide and those that slide in a given load
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step is made using a threshold Sth = 0.5s. gsl(r), computed
based on contacts at which sliding is observed (S > Sth), shows
clustering over a range comparable to L0/2. gall(r), computed
based on the location of all contacts (independent of S), shows
less clustering and extends over the same range. At small r,
gall(r) is controlled by the exponential PDF of segment lengths.
Hence, in this limit, the pair distribution function should scale
as gall(r) ∼ exp(−r/ lc)/r2. At large r, the function samples
a random distribution of points in space. No clustering is
obtained if g(r) is computed using the location of the centers
of mass of fibers that slide more than Sth. These centers are
randomly distributed in space. Given the large number of fibers
with S > Sth (75% of the N = 1200 fibers in the model for the
load step at � = 3.53), this indicates that avalanches do not
create a specific structure, rather, the initial random distribution
is retained during deformation.

The physical picture, which is emerging, is that an
avalanche is produced by a large-scale fiber rearrangement
mediated by sliding at most fiber-fiber contacts. The sliding
magnitudes are correlated only over a distance equal to half
the fiber length since entire fibers move; this rearrangement
does not have the structure of a shear-driven localization band.

The effect of interfiber Coulomb friction on the statistics
of sliding events was investigated in systems with friction
coefficients μ = 0.1 and 1. The method of accounting for
friction in this model is discussed in detail in Ref. [11]. In
systems with friction, the magnitude of serrations in both Û

and S̄ is reduced relative to the μ = 0 case. This indicates
that the phenomenology discussed in this paper is not due to
frictional stick slip, which is known to lead to intermittent
dynamics [24].

IV. CONCLUSION

In conclusion, we have shown that the deformation of
a system of non-cross-linked semiflexible fibers subjected
to compression is heterogeneous, occurring largely through
avalanches associated with fiber rearrangements. The resulting
stress-strain curve is serrated in a certain range of densities.
These features are commonly observed in random discrete
systems, such as granular media and dislocation-mediated
crystal plasticity, but have not been evidenced so far in fiber
networks.
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