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ABSTRACT

In the large-eddy simulation (LES) for turbulent flows, the large scale unsteady

turbulent motions which are affected by the flow geometry, are directly solved, while

the effects of the small scale motions which have a universal character are modeled.

Compared with direct numerical simulation (DNS), the huge computational cost for

solving the small-scale motions in high Reynolds number flows is avoided in LES.

In the variational multiscale (VMS) formulation of LES, the starting point

for deriving models is the weak or the variational statement of conservation laws,

whereas in the traditional filter-based LES formulation it is the strong form of these

equations. In the residual-based variational multiscale (RBVM) formulation, the

basic idea is to split the solution and weighting function spaces into coarse and fine

scale partitions. Splitting the weighting functions in this way yields two sets of

coupled equations: one for the coarse, or the resolved, scales and another for the

fine, or the unresolved, scales. The equations for the fine scales are observed to

be driven by the residual of the coarse scale solution projected onto the fine scale

space. These equations are solved approximately and the solution is substituted in

the equations for the coarse scales. In this way the effect of the unresolved scales

on the resolved scales is modeled.

In this thesis we develop and test several LES models that are based on the

RBVM formulation. These include:

1. The RBVM model, which is extended to compressible flows for the first time.

2. A new mixed model for compressible flows comprised of the RBVM model

and the traditional Smagorinsky-type eddy viscosity model. In this model the

RBVM term is used to model the cross-stresses and the eddy viscosity is used

to model the Reynolds stresses.

3. A new residual-based eddy viscosity (RBEV) model for incompressible and

xxi



compressible flows that displays a “dynamic” behavior without the need to

evaluate any dynamic parameters, thus making it easy to implement.

4. A purely residual-based mixed model comprised of the RBVM model for the

cross-stresses and the RBEV model for the Reynolds stresses, that is relatively

easy to implement.

All these models are tested in modeling the decay of compressible homogeneous

isotropic turbulence using a Fourier-spectral basis. The RBVM, the RBEV and the

purely residual based mixed model are also tested in predicting the statistics of

an incompressible turbulent channel flow using the finite element method. It is

found that in general, the new residual-based models outperform the traditional

eddy viscosity models.
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CHAPTER 1

Introduction

1.1 Turbulent Flows

Turbulent flows are a common phenomena in nature. They are observed when

a ship travels on the surface of the ocean, in the water coming out of a pipe, and in

the wake of a racing car. The notion of a turbulent flow was recorded more than 500

years [1]. However it was not until about 100 years ago, the scientists and engineers

begin to investigate and understand the turbulent flows in detail [2].

In 1883 Osborne Reynolds reported a very famous and important experiment

in the history of turbulence [2]. In this experiment dye was steadily injected at the

centerline of a long pipe carrying flowing water. Reynolds observed that, depending

on the speed of the water, the dye in the pipe showed different behavior. When the

speed was small, the dye appeared as a straight line at the center of the pipe. When

the speed was increased, the straight line became curved line. When the speed was

farther increased beyond a certain threshold value, the dye mixed with the water,

and it was difficult to tell the dye from the surrounding water. Further it appeared

that it would be impossible to predict the behavior of this flow. At this point the

flow is said to be turbulent. By changing the speed of the water and the pipe di-

ameter, or even replacing the water with an other fluid material, the transition to

turbulence was always observed at a fixed parameter.

Later this experiment was summarized by the single non-dimensional param-

eter, which is called the Reynolds number Re. The Reynolds number is defined

as

Re = UL/ν, (1.1)

where U is characteristic velocity and L is characteristic length scale of the flow,

and ν is the kinematic viscosity of the fluid. The Reynolds number denotes the

1
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ratio of inertial forces and viscous forces. Generally speaking, when the Reynolds

number Re < 2300, the dye in the flow is a straight line, and this kind flow is called

a laminar flow. When Reynolds number Re > 4000, the line is broken, and the

dye is mixed with water and it becomes a turbulent flows. The region in between

(2300 < Re < 4000) is called the transition region. However, it is necessary to point

that, the values of 2300 and 4000 are not always the boundaries for the laminar

flow and turbulent flow. In some situations, laminar flow is observed at Re > 4000.

Comedy in some cases, with Re < 2000, turbulent can be observed. But generally

speaking, when Re is high, the flow is more likely to be turbulent.

There is no rigid definition of turbulence. However, turbulence is characterized

by the some important features, such as highly irregular motion, highly rotational

structure, and enhanced dissipative and diffusive mechanisms. An essential feature

of turbulent flows is that the fluid velocity field varies significantly and irregularly as

a function position and time [3]. In turbulent flows, the irregular, unsteady motions

transport momentum, heat and matter at a rate that are several orders of magni-

tude more than molecular motion. Consequently, turbulent flow is responsible for a

large amount of the energy consumption (through turbulent drag) and most of the

heat transfer and matter transport in engineering flows [4].

1.2 Approaches to Studying Turbulence

In the industrial application, turbulent flows are very important and play a

role in the design of aircrafts, engines, high speed automobiles, or even nuclear power

plants. After 100 years study, people learn some basic knowledge about turbulent

flows. Unfortunately, we are still far away from accurately understanding and pre-

dicting the behavior of turbulent flows. As Nobel laureate Richard Feynman stated

“ turbulence is the most important unsolved problem of classical physics.”

Nowadays, there are mainly three ways to study turbulent flows: a theoretical

approach, an experimental approach and a numerical approach.
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The theoretical study of turbulent flows is based on the Navier-Stokes (NS)

equations. However, because of the unsteady, irregular, random and chaotic charac-

teristic of turbulence, it is very difficult to solve these partial differential equations

analytically for most practical situations. It is especially true when we know that

these equations can lead to chaotic solutions. Currently, the theoretical understand-

ing of turbulent flow is mostly based on statistical studies. The Russian mathemati-

cian Andrey Kolmogorov proposed the first statistical theory of turbulence, based

on the hypothesis of energy cascade [5, 6, 7]. This theory is usually referred as the

K41 theory and we will utilize this theory in Chapter 3. One important conclusion

of the K41 theory is that, turbulent flows contain eddies of different length scales.

Kinetic energy is transferred from larger eddies to smaller ones. Although the hy-

pothesis leads to a simple expression for how energy is distributed among eddies of

different sizes, it does not provide a tool which can be used to predict the behavior

of complicated flows in an industrial setting.

Experimental study of turbulence is another approach to understanding tur-

bulence. Wind tunnels provide useful information for aerodynamic studies. A lot

of important experimental data has come from wind tunnels. On one hand, these

results can be used to validate some theories, and on the other hand, they can be

used to develop more accurate and higher fidelity models. However, experimental

study of turbulence is not an easy task. For example, turbulence usually occurs at

high speeds or large spatial scale. Often it is not easy or cheap to achieve these

high speeds or large spatial scale. For example it is very difficult to realize experi-

ments that study atmospheric boundary layers or supersonic flows. Even for some

industrial applications such as the testing of new designs for cars and airplanes, such

experiments can become very expensive, because the design process usually requires

several cycles.

The numerical simulation of turbulent flows, which is a part of computational

fluid dynamics (CFD), is the “ third approach ” in the study turbulent flows. The
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numerical simulation is very new compared to the experimental approach which has

been around from the seventeenth century, and theoretical approach which started

in the eighteenth century. The numerical simulation requires two important ingre-

dients: a high-speed digital computer and the development of accurate numerical

algorithms. Numerical simulation can be thought of as a connection between ex-

perimental and theoretical studies of turbulent flows. By solving the NS equations

numerically, we can develop an understanding of some behaviors observed in exper-

iments. In addition to this, numerical simulation can replace experiments in cases

where it is impossible to perform the experiment or it is too expensive.

1.3 Numerical Simulation of Turbulent Flows

According to the K41 theory, in turbulent flows kinetic energy is transferred

from larger length scales to smaller length scales. Based on this idea, the eddies

in turbulent flows can be divided into three categories based on their length scales.

Integral length scales are the largest scales. These eddies obtain energy from the

mean flow and also from each other. Kolmogorov length scales are the smallest

scales. In this range, the energy input from nonlinear interactions and the energy

lost from dissipation due to viscous effect balance each other. Eddies in the inertial

subrange are between the largest and the smallest scales. They pass the energy from

the largest to the smallest length scale without dissipating it.

There are several important numerical methods available to simulate turbu-

lent flows. There are the direct numerical simulation (DNS), large-eddy simulation

(LES), and Reynolds-averaged Navier-Stokes (RANS) equations. The research pre-

sented in this proposal is dedicated to LES. To assess the performance of LES

models, their results will be compared to DNS results obtained on much finer grids.

In the following paragraphs we present a brief introduction to DNS, LES and RANS.

1.3.1 Direct Numerical Simulation (DNS)

In DNS we solve the Navier-Stokes equations without any model term. All

the scales of motion are resolved. It is the simplest approach and it could provide
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unbeatable accuracy. The drawback of DNS is the very large computational cost.

In order to simulate all the scales, the computational domain has to be large enough

to contain the largest eddies, and the grid spacing has to be small enough to capture

the smallest eddies. The cost increases rapidly with the Reynolds number (approx-

imately as Re3). The DNS approach was not widely used before 1970s because of

the lack of computer power. Even now, DNS has been only applied to turbulent

flows with low or moderate Reynolds numbers.

1.3.2 Large-Eddy Simulation (LES)

As discussed in previous subsection, the computational cost of DNS is high,

and it increases rapidly with the Reynolds number, so that DNS is not usually

applied to high Reynolds number flows. LES has be developed to tackle this problem.

In turbulent flows, the larger-scale motions are affected by the flow geometry and

are not universal, while the smaller scales have a universal character. Further, most

of the energy is contained in the large scales but most of the computational cost

is spent in solving the small scales. So the basic idea of LES is that the larger-

scale motions are computed explicitly, and the influence of the smaller scales is

represented by simple models. Thus, compared with DNS, the vast computational

cost of explicitly representing the small-scale motions is avoided.

1.3.3 Reynolds-averaged Navier-Stokes (RANS) Equations

Besides DNS and LES, the Reynolds-averaged Navier-Stokes (RANS) equa-

tions are also used to model turbulent flows. These equations are the ensemble-

averaged equations of motion for fluid flow. Reynolds decomposition is used for

RANS, so an instantaneous quantity is decomposed into its ensemble-averaged and

fluctuating values. The same averaging procedure is applied to the NS equations.

RANS equations contains the averaged variables and terms that depend on the fluc-

tuating variables. The terms containing the fluctuating variables must be modeled,

and they must be expressed only in terms of the averaged quantities. This expres-

sions is called model terms. Some models include the Spalart-Allmaras, k−ω, k−ε,

and SST models which add additional equations to bring closure to the RANS equa-

tions. Compared to LES, the RANS have smaller computational cost, but they do
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not provide instantaneous quantities and good estimation for fluctuation.

1.4 LES of Turbulent Flows

In this section, we will introduce large eddy simulation of turbulent flows with

more details. LES of incompressible and compressible flows are described separately,

but we should keep in mind that they share the same basic idea. In order to simulate

the effect of the small scales, Smagorinsky model [8] is introduced for incompressible

flows and Smagorinsky-Yoshizawa -eddy-diffusivity (SYE) model [9] for compressible

flows. Smagorinsky model model is the simplest model [3] and is widely used for

LES. Especially, we will use a dynamic version of SYE model in this thesis as a LES

model for compressible flows in some sections. And the Smagorinsky model is used

as comparison case in some other sections.

1.4.1 LES of Incompressible Flows

In DNS, the velocity field u(x, t) contains all the length scales. In LES, in

order to split the velocity field into a large scale (coarse scale) velocity field and

a small scale (fine scale) velocity field, a low-pass filtering operation is introduced.

The general filtering operation is defined by

∫
G(r, x)dr = 1, (1.2)

the filtered velocity field Uh(x, t) is determined by

ū(x, t) =

∫
G(r, x)u(x− r, t)dr, (1.3)

and the residual field is defined by

u′(x, t) ≡ u(x, t)− ū(x, t), (1.4)
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The incompressible Navier-Stokes equations are

∂ui

∂xi

= 0, (1.5)

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

∂p

∂xi

+
∂σij

∂xj

. (1.6)

In the equations above ui is the velocity field, p is the pressure, ρ is the fixed

density, σij is the viscous stress tensor. We apply the filtering operation to the

Navier Stokes equations and arrive at

∂ūi

∂xi

= 0, (1.7)

∂ūi

∂t
+

∂

∂xj

(ūiūj) = −1

ρ

∂p̄

∂xi

+
∂σ̄ij

∂xj

+
∂τSGS

ij

∂xj

, (1.8)

where

τSGS
ij = ūiūj − uiuj. (1.9)

is the subgrid stress (SGS) tensor. In order to close the equations for the filtered

velocity, a model for the subgrid stress tensor τSGS
ij is needed. The simplest model

is the Smagorinsky model [8], which also forms the basis for several of the more

advanced models, such as dynamic Smagorinsky model [10], the the mixed Bardina

model [11], and the mixed Clark model [12].

The Smagorinsky model is expressed as a linear eddy-viscosity model

τSGS
ij = −2νtS̄ij, (1.10)

It relates subgrid stress τSGS
ij to the filtered rate of strain S̄ij, through νr(x, t), which

is the eddy viscosity, modeled as

νt = (Cs∆)2|S̄|, (1.11)

where S̄ is the characteristic filtered rate of strain, 4 is the filter width, and Cs is

the Smagorinsky coefficient. We note that Cs = 0.1 is a preferred value for free-shear
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flows and for channel flow.

1.4.2 LES of Compressible Flows

In compressible flows, it is convenient to use Favre filtering to avoid the intro-

duction of subgrid-scale terms in the equation of conservation of mass. Favre (or

density-averaged) quantities [13] are defined as f̃ ≡ (ρf)h/ρh. Applying this filter

to the compressible Navier Stokes equations yields two subgrid quantities:

τSGS
kl = ρ̄ũkul − ũkũl), (1.12)

qSGS
k = ρ̄(ũkT − ũkT̃ ). (1.13)

In the equations above T is the temperature, τSGS
kl is the subgrid scale stress

tensor and qSGS
k is the subgrid scale heat flux, which appears in the filtered energy

equation. Both these terms need to modeled in terms of the filtered variables. The

simplest model is based on eddy diffusivity concept and is due to Samgorinsky and

Yoshizawa [9]. It is given by

τSGS
kl = −2C0ρ̄∆2|S̃|(S̃h

kl − 1

3
S̃h

mmδkl) +
2

3
C1ρ̄∆2|S̃|2δkl, (1.14)

qSGS
k = − ρ̄Cs∆

2|S̃|
PrT

∂T̃

∂xk

. (1.15)

In the equations above S̃ is the filtered rate of strain, C0 is the Smagorinsky pa-

rameter that goes to model the deviatoric component of the subgrid stress, C1 is

the model attached to the dilatational component of subgrid stress, and PrT is the

turbulent Prandtl number. All these three parameters need to be specified in order

to use this model.

In contrast to all the models described in the previous page, the research in this

thesis does not use spatial filters to derive LES equations. Rather it uses projection

operators applied to the variational formulation of the Navier-Stokes equations.

This approach is based on the Variational Multiscale formulation (VMS) [14] and is
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described in the following section.

1.5 Residual based Variational Multiscale (RBVM) Formu-

lation

In large eddy simulation (LES) the large scales of fluid motion are explicitly

resolved while the effect of the fine scales on the large scales is modeled using terms

that depend solely on the large scale variables. In filter-based LES this scale separa-

tion is achieved through the application of spatial filters that tend to smooth a given

field variable. In contrast to this in the variational multiscale (VMS) formulation

the scale separation is achieved through projection operators [14]. In addition in

the VMS formulation the starting point for deriving LES models is the weak or the

variational statement of conservation laws, whereas in the filter-based LES formu-

lation it is the strong form of these equations.

In the residual-based variational multiscale (RBVM) formulation [15, 16] the

basic idea is to split the solution and weighting function spaces into coarse and fine

scale partitions. Splitting the weighting functions in this way yields two sets of cou-

pled equations: one for the coarse scales and another for the fine, or the unresolved,

scales. The equations for the fine scales are observed to be driven by the residual

of the coarse scale solution projected onto the fine scale space. Hence the name the

“residual-based” VMS formulation. These equations for the unresolved scales are

solved approximately and the solution is substituted in the equations for the coarse

scales. In this way the effect of the fine or the unresolved scales on the coarse scales

is modeled.

Thus far the RBVM formulation has been applied to incompressible turbulent

flows [15, 17]. In this context in [18, 19] it was observed that while the RBVM

formulation accurately modeled the cross-stress terms (ūu′) it did not at all model

the Reynolds stress terms (u′u′). To remedy this a mixed model was proposed that

appended to the RBVM terms a Smagorinsky eddy viscosity model [8] in order to

capture the effect of the Reynolds stresses. The value of the Smagorinsky parame-
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ter in this model was determined dynamically, while accounting for the dissipation

induced by the RBVM terms. In tests of the decay of incompressible homogeneous

turbulence it was observed that the mixed model was more accurate than the RBVM

and the dynamic Smagorinsky models.

In this thesis we aim to extend these ideas to compressible turbulent flows.

First, we consider the extension of the RBVM formulation to compressible flows.

Thereafter motivated by the shortcomings of this model in the incompressible case

we consider a mixed version of this model (which is referred as the MM1 model)

where we add the Smagorinsky, Yoshizawa [9], and eddy diffusivity terms to model

the Reynolds components of the deviatoric subgrid stresses, the dilatational sub-

grid stresses and the subgrid heat flux vector, respectively [10]. Through a simple

analysis of the subgrid mechanical energy and through the dynamic approach we

conclude that out of these the RBVM formulation requires a model only for the

deviatoric component of the Reynolds stresses. The other significant subgrid quan-

tities are adequately represented within the RBVM formulation. Thus the mixed

RBVM formulation for compressible flows contains only one additional term when

compared with the RBVM formulation, which is the deviatroic Smagorinsky model.

1.6 Residual based Eddy Viscosity (RBEV) Model

In LES the large scale fluctuations are resolved and the effect of the fine scale

fluctuations on the large scales is modeled through terms that depend only on the

large scales. Over the years several LES models have been developed, and a majority

of these, to some extent the commonly used ones, are based on the concept of an

eddy viscosity. This idea is motivated by direct analogy with a molecular viscosity.

Just as the molecular viscosity represents momentum transfer through fluctuations

of the atomistic particles, the turbulent eddy viscosity represents momentum trans-

fer through fluctuating continuum fluid velocity.

The Smagorinsky model is the most popular eddy viscosity based LES model.



11

In this model the eddy viscosity is taken to be proportional to a local rate of strain

and a representative length scale, often set to a measure of the grid size. Despite

its popularity, this model has its drawbacks. In particular, it has been recognized

that it must be modified in space and time whenever the turbulence is decaying or

damped in some spatial regions (close to a wall, for example). The most effective

way to accomplish this is to employ the so-called dynamic approach based on the

Germano identity. In this approach the subgrid stresses on the computational grid

and on a test-filter scale are considered. The difference between these two, which

can be explicitly determined once scale similarity is invoked, is used to estimate the

magnitude of the Smagorinsky eddy viscosity. This approach, which has been widely

used, has been successful in simulating complex flows. However, it is cumbersome

in that (1) it requires the use of at least one additional filter and (2) it involves

averaging, either in space, or time, or along material trajectories in order to achieve

a smoothly varying eddy viscosity. The dynamic approach may be thought of as a

way of repairing a glaring drawback of the Smagorinsky model. That is, it does not

vanish when the flow field is devoid of any fluctuations. In that sense it is inconsis-

tent.

In this thesis we present a new eddy viscosity model that is inherently consis-

tent and circumvents the use of a dynamic approach. Our model is based on ideas

derived from the variational multiscale (VMS) formulation. Within this approach

an equation for the fine scales is derived from the original variational formulation

for the Navier Stokes equations. This equation is then approximated to obtain an

explicit, approximate expression for the fine scales. In this expression it is observed

that the fine scales are driven by the residual of the coarse scales. Thus when the

coarse scales are accurate, the residual vanishes, as do the fine scales. We recognize

that once an expression for the fine scales is obtained (albeit an approximate one),

it may be used to estimate the viscosity induced by these scales on the coarse scales.

In analogy to the molecular viscosity we may assume that the turbulent, or eddy,

viscosity is proportional to the magnitude of the fine scale velocity times a length

scale which plays the role of the mean free path. In the context of LES it makes
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sense to select this length scale to be proportional to the grid size. As a result

we have νT ∼ |u′|h. We dub this model the residual-based eddy viscosity (RBEV)

model.

Further, motivated by the mixed model (MM1) based on the RBVM model

and the dynamics Smagorinsky model, a purely residual-based mixed model (MM2)

based on the RBEV model and the RBVM model is also proposed.

1.7 Description of Chapters

The layout of this thesis is as follows. In Chapter 2, four residual-based models

for large eddy simulation of turbulent flows are derived for both incompressible

and compressible flows. They are the residual-based variational multiscale model

(RBVM), the mixed model (MM1) based on the RBVM model and the dynamic

Smagorinsky-Yoshizawa-eddy diffusivity (DSYE) model, the residual-based eddy

viscosity model(RBEV), and the purely residual based mixed model (MM2) based

on the RBVM and RBEV models. In Chapter 3, we test the performance of the

new LES models in predicting the decay of compressible, homogeneous, isotropic

turbulence (HIT) in regimes where shocklets are known to exist within Fourier-

spectral method. In Chapter 4, we test the RBEV model and the MM2 model

on the incompressible fully developed turbulent channel flows within finite element

method. Conclusions will be drawn in Chapter 5.



CHAPTER 2

Residual Based Methods for Large Eddy Simulation of

Turbulent Flows

In the residual-based variational multiscale (RBVM) formulation [15, 16] the

basic idea is to split the solution and weighting function spaces into coarse and fine

scale partitions. Splitting the weighting functions in this way yields two sets of cou-

pled equations: one for the coarse scales and another for the fine, or the unresolved,

scales. The equations for the fine scales are observed to be driven by the residual

of the coarse scale solution projected onto the fine scale space. Hence the name the

“residual-based” VMS formulation. These equations for the unresolved scales are

solved approximately and the solution is substituted in the equations for the coarse

scales. In this way the effect of the fine or the unresolved scales on the coarse scales

is modeled.

Thus far the RBVM formulation has been applied to incompressible turbulent

flows [15, 17]. In this context in [18, 19] it was observed that while the RBVM

formulation accurately modeled the cross-stress terms (ūu′ terms) it did not at all

model the Reynolds stress terms (u′u′). To remedy this a mixed model was pro-

posed that appended to the RBVM terms a Smagorinsky eddy viscosity model [8]

in order to capture the effect of the Reynolds stresses. The value of the Smagorin-

sky parameter in this model was determined dynamically, while accounting for the

dissipation induced by the RBVM terms. In tests of the decay of incompressible

homogeneous turbulence it was observed that the mixed model was more accurate

than the RBVM and the dynamic Smagorinsky models.

In this chapter, we aim to extend the ideas of RBVM formulation to compress-

ible turbulent flows. Thereafter motivated by the shortcomings of this model in the

incompressible case we consider a mixed version of this model (MM1) where we add

the Smagorinsky, Yoshizawa [9], and eddy diffusivity terms to model the Reynolds

13
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components of the deviatoric subgrid stresses, the dilatational subgrid stresses and

the subgrid heat flux vector, respectively [10]. Through a simple analysis of the

subgrid mechanical energy and through the results of the dynamic approach we

conclude that out of these the RBVM formulation requires a model only for the

deviatoric component of the Reynolds stresses. The other significant subgrid quan-

tities are adequately represented within the RBVM formulation. Thus the mixed

RBVM formulation (MM1) for compressible flows contains only one additional term

when compared with the RBVM formulation, which is the deviatroic Smagorinsky

model.

Second, we present a new eddy viscosity model that is inherently consistent

and circumvents the use of a dynamic approach. Our model is based on ideas derived

from the variational multiscale (VMS) formulation. Within an explicit, approximate

expression for the fine scales is derived. In this expression it is observed that the fine

scales are driven by the residual of the coarse scales. Thus when the coarse scales

are accurate, the residual vanishes, as do the fine scales. We recognize that once an

expression for the fine scales is obtained (albeit an approximate one), it may be used

to estimate the viscosity induced by these scales on the coarse scales. In analogy

to the molecular viscosity we may assume that the turbulent, or eddy, viscosity is

proportional to the magnitude of the fine scale velocity times a length scale which

plays the role of the mean free path. In the context of LES it makes sense to select

this length scale to be proportional to the grid size. As a result we have νT ∼ |u′|h.

We dub this model the residual-based eddy viscosity (RBEV) model. This RBEV

model can be applied to both incompressible and compressible flows.

Finally, a purely residual based mixed model (MM2) based on the RBVM and

RBEV models for incompressible and compressible flows is introduced.

The layout of the remainder of this chapter is as follows. In Section 2.1, we

provide a concise derivation of the RBVM method applied to a generic partial differ-

ential equation for both incompressible and compressible turbulent flows. In Section
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2.2, a mixed model (MM1) based on the RBVM and the dynamic Smagorinsky-

Yoshizawa-eddy diffusivity (DSYE) model is proposed for compressible turbulent

flow. In Section 2.3, a residual based eddy viscosity model is proposed for both in-

compressible and compressible turbulent flows. In Section 2.4, purely residual based

mixed model (MM2), that combines the RBVM and RBEV models, is proposed for

both incompressible and compressible turbulent flows. This model is simpler to im-

plement than MM1 in that it does not rely on a dynamic procedure to determine

its parameters.

2.1 Residual-based variational multiscale formulation (RBVM)

In this section, the RBVM formulation of LES for the incompressible and

compressible Navier-Stokes equations is developed. For a detailed derivation of

the RBVM approach for the incompressible Navier-Stokes equations the reader is

referred to [15].

The strong form of the incompressible Navier–Stokes equations in dimension-

less variables is given by

∇ · u = 0, (2.1)

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) = −∇p +

1

Re
∇2u + f , (2.2)

where ρ = 1, Re is the Reynolds number.

The strong form of the compressible Navier–Stokes equations in dimensionless

variables is given by

∂ρ

∂t
+∇ ·m = 0, (2.3)

∂m

∂t
+∇ · (m⊗m

ρ
) = −∇p +

1

Re
∇ · σ + f , (2.4)

∂p

∂t
+∇ · (up) + (γ − 1)p∇ · u =

(γ − 1)

Re
Φ +

1

M2∞PrRe
∇ · (µ∇T ), (2.5)
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where the viscous stress tensor σ is given in terms of the rate of strain S by

σ = 2µ(S − 1

3
tr(S)I), (2.6)

and the viscous dissipation Φ is given by

Φ = σ : S. (2.7)

The system is closed with an equation of state

γM2
∞p = ρT. (2.8)

Further, the dynamic viscosity is expressed in terms of the local temperature

using,

µ = T 0.76. (2.9)

This problem is posed on a spatial domain Ω and in the time interval ]0, T [

with given initial condition data and boundary conditions. In the above equations, ρ

is the density, u is the velocity, m = ρu is the momentum, p is the thermal pressure,

T is temperature, M∞ is the free-stream Mach number, γ is the adiabatic index,

Pr is the Prandtl number, Re is the Reynolds number and f is a forcing function.

The density, velocity, temperature and viscosity are scaled by their reference values

while the pressure is scaled by the product of the reference density and the square

of the reference velocity. The Reynolds number is based on the reference values of

the velocity, length, viscosity and density. For the homogeneous turbulence problem

considered in this paper, the flow is assumed to be periodic with a period 2π in each

coordinate direction. The values of the physical parameters are provided in Chapter

3.

Note that one can write Equations (2.1) and (2.2), Equations (2.3) − (2.5)

concisely as

LU = F , (2.10)
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where U = [u, p]T are the unknowns with F = [f , 0]T for the incompressible case

and U = [ρ, m, p]T are the unknowns with F = [0, f , 0]T for the compressible case.

L represents the differential operator associated with the Navier-Stokes equations.

The weak form of Equation 2.10 is given by: Find U ∈ V such that

A(W , U ) = (W , F ) ∀W ∈ V . (2.11)

Here A(·, ·) is a semi-linear form that is linear in its first slot, (·, ·) denotes the L2

inner product, and W is the weighting function. For the incompressible case it is

given by W = [w, q]T and for the compressible case it is given by W = [r, w, q]T . V
is the space of trial solutions and weighting functions. In this presentation we have

chosen the same space for both trial solutions and weighting functions in order to

keep the presentation simple.

The semi-linear form of incompressible case is given by

A(W , U ) ≡ (w, u,t)− (∇w, u⊗ u)

− (∇ ·w, p) +
2

Re
(∇Sw,∇Su) + (q,∇ · u).

(2.12)

Here ∇S = (∇+∇T )/2 is the symmetric gradient operator.

The semi-linear form of compressible case is given by

A(W , U ) ≡ (r, ρ,t)− (∇r, m)

+ (w, m,t)− (∇w,
m⊗m

ρ
)

− (∇ ·w, p) +
1

Re
(∇w, σ)

+ (q, p,t)− (∇q, up)− (1− γ)(q, p∇ · u)

− (γ − 1)

Re
(q, Φ) +

1

M2∞PrRe
(∇q, µ∇T ).

(2.13)

The weak form is posed using the infinite dimensional function space V . In
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practice this space is approximated by its finite-dimensional counterpart Vh ⊂ V .

In the residual-based variational multiscale formulation the goal is to construct a

finite dimensional problem whose solution is equal to PhU , where Ph : V → Vh is

a projection operator that defines the desired or optimal solution. If the range of

Ph is all of Vh then it is possible to split V = Vh ⊕ V ′ which implies that for every

V ∈ V there is a unique decomposition V = V h + V ′, where V h = PhV ∈ Vh

and V ′ = P′V ∈ V ′. The space V ′ ≡ {V ∈ V|PhV = 0}, and P′ = I − Ph where I

is the identity operator. Using this decomposition in Equation (2.11) for both the

weighting functions and the trial solutions we arrive at a set of coupled equations.

Find Uh ∈ Vh and U ′ ∈ V ′, such that

A(W h, Uh + U ′) = (W h, F ) ∀W h ∈ Vh, (2.14)

A(W ′, Uh + U ′) = (W ′, F ) ∀W ′ ∈ V ′. (2.15)

The idea is to solve for U ′ in terms of Uh and F analytically using the fine scale

equation (Equation (2.15)), and substitute the expression for U ′ into the coarse-

scale equation (Equation (2.14)), which is to be solved numerically. By doing this

one would have introduced in the coarse scale equation the effect of the fine or

subgrid scales.

To derive an expression for U ′ we subtract A(W ′, Uh) from both sides of

Equation (2.15),

A(W ′, Uh + U ′)− A(W ′, Uh) = −A(W ′, Uh) + (W ′, F )

= −(W ′,LUh − F ), (2.16)

where we have performed integration by parts on the first term on the right hand

side of the first line of Equation (2.16). For general functions in H1(Ω) the quantity

LUh must be interpreted in the sense of distributions. Note that this equation for

U ′ is driven by the coarse-scale residual R(Uh) ≡ LUh − F . Further, when the

coarse-scale residual is zero its solution is given by U ′ = 0. The formal solution of

Equation (2.16) may be written as
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U ′ = F ′(R(Uh); Uh). (2.17)

This implies that the fine scales are a functional of the residual of the coarse scales

and are parameterized by the coarse scales. Thus they depend on the entire history

of the coarse scales and their residual. A short-time approximation that does away

with all the history effects and replaces the differential operator in Equation (2.16)

by an algebraic operator is given by

U ′ ≈ −P′τ (Uh) P′TR(Uh). (2.18)

Here P′T : Vh∗ → V∗ is the transpose of P′, where the spaces Vh∗ and V∗are

dual of Vh and V , respectively, with respect to the L2 duality pairing [20]. Further,

τ is a matrix that depends on Uh. The operator τ is selected to approximate the

Green’s operator for the fine-scale problem, and can be thought of as a double inte-

gral of the Green’s operator.

In moving from Equation (2.17) to Equation (2.18) instead of solving a very

complicated equation for the fine scales, a gross approximation is made. In particular

it is assumed that the fine scales are equal to the residual of the coarse scales,

which represent the rate of unbalance for the coarse scale representation of a given

conservation variable, times the characteristic time scale. In the advective limit

this time scale is the time it takes to advect the fine scale scales across a typical

grid size, and in the diffusive limit it is the time it takes for them to diffuse. The

precise definition of τ is presented in Chapter 3 and Chapter 4 when the models

are implementd. For a discussion on this the reader is referred to [14, 15] . The

approximation for U ′ above differs from that in [15] in the inclusion of the projectors

P′ and P′T . We believe that these projectors are necessary in order to maintain a

formal consistency between the exaction equation for the fine scales Equation (2.16)

and its approximation Equation (2.18). In particular the operator P′T ensures that

any component of the residual that is not “sensed” by a function in V ′ does not
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contribute to the fine scales, and the operator P′ ensures that the approximation

for the fine scales belongs to V ′. In this regard the approximation above is closer to

the orthogonal sub-scales method of Codina [16].

Using this expression in Equation (2.14) we arrive at the equation for the

residual-based variational multiscale (RBVM) formulation: Find Uh ∈ Vh, such

that

A(W h, Uh − P′τ P′TR(Uh)) = (W h, F ) ∀W h ∈ Vh. (2.19)

Remark: The space for U ′ , that is V ′, is infinite dimensional. However,

in practice this space must also be approximated with a finite dimensional space.

Furthermore it must be selected such that the cost of computing U ′ in this space

does not overwhelm the total computational costs. In our application, where we

have used Fourier modes, the coarse scale space is comprised of all modes with

wavenumber less than or equal to the cutoff wavenumber kh, and the fine scale

space is comprised of all modes with wavenumber greater than kh but less than or

equal to 3kh/2. This choice is motivated by tests (not shown here) that have shown

that using a fine scale space that is larger than this does not significantly alter the

results. Thus in order to minimize the computational effort we select the smallest

possible space for U ′. We note that the ratio of memory costs for the RBVM model

to the no-model case scales as α3, where α > 1 is the ratio of the cutoff wavenumber

for the fine scales to the coarse scales. The ratio of flops per time-step also scales

with the same power of α. Therefore it is imperative that α be kept small in order

for the RBVM formulation to be competitive.

2.2 A mixed model based on residual based variational mul-

tiscale formulation (MM1)

In [19], for incompressible flows the authors demonstrated that while the

RBVM model works well for the cross-stress term it does not introduce an ade-

quate model for the Reynolds stress term. Subsequent analysis has revealed that

the RBVM approximation for the fine scales produces a reasonable estimate for their
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magnitude [21, 22]. Thus the reason why the Reynolds stresses are not accurately

represented is not because their magnitude is underestimated, rather it is that they

are uncorrelated with the large-scale rate of strain tensor. A likely explanation for

this is the exclusion of the history effects in the approximation for the fine scales

which prevents these correlations from evolving. With this in mind they appended to

the RBVM model the dynamic Smagorinsky model in order to model the Reynolds

stress.

2.2.1 Weak Form of MM1

We will first review the mixed model based on RBVM formulation for incom-

pressible flows presented in [19]. Then we extend this model to compressible flows.

We label this model as MM1, for mixed model 1, in anticipation of another mixed

model that is proposed in Section 2.4.

Incompressible flows

In [19], based on the results of their a-priori analysis, the authors conclude

that the RBVM model captures the cross-stresses reasonably well but does not

accurately model the Reynolds stress term. On the other hand, it appears that the

Reynolds stress term may be well represented by a simple eddy viscosity. Motivated

by these observations they propose a mixed model where they append to the RBVM

formulation the Smagorinsky eddy viscosity term. In this model the variational

multiscale term models the cross-stress contribution, while the Smagorinsky term

models the Reynolds stress contribution.

Thus the weak or variational formulation of the new mixed model of incom-

pressible flows is given by: Find Uh ∈ Vh, such that

A
(
W h, Uh + U ′) +

(∇Swh, 2(csh)2|Sh|Sh
)

= (W h, F ) ∀W h ∈ Vh,
(2.20)

Here cs is the Smagorinsky parameter and Sh is the rate of strain. When

utilizing a Fourier-spectral discretization while specifying Ph to the H1 projection
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this expression simplifies to: Find Uh ∈ Vh, such that

A
(
W h, Uh

)
+

(∇Swh, 2(csh)2|Sh|Sh
)

− (∇wh, uh ⊗ u′ + u′ ⊗ uh + u′ ⊗ u′
)

= (W h, F ) ∀W h ∈ Vh,

(2.21)

where uh ⊗ u′ and u′ ⊗ uh are cross-stress term and u′ ⊗ u′ is the Reynolds

stress term. A variant of the proposed mixed model is obtained by discarding the

contribution from the RBVM model to the Reynolds stress. That is by neglecting

the u′⊗u′ term in Equation (2.21). This is a reasonable proposition since as shown

in [19], the Reynolds stress term is not modeled accurately by this term. Instead it

is well represented by the Smagorinsky term.

Compressible flows

We follow the same approach and propose, the following mixed model for

compressible flows: Find Uh ∈ Vh, such that

A
(
W h, Uh + U ′)

+
(∇wh, 2C0h

2ρh|Sh|Sh
dev −

2

3
C1h

2ρh|Sh|2I)

+
(∇qh,

C0

PrtγM2∞
h2ρh|Sh|∇T h

)

= (W h, F ) ∀W h ∈ Vh,

(2.22)

where A(·, ·) is defined in Equation (2.13), Sh is the rate of strain computed the

velocity field uh ≡ mh/ρh, the subscript dev denotes its deviatoric component and

T h ≡ γM2
∞ph/ρh. From the definitions of uh and T h we note that these correspond

to the so-called Favre-averaged variables in traditional LES nomenclature.

Comparing with Equation (2.19), we note that two new terms have been added.

The first term models the deviatoric and dilatational components of the subgrid

scale stress tensor and the second term models the subgrid heat flux vector. For the
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deviatoric component of the subgrid stress we have utilized the Smagorinsky eddy

viscosity model [8], for the dilatational component we have utilized Yoshizawa’s

model [9], and for the subgrid heat flux vector we have utilized an eddy diffusivity

type model. In a typical LES the first term is employed to represent both the

cross and Reynolds stress components of the subgrid stress, whereas in our mixed

model it is added to represent the missing Reynolds stress. In the following section

we demonstrate that the RBVM model by itself introduces a reasonable expression

for the dilatational Reynolds stress component. Based on this analysis we do not

include an eddy viscosity model for the dilatational component of subgrid stress

(that is C1 = 0). Further in Section 4 we note that the dynamic procedure yields a

negative value for Pr−1
t which is clipped to zero. Thus in effect in the mixed model

C1 = Pr−1
t = 0 and the only non-zero term corresponds to C0, that is a model for

the deviatoric subgrid stresses.

2.2.2 Analysis of mechanical energy for the RBVM formulation

In this section we derive a mechanical energy identity for the RBVM formula-

tion for compressible flow. We split the total rate transfer of mechanical energy due

to the subgrid scales into a dilatational and deviatoric component. For the devia-

toric component, in earlier studies of incompressible flows it has been shown that

the RBVM model is unable to model the Reynolds stress term, and for this purpose

a mixed model is necessary. For the dilatational component, we demonstrate that

the RBVM model introduces a cross and a Reynolds-stress term, where the latter

is similar to the Yoshizawa model. As a result no additional model is required for

the dilatational component of the stress tensor.

We begin by noting that Equation (2.22) contains all the models considered

in the manuscript. In particular when U ′ = 0 and C1 = C0 = 0, it represents the

Galerkin method, or the DNS case; when only U ′ = 0 it reduces to the Smagorinsky-

Yoshizawa model; when C1 = C0 = 0, it reduces to the RBVM model; when all terms

are active it represents the mixed model.
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Setting W h = [0, uh, 0]T in this equation for the Galerkin method we arrive

at mechanical energy identity:

d

dt

(1

2

∫

Ω

ρh|uh|2dx
)

=

≡εh
Gal︷ ︸︸ ︷

−
∫

Ω

|uh|2
2

(
ρh

,t +∇ · (ρhuh)
)
dx−

∫

Ω

Sh : σh
t dx, (2.23)

where σh
t = −ph1 + 1

Re
σh is the total Cauchy stress tensor. This equation states

that the rate of change of kinetic energy is determined by the dissipation induced

by the molecular stresses and a term that depends on the residual of the continuity

equation. We combine these two contributions into a term denoted by εh
Gal.

Next we consider Equation (2.22) written for the Smagorinsky-Yoshizawa

model and set W h = [0, uh, 0]T to arrive at the mechanical energy identity for

this model:

d

dt

(1

2

∫

Ω

ρh|uh|2dx
)

= εh
Gal (2.24)

−2C0h
2

∫

Ω

ρh|Sh||Sh
dev|2dx

+
2

3
C1h

2

∫

Ω

ρh|Sh|2(∇ · uh)dx,

where Sh
dev denotes the deviatoric part of Sh. From this equation we conclude that

the deviatoric contribution to the rate of change of kinetic energy is negative and

thus this term always dissipates resolved kinetic energy. On the other hand, the

dilatational contribution can either add or remove kinetic energy. When ∇·uh < 0,

that is we have a flow where resolved scales are undergoing a compression, this term

is negative and as a result the resolved scales loose kinetic energy. The situation is

reversed in the case of an expansion.

Finally we consider Equation (2.22) written for the RBVM model and set
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W h = [0, uh, 0]T to arrive at the mechanical energy identity:

d

dt

(1

2

∫

Ω

ρh|uh|2dx
)

≈ εh
Gal

−
∫

Ω

ρhSh
dev : (uh ⊗ u′ + u′ ⊗ uh + u′ ⊗ u′)devdx

+
1

3

∫

Ω

ρh(∇ · uh)(2uh · u′ + |u′|2)dx. (2.25)

We have used the ≈ symbol above to indicate that we are only considering the

dominant RBVM model terms in this equation. The second line of Equation (2.25)

contains the RBVM contributions to the deviatoric portion of the subgrid stress,

while the third line contains the contributions to the dilatational portion. Further,

in both these lines the last term is the Reynolds stress term. We note that there is a

significant difference in the structure of the Reynolds stress terms. In the deviatoric

case this term is such that it must rely on correlations between u′ and uh to ensure

that Sh
dev : (u′ ⊗ u′)dev > 0 at most spatial locations so that the integral will be

dissipative overall. As mentioned in Section 2.2 the approximation for u′ calculated

using the RBVM approximation does not achieve this. On the other hand, in the

dilatational case, regardless of the correlations between u′ and uh the Reynolds stress

term is such that it always extracts energy from the the coarse scales when they are

undergoing a compression, and adds energy when they expand. In this regard it is

exactly like the Smagorinsky-Yoshizawa model. This implies that the RBVM model

for the dilatational component of the Reynolds stress will be effective as along as the

magnitude of u′ is evaluated accurately. Thus it would appear that in the mixed

model it is not necessary to add the Smagorinsky component to the dilatational

portion of subgrid stresses. So in our mixed model C1 = 0, while C0 and Prt are

determined dynamically.

Summary All models described in this paper and tested in the following sec-

tion are contained in Equation (2.22) (see also Table 2.1). For a direct numerical

simulation there are no model terms, so in this equation τ = 0 and C0 = C1 = 0.

For the dynamic Smagorinsky-Yoshizawa-eddy diffusivity model (DSYE) the fine

scale solution is zero, so τ = 0 and C0, C1 and Prt are determined dynamically
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Table 2.1: A concise description of all models based on the terms appear-
ing in Equation (2.22).

Terms No Model Smagorinsky-Yoshizawa RBVM MM1
τ 0 0 X X
C0 0 X 0 X
C1 0 X 0 0

Pr−1
t 0 X 0 0

using the variational counterpart of the Germano identity [23, 24] (see Section 2.2.3

below). For the residual based variational multiscale model (RBVM) the fine scales

are active, that is τ 6= 0 while C0 = C1 = 0. For the mixed model the fine scales

are active τ 6= 0, C1 = 0, while C0 and Prt are determined dynamically. In our

simulation of the decay of compressible turbulence using the mixed model we have

found that dynamic procedure almost always yields negative values for Prt, indicat-

ing that RBVM model alone introduces adequate dissipation in the energy equation.

In order to avoid unstable solutions we set Pr−1
t = 0 whenever this happens. The

net result is that in the mixed model the only active term is Smagorinsky model for

the deviatoric component of the subgrid stress.

Remark We note that our mixed model is similar to other mixed models,

including the scale-similarity model [11, 25, 26, 27] and the tensor-diffusivity model

[28, 29] in that it contains distinct models for the cross-stress term and the Reynolds

stress term. However, the form of the model term for the cross stress in our model

is distinct from other mixed models.

2.2.3 Derivation of the dynamic calculation for C0, C1 and Prt.

In this section we describe the dynamic procedure we have used to determine

the unknown parameters in the LES models. We have utilized the variational coun-

terpart of the Germano identity described in [23, 24].

DSYE model

The equations for this model are given by Equation (2.22) with U ′ = 0. In this

equation, in order to focus on the momentum equations we select W h = [0, wh, 0],
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to arrive at

(wh, mh
,t)− (∇wh,

mh ⊗mh

ρh
)− (∇ ·wh, ph) +

1

Re
(∇wh, σh)

+

(
∇wh, 2C0ρ

hh2|Sh|Sh
dev −

2

3
C1ρ

hh2|Sh|2I
)

= 0 ∀wh.

(2.26)

In the equations above h = π/kh, where kh is the cutoff wavenumber. The equations

for the same model used in a coarser discretization with the finite dimensional space

VH ⊂ Vh are given by

(wH , mH
,t )− (∇wH ,

mH ⊗mH

ρH
)− (∇ ·wH , pH) +

1

Re
(∇wH , σH)

+

(
∇wH , 2C0ρ

HH2|SH |SH
dev −

2

3
C1ρ

HH2|SH |2I
)

= 0 ∀wH .

(2.27)

where H = π/kH , where kH is the cutoff wavenumber at the H-scale. In this study

we have selected kH = kh/2. Since VH ⊂ Vh, we replace wh with wH in Equation

(2.26), and subtract the resulting equation from Equation (2.27) to arrive at

(
∇wH ,

mh ⊗mh

ρh
− mH ⊗mH

ρH

)
=

−2C0

(
∇wH , ρHH2|SH |Sh

dev − ρhh2|Sh|Sh
dev

)

+
2

3
C1

(
∇wH , ρHH2|SH |2I − ρhh2|Sh|2I

)
∀wH .

(2.28)

In arriving the this equation we have set

(wH , mH
,t −mh

,t) = 0,

(∇ ·wH , pH − ph) = 0,

(∇wH , σH − σh) = 0,

(2.29)

the first two relations above hold exactly for a Fourier-spectral spatial discretization,

while the last is an assumption.

In Equation (2.28) we select ∇wH = SH
dev, and recognize that (Sdev, I) = 0,
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to arrive at

(
SH

dev,
mh ⊗mh

ρh
− mH ⊗mH

ρH

)
=

−2C0(S
H
dev, ρ

HH2|SH |SH
dev − ρhh2|Sh|Sh

dev),

(2.30)

which yields the final expression for C0,

C0 = −1

2

(
SH

dev,
mh ⊗mh

ρh
− mH ⊗mH

ρH

)

(
SH

dev, ρ
HH2|SH |SH

dev − ρhh2|Sh|Sh
dev

) . (2.31)

In order to determine C1 we select ∇wH = I in Equation (2.28), to arrive at

(
1, tr

(mh ⊗mh

ρh
− mH ⊗mH

ρH

))
=

2C1(1, ρ
HH2|SH |2 − ρhh2|Sh|2),

(2.32)

which yields

C1 =
1

2

(
1, tr

(mh ⊗mh

ρh
− mH ⊗mH

ρH

))

(1, ρHH2|SH |2 − ρhh2|Sh|2) . (2.33)

In order to determine the turbulent Prandtl number in Equation (2.22), we choose

W h = [0, 0, qh] to get

(qh, ph
,t)− (∇qh, uhph)− (1− γ)(qh, ph∇ · uh)

− (γ − 1)

Re
(qh, Φh) +

1

M2∞PrRe
(∇qh, µh∇T h)

+
(∇qh,

C0

PrtγM2∞
h2ρh|Sh|∇T h

)
= 0 ∀qh.

(2.34)



29

Similarly at the H−scale we arrive at

(qH , pH
,t )− (∇qH , uHpH)− (1− γ)(qH , pH∇ · uH)

− (γ − 1)

Re
(qH , ΦH) +

1

M2∞PrRe
(∇qH , µH∇TH)

+
(∇qH ,

C0

PrtγM2∞
H2ρH |SH |∇TH

)
= 0 ∀qH .

(2.35)

Since VH ⊂ Vh, we may replace qh with qH in (2.34) and subtract the result from

Equation (2.35) to arrive at

(
∇qH ,

mhph

ρh
− mHpH

ρH

)
=

C0

PrtγM2∞

(
∇qH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)
∀qH .

(2.36)

Where we have made use of

(qH , pH
,t − ph

,t) = 0,

(qH , pH∇ · uH − ph∇ · uh) = 0,

(qH , ΦH − Φh) = 0,

(∇qH , µH∇TH − µh∇T h) = 0.

(2.37)

The first relation above holds exactly for a Fourier-spectral spatial discretization,

while the others are assumed. We let ∇qH = ∇TH , in Equation (2.36) and arrive

at

(
∇TH ,

mhph

ρh
− mHpH

ρH

)
=

C0

PrtγM2∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)
.

(2.38)
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This equation yields

Prt =
C0

γM2∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)

(
∇TH ,

mhph

ρh
− mHpH

ρH

) . (2.39)

Mixed model

The procedure in this case is the same as for the DYSE model, except in

Equation (2.22) U ′ 6= 0. In particular we get

C0 = −1

2

(
SH

dev,
(mh+m′)⊗(mh+m′)

ρh+ρ′ − (mH+m′′)⊗(mH+m′′)
ρH+ρ′′

)

(
SH

dev, ρ
HH2|SH |SH

dev − ρhh2|Sh|Sh
dev

) , (2.40)

and

Prt =
C0

γM2∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇ TH

)

(
∇TH , (mh+m′)(ph+p′)

ρh+ρ′ − (mH+m′′)(pH+p′′)
ρH+ρ′′

) . (2.41)

Where ρ′, m′ and p′ are the fine scale variables at the h-scale and ρ′′, m′′ and p′′

are the variables at the H-scale.

Remark: In the DSYE model, C0, C1 and Prt are calculated dynamically,

while in the mixed model only C0 and Prt are using dynamic valure and C1 = 0 as

it should has no contribution.

2.3 Residual based eddy viscosity model (RBEV)

2.3.1 Weak form of the RBEV model

An approximate solution to the weak form of Navier Stokes Equations (2.1) −
(2.2) and Equations (2.3) − (2.5) is obtained by approximating the infinite dimen-

sional space V with a finite dimensional Vh ⊂ V . The equation for the approximate
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solution Uh is given by: find Uh ∈ Vh such that

A(W h, Uh) = (W h, F ) ∀W h ∈ Vh. (2.42)

When Vh is sufficiently refined so as to resolve all scales of motion down to

the Kolmogorov length scale, Uh represents the direct numerical simulation (DNS)

solution. However, when this is not the case, and the fine scales are not represented,

Uh is very inaccurate and represents the coarse DNS solution. The accuracy of this

solution may be improved by adding to it terms that model the effect of the missing

or unresolved scales on the resolved scales. In this case Equation (2.42) is replaced

by: find Uh ∈ Vh such that

A(W h, Uh) + M(W h, Uh) = (W h, F ) ∀W h ∈ Vh. (2.43)

where M(W h, Uh) denotes the model term.

In the incompressible case the model term is often represented by an eddy vis-

cosity in direct analogy with the viscous models for transfer of momentum through

molecular motion. The assumption is that the subgrid turbulent eddies redistribute

momentum among the coarse velocity scales just like the thermal fluctuations of

particles redistribute momentum among the continuum velocity scales. It is there-

fore reasonable to assume, in direct analogy with molecular diffusion of momentum

that the eddy viscosity νt = C̄h|u′|, where |u′| plays the role of the thermal velocity

fluctuations and the grid size h plays the role of mean free path of these eddies. As

a result we have

M(W h, Uh) = (∇swh, 2C̄h|u′|Sh). (2.44)

The constant C̄ in the above equation may be determined by equating the dissipa-

tion induced by the model term to the total dissipation and is derived in Section

2.3.2. This yields C̄ = 0.0740.
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For turbulent flows where compressibility is important, following Yoshizawa,

the fine scale fluctuations introduce two other terms. As a result we propose

M(W h, Uh) = 2C̄(∇swh, ρhh|u′|Sh
dev)

− 1

3
(∇ ·wh, ρh|u′|2) +

C̄

PrtγM2∞
(∇qh, ρhh|u′|∇T h).

(2.45)

In the equation above Prt = 0.5 is the turbulent Prandtl number assumed to

be constant.

In the expressions above there is no undetermined parameter, however we

have made use of u′, the fine scale velocity field, which is obviously not known in a

coarse scale simulation. However, tt may be evaluated using the VMS formulation

as described in Section 2.1.

2.3.2 Estimate of the RBEV parameter C̄

In this subsection, we determine the value of RBEV parameter C̄. The con-

stant C̄ is determined by equating the dissipation induced by the model term to

the total dissipation. The idea is similar as the derivation of static Smagorinsky

parameter cs [30]. The derivation presented in this section is based on homogeneous

isotropic turbulence, and uses the knowledge of Kolmogorov spectrum described in

Section 3.3.

The RBEV model can be viewed in two parts. First, the linear eddy-viscosity

model

τij = −2νtS
h
ij, (2.46)

is used to relate the residual stress to the filtered rate of strain. The coefficient of

proportionality νt is the eddy viscosity of the residual motions. Second, the eddy

viscosity is modeled as

νt = C̄h|u′|, (2.47)
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where the grid size is defined as h = π/kh and kh is the cutoff wavenumber. Ac-

cording to the eddy-viscosity model, the rate of transfer of energy to the residual

motions or the dissipation ε is

ε = −τijS
h
ij. (2.48)

In addition, we need the Kolmogorov spectrum, it is shown as

E(k) = CKε2/3k−5/3, (2.49)

where CK is the Kolmogorov constant. Using Equations (2.46) and (2.49) in Equa-

tion (2.48), we get,

ε = 2νtS
h
ijS

h
ij, (2.50)

because

Sh
ijS

h
ij =

∫ kh

0

k2E(k)dk, (2.51)

so

ε = 2νt

∫ kh

0

k2E(k)dk, (2.52)

with Equation (2.47), Equation (2.52) becomes

ε = 2C̄h|u′|
∫ kh

0

k2E(k)dk, (2.53)

with

|u′| = |u′iu′i|1/2 =
(
2

∫ ∞

kh

E(k)dk
)1/2

, (2.54)
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so

ε = 2C̄h
(
2

∫ ∞

kh

E(k)dk
)1/2

∫ kh

0

k2E(k)dk. (2.55)

Put Equation (2.49) into Equation (2.55)

ε = 2C̄h(2

∫ ∞

kh

CKε2/3k−5/3dk)1/2

∫ kh

0

k2CKε2/3k−5/3dk. (2.56)

Finally we arrive at

C̄ =
2

3
√

3C
3/2
K π

. (2.57)

With Kolmogorov constant CK = 1.4, we get C̄ = 0.0740.

2.4 A purely residual based mixed model (MM2)

In Section 2.2, a mixed model based on the RBVM and dynamic Smagorinsky-

Yoshizawa-eddy diffusivity (DSYE) model was proposed. It is motivated by the

work [19] for incompressible flows. The authors demonstrated that while the RBVM

model works well for the cross-stress term it does not introduce an adequate model

for the Reynolds stress term. Our work in Section 2.2 fellows the same idea. We use

the DSYE model to simulate the effect of Reynolds stress term while the RBVM

for the cross-stress term. However, as it is shown in Section 2.2, in order to im-

plement the dynamic Smagorinsky-Yoshizawa-eddy diffusivity components in the

mixed model (MM1), the dynamic parameters C0 and Prt must be evlauated. The

procedure for calculating these parameters involves the variational counterpart of

the Germano identity, which needs two different coarse scales and is cumbersome

to implement. This is especially true when there is no homogeneous coordinate

along which one might evaluate averages, and when solving problems with general

unstructured grids.

In Section 2.1 we proposed a new RBEV model that is easy to implement and

contains no undetermined dynamic parameters. However, the model is inherently
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dynamic in that it automatically vanished when the residual of the coarse scales

is small. Thus it presents in alternative model that may be used with the RBVM

model in order to create a new mixed model. In comparison with the mixed proposed

in Section 2.2 this model is purely residual based, and doe not rely on the dynamic

evaluation of parameters. We refer to this mixed model as MM2.

MM2 for Incompressible flows:

For the incompressible flow, the purely residual based mixed model (MM2) is

given by: Find Uh ∈ Vh, such that

A
(
W h, Uh + b1U

′) +
(∇wh, 2C̄ρhh|u′|Sh

)
= (W h, F ) ∀W h ∈ Vh. (2.58)

where U = [u, p]T are the unknowns with F = [f , 0]T , and A(·, ·) is defined

in Equation (2.12), Sh is the rate of strain. We note that in comparison with the

mixed model MM1 (see Equation (2.21)), in MM2 the Smagorinsky term is replaced

by the RBEV term.

MM2 for Compressible flows:

For the compressible flow, the purely residual based mixed model (MM2) is

given by: Find Uh ∈ Vh, such that

A
(
W h, Uh + U ′)

+
(∇wh, 2C̄ρhh|u′|Sh

dev

)− (∇ ·wh,
1

3
ρh|u′|2)

+
(∇qh,

C̄

PrtγM2∞
ρhh|u′|∇T h

)

= (W h, F ) ∀W h ∈ Vh,

(2.59)

where U = [ρ, m, p]T are the unknowns with F = [0, f , 0]T , and A(·, ·) is defined in

Equation (2.13), Sh is the rate of strain computed the velocity field uh ≡ mh/ρh,

the subscript dev denotes its deviatoric component and T h ≡ γM2
∞ph/ρh.

Compared with Equation (2.19), we note that three new terms have been
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added. The first two term models the deviatoric and dilatational components of the

subgrid scale stress tensor and the third term models the subgrid heat flux vector.

In comparison with the mixed model MM1, we note that the Smagorinsky and the

eddy diffusivity term have been replaced by their RBEV counterparts. We note that

we do not need a RBEV term for the diltational component of the residual stresses

because the RBVM formulation already provides this (see the discussion in Section

2.2.2).

Remark We note that our mixed model is similar to other mixed models,

including the scale-similarity model [11, 25, 26, 27] and the tensor-diffusivity model

[28, 29] in that it contains distinct models for the cross-stress term and the Reynolds

stress term. However, the form of the model term for the cross stress in our model

is distinct from other mixed models. In addition, this purely residual based mixed

model (MM2) is much easier for the implementation than the mixed model based

on dynamic Smagorinsky model (MM1).



CHAPTER 3

Large-Eddy Simulation of Compressible Homogeneous

Isotropic Turbulent Flows

3.1 Introduction

In this chapter, we test the performance of the four LES models developed in

Chapter 2 for compressible turbulent flows within a Fourier-spectral method method.

They are

• the residual-based variational multiscale (RBVM) model

• the mixed model based on RBVM (MM1)

• the residual-based eddy viscosity (RBEV) model

• the purely-residual based mixed model (MM2)

We will test the performance of these LES models in predicting the decay

of compressible, homogeneous, isotropic turbulence in regimes where shocklets are

known to exist. The LES models will be tested with Taylor micro-scale Reynolds

numbers of Reλ ≈ 65 and Reλ ≈ 120 on 323 and 643 grids.

The layout of this chapter is as follows. In Section 3.2, we specialize the

weak form of the models developed in Chapter 2 to a spectral method that utilizes

Fourier basis functions. The precise definition for the unresolved scales, and well

as the parameters τ is also provided. Homogeneous Isotropic Turbulence (HIT) is

introduced in Section 3.3 to understand the behavior of turbulent flows. In Section

3.4, we apply the RBVM model and the MM1 model to decay of compressible

Portions of this chapter previously appeared as: J. Liu, and A. A. Oberai, “The residual-based
variational multiscale formulation for the large eddy simulation of compressible flows, ” Comput.
Methods Appl. Mech. Eng., accepted, 2012.
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turbulent flows. In Section 3.5, the RBEV model and the MM2 model will be

applied to to study the same flows. Conclusions are drawn in Section 3.6.

3.2 LES models

In Chapter 2, we have introduced and developed the residual based variational

multiscale model (RBVM), a mixed model based on RBVM (MM1), the residual

based eddy viscosity model (RBEV) and the purely residual based mixed model

(MM2). In this chapter we will apply these LES models to study the decay of com-

pressible homogeneous isotropic turbulent flows by using a Fourier-spectral method.

3.2.1 Weak form of LES models

RBVM and MM1 models:

The weak form of the RBVM and MM1 models is given by Equation (2.22) in

Chapter 2. It is repeated here for convenience: Find Uh ∈ Vh, such that

A
(
W h, Uh + U ′)

+
(∇wh, 2C0h

2ρh|Sh|Sh
dev

)− (∇wh,
2

3
C1h

2ρh|Sh|2I)

+
(∇qh,

C0

PrtγM2∞
h2ρh|Sh|∇T h

)

= (W h, F ) ∀W h ∈ Vh,

(3.1)

In Equation (3.1), C0, C1 and Prt
−1 are three parameters and U ′ is given by

Equation (2.18). This equation contains the following LES models within it:

• With C0 = C1 = Prt
−1 = 0 and τ = 0, we arrive at the direct numerical

simulation (DNS).

• With C0 = C1 = Prt
−1 = 0, but τ 6= 0, we arrive at the residual based

variational multiscale model (RBVM).

• With C0, C1 and Prt
−1 are determined dynamically, and τ = 0, we arrive at

the dynamic Smagorinsky-Yoshizawa-eddy diffusivity model (DSYE).
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• With C0, C1 and Prt
−1 are kept at a fixed value, and τ = 0, we arrive at the

static Smagorinsky-Yoshizawa-eddy diffusivity model (SSYE).

• With C0 and Prt
−1 are determined dynamically, C1 = 0 and τ 6= 0 we arrive

at mixed model based on RBVM and DSYE (MM1).

RBEV and MM2 models:

The weak from for the RBEV and the MM2 models is given by Equation (2.59)

in Chapter 2. It is repeated here for convenience:

Find Uh ∈ Vh, such that

A
(
W h, Uh + b1U

′)

+
(∇wh, 2C̄ρhh|u′|Sh

dev

)− (∇ ·wh, b2
1

3
ρh|u′|2)

+
(∇qh,

C̄

PrtγM2∞
ρhh|u′|∇T h

)

= (W h, F ) ∀W h ∈ Vh,

(3.2)

In Equation (3.2), b1, b2 are parameters. This equation contains the following LES

models within it:

• With b1 = b2 = C̄ = 0, we arrive at the direct numerical simulation (DNS).

• With b2 = C̄ = 0, but b1 6= 0, we arrive at the residual based variational

multiscale model (RBVM).

• With b2 6= 0 and C̄ 6= 0 but b1 = 0, we arrive at the residual based eddy

viscosity model (RBEV).

• With b1 6= 0 and C̄ 6= 0 while b2 = 0, we arrive at the purely residual based

mixed model (MM2).
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3.2.2 Unresolved scales and stabilization parameter τ

The unresolved scales U ′ = [ρ′, m′, p′] that appear in Equations (3.1) and (3.2)

are determined by

U ′ ≈ −P′τ (Uh) P′TR(Uh), (3.3)

where P′ is a projection operator that maps an element of V to V ′ and R(Uh) ≡
LUh−F is the coarse-scale residual. For other details, please refer to the discussion

in Section 2.

The coarse-scale residual R(Uh) = (Rρ,Rm,Rp)
T is given by

Rρ =
∂ρh

∂t
+∇ ·mh, (3.4)

Rm =
∂mh

∂t
+∇ · (m

h ⊗mh

ρh
) +∇ph − 1

Re
∇ · σh − f , (3.5)

Rp =
∂ph

∂t
+∇ · (uhph)− (γ − 1)ph∇ · uh − (γ − 1)

Re
Φh

− 1

M2∞PrRe
∇ · (µh∇T h). (3.6)

We assume a diagonal form for the matrix τ , that is τ = diag(τc, τm, τm, τm, τe).

Each of τc, τm and τe represents a combination of an advective and a diffusive time-

scale associated with differential operator for the fine scales. Our definition for τ

for the compressible Navier-Stokes equations is motivated by the work of [15, 31].

The τ ’s are given by

τc = Cτ

[
(λ)2

]−1/2

,

τm = Cτ

[
(λ)2 +

(
4

h2

< µh >

< ρh > Re

)2 ]−1/2

,

τe = Cτ

[
(λ)2 +

(
4

h2

γ < µh >

< ρh > PrRe

)2 ]−1/2

,

(3.7)
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with

1

λe
=

1− e−Ma

λe
1

+
e−Ma

λe
2

, (3.8)

(λe
1)

2 =
4

h2
< |uh|2 > (1 + 2Ma−2 + Ma−1

√
4 + Ma−2), (3.9)

(λe
2)

2 =
4

h2
< |uh|2 >, (3.10)

where h = π
kh is the grid size, u = mh

ρh , < · > denotes the spatial average of

a quantity, Ma =
√

< |uh|2 >/ < ch > is the turbulent Mach number, and

ch = (T h)1/2/M∞ is the local speed of sound. Cτ is constant, which is either 1

or 1/2. In the equation above λ is the reciprocal of the characteristic advective time

scale. It is a combination of a time scale that is appropriate for the low-Mach num-

ber limit λ2 and another that is appropriate for the high Mach number limit, λ1. In

this case λ can be thought of as a doubly-asymptotic approximation of the two. We

note that a similar approximation was proposed in [31], however it underestimated

the value of λ in the compressible limit.

3.2.3 Specialization to a Fourier spectral basis

We will apply the RBVM model, the MM1 model, the RBEV model and the

MM2 model to simulate the decay of homogeneous isotropic turbulence of compress-

ible flows. We assume that Ω = ]0, 2π[3 and the density, velocity and pressure fields

satisfy periodic boundary conditions. We propose to simulate this problem using the

Fourier-spectral method. In this case the space of functions Vh are approximated

by a Fourier-spectral basis. Fourier modes with |k| < kh are used to define Vh. We

note that these basis functions have the special property that they are orthogonal

to each other in all Hm inner-products. In addition, we define the projector Ph to

be the H1 projection and due to the orthogonality of the Fourier modes this is the

low-pass sharp cut-off filter in wavenumber space. Then P′ is the high-pass, sharp

cutoff filter in wavenumber space.

As a result of this, the expression for the fine scale variables U ′ = [ρ′, m, p′]T
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simplify to:

ρ′ = 0, (3.11)

m′ = −P′τmP
′T (∇ · (m

h ⊗mh

ρh
)− 1

Re
∇ · σh

)
, (3.12)

p′ = −P′τeP
′T (∇ · (uhph)− (γ − 1)ph∇ · uh − (γ − 1)

Re
Φh

− 1

M2∞PrRe
∇ · (µh∇T h)

)
. (3.13)

Further, the equations for all the LES models derived in the previous section

simplify to

∂ρ̂h

∂t
+ ik · m̂h = 0, (3.14)

∂m̂h

∂t
+ ik · m̂⊗m

ρ
+ ikp̂h =

ik · σ̂
Re

+ ik · 2 ̂ρhνtSh
dev −

ik

3
ρ̂hu2

rms, (3.15)

∂p̂h

∂t
+ ik · ûp + (γ − 1)p̂∇ · u =

(γ − 1)

Re
σ̂ : S +

ik

M2∞
· (

̂µ(T )∇T

PrRe
+

̂ρhνt∇T h

γPrt

)
, (3.16)

where the hat denotes the Fourier coefficient of a variable corresponding to a wavenum-

ber k. In addition ρ = ρh + ρ′, m = mh + m′, p = ph + p′, u = m/ρ, uh = mh/ρh,

T = γM2
∞p/ρ, T h = γM2

∞ph/ρh, S and Sh are the symmetric gradients of u and

uh respectively, and σ = µ(T )Sdev.

All the models to be tested in this can be obtained by defining νt and urms as

follows:

1. For no model (DNS), νt = urms = 0 and ρ′ = m′ = p′ = 0.

2. For the static Smagorinsky-Yoshizawa eddy viscosity model (Static SYE), νt =

C2
0h

2|Sh| and u2
rms = 2C1h

2|Sh|2, where C0 = 0.1, 0.16, C1 = 0.020 and

Prt = 0.5, and ρ′ = m′ = p′ = 0.
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3. For the dynamic Smagorinsky-Yoshizawa eddy viscosity model (DSYE), νt =

C2
0h

2|Sh| and u2
rms = 2C1h

2|Sh|2, where C0, C1 and Prt are determined dy-

namically, and ρ′ = m′ = p′ = 0.

4. For the residual based variational multiscale model (RBVM), νt = urms = 0,

ρ′, m′ and p′ are given by Equations (3.11)-(3.13).

5. For the MM1 model, νt = C2
0h

2|Sh| and u2
rms = 0, where C0 and Prt are

determined dynamically, and ρ′, m′ and p′ are given by Equations (3.11)-

(3.13).

6. For the residual based eddy viscosity model (RBEV) νt = C̄h|u′| and urms =

|u′|, where u′ is given by u′ = m′
ρh with m′ given by Equation (3.12), C̄ =

0.0740 and Prt = 0.5. However, in all the other terms ρ′ = m′ = p′ = 0.

7. For the MM2 model, νt = C̄h|u′| and urms = |u′|, where u′ is given by

u′ = m′
ρh , C̄ = 0.0740 and Prt = 0.5. ρ′, m′ and p′ are given by Equations

(3.11)-(3.13).
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3.3 Homogeneous Isotropic Turbulence (HIT)

The concept of using statistical methods for the analysis of turbulent flows

was introduced by G. I. Taylor in the 1930s. These methods include using studying

structure functions and their Fourier transforms in order to understand turbulent

flows. As mentioned in Chapter 1, in 1941 the Russian statistician Kolmogorov pub-

lished three papers [5, 6, 7] on the statistical theories of turbulence, which is known

as the K41 theory. His theory provides a prediction of the structure functions and

their Fourier transforms for of a homogeneous isotropic turbulent flow. Kolmogorov

demonstrated that even though the velocity of a homogeneous isotropic turbulent

flow fluctuates in an unpredictable manner, the energy spectrum (how much kinetic

energy is present on average at a particular length scale) is predictable.

Homogeneous isotropic turbulence

Homogeneous isotropic turbulence is the simplest and most fundamental tur-

bulent flow. If all the statistics of turbulence are invariant under a shift in position,

the field u(x, t) is homogeneous. If the field is also statistically invariant under

rotations and reflections of the coordinate system, then it is isotropic. If the flow

field is statistically invariant under all translations, rotations and reflections of the

coordinate system, it is said to be homogeneous isotropic turbulence (HIT).

It should be pointed out that, the HIT is an idealization and never happens

in nature. Fortunately, HIT can be realized in the lab to help study the theory of

HIT. It can be approximately generated in a wind or water tunnel by let a uniform

fluid stream that passes through a uniform metal grid. Once the fluid passes the

metal grid, there is no production of turbulent kinetic energy, the turbulence decays

downstream of the grid. The downstream distance to the grid can be interpreted

as psuedo-time. In this way is the decay of homogeneous isotropic turbulence is

experimentally realized. However, the turbulence from this method is relatively

homogeneous in planes normal to the mean flow, and it is not fully isotropic. Another

approach has been to use fans. In [32], eight synthetic jet actuators on the corners

of a cubic chamber are used to create energetic turbulence, and HIT without a mean

flow was realized in a small region at the center of the chamber.
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Fourier modes

In order to show a clear picture of the energy cascade, we will examine the

Navier-Stokes equations in wavenumber space. In this subsection we will apply

Fourier modes to the Navier-Stokes equations for homogeneous turbulence in which

the mean velocity is zero.

The Fourier series representation of the turbulent velocity field in 3D is

u(x, t) =
∑

k

eik·xû(k, t), (3.17)

where k is the wavenumber, eik·x is the Fourier modes and ûj(k, t) are the Fourier

coefficients of velocity, which are defined as

ûj(k, t) = Fk{uj(x, t)}, (3.18)

the operator Fk{ } determines the coefficient for the Fourier mode with wavenum-

ber k. It is defined as

Fk{g(x)} =
1

L3

∫ L

0

∫ L

0

∫ L

0

g(x)e−ik·xdx1dx2dx3 = ĝ(k). (3.19)

The Fourier operator transfers variables from spatial space u(x, t) to wavenum-

ber space û(k, t).

Turbulent kinetic energy (TKE) in spectral space

The total kinetic energy E can be written with a spatial average,

E =
1

2
< u2

i >=
1

2

1

V

∫ ∫ ∫
ui(x)ui(x)dx, (3.20)

where V is the volume. The angle brackets represent an spatial average.

According to the mathematics of Fourier transform, the total kinetic energy

can be written as

E =
1

2

∫ ∫ ∫
û(k) · û∗(k)dk =

∫ ∫ ∫
E(k)dk, (3.21)
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where E(k) is defined as the kinetic energy of the Fourier mode with wavenum-

ber k,

E(k) =
1

2
û(k) · û∗(k), (3.22)

where û∗(k) is the conjugate of û(k). E(k) contains directional information.

In an isotropic velocity fields the spectrum does not depend on directions. Usually,

we want to know the energy at a particular scale k = |k| without any interest in

its direction. To find E(k), we integrate over the spherical shell of radius k (in

3-dimensions),

E =

∫ ∫ ∫
E(k)dk =

∫ ∞

0

E(k)dk. (3.23)

As the mean velocity is zero, so the kinetic energy E is equal to turbulent

kinetic energy K. Then we get the turbulent kinetic energy K,

K =

∫ ∞

0

E(k)dk, (3.24)

the dissipation ε can be defined based on the energy spectrum as,

ε =

∫ ∞

0

2νk2E(k)dk, (3.25)

where ν is the kinematic viscosity.

The Taylor-scale Reynolds number Reλ is often used to characterize HIT,

which is defined based on K and ε as

Reλ =
(20

3

K2

εν

)
. (3.26)

Energy cascade

Turbulence can be considered to be composed of eddies of different sizes. Ed-

dies with characteristic size ` have a characteristic velocity u(`) and characteristic

timescale τ(`) = `/u(`). The eddies in the largest size range are characterized by

the lengthscale `0 which is comparable to the flow scale L, and their characteristic

velocity u0 is on the order of the r.m.s. turbulence intensity which is comparable to
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characteristic velocity U of the HIT.

The large eddies are usually unstable and they break up into smaller eddies.

In this way kinetic energy contained in large eddies is transferred to smaller eddies.

These smaller eddies have a similar break-up process, and transfer their energy to

even smaller eddies. The procedure of kinetic energy transfer from large eddies to

small eddies is the energy cascade. Energy cascade continues until the Reynolds

number Re(`) = u(`)/` is sufficiently small that the eddy motion is stable, and

molecular viscosity is effective in dissipating the kinetic energy. Then kinetic energy

is converted into heat, and lost to the environment. This procedure is called dissi-

pation.

The Kolmogorov hypotheses and Characteristic scales of turbulence

The K41 theory contains three hypotheses, and among other things it can de-

termine the size of the smallest eddies that are responsible for dissipating the energy

in the energy cascade. First, it is useful to introduce a lengthscale `EI ≈ 1
6
`0, which

is used to separate the anisotropic large eddies ` > `EI and the isotropic small eddies

` < `EI . The three Kolmogorov hypotheses are as following [3]:

Kolmogorov’s hypothesis of local isotropy: At sufficiently high Reynolds

number, the small-scale turbulent motions (` ¿ `0) are statistically isotropic.

Kolmogorov’s first similarity hypothesis: In every turbulent flow at suf-

ficiently high Reynolds number, the statistics of the small-scale motions (` < `EI)

have a universal form that is uniquely determined by ν and ε.

Given the two parameters ν and ε, the characteristic length, velocity, and time

scales for the smallest eddies can be determined. These are the Kolmogorov scales:

η = (ν3/ε)1/4,

uη = (εν)1/4,

τη = (ν/ε)1/2.

(3.27)
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Kolmogorov’s second similarity hypothesis: In every turbulent flow at

sufficiently high Reynolds number, the statistics of the motions of scale ` in the range

`0 À ` À η have a universal form that is uniquely determined by ε, independent of

ν.

According to the Kolmogorov’s hypotheses, the eddy scales in the turbulent

flows can be classified into three ranges: the integral length scales range, the inertial

subrange scales range and the Kolmogorov scales (the dissipation range). Motions

in the inertial subrange are determined by inertial effects, and viscous effects are

negligible. Motions in the dissipation range have significant viscous effects, and

they are responsible for essentially all of the dissipation. For the Energy cascade,

the energy is usually injected into the system at the integral length scale range, then

the kinetic energy is transferred by the inertial subrange to Kolmogorov scales as

the large eddies are broken down to small eddies. At the Kolmogorov scales, the

eddies are stable and the kinetic energy converted into heat due to dissipation.

Kolmogorov spectrum

Another important information obtained from K41 theory is the Kolmogorov

energy spectrum, which demonstrates the energy spectrum E(k) is predictable. Ac-

cording to Kolmogorov’s first similarity hypothesis, in the inertial subrange the

energy spectrum is only a function of the dissipation rate and the size of the eddies.

that is

E(k) = f(ε, k). (3.28)

We use dimensional analysis: Kinetic energy E ∼ L2/T 2, wavenumber k ∼
1/L) , energy spectrum E(k) ∼ L3/T 2 and dissipation ε ∼ L2/T 3. Using this in

Equation (3.28), we arrive at,

E(k) = CKε2/3k−5/3. (3.29)

This is the famous Kolmogorov spectrum, one of the cornerstone of turbulence

theory. CK is a universal constant, the Kolmogorov constant, experimentally found

to be approximately 1.5. Figure 3.1 is a schematic representation of this spectrum.
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Figure 3.1: Sketch of energy spectrum.
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3.4 Numerical Results for RBVM and MM1

In this section we present results using the RBVM, the mixed RBVM and the

dynamic Smagorinsky-Yoshizawa-eddy diffusivity (DSYE) model with a spectral

basis. All variables are represented using a Fourier basis with a cut-off wave number

denoted by kh. The test problem corresponds to a DNS simulation of the decay of

homogeneous turbulence for a compressible fluid computed in [33]. In particular we

focus on the D9 case described in that paper with Ω =]0, 2π[3. In order to validate

our implementation of the compressible Navier-Stokes equations we compute our

own DNS results and compare with the results presented in [33] and achieve good

agreement. The physical parameters associated with the cases we have considered

are listed in Table 3.1. They include the initial spectrum for the turbulent kinetic

energy E(k, 0), the initial total kinetic energy q2/2, the free stream Mach number

M∞, the turbulent Mach number, Ma, the Reynolds number Re and the ratio

of initial compressible to total kinetic energy χ. We assume that there are no

fluctuations in the initial values of the thermodynamic quantities, namely pressure,

density and the temperature. We choose Prandtl number Pr = 0.7 and the adiabatic

index for air to be γ = 1.4.

3.4.1 Low Reynolds Number Case

For compressible flows the velocity field is comprised of solenoidal (incompress-

ible) and dilatational (compressible) components, us and uc respectively. For the

case of isotropic turbulence in Fourier space the Helmholtz decomposition is unique

and is given by

ûc = [(k · û)/k2]k, (3.30)

ûs = û− ûc . (3.31)

Let Ks and Kc denote the turbulent kinetic energy from the solenoidal and

dilatational velocity components, respectively. We define χ = Kc/(Kc + Ks) as the

ratio of compressible kinetic energy to the total kinetic energy.

The turbulent Mach number Ma =
√

< |uh|2 >/ < ch >, where < · >
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Table 3.1: Parameters for the decay of homogeneous compressible tur-
bulence.

E(k, 0) q2

2
M∞ Ma Re χ

0.011k4e−2( k
4 )

2

1.3235 0.184 -0.430 0.300-0.700 376 0.2-0.6

represents the spatial average and c is the local speed of sound. We approxi-

mate the turbulent Mach number with the root-mean-square Mach number Ma ≈√
< |uh|2 > /ch2, which is easier to evaluate.

These parameters lead to the development of local, weak shocks, referred to

as shocklets close to the regions where the local Mach number exceeds unity. As

pointed out in [33] this happens when ∇ · u obtains a large negative value corre-

sponding to the deceleration of a supersonic flow to a subsonic flow. During the

decay of turbulence the local Mach number varies in the range Ma ∼ 0.1 − 0.7,

and the Taylor microscale Reynolds number, Reλ = O(27 − 65). We refer this low

Reynolds number test as Case Reλ = 65.5.

We solve the Navier Stokes equations on a grid with N3 points and compute all

integrals on a (3N/2)3 grid. We note that even for the DNS simulation this does not

de-alias all the terms, but does guarantee the accurate computation of predominantly

quadratic terms. For the DNS simulation N = 256 and for the LES simulations

N = 32. For the LES calculations we use the truncated velocity field obtained from

the DNS at t/Te = 1.2, where Te = 0.667 is the eddy turn-over time [33], as the initial

condition. We compare the performance of the models from t/Te = 1.2 ∼ 7.0, which

corresponds to a Taylor micro-scale Reynolds number of Reλ = 65.5 ∼ 27.4. For

time integration we use the fourth-order Runge-Kutta algorithm, and we evaluate

all terms explicitly. The details of the numerical algorithm can be found in [34].

For all the LES models in this section, Cτ = 0.5. For more details, the readers are

referred to [35].
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Figure 3.2: Time history of turbulent kinetic energy of the incompress-

ible velocity component for the Reλ = 65.5 case on a 323 grid

with χ = 0.4 and Ma = 0.488. A comparison of the DSYE,

RBVM, MM1, and no model cases.
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Figure 3.3: Time history of turbulent kinetic energy of the compressible

velocity component for the Reλ = 65.5 case on a 323 grid with

χ = 0.4 and Ma = 0.488. A comparison of the DSYE, RBVM,

MM1, and no model cases.
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Figures 3.2 and 3.3 show the turbulent kinetic energy in the incompressible

and compressible velocity components, respectively, as a function of time. We ob-

serve that the no model case overpredicts these quantities. In Figure 3.2, for the

incompressible turbulent kinetic energy, the RBVM model is most accurate followed

by the mixed model, followed by the DSYE model which is clearly too dissipative.

The RBVM model slightly overpredicts the kinetic energy while the mixed model

underpredicts it. The evolution of the compressible component of the kinetic energy

is shown in Figure 3.3 and all three LES models perform well. Here the mixed

model is the most accurate followed closely by the RBVM model, which slightly

overpredicts the kinetic energy. The DSYE model is once again overly dissipative.

This behavior is explained by examining the incompressible and compressible

energy spectra at t/Te ≈ 3.0 in Figures 3.4 and 3.5 and at t/Te ≈ 6.0 in Figures 3.6

and 3.7.

From the figure for the incompressible spectra at t/Te ≈ 3.0 (Figure 3.4) we

observe that the no-model case displays a pile-up of energy at high wavenumbers. All

the LES models are quite accurate at low-to-mid wavenumbers, while the RBVM is

the most accurate at high wavenumbers, followed by the mixed model. At t/Te ≈ 6.0

(Figure 3.6) the mixed model is the most accurate at the mid-to-high wavenumbers

whereas the RBVM model is most accurate at low wavenumbers. In either case the

DSYE model is the least accurate.

For the compressible spectra in Figures 3.5 and 3.7 we observe that the energy

pile-up in the no-model case is not as large as in the incompressible case thereby

indicating that the compressible component of the subgrid model plays a smaller

role. All the LES models appear to perform quite well with the RBVM and the

mixed models being the most accurate at high wavenumbers. The same conclusions

can be drawn for the density and pressure spectra at time t/Te ≈ 6.0, shown in

Figures 3.8 and 3.9, respectively. The evolution of the root-mean-square (rms)

density is shown in Figure 3.10. Once again the DSYE model is observed to lead to

smaller rms values while the RBVM and the mixed model are more accurate.
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Figure 3.4: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.5: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.6: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.7: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.8: Density spectrum for the Reλ = 65.5 case on a 323 grid with

χ = 0.4 and Ma = 0.488 at t/Te ≈ 6. A comparison of the

DSYE, RBVM, MM1, and no model cases.
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Figure 3.9: Pressure spectrum for the Reλ = 65.5 case on a 323 grid with

χ = 0.4 and Ma = 0.488 at t/Te ≈ 6. A comparison of the

DSYE, RBVM, MM1, and no model cases.
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Figure 3.10: Time history of root-mean-square of density for the Reλ =

65.5 case on a 323 grid with χ = 0.4 and Ma = 0.488. A com-

parison of the DSYE, RBVM, MM1, and no model cases.

We have also performed these simulations with kh = 32 (not shown here). We

observe the same trends however the differences between all the models are much

smaller.

3.4.2 Study of the effects of varying χ

In this section we examine the effect of varying the initial fraction of the

compressible turbulent kinetic energy. In particular we select χ = 0.2 and χ = 0.6

to add to the χ = 0.4 case described in the previous section. The Mach number

Ma = 0.488 is unchanged.

When χ is small a greater proportion of the total initial kinetic energy is

incompressible. As a result a larger contribution from the deviatoric component of

the subgrid stress is required. The dynamic Smagorinsky and mixed models respond

to this by increasing the value of the model parameters with decreasing values of χ.

This is seen in Figure 3.11, where we have plotted value of the deviatoric parameter

C0 as a function of time. We observe that with increasing time all parameters

tend to smaller values because of the natural decay in the turbulence intensity. We

also note that the value of C0 for the mixed model is consistently smaller than the



58

dynamic Smagorinsky model, indicating that the dynamic procedure is accounting

for the additional dissipation generated by the RBVM component of the mixed

model. With increasing value of χ the ratio of the average value of C0 for the mixed

model to the corresponding value for the dynamic Smagorinsky model appears to

decreasing, indicating that for large values of χ the mixed model is tending toward

the RBVM model.

For completeness the variation of the other dynamic parameters that is C1

and Pr−1
t as a function of time is shown in Figures 3.12 and 3.13, respectively. The

value of C1 in the mixed model is selected to be zero as discussed in Section 2.2.

The value of Pr−1
t for the mixed model is also zero because the dynamic procedure

yields a negative value which is ignored.
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Figure 3.11: Time history of the Smagorinsky coefficient C0 for the Reλ =

65.5 case on a 323 grid with Ma = 0.488. A comparison of the

DSYE and MM1 cases.
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Figure 3.12: Time history of the Smagorinsky coefficient C1 for the Reλ =

65.5 case on a 323 grid with Ma = 0.488. A comparison of the

DSYE and MM1 cases.

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

4

t/T
e

γ 
M

∞2
/P

r t

 

 
DSYE χ =0.2
MM1 χ=0.2
DSYE χ =0.4
MM1 χ=0.4
DSYE χ =0.6
MM1 χ=0.6

Figure 3.13: Time history of Prt for the Reλ = 65.5 case on a 323 grid with

Ma = 0.488. A comparison of the DSYE and MM1 cases.

In Figure 3.14 we have plotted the spectrum for the incompressible velocity
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component for different models for χ = 0.2 and t/Te ≈ 6. We note that RBVM

model is the most accurate for low wavenumbers whereas the mixed model is the

most accurate for high wavenumbers. The DSYE model is too dissipative. The

spectrum for the compressible component is shown in Figure 3.15. All models are

very accurate for small wavenumbers whereas the RBVM and the mixed model are

slightly more accurate for high wavenumbers.

In Figure 3.16 we have plotted the spectrum for the incompressible velocity

component for different models for χ = 0.6 and t/Te ≈ 6. We note that RBVM

model is the most accurate overall followed by the mixed model. The DSYE model

continues to be too dissipative. The spectrum for the compressible component is

shown in Figure 3.17. Here all the models are very accurate for the entire range of

wavenumbers.
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Figure 3.14: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.2 and Ma =

0.488 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.15: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.2 and Ma = 0.488

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.16: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.6 and Ma =

0.488 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.17: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.6 and Ma = 0.488

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.

3.4.3 Study of the effects of varying Ma

In this section we test the robustness of the LES models with regards to the

inherent compressibility of the flow by varying the Mach number. In addition to

Ma = 0.488, which was considered in Section 3.4.1, we consider Ma = 0.3 and

Ma = 0.7, while fixing χ = 0.4.

In Figure 3.18 we have plotted the spectrum of the incompressible component

of the velocity at t/Te ≈ 6 for Ma = 0.3. At this value of Ma the flow is nearly

incompressible. We note that the RBVM and the mixed model are very close to

each other and to the exact solution while the DSYE model is inaccurate. In Figure

3.22 we have plotted the variation of the deviatoric parameter C0, as computed by

the dynamic procedure, as a function of time. We observe that for Ma = 0.3 this

parameter is very small indicating that the mixed model is essentially the same as

the RBVM model.

From the plot of the spectrum of the compressible component of kinetic energy

at t/Te ≈ 6 (see Figure 3.19) we conclude that all the LES models are quite accurate.
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In Figure 3.20 we have plotted the spectrum of the incompressible component

of the velocity at t/Te ≈ 6 for Ma = 0.7. At this high Mach number we expect the

compressible effects to be more pronounced and we would also expect the formation

relatively strong local shocks. From the plot we observe that the RBVM model is

most accurate in this case followed by the mixed model. The latter is somewhere

between the RBVM and the DSYE model. This may be understood by observing

the variation of C0 for these two models with time (see Figure 3.22). We note that

the value of C0 for the mixed model is higher than it was for Ma = 0.3, indicating

that its performance will be closer to that of the DSYE model in this case.

From the plot of the spectrum of the compressible component of the velocity

we observe that the RBVM and the mixed models are very accurate while the DSYE

model underestimates the spectrum.
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Figure 3.18: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma =

0.300 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.19: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma = 0.300

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.20: Energy spectrum of the incompressible velocity component

for the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma =

0.700 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.21: Energy spectrum of the compressible velocity component for

the Reλ = 65.5 case on a 323 grid with χ = 0.4 and Ma = 0.700

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.22: Time history of the Smagorinsky coefficient C0 for the Reλ =

65.5 case on a 323 grid with χ = 0.4. A comparison of the

DSYE and MM1 cases.



66

3.4.4 High Reynolds Number Case

In this section the performance of the LES models at a higher Reynolds num-

ber is considered. The DNS was computed using 5123 modes (kh = 256) in and all

other parameters were the same as for the previous run, except the Reynolds num-

ber which was set to Re = 843. In addition, χ = 0.4 and Ma = 0.488 were chosen.

For the LES models, which were performed with 323 modes (kh = 16), we used the

truncated velocity field obtained from the DNS at t/Te = 0.92 as initial condition,

where Te = 0.667 is the eddy turn-over time. We compare the performance of the

models in the interval t/Te = 0.92− 7.0, which corresponds to a Taylor micro-scale

Reynolds number of Reλ = 120.95 − 41.97. We refer to this low Reynolds number

test case as Reλ = 121.0

For the RBVM and the mixed model, Fourier modes with k ∈ (16, 24) were

used to compute the approximate fine scales.

In Figures 3.23-3.26, we have plotted the Energy spectrum of the incompress-

ible and compressible velocity component at time t/Te ≈ 3 and t/Te ≈ 6. Once

again, for the incompressible velocity component, we observe that the DSYE model

is too dissipative. However, the RBVM here is not dissipative enough, and the

mixed model is the most accurate, especially at time t/Te ≈ 6 in Figure 3.24. In

Figure 3.25 and 3.26, for the compressible velocity component, all the LES models

are equally accurate; the DSYE model is slightly more dissipative in the middle

wavenumber range.

In the examples presented in the previous section, the Reynolds number of

the flow was moderate. As a result the cross-stress term was the dominant term,

and since the RBVM model captured this term well there was little or no benefit

in including the Reynolds stress term via the Smagorinsky model. However, after

performing this test at a higher Reynolds number, we can observe the benefit of

using the mixed model.
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Figure 3.23: Energy spectrum of the incompressible velocity component

for the Reλ = 121.0 case on a 323 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.24: Energy spectrum of the incompressible velocity component

for the Reλ = 121.0 case on a 323 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.25: Energy spectrum of the compressible velocity component for

the Reλ = 121.0 case on a 323 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.26: Energy spectrum of the compressible velocity component for

the Reλ = 121.0 case on a 323 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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We now consider the “convergence” of the LES models by computing the LES

solution with 643 modes. The solution at t/τ ≈ 1 was used as an initial condition for

the LES runs which were performed with 643 modes (kh = 64). For the RBVM and

the mixed model modes with k ∈ (64, 96) were used to computer the approximate

fine scales.
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Figure 3.27: Time history of turbulent kinetic energy of the incompress-

ible velocity component for the Reλ = 121.0 case on a 643 grid

with χ = 0.4 and Ma = 0.488. A comparison of the DSYE,

RBVM, MM1, and no model cases.
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Figure 3.28: Time history of turbulent kinetic energy of the compressible

velocity component for the Reλ = 121.0 case on a 643 grid with

χ = 0.4 and Ma = 0.488. A comparison of the DSYE, RBVM,

MM1, and no model cases.
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Figure 3.29: Time history of root-mean-square of density for the Reλ =

121.0 case on a 643 grid with χ = 0.4 and Ma = 0.488. A com-

parison of the DSYE, RBVM, MM1, and no model cases.

In Figures 3.27 - 3.29, we have plotted the evolution of the resolved turbulent
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kinetic energies and density rms as a function of time. Once again it is observed

that the DSYE model is too dissipative which RBVM and the mixed model works

very well. Both the RBVM and mixed model have good agreement with DNS result.

In Figures 3.30 - 3.33, the energy spectrum of the incompressible and compressible

velocity components are given at t/Te ≈ 3 and t/Te ≈ 6. Once again we observe

that the DSYE model is too dissipative at high wavenumbers for the incompressible

velocity component. The RBVM model is very close to DNS. The performance of

the mixed model is between the DSYE and RBVM model. For the compressible

velocity component, both the RBVM and the mixed models perform very well,

while the DSYE model overpredicts the spectrum near the cut-off wavenumber.

The spectrum of density and pressure are shown in Figures 3.34 - 3.35. Here all

the models are very accurate, however the DSYE model is not as accurate as the

RBVM and the mixed model.
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Figure 3.30: Energy spectrum of the incompressible velocity component

for the Reλ = 121.0 case on a 643 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.31: Energy spectrum of the compressible velocity component for

the Reλ = 121.0 case on a 643 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 3. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.32: Energy spectrum of the incompressible velocity component

for the Reλ = 121.0 case on a 643 grid with χ = 0.4 and Ma =

0.488 at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1,

and no model cases.
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Figure 3.33: Energy spectrum of the compressible velocity component for

the Reλ = 121.0 case on a 643 grid with χ = 0.4 and Ma = 0.488

at t/Te ≈ 6. A comparison of the DSYE, RBVM, MM1, and

no model cases.
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Figure 3.34: Density spectrum for the Reλ = 121.0 case on a 643 grid with

χ = 0.4 and Ma = 0.488 at t/Te ≈ 6. A comparison of the

DSYE, RBVM, MM1, and no model cases.
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Figure 3.35: Pressure spectrum for the Reλ = 121.0 case on a 643 grid

with χ = 0.4 and Ma = 0.488 at t/Te ≈ 6. A comparison of the

DSYE, RBVM, MM1, and no model cases.

3.4.5 Summary

We have developed and implemented the residual-based variational multiscale

(RBVM) model for compressible turbulent flows. Motivated by earlier results for

incompressible flows we have also considered a mixed version of this model wherein

Smagorinsky, Yoshizawa and eddy-diffusivity terms are added in order to better

model the Reynolds stress contributions. Through energy analysis of the mixed

model (performed in Chapter 2) we have demonstrated that the Yoshizawa model is

redundant because the RBVM model itself introduces a viable Reynolds stress term

for the dilatational component of subgrid stresses. In addition, from the dynamic

procedure we have found that the eddy-diffusivity term in the energy equation is not

required for the mixed RBVM model. As a result the mixed RBVM model contains

only one term in addition to the RBVM model. This term models the Reynolds

stress component of the deviatoric part of subgrid stresses and is represented by a

Smagorinsky-type model.

We have tested the performance of the RBVM, the mixed and the dynamic

Smagorinsky-Yoshizawa-eddy diffusivity (DSYE) models in predicting the decay
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of compressible, homogeneous, isotropic turbulence in regimes where shocklets are

known to exist. We have varied the level of compressibility of the flow by varying

the initial proportion of turbulent kinetic energy and by varying the Mach number.

In all cases we have found that RBVM and the mixed models are equally accurate

and perform significantly better than the DSYE model. We have also found that for

the mixed model the variational counterpart of the Germano identity automatically

accounts for the dissipation produced by the RBVM terms and produces smaller

Smagorinsky parameter when compared to the dynamic Smagorinsky model.

3.5 Numerical Results for the RBEV model

In this section we present results using the RBEV model. The models are

tested in decaying homogeneous isotropic turbulent flows which are described in

Section 3.4. However, in this section, we just test the cases with Ma = 0.488 and

χ = 0.40. We still test the models with different Reynolds numbers and different

grids (323 and 643). The RBEV model is compared with dynamic Smagorinsky-

Yoshizawa-eddy diffusivity (DSYE) model, and the static Smagorinsky-Yoshizawa-

eddy diffusivity (SSYE) model with coefficient Cs = 0.10 and Cs = 0.16. For all the

LES models in this section, Cτ = 1.0 for the stabilization parameter τ . The intent

of the results presented in this section is to test the performance of the RBEV model

as a stand-alone eddy viscosity model.

3.5.1 Low Reynolds Number Case

In the low Reynolds Numbers case, Re = 376 and DNS is performed with

2563 mesh and time step dt = 0.001. For the LES calculations we use the truncated

velocity field obtained from the DNS at t/Te = 1.2, where Te = 0.667 as the initial

condition. We compare the performance of the models from t/Te = 1.2 ∼ 7.0, which

corresponds to a Taylor micro-scale Reynolds number of Reλ = 65.5 ∼ 27.4. Both

323 and 643 meshes are considered for LES simulation with dt = 0.005. We refer

this low Reynolds number test case as Reλ = 65.5
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In Figures 3.36 - 3.42 we present results for the low Reynolds number case on

a 323 mesh.

In Figure 3.36, the time history of the turbulent kinetic energies (TKE) is

plotted for all the models. We observe that overall the RBEV model is the most

accurate followed by the static SYE model with Cs = 0.10, the DSYE model and

then the static SYE model with Cs = 0.16. In Figure 3.37, the time history of

root-mean-square (RMS) of density and temperature are shown. Both the RBEV

and the static SYE model with Cs = 0.10 are very close to the DNS result, while

the DSYE model and the static SYE model with Cs = 0.16 are too dissipative.

In Figure 3.38 we have plotted the spectra of the total TKE at t/Te = 3 and

t/Te = 6. We observe that the RBEV and the static SYE(0.10) are the most accurate

while the other two models are overly dissipative. This observation also holds for

the incompressible spectra shown in Figure 3.39. However, for the compressible

spectra we observe that all the models about equally accurate. Figure 3.40 shows

the spectrum of density, pressure and temperature at t/Te = 6. Here too, the RBEV

and the static SYE(0.10) perform better.

In Figure 3.41, we show the time history of the eddy viscosity of different mod-

els at four points given by the coordinates (0, 0, 0), (L/4, L/4, L/4) ,(L/2, L/2, L/2)

and (0, L/4, L/2). We observe that all viscosities vary widely in time but generally

decrease with time. The values of the RBEV and the SSYE(0.10) models and of

the DSYE and SSYE(0.16) are similar. The same trends are also seen in the values

of the average values of viscosities shown in Figure 3.42. These plots explain why

the performance of the RBEV and the SSYE(0.10) models and the the DSYE and

SSYE(0.16) models is similar. They also explain why the results for the latter are

more dissipative.
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Figure 3.36: Time history of turbulent kinetic energy for the Reλ = 65.5

case on a 323 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.37: Time history of root-mean-square of density and tempera-

ture for the Reλ = 65.5 case on a 323 grid. A comparison of

the dynamic and static SYE, RBEV, and no model cases.
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Figure 3.38: Energy spectrum of the total velocity for the Reλ = 65.5 case

on a 323 grid. A comparison of the dynamic and static SYE,
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Figure 3.39: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 65.5 case on a 323 grid. A comparison of the

dynamic and static SYE, RBEV, and no model cases.
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Figure 3.40: Spectrum of density, pressure and temperature for the Reλ =

65.5 case on a 323 grid. A comparison of the dynamic and

static SYE, RBEV, and no model cases.
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Figure 3.41: Time history of eddy viscosity for the Reλ = 65.5 case on a

323 grid. A comparison of the dynamic and static SYE and

RBEV cases.
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Figure 3.42: Time history of average eddy viscosity for the Reλ = 65.5

case on a 323 grid. A comparison of the dynamic and static

SYE and RBEV cases.

We now consider the same problem but on a fine mesh of 643 modes. In Figure

3.43 we have plotted the evolution of kinetic energies as a function of time. We now

observe that the RBEV, DSYE, and SSYE(0.10) models are all very accurate while

the SSYE(0.16) model is less so. The same observations hold for the time-history

of the RMS of density and temperature shown in Figure 3.44.

In the spectra of the total velocity (Figure 3.45) and incompressible velocity

(Figure 3.46(a) and (b)), RBEV is most accurate followed by DSYE and SSYE(0.1),

and then SSYE(0.16). For the compressible velocity spectra (shown in Figure 3.46(c)

and (d)), the DSYE and the SSYE(0.1) are the most accurate followed by the RBEV

and the SSYE(0.16) models. The spectra for density, temperature and pressure

(Figure 3.47) all show the same trends.

The average eddy viscosity as a function of time for all the models is shown in

Figure 3.48. We observe that the values for the DSYE and SSYE(0.1) is very close,

while that of SSYE(0.16) is higher and that of RBEV is smaller. This explains why

the RBEV is the least dissipative, followed by the DSYE and SSYE(0.1), and then

the SSYE(0.16) models.
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Figure 3.43: Time history of turbulent kinetic energy for the Reλ = 65.5

case on a 643 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.44: Time history of root-mean-square of density and tempera-

ture for the Reλ = 65.5 case on a 643 grid. A comparison of

the dynamic and static SYE, RBEV, and no model cases.
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Figure 3.45: Energy spectrum of the total velocity for the Reλ = 65.5 case

on a 643 grid. A comparison of the dynamic and static SYE,

RBEV, and no model cases.
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Figure 3.46: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 65.5 case on a 643 grid. A comparison of the

dynamic and static SYE, RBEV, and no model cases.
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Figure 3.47: Spectrum of density, pressure and temperature for the Reλ =

65.5 case on a 643 grid. A comparison of the dynamic and

static SYE, RBEV, and no model cases.
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Figure 3.48: Time history of average eddy viscosity for the Reλ = 65.5

case on a 643 grid. A comparison of the dynamic and static

SYE and RBEV cases.

3.5.2 High Reynolds Number Case

In the high Reynolds Numbers case, Re = 843.79. For the LES calculations

we use the truncated velocity field obtained from the DNS at t/Te = 1.05, where

Te = 0.667 at the initial condition. For the DNS, the mesh is 5123 with dt = 0.0005.

We compare the performance of the models from t/Te = 1.05 ∼ 7.0, which corre-

sponds to a Taylor micro-scale Reynolds number of Reλ = 117.1 ∼ 40.9. Both 323

and 643 meshes are considered for LES simulation with dt = 0.005. We refer this

test case as Reλ = 117.1. Figures 3.49 - 3.60 contain the plots for this case.

First we consider the results for the 323 case. The plots for the variation

of turbulent kinetic energies and RMS values (Figures 3.49 and 3.50, respectively)

indicate that RBEV model and the SSYE(0.10) model are the equally accurate

followed by the DSYE and SSYE(0.16) models.

The spectra for the total kinetic energy (Figure 3.51) and the incompressible

kinetic energy (Figure 3.52(a) and (b)) reveal that the RBEV and the SSYE(0.10)

models are the most accurate followed by the DSYE and the SSYE(0.16) models.
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In the spectra for the compressible kinetic energy (Figure 3.52(c) and (d)), no LES

model is particularly good. The DSYE and the SSYE(0.16) models are too dissipa-

tive with the RBEV and the SSYE(0.10) models are not dissipative enough.

In the spectra of the density, pressure and temperature (Figure 3.53), we

observe that the RBEV and SSYE(0.10) models are once the most accurate. How-

ever, now they behave differently: while the RBEV model underpredicts at large

wavenumber, the SSYE(0.10) model overpredicts.

Figure 3.54 shows the spatial average of eddy viscosity as function of time.

The RBEV and the SSYE(0.10) models, and the DSYE and the SSYE(0.16) have

similar values, which would explain their similar performances.
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Figure 3.49: Time history of turbulent kinetic energy for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.50: Time history of root-mean-square of density and tempera-

ture for the Reλ = 117.1 case on a 323 grid. A comparison of

the dynamic and static SYE, RBEV, and no model cases.
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Figure 3.51: Energy spectrum of the total velocity for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.52: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 117.1 case on a 323 grid. A comparison of the

dynamic and static SYE, RBEV, and no model cases.
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Figure 3.53: Spectrum of density, pressure and temperature for the Reλ =

117.1 case on a 323 grid. A comparison of the dynamic and

static SYE, RBEV, and no model cases.
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Figure 3.54: Time history of average eddy viscosity for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic and static

SYE and RBEV cases.

Figures 3.55 - 3.60 are the results for high Reynolds number, Reλ = 117.1

case, on a 643 mesh.

In Figure 3.55 we have plotted the evolution of kinetic energies as a function

of time. For the total and incompressible component, we observe that the RBEV is

the most accurate followed by DSYE and SSYE(0.1), and then SSYE(0.16). For the

compressible component the same trend is seen even though all models appear to

perform well. The same trend is observed in the evolution of rms values of density

and temperature (see Figure 3.56).

In the plots for the spectra for the total and incompressible kinetic energy

we observe that the RBEV model is the most accurate followed by SSYE(0.10),

DSYE, and SSYE(0.16) (see Figures 3.57 and 3.58). In the spectra of the com-

pressible kinetic energy we observe that the DSYE is most accurate, followed by the

SSYE(0.10) model, the RBEV model and the SSYE(0.16) model. In this case the

SSYE(0.10) and RBEV models are not dissipative enough while the SSYE(0.16) is

too dissipative. The same trends are seen in the spectra for the density, pressure
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and temperature(see Figure 3.59).

These results are explained by looking at the variation of the average eddy

viscosity of all models (see Figure 3.60). We observe that the SSYE(0.16) has the

largest viscosity, followed by the DSYE, the SSYE(0.10) and the RBEV models.
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Figure 3.55: Time history of turbulent kinetic energy for the Reλ = 117.1

case on a 643 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.56: Time history of root-mean-square of density and tempera-

ture for the Reλ = 117.1 case on a 643 grid. A comparison of

the dynamic and static SYE, RBEV, and no model cases.
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Figure 3.57: Energy spectrum of the total velocity for the Reλ = 117.1

case on a 643 grid. A comparison of the dynamic and static

SYE, RBEV, and no model cases.
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Figure 3.58: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 117.1 case on a 643 grid. A comparison of the

dynamic and static SYE, RBEV, and no model cases.
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Figure 3.59: Spectrum of density, pressure and temperature for the Reλ =

117.1 case on a 643 grid. A comparison of the dynamic and

static SYE, RBEV, and no model cases.
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Figure 3.60: Time history of average eddy viscosity for the Reλ = 117.1

case on a 643 grid. A comparison of the dynamic and static

SYE and RBEV cases.

3.6 Numerical Results for the MM2 Model

In this section we present the results of the purely residual-based mixed model

(MM2). The models are tested in the same decaying homogeneous isotropic turbu-

lent flows as that for the RBEV model in the previous section. The MM2 model

is compared with the RBVM model, the RBEV model and the DSYE model. We

remind the reader that the MM2 model is an additive combination of the RBVM

and RBEV models. We test the models with different Reynolds numbers and dif-

ferent grids (323 and 643). For all the LES models in this section, Cτ = 1.0 in the

definition for the stabilization parameter τ .

3.6.1 Low Reynolds Number Case

The parameters for this flow are the same as the low Reynolds number case

described in the previous section.

In Figures 3.61 - 3.66 we present results for the low Reynolds number case on a

323 mesh. In Figure 3.61, the time history of the turbulent kinetic energies is plotted
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for all the models. For the total and incompressible component, we observe that the

RBVM model is the most accurate followed by the RBEV and MM2 models, and

then the DSYE model. For the compressible component, the RBVM model is the

most accurate followed by MM2 and RBEV, and then DSYE. In Figure 3.62, the

time history of RMS of density and temperature are shown. Both the RBEV and

RBVM models are very close to the DNS result, followed by the MM2 model. The

DSYE model is too dissipative.

In Figure 3.63, we have plotted the spectra of the total TKE at t/Te = 3 and

t/Te = 6. We observe that RBVM mode is the most accurate while the MM2 model

is slightly more dissipative and the RBEV model displays a slight pile-up on energy

at large wavenumbers. DSYE is the least accurate and is too dissipative. This

observation also holds for the incompressible spectra shown in Figure 3.64(a) and

(b). However, for the compressible spectra in Figure 3.64(c) and (d), we observe

that the RBEV model and the DSYE model are better than the RBVM and MM2

models. The last two are too dissipative.

Figure 3.65 shows the spectra of density, pressure and temperature at t/Te = 6.

For the density and pressure, the RBEV model and the DSYE model are more

accurate than the RBVM and MM2 models. The latter two are too dissipative. For

the temperature, the RBVM model is the best, followed the RBEV model and the

DSYE model. The MM2 model is still too dissipative.

The average values of viscosities as a function of time are shown in Figure

3.66. We observe that the eddy viscosity from the RBEV component in the mixed

model is smaller than that in the pure RBEV model. This is because the RBVM

component in mixed model also adds some dissipation to the simulation, so the

effect of eddy viscosity from RBEV component is reduced. It shows that the RBEV

model behaves like a dynamic model, as it adjusts to the overall dissipation in the

system.
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Figure 3.61: Time history of turbulent kinetic energy for the Reλ = 65.5

case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.62: Time history of root-mean-square of density and tempera-

ture for the Reλ = 65.5 case on a 643 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases.
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Figure 3.63: Energy spectrum of the total velocity for the Reλ = 65.5 case

on a 643 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases.
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Figure 3.64: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 65.5 case on a 643 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases.
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Figure 3.65: Spectrum of density, pressure and temperature for the Reλ =

65.5 case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.66: Time history of average eddy viscosity for the Reλ = 65.5 case

on a 643 grid. A comparison of the dynamic SYE, RBEV,

MM2 cases.

We now consider the same problem but on a finer mesh of 643 modes. In

Figures 3.67 - 3.72 we present the results for this test.

In Figure 3.67, the time history of the turbulent kinetic energies is plotted for

all the models. We now observe that the RBEV, RBVM, and MM2 models are all

very accurate while the DSYE model is less so. The same observations hold for the

time-history of the RMS of density and temperature shown in Figure 3.68.

In the spectra of the total velocity (Figure 3.69) and incompressible veloc-

ity (Figure 3.70(a) and (b)), the RBVM and the MM2 models are most accurate

followed by the RBEV model. The DSYE model is a little dissipative. For the

compressible velocity spectra (shown in Figure 3.70(c) and (d)), the DSYE model is

the most accurate followed by the RBEV model. The RBVM and MM2 models are

slightly overly dissipative in the high wavenumber range. The spectra for density,

temperature and pressure (Figure 3.71) all show the same trends.

The average values of viscosities as a function of time is shown in Figure 3.72.

We still observe that the eddy viscosity of RBEV component in the mixed model is

smaller than that in the pure RBEV model. Once again this points to the apparent
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“dynamic” nature of this model.
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Figure 3.67: Time history of turbulent kinetic energy for the Reλ = 65.5

case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.68: Time history of root-mean-square of density and tempera-

ture for the Reλ = 65.5 case on a 643 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases.
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Figure 3.69: Energy spectrum of the total velocity for the Reλ = 65.5 case

on a 643 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases.
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Figure 3.70: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 65.5 case on a 643 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases.
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Figure 3.71: Spectrum of density, pressure and temperature for the Reλ =

65.5 case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.72: Time history of average eddy viscosity for the Reλ = 65.5 case

on a 643 grid. A comparison of the dynamic SYE, RBEV,

MM2 cases.

3.6.2 High Reynolds Number Case

In the high Reynolds numbers case, the simulation conditions are the same as

in the high Reynolds number case presented in Section 3.6.2. Figures 3.73 - 3.84

contain the plots for this case.

First we consider the results for the 323 mesh. In Figure 3.73, we have plotted

the evolution of kinetic energies as a function of time. For the total and incompress-

ible component, we observe that the RBVM model is the most accurate followed

by the MM2 and RBEV models, and then the DSYE model. For the compressible

component, the RBVM and MM2 models are the best, followed by the RBEV and

DSYE model.

Figure 3.74 shows the evolution of rms values of density and temperature. The

RBEV model is the most accurate for density followed by the RBVM and MM2 mod-

els. For temperature, the RBEV and RBVM models are the most accurate followed

by the MM2 model. DSYE is too dissipative for both density and temperature.

In the plots for the spectra for the total and incompressible kinetic energy we
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observe that the RBVM model is the most accurate followed by MM2, RBEV, and

then DSYE (see Figures 3.75 and 3.76). In the spectra of the compressible kinetic

energy we observe that the DSYE is most accurate, followed by RBEV model, then

the RBVM and MM2 models. In this case the RBEV models is not dissipative

enough while the RBVM and MM2 models are too dissipative.

In the spectra for the density, pressure and temperature (Figure 3.77), the

RBVM model is the best for the density, followed by the DSYE model. The RBEV

model is not dissipative enough and the MM2 model is too dissipative. For pressure,

RBEV and DSYE are the most accurate, while the RBVM and MM2 models are

too dissipative. For the temperature, the MM2 model is the best followed by the

DSYE model while the RBEV and RBVM models are not dissipative enough.

The average values of viscosities as a function of time are shown in Figure

3.78. We still observe that the eddy viscosity of RBEV component in the mixed

model is smaller than that in the pure RBEV model, highlighting the “dynamic”

nature of this model. We also observe that the turbulent viscosities for all models

are larger than those for the low Reynolds number case shown in Figure 3.66.
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Figure 3.73: Time history of turbulent kinetic energy for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.74: Time history of root-mean-square of density and tempera-

ture for the Reλ = 117.1 case on a 323 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases.
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Figure 3.75: Energy spectrum of the total velocity for the Reλ = 117.1 case

on a 323 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases.
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Figure 3.76: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 117.1 case on a 323 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases.
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(c) temperature, t/Te = 6

Figure 3.77: Spectrum of density, pressure and temperature for the Reλ =

117.1 case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.78: Time history of average eddy viscosity for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic SYE,

RBEV, MM2 cases.

In Figures 3.79 - 3.84 we plot the results for high Reynolds number case on a

finer, 643 mesh.

In Figure 3.79 we have plotted the evolution of kinetic energies as a function

of time. For the total and incompressible component, we observe that the RBEV,

RBVM and MM2 models are very accurate while the DSYE model is slightly dis-

sipative. We note that the MM2 model dissipates slightly more energy than what

is required while the RBEV is not dissipative enough. For the compressible com-

ponent, the RBVM and MM2 models are very accurate followed by the RBEV and

DSYE models. The same trend is observed in the evolution of rms values of density

and temperature (see Figure 3.80).

In the plots for the spectra for the total and incompressible kinetic energy,

we observe that the RBVM model is the most accurate followed by the MM2, and

RBEV models (see Figures 3.81 and 3.82), while the DSYE model is too dissipative.

In the spectra of the compressible kinetic energy we observe that the DSYE is most

accurate, followed by the RBEV model, then the RBVM and the MM2 models. In

this case the RBEV models is not dissipative enough while the RBVM and MM2
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models are too dissipative. The same trends are seen in the spectra for the density,

pressure (see Figure 3.83). For temperature, the DSYE is most accurate, followed

by the RBVM and MM2 models, and then RBEV model.

The average values of viscosities as a function of time are shown in Figure

3.84. Once again the DSYE is the largest followed by the pure RBEV and then the

RBEV component of the MM2 model.
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Figure 3.79: Time history of turbulent kinetic energy for the Reλ = 117.1

case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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(b) temperature

Figure 3.80: Time history of root-mean-square of density and tempera-

ture for the Reλ = 117.1 case on a 643 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases.
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(a) total velocity, t/Te = 3
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(b) total velocity, t/Te = 6

Figure 3.81: Energy spectrum of the total velocity for the Reλ = 117.1 case

on a 643 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases.
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(a) solenoidal velocity, t/Te = 3
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(b) solenoidal velocity, t/Te = 6
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(c) dilatational velocity, t/Te = 3
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(d) dilatational velocity, t/Te = 6

Figure 3.82: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 117.1 case on a 643 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases.
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(a) density, t/Te = 6
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(c) temperature, t/Te = 6

Figure 3.83: Spectrum of density, pressure and temperature for the Reλ =

117.1 case on a 643 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases.
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Figure 3.84: Time history of average eddy viscosity for the Reλ = 117.1

case on a 643 grid. A comparison of the dynamic SYE,

RBEV, MM2 cases.

3.7 The RBEV and MM2 Models with Cτ = 0.5

In previous sections, we tested the RBEV and the MM2 models with Cτ = 1.0.

In this section, we set Cτ = 0.5 and test the performance of the LES models. In

particular, the Low Reynolds number case Reλ = 65.5, and the high Reynolds

number case Reλ = 117.1 are tested on a 323 mesh. The other simulation parameters

are the same as in the previous section.

3.7.1 Low Reynolds Number Case

In Figures 3.85 - 3.89 we present results for the low Reynolds number case on

a 323 mesh.

In Figure 3.85, the time history of the turbulent kinetic energies is plotted

for all the models. For the total and incompressible component, we observe that

the RBEV, RBVM and MM2 models are very accurate while the DSYE model is

too dissipative. For the compressible component, the RBVM and the MM2 models

are very accurate, while the RBEV model is not dissipative enough and the DSYE

model is too dissipative. The same trend is observed in the evolution of rms values
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of density and temperature (see Figure 3.86).
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(c) dilatational velocity

Figure 3.85: Time history of turbulent kinetic energy for the Reλ = 65.5

case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases, with Cτ = 0.5.

In Figures 3.87 - 3.88, we have plotted the spectra of the turbulent kinetic

energies at t/Te = 3 and t/Te = 6. We observe that for the total and incompressible

component, the MM2 model is very accurate, followed by the RBVM model and

the RBEV model, while the DSYE model is the least. For the compressible spectra
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we observe that the RBVM, MM2 and DSYE models are about equally accurate,

while the RBEV model is not dissipative enough. Figure 3.89 shows the spectrum

of density, pressure and temperature at t/Te = 6. The RBVM, MM2 and DSYE

models are about equally accurate, while the RBEV model is not dissipative enough.
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Figure 3.86: Time history of root-mean-square of density and tempera-

ture for the Reλ = 65.5 case on a 323 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases, with Cτ = 0.5.
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(a) total velocity, t/Te = 3
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(b) total velocity, t/Te = 6

Figure 3.87: Energy spectrum of the total velocity for the Reλ = 65.5 case

on a 323 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases, with Cτ = 0.5.
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(a) solenoidal velocity, t/Te = 3
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(b) solenoidal velocity, t/Te = 6
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(c) dilatational velocity, t/Te = 3
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(d) dilatational velocity, t/Te = 6

Figure 3.88: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 65.5 case on a 323 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases,

with Cτ = 0.5.
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(a) density, t/Te = 6
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(b) pressure, t/Te = 6
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(c) temperature, t/Te = 6

Figure 3.89: Spectrum of density, pressure and temperature for the Reλ =

65.5 case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases, with Cτ = 0.5.

3.7.2 High Reynolds Number Case

In Figures 3.90 - 3.94 we present the results for the high Reynolds number

case on a 323 mesh.

In Figure 3.90, the time history of the turbulent kinetic energies is plotted

for all the models. For the total and incompressible component, we observe that

the MM2 models is the most accurate followed by the RBVM and RBEV models,
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and then the DSYE model . For the compressible component the RBVM and MM2

model are very accurate, while the RBEV model is not dissipative enough and

the DSYE model is slightly overly dissipative. The same trend is observed in the

evolution of rms values of density and temperature (see Figure 3.86).

In Figures 3.87 - 3.88, we have plotted the spectra of the turbulent kinetic

energies at t/Te = 3 and t/Te = 6. We observe that for the total and incompressible

component, the MM2 model is the most accurate, followed by the RBVM model,

and then the RBEV and DSYE model. The RBEV model is not dissipative enough

while the DSYE model is too dissipative. For the compressible spectra we observe

that the RBVM, MM2 and DSYE models are about equally accurate, while the

RBEV model is not dissipative enough. Figure 3.89 shows the spectrum of density,

pressure and temperature at t/Te = 6. For the density and pressure, the RBVM,

MM2 and DSYE models are about equally accurate, while the RBEV model is not

dissipative enough. For the temperature, the MM2 model is the most accurate,

followed by the RBVM and DSYE model, while the RBEV model is not dissipative

enough.
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(c) dilatational velocity

Figure 3.90: Time history of turbulent kinetic energy for the Reλ = 117.1

case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases, with Cτ = 0.5.
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(b) temperature

Figure 3.91: Time history of root-mean-square of density and tempera-

ture for the Reλ = 117.1 case on a 323 grid. A comparison

of the dynamic SYE, RBEV, RBVM, MM2 and no model

cases, with Cτ = 0.5.
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(a) total velocity, t/Te = 3
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(b) total velocity, t/Te = 6

Figure 3.92: Energy spectrum of the total velocity for the Reλ = 117.1 case

on a 323 grid. A comparison of the dynamic SYE, RBEV,

RBVM, MM2 and no model cases, with Cτ = 0.5.
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(a) solenoidal velocity, t/Te = 3
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(b) solenoidal velocity, t/Te = 6
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(c) dilatational velocity, t/Te = 3
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(d) dilatational velocity, t/Te = 6

Figure 3.93: Energy spectrum of solenoidal and dilatational velocity for

the Reλ = 117.1 case on a 323 grid. A comparison of the

dynamic SYE, RBEV, RBVM, MM2 and no model cases,

with Cτ = 0.5.



130

10
0

10
1

10
−5

10
−4

10
−3

k

E
ρ

 

 

DNS
No Model
DSYE
RBEV
RBVM
MM2

(a) density, t/Te = 6
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(b) pressure, t/Te = 6
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(c) temperature, t/Te = 6

Figure 3.94: Spectrum of density, pressure and temperature for the Reλ =

117.1 case on a 323 grid. A comparison of the dynamic SYE,

RBEV, RBVM, MM2 and no model cases, with Cτ = 0.5.



131

3.8 Chapter Summary

In this chapter, we have implemented four residual-based LES models for the

compressible turbulent flows within a Fourier-spectral method. They are

• the residual-based variational multiscale (RBVM) model

• the mixed model (MM1) based on the RBVM and the DSYE models

• the residual-based eddy viscosity (RBEV) model

• the purely residual-based mixed model (MM2), which is a combination of the

RBVM and the RBEV models

We tested the performance of these LES models in predicting the decay of com-

pressible, homogeneous, isotropic turbulence in regimes where shocklets are known

to exist. The LES models are tested with Taylor micro-scale Reynolds numbers of

Reλ ≈ 65 and Reλ ≈ 120 on 323 and 643 grids.

First, we compared the performance of the RBVM, the DSYE and the mixed

model (MM1) models. We varied the level of compressibility of the flow by varying

the initial proportion of compressible turbulent kinetic energy and by varying the

Mach number. In all cases we found that the RBVM and MM1 models are generally

more accurate and perform significantly better than the DSYE model. We also found

that for the MM1 model the variational counterpart of the Germano identity auto-

matically accounts for the dissipation produced by the RBVM terms and produces

smaller Smagorinsky parameter when compared to the dynamic Smagorinsky model.

Second, we compared the RBEV model with the static SYE (0.1 and 0.16)

and the DSYE model. The goal here was to compare the performance of the newly

proposed RBEV model with other popular eddy viscosity models. We found that

the RBEV model, which does not require the dynamic calculation of a parameter,

outperformed the DSYE model.
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Third we have examined the performance of the new purely residual-based

mixed model (MM2). We have found that with the parameter Cτ = 1.0 it yields re-

sults that are overly dissipative, specially for the compressible quantities of interest.

However, it still outperforms the DSYE model (but not the RBVM model). With

Cτ = 0.5 the mixed model (MM2) is the most accurate model.

Our recommendation is therefore to use purely residual based mixed model

(MM2) with Cτ = 0.5. This model is accurate, easy too implement, as it involves

no dynamic procedure, and consistent, in that it vanished when the residual of the

coarse scales is small.



CHAPTER 4

Residual-Based Models Applied to Incompressible

Turbulent Channel Flow

4.1 Introduction

The residual-based eddy viscosity (RBEV) model and the purely residual-

based mixed model (MM2) have been applied to the decay of compressible homoge-

neous isotropic turbulence (HIT) in Chapter 3. Results show that the RBEV model

and the MM2 model match the DNS results well and better than the dynamic

Smagorinsky-Yoshizawa-eddy diffusivity (DSYE) model and static Smagorinsky-

Yoshizawa-eddy diffusivity (SSYE) model with the coefficient Cs = 0.16. In contrast

to HIT, most flows in nature are bounded by one or more solid surfaces. Fully de-

veloped channel flow is one of the simplest bounded flows and is a good test case

for new LES models. The residual-based variational multiscale (RBVM) model and

the mixed model (MM1) based on RBVM have been applied to incompressible tur-

bulent channel flow by Wang and Oberai. In this Chapter, we apply the RBEV

model and the MM2 model to the incompressible fully developed turbulent channel

flow with the finite element method (FEM). We do this for two reasons: (1) to test

the performance of these models for wall bounded flows and (2) to implement these

models in a finite element code, so that they can then be applied to modeling flows

in complex geometric configurations.

The layout of this chapter is as follows. In Section 4.1, we specialize the

weak form of the models developed in Chapter 2 to the finite element method.

The precise definition of the unresolved scales and the stabilization parameters τ

is also provided. In Section 4.2, the fully developed channel flow is introduced

to understand some important concepts and behavior of these turbulent flows. In

section 4.3, we apply the RBEV model and the MM2 model to study the fully

developed channel flow and compare their performance with each other as well as

the RBVM model and the dynamic Smagorinsky model. Conclusions are drawn in

133
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Section 4.5.

4.2 Residual-based models

In Chapter 2, we have introduced and developed the residual-based eddy vis-

cosity model (RBEV) and the purely residual-based mixed model (MM2). In this

chapter we apply these LES models to incompressible turbulent channel flow by

using the finite element method.

4.2.1 Weak form for FEM

The weak form of the RBEV and MM2 models for incompressible flows is

given by Equation (2.58) in Chapter 2. It is repeated here for convenience:

Find Uh ∈ Vh, such that

A
(
W h, Uh + b1U

′) +
(∇wh, 2νtS

h
)

= (W h, F ) ∀W h ∈ Vh. (4.1)

where Uh = [uh, ph]T are the unknowns with F = [f , 0]T , and Sh is the rate

of strain. Further, νt = C̄h|u′| is the eddy viscosity of the RBEV model. The

semi-linear form A(·, ·) in the incompressible case is given by,

A(W , U ) ≡ (w, u,t)− (∇w, u⊗ u)

− (∇ ·w, p) + 2ν(∇Sw,∇Su) + (q,∇ · u),
(4.2)

and the fine scale solution is expressed in terms of the coarse scale residual as

U ′ ≈ −P′τ (Uh) P′TR(Uh). (4.3)

We note that in Equation (4.1) b1 is a parameter. By changing the values of

b1 and C̄, Equation (4.1) represents different models. When b1 = C̄ = 0, we arrive

at DNS. When b1 = 0 and C̄ = 0.0740, we arrive at the RBEV model. When b1 = 1

and C̄ = 0, we arrive at the RBVM model. When b1 = 1 and C̄ = 0.0740, we arrive

at the MM2 model.
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After using Equation (4.3) in (4.1) we recognize that the fine scale variables

appear in all linear and non-linear terms of A(·, ·). We retain all the nonlinear terms.

However, for the linear terms, following [15] we ignore the time derivative and the

viscous terms (wh, u′,t) = 0 and 2ν(∇Swh,∇Su′) = 0 to arrive at:

The mixed model (MM2) is given as: Find Uh ∈ Vh, such that

A(W h, Uh)− b1(∇wh, uh ⊗ u′ + u′ ⊗ uh + u′ ⊗ u′) (4.4)

− b1(∇ · qh, u′)− (∇ ·wh, p′) +
(∇wh, 2νtS

h
)

= (wh, f).

In the equation above there should be a parameter b1 in front of the p′ term.

However, we have replaced this with 1 because without this term, the finite element

is unstable while using the same interpolation functions for uh and ph. So we need

this term for all models. We note that Equation (4.4) includes all the models tested

in this chapter, except the dynamic Smagorinsky model, which is described in [36].

In particular,

• With b1 = 0 and C̄ = 0, we arrive at DNS, just with stabilization for pressure.

• With b1 = 1 and C̄ = 0, we arrive at the RBVM model.

• With b1 = 0 and C̄ = 0.0740, we arrive at the RBEV model.

• With b1 = 1 and C̄ = 0.0740, we arrive at the mixed model (MM2).

4.2.2 Unresolved scales and stabilization parameter τ

In Equation (4.4) the unresolved scales U ′ is depend upon stabilization pa-

rameter τ and the coarse scale residual R(Uh). With τ and R(Uh), the fine scale

velocity and pressure are written as

u′ = −τMrM(uh, ph), (4.5)

p′ = −τCrC(uh). (4.6)

where τ = diag(τM , τM , τM , τC) is diagonal matrix, and following [15] the P′ and P′T

operators are replaced with the identity. The stabilization parameters for velocity
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τM and pressure τC are defined as:

τM =
1√

(2C1/∆t)2 + uigijuj + C2ν2gijgij

, (4.7)

τC =
1

8C1

1

τM tr(gij)
. (4.8)

The constant C1 is obtained by considering the local gradient in element space-

time coordinate systems [37], and we will study the effect of different C1 value in the

following sections. The positive constant C2, which is derived from an element-wise

inverse estimate [38], is independent of the grid size, and in this chapter C2 = 36 is

fixed. The tensor gij = ξk,iξk,j is the covariant metric tensor, where ξi,j = ∂ξi/∂xj.

The stabilization parameter τM comes from the asymptotic scaling arguments in

[39] which are developed within stabilized finite methods [40, 41].

The coarse scale residual R = [rM(uh, ph), rC(uh)]T is given by

rM(uh, ph) = uh
,t +∇ · (uh ⊗ uh) +∇ph − ν∇2uh − f , (4.9)

rC(uh) = ∇ · uh. (4.10)

For more discussions about this fine-scale approximation, the reader is referred

to [15].

4.3 Turbulent Channel Flow

In contrast to the homogeneous isotropic turbulence which is discussed in the

previous chapter, most flows in nature are bounded by one or more solid surfaces,

for example, a typical flow goes through pipes or ducts. In this thesis, we consider

one of the simplest of bounded flows: fully developed channel flow. In channel flows,

the mean velocity vector is parallel to the wall.
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Figure 4.1: Sketch of channel flow.

Figure 4.1 is a sketch of a typical channel flow. Turbulent flow goes through

a rectangular channel. The height of the channel is h = 2δ, the length L and the

width b. The x direction is determined by the mean flow direction, which is called

streamwise direction, y is the wall normal direction. The third direction, z is called

spanwise direction.

The Reynolds number used to characterize the flow is

Re = (2δ)U/ν, (4.11)

where U is the bulk velocity

U =
1

δ

∫ δ

0

〈U〉dy, (4.12)

or

Re0 = δU0/ν, (4.13)

where U0 = 〈U〉y=δ is the centerline velocity.

In a fully developed flow, with large L À δ and b À δ, the flow is statisti-

cally independent of x and z. The velocities in the three coordinate directions are

U = (U, V, W ) with fluctuations u = (u, v, w). The flow is considered as statisti-

cally stationary. In the average velocity 〈U〉 = (〈U〉, 〈V 〉, 〈W 〉), where the angular
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brackets denote the average operator in directions and time, 〈V 〉 and 〈W 〉 are zero

and 〈U〉 depends only on the wall normal direction. Experiments also confirm the

natural expectation that the flow is statistically symmetric about the mid-plane

y = δ. The flow could be driven by the pressure gradient or body force. The pres-

sure gradient or body force is balanced by the surface force due to the wall shear

stress.

4.3.1 Wall shear stress

We assume the flow is driven by the pressure gradient and there is no body

force. Using the average operator on the continuity equation of NS equation, we get

the mean continuity equation,

〈Ui,i〉 = 0, (4.14)

with u = U − 〈U〉, we also get,

ui,i = 0, (4.15)

which means both the average velocity and the fluctuation velocity satisfy the con-

tinuity equation.

Using the average operator on the momentum equations, we get the mean-

momentum equations,

〈Uj〉〈Ui〉,j +
1

ρ
〈p〉,i − ν〈Ui〉,jj + 〈uiuj〉,j = 0. (4.16)

The y direction mean-momentum equation is

0 =
d

dy
〈v2〉+

1

ρ

∂〈p〉
∂y

, (4.17)

with the boundary condition 〈v2〉y=0 = 0, integrates on y to

〈v2〉+ 〈p〉/ρ = pw(x)/ρ, (4.18)

where pw = 〈p(x, 0, 0)〉 is the mean pressure on the bottom wall. As 〈v2〉 is inde-
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pendent of x, the mean pressure gradient in x direction is uniform:

∂〈p〉
∂x

=
dpw

dx
. (4.19)

The x direction mean-momentum equation is

0 = ν
d2〈U〉
dy2

− d

dy
〈uv〉 − 1

ρ

∂〈p〉
∂x

, (4.20)

and it can be rewritten as
dτ

dy
=

dpw

dx
, (4.21)

where τ(y) is the total shear stress

τ = ρν
d〈U〉
dy

− ρ〈uv〉. (4.22)

For this flow there is no mean acceleration, so in Equation (4.21), the mean pres-

sure gradient in streamwise direction is balanced by the shear-stress gra-

dient in the wall normal direction.

Since τ is a function only of y, and pw is a function only of x (because pw

in defined only on the wall), so in Equation (4.21), both dτ/dy and dpw/dx are

constant. The solutions for τ(y) and dpw/dx can be written in terms of the wall

shear stress

τw = τ(0). (4.23)

Because τ(y) is antisymmetric about the mid-plane, so τ(δ) is zero, and at the top

wall the stress is τ(2δ) = −τw. Hence, the solution to Equation (4.21) is

τ(y) = τw(1− y

δ
), (4.24)

and

−dpw

dx
=

τw

δ
. (4.25)

The total shear stress τ(y) in Equation 4.22 is the sum of the viscous stress
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ρνd〈U〉/dy and the Reynolds stress −ρ〈uv〉. At the wall all the Reynolds stresses

are zero because the boundary condition U (x, t) = 0. As a result, the wall shear

stress is entirely due to the viscous contribution, so the wall shear stress is

τw = ρν(
d〈U〉
dy

)y=0. (4.26)

4.3.2 Wall units

With the wall shear stress τw, viscosity ν and density ρ, we define the viscous

scales, which are the appropriate scales for the near wall region. These are the

friction velocity

uτ =

√
τw

ρ
, (4.27)

and the viscous length-scale

δν = ν

√
ρ

τw

=
ν

uτ

. (4.28)

and the friction Reynolds number based on the viscous scales is defined by

Reτ =
uτδ

ν
=

δ

δν

. (4.29)

The distance from the wall measured in viscous lengths is denoted by

y+ =
y

δν

=
uτy

ν
, (4.30)

similarly, in streamwise and spanwise direction

x+ =
x

δν

=
uτx

ν
, (4.31)

z+ =
z

δν

=
uτz

ν
. (4.32)

The velocity in wall unit u+(y+) defined by

u+ = 〈U〉/uτ . (4.33)

These variables are expressed in wall units.
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4.3.3 Law of the wall and regions and layers near the wall

A fully developed channel flow is completely specified by ρ, ν, δ and dp/dx.

As uτ is a function of ρ, δ and dp/dx, in a fully developed channel flow, it can

also be completely specified by ρ, ν, δ and uτ . Two independent non-dimensional

parameters can be formed together with y, and they are y/δ and Reτ = uτδ/ν.

Since Reτ = (y/δν)/(y/δ) so the mean velocity 〈U〉 can be written as

〈U〉 = uτF (
y

δν

,
y

δ
), (4.34)

where F is a universal non-dimensional function.

The mean velocity gradient is an important parameter in channel flows, be-

cause the viscous stress and the turbulent production are both determined by

d〈U〉/dy. So we to solve d〈U〉/dy instead of 〈U〉 , and we can write

d〈U〉
dy

=
uτ

y
Φ(

y

δν

,
y

δ
), (4.35)

where Φ is an other universal non-dimensional function.

It is found that at high Reynolds number, when y/δ ¿ 1, there is an region

where the mean velocity is only determined by the viscous scales, and independent

of δ. This region is called inner layer. In the inner layer,

d〈U〉
dy

=
uτ

y
Φ1(

y

δν

), (4.36)

where

Φ1(
y

δν

) = lim
y/δ¿1

Φ(
y

δν

,
y

δ
). (4.37)

With the velocity in wall unit u+(y+) defined by u+ = 〈U〉/uτ , Equation (4.36)

can be written as
du+

dy+
=

1

y+
Φ(y+). (4.38)

Equation (4.38) shows that the velocity in wall unit u+ is only a function of

the wall unit y+, and independent of uτ . This is the law of the wall :

u+ = Fw(y+), (4.39)
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where

Fw(y+) =

∫ y+

0

1

y+
Φ1(y

+)y+. (4.40)

The region with y+ < 50, is called the viscous wall region, where the viscous

contribution to the shear stress is important. When y+ < 5 within viscous wall

region, it is the viscous sublayer, where the Reynolds shear stress is negligible. One

important conclusion for this layer is Fw(y+) = y+ and this leads to u+ = y+.

When y+ > 30, y/δ < 0.3 , the viscosity can be neglect, and it is found that

Φ1 = 1/κ, where κ is a constant. Then u+ is solved as

u+ =
1

κ
lny+ + B, (4.41)

where B = 5.2 is a constant, and κ = 0.41 is the Von Kármán constant. This is the

log law for y+ > 30, and this region is called the log-law region. Figure 4.2 (cited

from [3]. ) shows that four different Reynolds numbers cases all match the log law

very well when y+ > 30.
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Figure 4.2: Mean velocity profiles in fully developed turbulent channel

flow measured by Wei and Willmarth (1989): ©, Re0 = 2, 970;

¤, Re0 = 14, 914; M, Re0 = 22, 776; O, Re0 = 39, 582; the solid line

represent the log-law.

Here is a summary of the regions and layers that describe the near-wall flows.

When y/δ < 0.1 , we are in the inner layer, and in this layer, 〈U〉 determined

by uτ and y+, independent of U0 and δ. When y+ > 50 and y/δ ≤ 1, we are in

the outer layer, and in this layer direct effects of viscosity on 〈U〉 are negligible.

The region between inner and outer layers is the overlap region with y+ > 50 and

y/δ < 0.1.

In the inner layer, when y+ < 50 we are in the viscous wall region, and in this

region, the viscous contribution to the shear stress is significant. Especially when

y+ < 5 in the viscous wall region, we are in the viscous sublayer. In this layer, the

Reynolds shear stress is negligible compared with the viscous stress, and U+ = y+.

When y+ > 30 and y/δ < 0.3, we are in the Log-law region, where u+ = 1
κ
lny+ +B.
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The region between the viscous sublayer and the log-law region is the buffer layer

with 5 < y+ < 30. As the Reynolds number Re of the flow increases with δ changing,

the fraction of the channel occupied by the viscous wall region decreases, since δν/δ

varies as Re−1.

4.4 Numerical Simulation

All the LES models including the RBEV model , the RBVM model, dynamic

Smagorinsky model and the mixed model (MM2) are tested for turbulent chan-

nel flow. The computation domain is shown in Figure 4.3 and the dimensions in

streamwise, wall-normal, and spanwise directions of the computational domain are

Lx = 2π, Ly = 2h = 2, and Lz = 2π/3. We impose periodic boundary condition

to in the in streamwise and spanwise directions. It means the real dimensions in

streamwise and spanwise directions are infinity. Channel flow with Reτ = 395 and

Reτ = 590 are tested. The friction Reynolds number is defined as Reτ = uτh/ν,

where uτ is the friction velocity, h = 1 is the channel half-width and ν is the kine-

matic viscosity.
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Figure 4.3: Computational domain for LES of turbulent channel flow.

The flow is driven by a constant body force in the streamwise direction. For

the boundary condition, no-slip boundary conditions are applied to the upper and

lower walls and periodic boundary conditions are applied in the streamwise and

spanwise directions. For the initial condition, we we follow the following procedure.

The simulation starts from an initial condition with zero initial pressure and

a parabolic velocity profile with random perturbations in the streamwise direction.

When the flow is determined to have reached a statistically stationary state, this

stage is terminated. During this stage the flow transforms from a “parabolic” flow

to a real channel turbulent flow. We use the velocity field at the end of this stage

as initial condition for all LES models. For every model, the simulation is further

evolved till a statistically stationary state is obtained. this takes about 60 flow-

through times. Statistics are then collected for the next 120 flow through times.

The generalized-α method [42] is used for discretization in time.



146

The parabolic velocity with random perturbations is given as

[U, V, W ] = [1.5 ∗ (1− y2) + 0.4 ∗ (r − 0.5), 0, 0], (4.42)

where y is the wall-normal coordinate and r is random variable in the range (−1, 1).

The simulations were performed using 323 and 643 finite elements. For both

meshes, we employ C0-continuous trilinear basis functions. The mesh is uniform

along the x and z directions and nonuniform along the wall normal direction. The

resolution in the wall normal direction is much finer at the wall in order to resolve

the boundary layer. Grid points in the y direction are clustered near the wall by

the following function:

yi =
1

b
tanh

(
ξitanh−1(b)

)
, (4.43)

where ξi is a set of uniformly spaced points in the interval [−1, 1]. The coefficient b

is a parameter that controls the strength of the clustering. The value of b is chosen

such that for the first point in the all-normal direction y+ < 1. Thus the first plane

of grid points off the wall is within the viscous sublayer. Figure 4.4 shows the 333

mesh.
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Figure 4.4: 323 mesh for turbulent channel flow.

Table 4.1: Physical parameters for the channel flow problem.

Reτ Nom. Reτ Actual ν fb ρ dt

395 392.24 14.8384e− 5 33.87522076− 4 1.0 0.05 and 0.025

590 585.88 6.6508514e− 5 15.18351427e− 4 1.0 0.025

Table 4.2: Numerical parameters for the channel flow problem.

Reτ Nom. Nx ×Ny ×Nz 4x+ 4y+
min 4y+

max 4z+ dt+

395 32× 32× 32 77.4 1.31 67.9 25.8 1.15 and 0.57

395 64× 64× 64 38.8 0.47 19.4 12.9 1.15 and 0.57

590 64× 64× 64 57.9 0.71 28.9 19.3 0.57

We perform the LES with a mesh of 323 and 643 finite elements, and compare

the performance of all the LES models with DNS results of [43]. The DNS results

were computed using a Chebychev-tau formulation in the wall normal direction and
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a Fourier representation in the streamwise and spanwise directions, on a mesh of

256 × 193 × 192. Thus the DNS has 264 times as many points for 322 case and

35 times as many points for the 643 case. The new LES models are also compared

to SUPG stablized dynamic Smagorinsky model [36]. The physical and numerical

parameters we used are listed in Tables 4.1 and 4.2, respectively.

In the following subsections, we will first discuss the channel flow with Reτ =

395 and then the channel flow with Reτ = 590.

4.4.1 Reτ = 395

In this subsection we consider the performance of the RBEV, RBVM and MM2

models and also examine the effect of two important numerical parameters dt and

the constant C1 that appears in the definition of τm (see Equation (4.7)).

4.4.1.1 RBEV

Figure 4.5 - 4.9 are the results for the RBEV model on a 323 mesh with dt =

0.050 and C1 = 3. Figure 4.5 compares average streamwise velocities of different

models. It shows that the no model test underpredicts the average velocity, while the

Smagorinsky model overestimates the average velocity. The same conclusion can be

drawn from the semi-log plot for u+ in Figure 4.6 presented in wall coordinates. In

this plot we have also plotted the analytical solutions u+ = y+ and u+ = 1/κlny+ +

B, where κ = 0.41 and B = 5.5. We note that the DNS data matches these

analytical solutions well, as does the RBEV model. The no model test underpredicts

the velocity, while the Smagorinsky model overestimates the velocity.

Figure 4.7 compares the average pressures. Big oscillations are observed for

the for no model case, while the Smagorinsky model also overestimates the average

pressure. The RBEV model matches the DNS solution most accurately.

In Figure 4.8, we compare the fluctuations computed by the LES models with

their DNS counterparts. We note that all models overpredict the streamwise fluc-

tuations urms in (a) though the RBEV model is marginally more accurate than the

others. For the wall normal fluctuations, vrms in (b), the RBEV model is the most

accurate in the near wall region while the dynamic Smagorinsky model is the most
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accurate in the center of the channel. For the spanwise fluctuations, wrms in (c),

the dynamic Smagorinsky model is more accurate than RBEV model, and both of

them overpredict the vlaue.

In Figure 4.9, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), the eddy

viscosity is near to zero close the wall and grows within the channel. It is remarkable

that it achieves this behavior without an explicit dynamic approach. We attribute

this behavior to the fact that RBEV model is inherently dynamic in that it is based

on the residual of the coarse scales which automatically vanishes in well-resolved

regions of the flow. In (b), the stabilization τ starts from almost 0 at the wall and

quickly reaches a constant value in the channel. In (c), the residual is reduced when

a small distance from the wall and then grows quickly for a very short distance.

Then it begins to reduce, and reaches the lowest point at the middle of the channel.
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Figure 4.5: Average streamwise velocity for the Reτ = 395 case on a 323

mesh with dt = 0.050 and C1 = 3. A comparison of the Dy-

namic Smagorinsky, RBEV and no model cases.
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Figure 4.6: Average streamwise velocity in wall coordinates for the Reτ =

395 case on a 323 mesh with dt = 0.050 and C1 = 3. A com-

parison of the Dynamic Smagorinsky, RBEV and no model

cases.
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Figure 4.7: Average pressure for the Reτ = 395 case on a 323 mesh

with dt = 0.050 and C1 = 3. A comparison of the Dynamic

Smagorinsky, RBEV and no model cases.
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Figure 4.8: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050 and C1 = 3.

A comparison of the Dynamic Smagorinsky, RBEV and no

model cases.
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Figure 4.9: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 323 mesh with dt = 0.050 and C1 = 3. Values for

RBEV model.
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Mesh and time-step refinement

In the section, we study the effects of varying the time step and grid refinement

for the RBEV model with Reτ = 395. We consider dt = 0.025 and dt = 0.050 and

meshes of 32 and 64 elements which leads to four cases. The parameter C1 = 3 for

all cases.

Figure 4.10 compares average streamwise velocities of different models.. All

the RBEV models match the DNS solution very accurately, and some convergence

with grid refinement is observed. The same conclusion can be drawn from the semi-

log plot for u+ in Figure 4.11 presented in wall coordinates.

For the average pressure profile in Figure 4.12, the results on the 643 mesh are

better than on the 323 mesh. They are closer to the DNS result and are smoother.

In Figure 4.13, we compare the fluctuations computed by the LES models

with their DNS counterparts. We note that though all RBEV tests overpredict the

streamwise fluctuations urms near wall region in (a), the RBEV results on the 643

mesh are more accurate than the ones on a 323 mesh. The RBEV results on the

643 mesh also match DNS very well when y+ > 100. For the vrms in (b), all RBEV

tests overpredict in near wall region. The RBEV results on the 643 mesh are slightly

more accurate than the ones on the 323 mesh. For the spanwise fluctuations, wrms

in (c),the improvement in going from the coarse to the fine mesh is significant.

In Figure 4.9, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), we observe

that the RB eddy viscosity reduces with refinement in space and time. In that

sense it displays a “dynamic” behavior. We note that the stabilization parameter

in (b) appears to depend strongly on the time step and not the mesh size in most

of the domain. It is basically equal to dt/(2C1) in this region. Close to the wall the

mesh size is small enough so that this is not the case. Remarkably the coarse scale

residual (c) is about the same for all cases. This indicates that even with the 643

mesh the simulation is far from being fully resolved, and that the models still play

an important role.
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(a) RMS of velocity fluctuations in streamwise direction
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Figure 4.13: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case wtih C1 = 3. A comparison of the RBEV

model on 323 and 643 meshes with dt = 0.025 and dt = 0.050.
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Figure 4.14: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case wtih C1 = 3. A comparison of the RBEV model on 323

and 643 meshes with dt = 0.025 and dt = 0.050.
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Effect of varying C1

In the section, we examine the effect of varying C1 with dt = 0.050.

In Figures 4.15 - 4.19 we present the results for the RBEV model on the 322

mesh.

Figure 4.15 compares average streamwise velocities. We observe that the

RBEV model with C1 = 2 and C1 = 3 matches the DNS solution very accurately.

The RBEV models with C1 = 12 and C1 = 72 underpredicts the average velocity,

while the RBEV model with C1 = 1 overestimates the average velocity. The same

conclusion can be drawn from the semi-log plot for u+ in Figure 4.16 presented in

wall coordinates. The reason for this behavior is tied to the expression for the stabi-

lization parameter τm. We note that the viscosity is proportional to τm through the

expression for u′. Also, for the parameters considered in this problem, in most of the

domain, τm ∼ dt/(2C1). Thus as C1 is increased the turbulent viscosity decreases

(see Figure 4.19) and as a result the mean velocity also decreases.

In the average pressure profile in Figure 4.17, the RBEV model with C1 = 3

matches the DNS solution most accurately. The RBEV model with C1 = 1 and

C1 = 2 overestimate the average pressure. We observe that oscillations becomes

bigger if C1 is bigger. Once again this may be attributed to the reduction in the

turbulent viscosity with increasing C1.

In Figure 4.18, we compare the fluctuations computed by the LES models with

their DNS counterparts. We note that all RBEV tests overpredict the streamwise

fluctuations urms near wall region in (a). For the vrms in (b), the RBEV models

with C1 = 2 and C1 = 3 are the most accurate in the near wall region y+ < 50,

while the RBEV models with C1 = 12 and C1 = 72 overpredict in near wall region

and the RBEV model with C1 = 1 underpredicts. For the wrms in (c), the RBEV

model with C1 = 1 is most accurate. All the other RBEV results overpredict this

fluctuation.

In Figure 4.19, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), we observe

that the eddy viscosity decreases as C1 is increased. This is attributed to the de-
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crease in the stabilization parameter shown in (b). The residual in (c) is about the

same for all cases.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y/
h

<u>

 

 

Moser et al

Dynamic SMG

No model
RBEV: C

1
=1

RBEV: C
1
=2

RBEV: C
1
=3

RBEV: C
1
=12

RBEV: C
1
=72

Figure 4.15: Average streamwise velocity for the Reτ = 395 case on a 323

mesh with dt = 0.050. A comparison of the RBEV model

with C1 = 1, 2, 3, 12, 72.
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Figure 4.16: Average streamwise velocity in wall coordinatesfor the Reτ =

395 case on a 323 mesh with dt = 0.050. A comparison of the

RBEV model with C1 = 1, 2, 3, 12, 72.
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Figure 4.17: Average pressure for the Reτ = 395 case on a 323 mesh with

dt = 0.050. A comparison of the RBEV model with C1 =

1, 2, 3, 12, 72.
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Figure 4.18: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050. A compar-

ison of the RBEV model with C1 = 1, 2, 3, 12, 72.
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Figure 4.19: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 323 mesh with dt = 0.050. A comparison of the

RBEV model with C1 = 1, 2, 3, 12, 72.
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For the 323 mesh it might be concluded that the values of C1 = 2, 3 produced

the most accurate results. We now test whether this hold for the 643 mesh. The

results are shown in Figures 4.20 - 4.24.

Figure 4.20 compares average streamwise velocities for different values of C1.

We observed that the RBEV model with C1 = 3 matches the DNS solution very

accurately. It shows that the RBEV model with C1 = 6 and C1 = 12 slightly un-

derpredicts the average velocity, while the RBEV model with C1 = 1 overestimates

the average velocity. The same conclusion can be drawn from the semi-log plot for

u+ in Figure 4.21 presented in wall coordinates. This behavior is consistent with

the values of the turbulent viscosities shown in Figure 4.24.

In the average pressure profile presented in Figure 4.22 we observe that the

larger values of C1 produce more accurate results. However, the results for C1 = 3,

though not the most accurate, is still acceptable. The result for C1 = 1 is clearly

wrong and needs to be explored some more.

In Figure 4.23, we compare the fluctuations computed by the LES models with

their DNS counterparts. The RBEV model with C1 = 1 is clearly incorrect. All the

other RBEV models overpredict the streamwise fluctuations urms near wall region

in (a), but are very accurate near the center of the channel. For the vrms in (b), the

RBEV model with C1 = 3 is the most accurate in the near wall region y+ < 50.

When y+ > 70, the dynamic Smagorinsky model is most accurate. For the wrms in

(c), the dynamic Smagorinsky model is most accurate, followed by the RBEV model

with C1 = 3.

In Figure 4.24, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. The RBEV model

with C1 = 1 performs unusually. If we ignore this case, in (a), we observe that the

eddy viscosity decreases as C1 is increased. The same conclusion can be drawn from

the stabilization parameter in (b). The residual in (c) is about the same for all cases.

In summary, for the 643 case also we conclude that the value of C1 = 3 provides

the most accurate results.
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Figure 4.20: Average streamwise velocity for the Reτ = 395 case on a 643

mesh with dt = 0.050. A comparison of the RBEV model

with C1 = 1, 3, 6, 12.
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Figure 4.21: Average streamwise velocity in wall coordinates for the

Reτ = 395 case on a 643 mesh with dt = 0.050. A compar-

ison of the RBEV model with C1 = 1, 3, 6, 12.
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Figure 4.22: Average pressure for the Reτ = 395 case on a 643 mesh with

dt = 0.050. A comparison of the RBEV model with C1 =

1, 3, 6, 12.
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Figure 4.23: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 643 mesh with dt = 0.050. A compar-

ison of the RBEV model with C1 = 1, 3, 6, 12.
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Figure 4.24: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 643 mesh with dt = 0.050. A comparison of the

RBEV model with C1 = 1, 3, 6, 12.
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4.4.1.2 MM2

In this section we present results for the purely residual-based mixed model

(MM2). First we consider its performance on the 323 mesh with C1 = 3 and

dt = 0.05. Not surprisingly, we find what with this value of C1 this model is too

viscous and leads to an over-prediction of the mean velocity. This is explained by

recognizing that with this value of C1 the RBEV model by itself produced enough

viscosity so as to yield an accurate mean velocity. In the MM2 model we are adding

to it the viscous contribution from the RBVM model, which clearly means that the

resulting model will be too viscous.

Thereafter, we set C1 = 12 and test the performance of this method on a 323

and a 643 mesh with dt = 0.0050 units. With this value of C1 it performs very well

and is competitive with the RBEV model with C1 = 3.

In Figures 4.25 - 4.29 we present results on the 323 mesh with C1 = 3.

In Figure 4.25 compares average streamwise velocities of different models. The

RBEV model matches the DNS most accurately. The RBVM and the MM2 models

overestimate the average velocity and they are very close to each other. All the

residual-based models are more accurate than the dynamic Smagorinsky model. The

same conclusion can be drawn from the semi-log plot for u+ in Figure 4.26 presented

in wall coordinates. Figure 4.27 compares the average pressure. The RBVM model

and the MM2 model overestimate the pressure profile. The pressure profile from the

RBVM model and the MM2 model are smoother than the RBEV model. All the

residual-based models are more accurate than the dynamic Smagorinsky model.

In Figure 4.28, we compare the fluctuations computed by the LES models

with their DNS counterparts. We note that all models overpredict the streamwise

fluctuations urms in (a), though the RBEV model is marginally more accurate than

the others. For the wall normal fluctuations, vrms in (b), the RBVM model and

the MM2 model are more accurate than the RBEV model in the whole channel,

and both of them are more accurate than dynamic Smagorinsky model around the

channel center. For the spanwise fluctuations, wrms in (c), the RBVM model and
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the MM2 model are more accurate than the RBEV model, and both of them are

also more accurate dynamic Smagorinsky model near the channel center. In the

near wall region, the dynamic Smagorinsky model is most accurate, followed by the

MM2 model and the RBVM model, then the RBEV model.

In Figure 4.29, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), the eddy

viscosity in the MM2 model is smaller than that in the pure RBEV model. This

is reasonable because in the MM2 model the RBVM component also contributes to

the dissipation. So the contribution from of the RBEV component is reduced dy-

namically. In (b), the stabilization parameter τ is the same for both these models.

Finally, in (c), we observe that the residual from the MM2 model is smaller than

that for RBEV model, which is the reason why the eddy viscosity in MM2 model is

smaller than that of the pure RBEV model.

In summary we note that while the MM2 model produces reasonable results

with C1 = 3, it is not as good as the RBEV model alone. In general is too viscous.

This may be corrected by using a large value of C1, as shown in the next set of

results.
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Figure 4.25: Average streamwise velocity for the Reτ = 395 case on a 323

mesh with dt = 0.050 and C1 = 3. A comparison of the RBEV,

RBVM, and MM2 cases.
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Figure 4.26: Average streamwise velocity in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050 and C1 = 3.

A comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.27: Average pressure for the Reτ = 395 case on a 323 mesh with

dt = 0.050 and C1 = 3. A comparison of the RBEV, RBVM,

and MM2 cases.
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(b) RMS of velocity fluctuations in wall normal direction
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Figure 4.28: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050 and C1 = 3.

A comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.29: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 323 mesh with dt = 0.050 and C1 = 3. A comparison

of the RBEV, and MM2 cases.
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In Figures 4.30 - 4.34, we plot the results for LES models on a 323 mesh with

dt = 0.050 and C1 = 12.

Figure 4.30 compares average streamwise velocities of different models. The

RBVM model and the MM2 model match DNS most accurately. The RBEV model

underpredicts the profile. The same conclusion can be drawn from the semi-log

plot for u+ in Figure 4.31 presented in wall coordinates. Figure 4.31 compares the

average pressure. All of the three models have the similar performance while the

RBEV model has some oscillations.

In Figure 4.33, we compare the fluctuations computed by the LES models with

their DNS counterparts. We note that all the models overpredict the streamwise

fluctuations urms in (a) though the MM2 model is marginally more accurate than

the others. For the wall normal fluctuations, vrms in (b), the MM2 model and the

RBVM model are more accurate than the RBEV model. In the near wall region,

all the three models are more accurate than the dynamic Smagorinsky model. At

the center of the channel, the MM2 model and the RBVM model also match the

DNS results very accurately. For the spanwise fluctuations, wrms in (c), the MM2

model and the RBVM model are more accurate than the RBEV model. Overall the

dynamic Smagorinsky model is the most accurate.

In Figure 4.34, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), the eddy

viscosity in the MM2 model is smaller than that in the pure RBEV model. In (b),

the stabilization parameter τ are the same. In (c), the residual from the MM2 model

is smaller than that from the RBEV model, which also accounts for the smaller eddy

viscosity observed in (a).
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Figure 4.30: Average streamwise velocity for the Reτ = 395 case on a 323

mesh with dt = 0.050 and C1 = 12. A comparison of the

RBEV, RBVM, and MM2 cases.
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Figure 4.31: Average streamwise velocity in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050 and C1 = 12. A

comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.32: Average pressure for the Reτ = 395 case on a 323 mesh with

dt = 0.050 and C1 = 12. A comparison of the RBEV, RBVM,

and MM2 cases.
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(a) RMS of velocity fluctuations in streamwise direction
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(b) RMS of velocity fluctuations in wall normal direction

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y+

 w
rm

s

 

 

Moser et al

Dynamic SMG

No model

RBEV

RBVM

MM2
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Figure 4.33: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 323 mesh with dt = 0.050 and C1 = 12. A

comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.34: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 323 mesh with dt = 0.050 and C1 = 12. A comparison

of the RBEV, and MM2 cases.
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From the result on the 323 mesh we conclude that for the RBVM and MM2

models the value of C1 = 12 produces the most accurate results. We now consider

this value for the 643 mesh. In Figures 4.35 - 4.39 we plot the results for LES models

on a 643 mesh with dt = 0.050 and C1 = 12.

Figure 4.35 compares average streamwise velocities of different models. We

observe that all the residual-based models are very accurate. The RBEV under-

estimates the velocity profile while the RBVM and MM2 models over estimate it

slightly. The same conclusion can be drawn from the semi-log plot for u+ in Figure

4.36 presented in wall coordinates. Figure 4.37 compares the average pressure. All

of the three residual-based models have the similar performance while the RBEV

model has some oscillations. Further, the RBEV model matches DNS most accu-

rately where the profile has a turn-over point while the RBVM and mixed model are

more accurate when pressure profile is more straight. All of them are more accurate

than the dynamic Smagorinsky model.

In Figure 4.38, we compare the fluctuations computed by the LES models

with their DNS counterparts. We note that all models overpredict the streamwise

fluctuations urms in (a) though the RBEV model is marginally more accurate than

the others. For the wall normal fluctuations, vrms in (b), the MM2 and RBVM

models are more accurate than the RBEV model. In the near wall region, all

three residual-based models are more accurate than dynamic Smagorinsky model

which underpredicts the fluctuations. For the spanwise fluctuations, wrms in (c),

the MM2 model and the RBVM model are more accurate than the RBEV model.

Near the center of the channel, all three residual-based models slightly underpredict

the fluctuations. The dynamic Smagorinsky model is the most accurate. .

In Figure 4.39, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. In (a), the eddy

viscosity in the MM2 model is smaller than in the pure RBEV model. In (b), we

observe that the stabilization parameter τ are the same for these models. In (c), we

note that the residual from the MM2 model is smaller than that from the RBEV

model leading to the difference in the eddy viscosity for these models.



180

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y/
h

<u>

 

 

Moser et al

Dynamic SMG

No model

RBEV

RBVM

MM2

Figure 4.35: Average streamwise velocity for the Reτ = 395 case on a 643

mesh with dt = 0.050 and C1 = 12. A comparison of the

RBEV, RBVM, and MM2 cases.
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Figure 4.36: Average streamwise velocity in wall coordinates for the

Reτ = 395 case on a 643 mesh with dt = 0.050 and C1 = 12. A

comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.37: Average pressure for the Reτ = 395 case on a 643 mesh with

dt = 0.050 and C1 = 12. A comparison of the RBEV, RBVM,

and MM2 cases.
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(a) RMS of velocity fluctuations in streamwise direction
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(b) RMS of velocity fluctuations in wall normal direction
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(c) RMS of velocity fluctuations in spanwise direction

Figure 4.38: RMS of velocity fluctuations in wall coordinates for the

Reτ = 395 case on a 643 mesh with dt = 0.050 and C1 = 12. A

comparison of the RBEV, RBVM, and MM2 cases.
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(b) stabilization parameter τm
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Figure 4.39: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 395

case on a 643 mesh with dt = 0.050 and C1 = 12. A comparison

of the RBEV, and MM2 cases.
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4.4.2 Reτ = 590

In this section we test the LES models at a higher Reynolds number of Reτ =

590. We only consider the 643 element mesh. First we consider the performance

of the RBEV model with C1 = 3, which provided the best results for the lower

Reynolds number case. We note that it continues to be very accurate at the higher

Reynolds number. Thereafter we examine the performance of the MM2 model at

C1 = 12, and observe that it too continues to be accurate at the higher Reynolds

number.

4.4.2.1 RBEV

In Figures 4.40 - 4.44 we plot the results for the RBEV model with Re = 590

on a 643 grid with dt = 0.025 and different value of C1 = 1, 3, 12.

Figure 4.40 compares results for the average streamwise velocity profile. The

RBEV model with C1 = 3 matches the DNS most accurately. The RBEV model

with C1 = 12 slightly underpredicts and the RBEV model with C1 = 1 slightly

overpredicts the average velocity. The same trends are observed in the semi-log

plot for u+ in Figure 4.41 presented in wall coordinates. Figure 4.40 compares

the average pressure. The RBEV models with C1 = 3 and C1 = 12 match the

DNS most accurately while the RBEV model with C1 = 1 slightly overpredicts the

average pressure.

In Figure 4.43, we compare the fluctuations computed by the LES models

with their DNS counterparts. We note that all models overpredict the streamwise

fluctuations urms in (a). For the wall normal fluctuations, vrms in (b), the RBVM

model with C1 = 1 is more accurate than the others. Near the center of the channel,

all three models are very good. The same conclusion can be drawn for the spanwise

fluctuations, wrms in (c).

In Figure 4.44, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. Once again we

observe that as C1 increases the eddy viscosity and the stabilization parameter de-

crease, while the residual remain relatively unchanged.
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Figure 4.40: Average streamwise velocity for the Reτ = 590 case on a 643

mesh with dt = 0.025. A comparison of C1 = 1, 3, 12 for the

RBEV model.
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Figure 4.41: Average streamwise velocity in wall coordinates for the

Reτ = 590 case on a 643 mesh with dt = 0.025. A compar-

ison of C1 = 1, 3, 12 for the RBEV model.
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Figure 4.42: Average pressure for the Reτ = 590 case on a 643 mesh with

dt = 0.025. A comparison of C1 = 1, 3, 12 for the RBEV model.
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(a) RMS of velocity fluctuations in streamwise direction
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(b) RMS of velocity fluctuations in wall normal direction
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Figure 4.43: RMS of velocity fluctuations in wall coordinates for the

Reτ = 590 case on a 643 element mesh with dt = 0.025. A

comparison of C1 = 1, 3, 12 for the RBEV model.
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Figure 4.44: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 590

case on a 643 element mesh with dt = 0.025. A comparison of

C1 = 1, 3, 12 for the RBEV model.
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4.4.2.2 MM2

In this subsection, we apply the MM2 model to the high Reynolds number

case on a 643 grid with dt = 0.025. We compare the performance of the MM2 model

with the RBEV model and the RBVM model with C1 = 12.

In Figures 4.45 - 4.49 we plot the results for LES models on a 643 grid with

dt = 0.050 and C1 = 12.

Figure 4.45 compares results for the average streamwise velocity profile. The

RBVM model and the MM2 model match DNS solution very accurately. The RBEV

model slightly underpredicts the average velocity. The same trends are seen in the

semi-log plot for u+ in Figure 4.46 presented in wall coordinates. In Figure 4.47

we compare the average pressure and conclude that the RBEV model is the most

accurate.

In Figure 4.48, we compare the fluctuations computed by the LES models

with their DNS counterparts. We note that all the models are quite accurate. For

the streamwise fluctuations the results are very similar, while for the spanwise and

wall-normal fluctuations the RBVM and RBEV models are more accurate.

In Figure 4.49, the average values of the eddy viscosity, the stabilization pa-

rameter and the residual of the momentum equation are shown. We observe that

the eddy viscosity of the MM2 model is smaller than that of the RBEV model, and

that this difference can be attributed to the smaller value of residual for the former.
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Figure 4.45: Average streamwise velocity for the Reτ = 590 case on a 643

mesh with dt = 0.025 and C1 = 12. A comparison of the

RBEV, RBVM, and MM2 cases.
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Figure 4.46: Average streamwise velocity in wall coordinates for the

Reτ = 590 case on a 643 mesh with dt = 0.025 and C1 = 12. A

comparison of the RBEV, RBVM, and MM2 cases.
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Figure 4.47: Average pressure for the Reτ = 590 case on a 643 mesh with

dt = 0.025 and C1 = 12. A comparison of the RBEV, RBVM,

and MM2 cases.
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(a) RMS of velocity fluctuations in streamwise direction
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(b) RMS of velocity fluctuations in wall normal direction
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Figure 4.48: RMS of velocity fluctuations in wall coordinates for the

Reτ = 590 case on a 643 element mesh with dt = 0.025 and

C1 = 12. A comparison of the RBEV, RBVM, and MM2

cases.
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Figure 4.49: Average value of the eddy viscosity, stabilization parameter

and residual of the momentum equation for the Reτ = 590

case on a 643 element mesh with dt = 0.025 and C1 = 12. A

comparison of the RBEV, and MM2 cases.
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4.5 Chapter summary

In this chapter, we have implemented two residual-based LES models for in-

compressible turbulent flows within the finite element method. They are

• the residual-based eddy viscosity (RBEV) model

• the purely residual-based mixed model (MM2), which is a combination of the

RBVM and the RBEV models

We tested the performance of these LES models in predicting fully developed

turbulent channel flows. The LES models are tested on problems with friction

Reynolds numbers Reτ = 390, 590 on 323 and 643 grids.

First, we compared the performance of the RBEV and the dynamic Smagorin-

sky models. We found that the RBEV model is generally more accurate and per-

forms significantly better than the dynamic Smagorinsky model. We also note that

the performance of the RBEV model strongly depends on the value of C1, which is

a parameter within the stabilization parameter τm. With C1 = 3, the RBEV model

matches the DNS result very accurately for the average streamwise velocity and the

average pressure. We observe that the eddy viscosity of the RBEV model is near to

zero close the wall and grows within the channel. It is remarkable that it achieves

this behavior without an explicit dynamic approach. We attribute this behavior to

the fact that RBEV model is inherently dynamic in that it is based on the resid-

ual of the coarse scales which automatically vanishes in well-resolved regions of the

flow. We also observed that the eddy viscosity reduces with refinement in space and

time. In that sense it displays a “dynamic” behavior. The RBEV model is more

accurate and much easier to implement than the dynamic Smagorinsky model, and

it is found to be robust by examining the dependence of its performance on grid

size, the constant in the stabilization parameter, and the Reynolds number. We

conclude that the RBEV model represents a viable strategy for wall bounded flows.

Thereafter we examined the performance of the new purely residual-based

mixed model (MM2). We observed that the MM2 model with C1 = 12 performs
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very accurately. It is competitive with the RBEV model with C1 = 3 and is more

accurate than dynamic Smagorinsky model. We also found that for the MM2 model

the eddy viscosity of the RBEV term automatically accounts for the dissipation pro-

duced by the RBVM terms and produces smaller eddy viscosity when compared to

the purely RBEV model. Since there is no dynamic evaluation of parameters within

this model, it is much easier to implement than the mixed model (MM1) based on

the RBVM and the dynamic Smagorinsky models. The performance of the MM2

model is found to be robust by examining its dependence on grid sizes, the constant

C1 in the stabilization parameter, and the Reynolds number.

Our recommendation is therefore to use the residual-based eddy viscosity

(RBEV) model with C1 = 3 and the purely residual based mixed model (MM2)

with C1 = 12 within finite element method. These models are accurate, easy to

implement, as they involve no dynamic procedure, and are consistent, in that the

eddy viscosity vanishes when the residual of the coarse scales is small.



CHAPTER 5

Conclusion

In this thesis we have developed and implemented several residual-based large

eddy simulation models for compressible and incompressible turbulent flows. Within

this framework our main accomplishments are:

(1) We have extended the residual-based variational multiscale formulation

(RBVM) to compressible turbulent flows. New definition of stabilization parameter

τ is proposed for compressible turbulent flows. We have tested the performance of

the RBVM model in predicting the decay of compressible, homogeneous, isotropic

turbulence (HIT) in regimes where shocklets are known to exist within Fourier-

spectral method. We varied the level of compressibility of the flow by varying the

initial proportion of compressible turbulent kinetic energy and by varying the Mach

number. In all cases we found that the RBVM model is generally more accurate and

performs better than the popular dynamic Smagorinsky-Yoshizawa-eddy-diffusivity

(DSYE) model.

(2) We have proposed and implemented a mixed model (MM1) based on the

RBVM and DSYE models. In the MM1 model, the RBVM terms account for cross

stresses while the DSYE terms account for Reynolds stresses. The MM1 model is

tested on the same compressible HIT as the RBVM model with varying the level

of compressibility of the flow. We have found that the MM1 model is generally

more accurate than the DSYE model. For low Reynolds number the MM1 model is

somewhat less accurate than the RBVM model, while for high Reynolds number it

is more accurate than the RBVM model. This is to be expected because Reynolds

stresses are important in high Reynolds number turbulent flows.

(3) We have developed and tested a new residual-based eddy viscosity model

(RBEV) that uses the RBVM formulation. In the RBEV model, the eddy viscosity

196
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is defined as νt ∼ h|u′|, where h is the grid size and u′ is the fine scales velocity

fluctuation. The RBEV model is inherently dynamic because it is based on the

residual of the coarse scales which automatically vanishes in well-resolved regions

of the flow. In this way, the RBEV model requires no dynamic calculation of a

parameter, so it is much easier to implement than the dynamic Smagorinsky type

models.

The RBEV model is tested on the same compressible HIT as the RBVM and

MM1 models. We observed that the RBEV model is more accurate than the DSYE

model for the incompressible velocity component, while for the compressible velocity

component it is not dissipative enough. Compared to the DSYE model, the RBEV

model achieves similar accuracy but without a dynamic evlautation of parameters.

The RBEV model is also tested on the incompressible fully developed turbu-

lent channel flows within finite element method. The RBEV model is observed to

be more accurate and much easier to implement than dynamic Smagorinsky model.

We also observed that the eddy viscosity of the RBEV model is near to zero close

to the wall and grows within the channel. It is remarkable that it achieves this

behavior without an explicit dynamic approach. By examining the dependence of

the performance of this model on grid (spatial and temporal) size, constants that

appear within the stabilization parameter and the Reynolds number, the RBEV

model is found to be robust and it represents a viable strategy for simulating wall

bounded flows.

(4) Motivated by the MM1 model and the RBEV model above, we developed

and implemented a purely residual based mixed model (MM2) based on the RBVM

and RBEV models. In the MM2 model, the RBVM terms account for cross stresses

while the RBEV terms account for Reynolds stresses. The MM2 model is inherently

dynamic but does not involve the dynamic calculation of parameters, so it is much

easier to implement than the MM1 model.

The MM2 model is tested for the compressible HIT and it is observed to be

more accurate than the DSYE model. For low Reynolds number the MM2 model is

slightly less accurate than RBVM the model, while for high Reynolds number it is
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more accurate than the RBVM model.

The MM2 model is also tested for the same incompressible channel turbulent

flows as the RBEV model. For a different set of constant values in the definition of

stabilization parameter the MM2 model is as accurate as the RBEV model, and is

more accurate than the dynamic Smagorinsky model. We also found that for the

MM2 model the eddy viscosity of the RBEV term automatically accounts for the

dissipation produced by the RBVM terms and produces smaller eddy viscosity when

compared to the pure RBEV model. The MM2 model is much easier to implement

than the MM1 model. By testing this model for a range of problem parameters we

conclude that it is robust, and it represents a viable strategy for simulating wall

bounded flows.

For future work, the RBVM, the RBEV and the MM2 models will be applied

to other problems, including flows with complex geometries and flows at very large

scales. These models will also be extended to magnetohydrodynamics (MHD) or

related areas.
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