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Abstract

The residual-based variational multiscale formulation is applied to develop a

large eddy simulation (LES) model for compressible flows. In addition, a mixed

model, in which a deviatoric Smagorinsky subgrid stress term is added to the

RBVM terms to better model the Reynolds stresses is proposed. These mod-

els, along with the dynamic Smagorinsky-Yoshizawa-eddy diffusivity model are

tested in predicting the decay of homogenous turbulence. For most relevant mea-

sures, it is observed that the RBVM models are more accurate than the dynamic

Smagorinsky-type model.

Keywords: Residual-based variational multiscale formulation, Large eddy

simulation, Compressible flows
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1 Introduction

In large eddy simulation (LES) the large scales of fluid motion are explicitly resolved

while the effect of the fine scales on the large scales is modeled using terms that depend

solely on the large scale variables. In filter-based LES this scale separation is achieved

through the application of spatial filters that tend to smooth a given field variable. In

contrast to this in the variational multiscale (VMS) formulation the scale separation

is achieved through projection operators [1]. In addition in the VMS formulation the

starting point for deriving LES models is the weak or the variational statement of

conservation laws, whereas in the filter-based LES formulation it is the strong form of

these equations.

In the residual-based variational multiscale (RBVM) formulation [2, 3] the basic

idea is to split the solution and weighting function spaces into coarse and fine scale

partitions. Splitting the weighting functions in this way yields two sets of coupled

equations: one for the coarse scales and another for the fine, or the unresolved, scales.

The equations for the fine scales are observed to be driven by the residual of the coarse

scale solution projected onto the fine scale space. Hence the name the “residual-based”

VMS formulation. These equations for the unresolved scales are solved approximately

and the solution is substituted in the equations for the coarse scales. In this way the

effect of the fine or the unresolved scales on the coarse scales is modeled.

Thus far the RBVM formulation has been applied to incompressible turbulent flows

[2, 4, 5, 6] and variable density turbulent flows [7]. In this context in [8, 9] it was
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observed that while the RBVM formulation accurately modeled the cross-stress terms

(ūu′ terms) it did not at all model the Reynolds stress terms (u′u′). To remedy this

a mixed model was proposed that appended to the RBVM terms a Smagorinsky eddy

viscosity model [10] in order to capture the effect of the Reynolds stresses. The value of

the Smagorinsky parameter in this model was determined dynamically, while accounting

for the dissipation induced by the RBVM terms. In tests of the decay of incompressible

homogeneous turbulence it was observed that the mixed model was more accurate than

the RBVM and the dynamic Smagorinsky models.

In this paper we aim to extend these ideas to compressible turbulent flows. First,

we consider the extension of the RBVM formulation to compressible flows. Thereafter

motivated by the shortcomings of this model in the incompressible case we consider

a mixed version of this model where we add the Smagorinsky, Yoshizawa [11], and

eddy diffusivity terms to model the Reynolds components of the deviatoric subgrid

stresses, the dilatational subgrid stresses and the subgrid heat flux vector, respectively

[12]. Through a simple analysis of the subgrid mechanical energy and through the

dynamic approach we conclude that out of these the RBVM formulation requires a

model only for the deviatoric component of the Reynolds stresses. The other significant

subgrid quantities are adequately represented within the RBVM formulation. Thus the

mixed RBVM formulation for compressible flows contains only one additional term

when compared with the RBVM formulation, which is the deviatoric Smagorinsky

model.

We test the performance of all LES models (RBVM, mixed and dynamic Smagorinsky-
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Yoshizawa-eddy diffusivity model) in predicting the decay of compressible homogeneous

turbulence. In order to ensure that the compressible effects are significant, and at the

same time the flow is not overwhelmed by strong shocks we select flow parameters

such that weak, local shocks, called shocklets are observed [13, 14, 15]. We compare all

models against fully resolved direct numerical simulations (DNS) and conclude that the

RBVM and the mixed model are more accurate than the dynamic Smagorinsky-type

model.

The RBVM models appear to be endowed with a built-in “dynamic” feature. In

particular, in regions of the flow where the solution is smooth and is accurately rep-

resented by the coarse scales, the residual of the coarse scale tends to be small. As a

result the fine scales, which are driven by the coarse-scale residual, are weak and all the

model terms tend to vanish. This has allowed practitioners to implement these models

with no dynamic procedures which are necessary for other Smagorinsky-type models.

We note that there is another version of the VMS formulation where the resolved scales

are further split into coarse and fine scales and eddy viscosity-type models are used to

model the effect of the unresolved scales only in the equations for the fine scales [16, 17].

No models are introduced in the equations for the coarse resolved scales.

In addition to the VMS approach, there are several other LES methods that are

based on utilizing multiscale ideas. These include scale similarity model, where the

subgrid stress at the grid level is assumed to be proportional to the subgrid stress

evaluated at a coarser level (which is calculable) [18]. This yields an explicit expression

for the subgrid stress which is, however, unstable on its own and is often appended with
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a Smagorinsky-type term to yield a stable model [19, 20, 21, 22]. In the approximate

deconvolution model (ADM), an approximation for the unfiltered velocity is constructed

using the filtered velocity field and is used to reconstruct the subgrid tensor [23, 24].

In this case also, a purely dissipative relaxation term is added in order to complete the

model. Similar ideas for reconstructing the fine scale velocity field are also employed in

the subgrid scale estimation model within the context of the truncated Navier-Stokes

equations [25]. The RBVM approach is related to these models in that it relies on

reconstructing the entire velocity field (fine and coarse scale components) and using it

to model the subgrid stresses. There are however significant differences that are derived

from the fact that the RBVM approach relies on using projections and not filters, and

as a result the fine scale velocity is proportional to the residual of the coarse scale

solution.

The layout of the reminder of this paper is as follows. In the following section,

the RBVM formulation for compressible flows is derived. In Section 3, the mixed

model based on the RBVM formulation is presented and analyzed. In Section 4 these

models are specialized to the case of Fourier-spectral discretization and in Section 5

they are tested in predicting the decay of homogeneous turbulence of compressible

fluids. Conclusions are drawn in Section 6.
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2 Residual-based variational multiscale formulation

In this section, the RBVM formulation of LES for the compressible Navier-Stokes equa-

tions is developed. For a detailed derivation of the RBVM approach for the incompress-

ible Navier-Stokes equations the reader is referred to [2].

The strong form of the compressible Navier–Stokes equations in dimensionless vari-

ables is given by

∂ρ

∂t
+∇ ·m = 0 (1)

∂m

∂t
+∇ · (m⊗m

ρ
) = −∇p+

1

Re
∇ · σ + f (2)

∂p

∂t
+∇ · (up) + (γ − 1)p∇ · u =

(γ − 1)

Re
Φ+

1

M2
∞PrRe

∇ · (µ∇T ) (3)

where the viscous stress tensor σ is given in terms of the rate of strain S by

σ = 2µ(S − 1

3
tr(S)I) (4)

and the viscous dissipation Φ is given by

Φ = σ : S . (5)

The system is closed with an equation of state

γM2
∞p = ρT . (6)

Further, the dynamic viscosity is expressed in terms of the local temperature using,

µ = T 0.76. (7)

This problem is posed on a spatial domain Ω and in the time interval ]0, T [ with

given initial condition data and boundary conditions. In the above equations, ρ is the
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density, u is the velocity, m = ρu is the momentum, p is the thermal pressure, T is

temperature, M∞ is the free-stream Mach number, γ is the adiabatic index, Pr is the

Prandtl number, Re is the Reynolds number and f is a forcing function. The density,

velocity, temperature and viscosity are scaled by their reference values while the pressure

is scaled by the product of the reference density and the square of the reference velocity.

The Reynolds number is based on the reference values of the velocity, length, viscosity

and density. For the homogeneous turbulence problem considered in this paper, the

flow is assumed to be periodic with a period 2π in each coordinate direction. The values

of the physical parameters are provided in Section 4.

Note that one can write (1),(2) and (3) concisely as

LU = F , (8)

where U = [ρ, m, p]T are the unknowns, F = [0, f , 0]T and L represents the

differential operator associated with the Navier–Stokes equations.

The weak form of (1) − (3) is given by: Find U ∈ V such that

A(W ,U ) = (W ,F ) ∀W ∈ V . (9)

Here A(·, ·) is a semi-linear form that is linear in its first slot, (·, ·) denotes the L2 inner

product, W = [r,w, q]T is the weighting function, V is the space of trial solutions and
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weighting functions. The semi-linear form is given by

A(W ,U) ≡ (r, ρ,t)− (∇r,m)

+ (w,m,t)− (∇w,m⊗m
ρ

)

− (∇ ·w, p) +
1

Re
(∇w,σ)

+ (q, p,t)− (∇q,up)− (1− γ)(q, p∇ · u)

− (γ − 1)

Re
(q, Φ) +

1

M2
∞PrRe

(∇q, µ∇T ) .

(10)

The weak form is posed using the infinite dimensional function space V . In practice

this space is approximated by its finite-dimensional counterpart Vh ⊂ V . In the residual-

based variational multiscale formulation the goal is to construct a finite dimensional

problem whose solution is equal to PhU , where Ph : V → Vh is a projection operator

that defines the desired or optimal solution. If the range of Ph is all of Vh then it is

possible to split V = Vh ⊕ V ′ which implies that for every V ∈ V there is a unique

decomposition V = V h + V ′, where V h = PhV ∈ Vh and V ′ = P′V ∈ V ′. The space

V ′ ≡ {V ∈ V|PhV = 0}, and P′ = I − Ph where I is the identity operator. Using this

decomposition in (9) for both the weighting functions and the trial solutions we arrive

at a set of coupled equations. Find Uh ∈ Vh and U ′ ∈ V ′, such that

A(W h,Uh +U ′) = (W h,F ) ∀W h ∈ Vh, (11)

A(W ′,Uh +U ′) = (W ′,F ) ∀W ′ ∈ V ′. (12)

The idea is to solve for U ′ in terms of Uh and F analytically using the fine scale

equation (12), and substitute the expression for U ′ into the coarse-scale equation (11),
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which is to be solved numerically. By doing this one would have introduced in the

coarse scale equation the effect of the fine or subgrid scales.

To derive an expression for U ′ we subtract A(W ′,Uh) from both sides of (12),

A(W ′,Uh +U ′)− A(W ′,Uh) = −A(W ′,Uh) + (W ′,F )

= −(W ′,LUh − F ), (13)

where we have performed integration by parts on the first term on the right hand side

of the first line of (13). For general functions in H1(Ω) the quantity LUh must be

interpreted in the sense of distributions. Note that this equation for U ′ is driven by

the coarse-scale residual R(Uh) ≡ LUh − F . Further, when the coarse-scale residual

is zero its solution is given by U ′ = 0. The formal solution of (13) may be written as

U ′ = F ′(R(Uh);Uh). (14)

This implies that the fine scales are a functional of the residual of the coarse scales and

are parameterized by the coarse scales. Thus they depend on the entire history of the

coarse scales and their residual. A short-time approximation that does away with all

the history effects and replaces the differential operator in (13) by an algebraic operator

is given by

U ′ ≈ −P′τ (Uh) P′TR(Uh). (15)

Here P′T : Vh∗ → V∗ is the transpose of P′, where the spaces Vh∗ and V∗ are dual of Vh

and V , respectively, with respect to the L2 duality pairing [26]. Further, τ is a matrix

that depends on Uh. The operator τ is selected to approximate the Green’s operator
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for the fine-scale problem, and can be thought of as a double integral of the Green’s

operator. In moving from (14) to (15) instead of solving a very complicated equation

for the fine scales, a gross approximation is made. In particular it is assumed that the

fine scales are equal to the residual of the coarse scales, which represent the rate of

unbalance for the coarse scale representation of a given conservation variable, times the

characteristic time scale. In the advective limit this time scale is the time it takes to

advect the fine scale scales across a typical grid size, and in the diffusive limit it is the

time it takes for them to diffuse. The precise definition of τ is presented in Section

4. For a discussion on this the reader is referred to [1, 2]. The approximation for U ′

above differs from that in [2] in the inclusion of the projectors P′ and P′T . We believe

that these projectors are necessary in order to maintain a formal consistency between

the exaction equation for the fine scales (13) and its approximation (15). In particular

the operator P′T ensures that any component of the residual that is not “sensed” by a

function in V ′ does not contribute to the fine scales, and the operator P′ ensures that

the approximation for the fine scales belongs to V ′. In this regard the approximation

above is closer to the orthogonal sub-scales method of Codina [3].

Using this expression in (11) we arrive at the equation for the residual-based varia-

tional multiscale (RBVM) formulation: Find Uh ∈ Vh, such that

A(W h,Uh − P′τ P′TR(Uh)) = (W h,F ) ∀W h ∈ Vh. (16)

Remark: The space for U ′ , that is V ′, is infinite dimensional. However, in practice

this space must also be approximated with a finite dimensional space. Furthermore it
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must be selected such that the cost of computing U ′ in this space does not overwhelm

the total computational costs. In our application, where we have used Fourier modes,

the coarse scale space is comprised of all modes with wavenumber less than or equal

to the cutoff wavenumber kh, and the fine scale space is comprised of all modes with

wavenumber greater than kh but less than or equal to 3kh

2
. This choice is motivated by

tests (not shown here) that have shown that using a fine scale space that is larger than

this does not significantly alter the results. Thus in order to minimize the computational

effort we select the smallest possible space for U ′. We note that the ratio of memory

costs for the RBVM model to the no-model case scales as α3, where α > 1 is the ratio

of the cutoff wavenumber for the fine scales to the coarse scales. The ratio of flops per

time-step also scales with the same power of α. Therefore it is imperative that α be

kept small in order for the RBVM formulation to be competitive.

3 A mixed model

3.1 A mixed model based on RBVM formulation

In [9], for incompressible flows the authors demonstrated that while the RBVM model

works well for the cross-stress term it does not introduce an adequate model for the

Reynolds stress term. Subsequent analysis has revealed that the RBVM approximation

for the fine scales produces a reasonable estimate for their magnitude [27, 28]. Thus the

reason why the Reynolds stresses are not accurately represented is not because their

magnitude is underestimated, rather it is that they are uncorrelated with the large-scale
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rate of strain tensor. A likely explanation for this is the exclusion of the history effects

in the approximation for the fine scales which prevents these correlations from evolving.

With this in mind they appended to the RBVM model the dynamic Smagorinsky model

in order to model the Reynolds stress. We follow the same approach and propose the

following mixed model for compressible flows: Find Uh ∈ Vh, such that

A
(
W h,Uh +U ′

)
+
(
∇wh, 2C0h

2ρh|Sh|Shdev −
2

3
C1h

2ρh|Sh|2I
)

+
(
∇qh, C0

PrtγM2
∞
h2ρh|Sh|∇T h

)
= (W h,F ) ∀W h ∈ Vh ,

(17)

where A(·, ·) is defined in (10), Sh is the rate of strain computed the velocity field

uh ≡ mh

ρh
, the subscript dev denotes its deviatoric component and T h ≡ γM2

∞ph

ρh
. From

the definitions of uh and T h we note that these correspond to the so-called Favre-

averaged variables in traditional LES nomenclature.

Comparing with (16), we note that two new terms have been added. The first term

models the deviatoric and dilatational components of the subgrid scale stress tensor and

the second term models the subgrid heat flux vector. For the deviatoric component of

the subgrid stress we have utilized the Smagorinsky eddy viscosity model [10], for the

dilatational component we have utilized Yoshizawa’s model [11], and for the subgrid

heat flux vector we have utilized an eddy diffusivity type model. In a typical LES the

first term is employed to represent both the cross and Reynolds stress components of
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the subgrid stress, whereas in our mixed model it is added to represent the missing

Reynolds stress. In the following section we demonstrate that the RBVM model by

itself introduces a reasonable expression for the dilatational Reynolds stress component.

Based on this analysis we do not include an eddy viscosity model for the dilatational

component of subgrid stress (that is C1 = 0). Further in Section 4 we note that the

dynamic procedure yields a negative value for Pr−1
t which is clipped to zero. Thus in

effect in the mixed model C1 = Pr−1
t = 0 and the only non-zero term corresponds to

C0, that is a model for the deviatoric subgrid stresses.

3.2 Analysis of mechanical energy for the RBVM formulation

In this section we derive a mechanical energy identity for the RBVM formulation.

We split the total rate transfer of mechanical energy due to the subgrid scales into a

dilatational and deviatoric component. For the deviatoric component, in earlier studies

of incompressible flows it has been shown that the RBVM model is unable to model

the Reynolds stress term, and for this purpose a mixed model is necessary. For the

dilatational component, we demonstrate that the RBVM model introduces a cross and

a Reynolds-stress term, where the latter is similar to the Yoshizawa model. As a result

no additional model is required for the dilatational component of the stress tensor.

We begin by noting that (17) contains all the models considered in the manuscript.

In particular when U ′ = 0 and C1 = C0 = 0, it represents the Galerkin method, or the

DNS case; when only U ′ = 0 it reduces to the Smagorinsky-Yoshizawa model; when

C1 = C0 = 0, it reduces to the RBVM model; when all terms are active it represents
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the mixed model.

Setting W h = [0,uh, 0]T in this equation for the Galerkin method we arrive at

mechanical energy identity:

d

dt

(1

2

∫
Ω

ρh|uh|2dx
)

=

≡εhGal︷ ︸︸ ︷
−
∫

Ω

|uh|2

2

(
ρh,t +∇ · (ρhuh)

)
dx−

∫
Ω

Sh : σht dx, (18)

where σht = −ph1 + 1
Re
σh is the total Cauchy stress tensor. This equation states that

the rate of change of kinetic energy is determined by the dissipation induced by the

molecular stresses and a term that depends on the residual of the continuity equation.

We combine these two contributions into a term denoted by εhGal.

Next we consider (17) written for the Smagorinsky-Yoshizawa model and set W h =

[0,uh, 0]T to arrive at the mechanical energy identity for this model:

d

dt

(1

2

∫
Ω

ρh|uh|2dx
)

= εhGal − 2C0h
2

∫
Ω

ρh|Sh||Shdev|2dx+
2

3
C1h

2

∫
Ω

ρh|Sh|2(∇ · uh)dx,(19)

where Shdev denotes the deviatoric part of Sh. From this equation we conclude that

the deviatoric contribution to the rate of change of kinetic energy is negative and thus

this term always dissipates resolved kinetic energy. On the other hand, the dilatational

contribution can either add or remove kinetic energy. When ∇·uh < 0, that is we have

a flow where resolved scales are undergoing a compression, this term is negative and as

a result the resolved scales loose kinetic energy. The situation is reversed in the case of

an expansion.

Finally we consider (17) written for the RBVM model and set W h = [0,uh, 0]T to
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arrive at the mechanical energy identity:

d

dt

(1

2

∫
Ω

ρh|uh|2dx
)
≈ εhGal

−
∫

Ω

ρhShdev : (uh ⊗ u′ + u′ ⊗ uh + u′ ⊗ u′)devdx

+
1

3

∫
Ω

ρh(∇ · uh)(2uh · u′ + |u′|2)dx (20)

We have used the ≈ symbol above to indicate that we are only considering the dominant

RBVM model terms in this equation. The second line of (20) contains the RBVM

contributions to the deviatoric portion of the subgrid stress, while the third line contains

the contributions to the dilatational portion. Further, in both these lines the last term is

the Reynolds stress term. We note that there is a significant difference in the structure

of the Reynolds stress terms. In the deviatoric case this term is such that it must rely

on correlations between u′ and uh to ensure that Shdev : (u′⊗u′)dev > 0 at most spatial

locations so that the integral will be dissipative overall. As mentioned in Section 3 the

approximation for u′ calculated using the RBVM approximation does not achieve this.

On the other hand, in the dilatational case, regardless of the correlations between u′ and

uh the Reynolds stress term is such that it always extracts energy from the the coarse

scales when they are undergoing a compression, and adds energy when they expand. In

this regard it is exactly like the Smagorinsky-Yoshizawa model. This implies that the

RBVM model for the dilatational component of the Reynolds stress will be effective as

along as the magnitude of u′ is evaluated accurately. Thus it would appear that in the

mixed model it is not necessary to add the Smagorinsky component to the dilatational

portion of subgrid stresses. So in our mixed model C1 = 0, while C0 and Prt are
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determined dynamically.

Summary All models described in this paper and tested in the following section are

contained in (17) (see also Table 1). For a direct numerical simulation there are no model

terms, so in this equation τ = 0 and C0 = C1 = 0. For the dynamic Smagorinsky-

Yoshizawa-eddy diffusivity model (DSYE) the fine scale solution is zero, so τ = 0 and

C0, C1 and Prt are determined dynamically using the variational counterpart of the

Germano identity [29, 30] (see Appendix A). For the residual based variational mul-

tiscale model (RBVM) the fine scales are active, that is τ 6= 0 while C0 = C1 = 0.

For the mixed model the fine scales are active τ 6= 0, C1 = 0, while C0 and Prt are

determined dynamically (see Appendix A). In our simulation of the decay of compress-

ible turbulence using the mixed model we have found that dynamic procedure almost

always yields negative values for Prt, indicating that RBVM model alone introduces

adequate dissipation in the energy equation. In order to avoid unstable solutions we set

Pr−1
t = 0 whenever this happens. The net result is that in the mixed model the only

active term is Smagorinsky model for the deviatoric component of the subgrid stress.

Remark We note that our mixed model is similar to other mixed models, including

the scale-similarity model [18, 31, 19, 21] and the tensor-diffusivity model [32, 33] in

that it contains distinct models for the cross-stress term and the Reynolds stress term.

However, the form of the model term for the cross stress in our model is distinct from

other mixed models.
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Table 1: A concise description of all models based on the terms appearing in (17).

Terms No Model Smagorinsky-Yoshizawa RBVM Mixed

τ 0 0 X X

C0 0 X 0 X

C1 0 X 0 0

Pr−1
t 0 X 0 0

4 Specialization to a Fourier spectral basis

We apply the formulation developed in the previous section in order to simulate the

decay of homogeneous isotropic turbulence of compressible flows. We assume that

Ω = ]0, 2π[3 and the density, velocity and pressure fields satisfy periodic boundary

conditions. We propose to simulate this problem using the Fourier-spectral method. In

this case the space of functions Vh are approximated by a Fourier-spectral basis. Fourier

modes with |k| < kh are used to define Vh. We note that these basis functions have the

special property that they are orthogonal to each other in all Hm inner-products. In

addition, we define the projector Ph to be theH1 projection and due to the orthogonality

of the Fourier modes this is the low-pass sharp cut-off filter in wavenumber space. Then

P′ and P′T are the high-pass, sharp cutoff filter in wavenumber space.

As a result of this, the equations for the LES model derived in the previous section
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simplify to

∂ρ̂h

∂t
+ ik · m̂h = 0 (21)

∂m̂h

∂t
+ ik · m̂⊗m

ρ
+ ikp̂h =

1

Re
ik · σ̂ + ik · 2C0h

2 ̂ρh|Sh|Shdev − ik
2

3
C1h

2ρ̂h|Sh|2 (22)

∂p̂h

∂t
+ ik · ûp+ (γ − 1)p̂∇ · u =

(γ − 1)

Re
σ̂ : S + ik · 1

M2
∞PrRe

̂µ(T )∇T + ik · 1

γM2
∞

C0

Prt
h2 ̂|Sh|∇T h (23)

where the hat denotes the Fourier coefficient of a variable corresponding to a wavenum-

ber k. In addition ρ = ρh + ρ′, m = mh + m′, p = ph + p′, u = m
ρ

, uh = mh

ρh
,

T = γM2
∞p
ρ

, T h = γM2
∞ph

ρh
, S and Sh are the symmetric gradients of u and uh respec-

tively, and σ = µ(T )Sdev.

The unresolved scales are approximated by (15). In this relation P′ = P′T is the

sharp cutoff filter in wavenumber space. As a result the contribution from all terms

that are linear in density, momentum and pressure is eliminated and U ′ = [ρ′,m, p′]T

are given by

ρ′ = 0 (24)

m′ = −P′τmP′
(
∇ · (m

h ⊗mh

ρh
)− 1

Re
∇ · σh

)
(25)

p′ = −P′τeP′
(
∇ · (uhph)− (γ − 1)ph∇ · uh − (γ − 1)

Re
Φh

− 1

M2
∞PrRe

∇ · (µh∇T h)
)

(26)

In writing the expression for the unresolved variables above we assumed a diagonal

form for the matrix τ , that is τ = diag(τc, τm, τm, τm, τe). Each of τc, τm and τe repre-
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sents a combination of an advective and a diffusive time-scale associated with differen-

tial operator for the fine scales. Our definition for τ for the compressible Navier-Stokes

equations is motivated by the work of [2, 34]. The τ ’s are given by

τc =
1

2

[
(λe)2

]−1/2

τm =
1

2

[
(λe)2 +

(
4

h2

< µh >

< ρh > Re

)2 ]−1/2

τe =
1

2

[
(λe)2 +

(
4

h2

γ < µh >

< ρh > PrRe

)2 ]−1/2

(27)

with

1

λe
=

1− e−Ma

λe1
+
e−Ma

λe2

(λe1)2 =
4

h2
< |uh|2 > (1 + 2Ma−2 +Ma−1

√
4 +Ma−2)

(λe2)2 =
4

h2
< |uh|2 >

(28)

where h = π
kh

is the grid size, < · > denotes the spatial average of a quantity, Ma =√
< |uh|2 >/ < ch > is the turbulent Mach number, and ch is the speed of sound. In

the equation above λe is the reciprocal of the characteristic advective time scale. It is

a combination of a time scale that is appropriate for the low-Mach number limit (λe2)

and another that is appropriate for the high Mach number limit, λe1. In this case λe

can be thought of as a doubly-asymptotic approximation of the two. We note that a

similar approximation was proposed in [34], however it underestimated the value of λe

in the compressible limit.
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5 Numerical Results

In this section we present results using the RBVM, the mixed RBVM and the dynamic

Smagorinsky-Yoshizawa-eddy diffusivity (DSYE) model with a spectral basis. All vari-

ables are represented using a Fourier basis with a cut-off wave number denoted by kh.

The test problem corresponds to a DNS simulation of the decay of homogeneous turbu-

lence for a compressible fluid computed in [14]. In particular we focus on the D9 case

described in that paper with Ω =]0, 2π[3. In order to validate our implementation of the

compressible Navier-Stokes equations we compute our own DNS results and compare

with the results presented in [14] and achieve good agreement. The physical parameters

associated with the cases we have considered are listed in Table 2. They include the

initial spectrum for the turbulent kinetic energy E(k, 0), the initial total kinetic energy

q2

2
, the free stream Mach number M∞, the turbulent Mach number, Ma, the Reynolds

number Re and the ratio of initial compressible to total kinetic energy χ.

For compressible flows the velocity field is comprised of solenoidal (incompressible)

and dilatational (compressible) components, us and uc respectively. For the case of

isotropic turbulence in Fourier space the Helmholtz decomposition is unique and is

given by

ûc = [(k · û)/k2]k (29)

ûs = û− ûc . (30)

Let Ks and Kc denote the turbulent kinetic energy from the solenoidal and dilata-

tional velocity components, respectively. We define χ = Kc/(Kc + Ks) as the ratio of
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Table 2: Parameters for the decay of homogeneous compressible turbulence.

E(k, 0) q2

2
M∞ Ma Re χ

0.011k4e−2( k
4 )

2

1.3235 0.184 -0.430 0.300-0.700 376 0.2-0.6

compressible kinetic energy to the total kinetic energy.

The turbulent Mach number Ma =
√
< |uh|2 >/ < ch >, where < · > represents

the spatial average and c is the local speed of sound. We approximate the turbulent

Mach number with the root-mean-square Mach number Ma ≈
√
< |uh|2 > /ch2, which

is easier to evaluate.

We assume that there are no fluctuations in the initial values of the thermodynamic

quantities, namely pressure, density and the temperature. We choose Prandtl number

Pr = 0.7 and the adiabatic index for air to be γ = 1.4.

These parameters lead to the development of local, weak shocks, referred to as

shocklets close to the regions where the local Mach number exceeds unity. As pointed

out in [14] this happens when ∇·u obtains a large negative value corresponding to the

deceleration of a supersonic flow to a subsonic flow. During the decay of turbulence

the local Mach number varies in the range Ma ∼ 0.1− 0.7, and the Taylor microscale

Reynolds number, Reλ = O(27− 65)

We solve the Navier Stokes equations on a grid with N3 points and compute all

integrals on a (3N/2)3 grid. We note that even for the DNS simulation this does not

de-alias all the terms, but does guarantee the accurate computation of predominantly

quadratic terms. For the DNS simulation N = 256 and for the LES simulations N = 32.
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For the LES calculations we use the truncated velocity field obtained from the DNS at

t/Te = 1.2, where Te = 0.667 is the eddy turn-over time [14], as the initial condition.

We compare the performance of the models from t/Te = 1.2 ∼ 7.0, which corresponds

to a Taylor micro-scale Reynolds number of Reλ = 65.5 ∼ 27.4. For time integration

we use the fourth-order Runge-Kutta algorithm, and we evaluate all terms explicitly.

The details of the numerical algorithm can be found in [35].

5.1 LES with kh = 16, Ma = 0.488, χ = 0.4

Figures 1 and 2 show the turbulent kinetic energy in the incompressible and compress-

ible velocity components, respectively, as a function of time. We observe that the no

model case over-predicts these quantities. In Figure 1, for the incompressible turbulent

kinetic energy, the RBVM model is most accurate followed by the mixed model, fol-

lowed by the DSYE model which is clearly too dissipative. The RBVM model slightly

over-predicts the kinetic energy while the mixed model under-predicts it. The evolution

of the compressible component of the kinetic energy is shown in Figure 2 and all three

LES models perform well. Here the mixed model is the most accurate followed closely

by the RBVM model, which slightly over-predicts the kinetic energy. The DSYE model

is once again overly dissipative.
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Figure 1: Evolution of turbulent kinetic energy of the incompressible velocity compo-

nent for kh = 16, χ = 0.4, Ma = 0.488.
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Figure 2: Evolution of turbulent kinetic energy of the compressible velocity component

for kh = 16, χ = 0.4, Ma = 0.488.
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This behavior is explained by examining the incompressible and compressible energy

spectra at t/Te ≈ 3.0 in Figures 3 and 4 and at t/Te ≈ 6.0 in Figures 5 and 6.

From the figure for the incompressible spectra at t/Te ≈ 3.0 (Figure 3) we observe

that the no-model case displays a pile-up of energy at high wavenumbers. All the LES

models are quite accurate at low-to-mid wavenumbers, while the RBVM is the most

accurate at high wavenumbers, followed by the mixed model. At t/Te ≈ 6.0 (Figure

5) the mixed model is the most accurate at the mid-to-high wavenumbers whereas the

RBVM model is most accurate at low wavenumbers. In either case the DSYE model is

the least accurate.

For the compressible spectra in Figures 4 and 6 we observe that the energy pile-up

in the no-model case is not as large as in the incompressible case thereby indicating

that the compressible component of the subgrid model plays a smaller role. All the

LES models appear to perform quite well with the RBVM and the mixed models being

the most accurate at high wavenumbers. The same conclusions can be drawn for the

density and pressure spectra at time t/Te ≈ 6.0, shown in Figures 7 and 8, respectively.

The evolution of the root-mean-square (rms) density is shown in Figure 9. Once again

the DSYE model is observed to lead to smaller rms values while the RBVM and the

mixed model are more accurate.
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Figure 3: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 3, χ = 0.4, Ma = 0.488.
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Figure 4: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 3, χ = 0.4, Ma = 0.488.
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Figure 5: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.488.
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Figure 6: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.488.
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Figure 7: Density spectrum of for kh = 16, at t/Te ≈ 6.0, χ = 0.4, Ma = 0.488.
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Figure 8: Pressure spectrum of for kh = 16, at t/Te ≈ 6.0, χ = 0.4, Ma = 0.488.
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Figure 9: Evolution of density rms for kh = 16, χ = 0.4, Ma = 0.488.
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Figure 10: Evolution of the Smagorinsky coefficient C0 for the dynamic Smagorinsky

and the mixed model for kh = 16, Ma = 0.488.

29



1 2 3 4 5 6 7

0

0.05

0.1

t/T
e

C 1

 

 

DSYE χ=0.2
Mixed χ=0.2
DSYE χ=0.4
Mixed χ=0.4
DSYE χ=0.6
Mixed χ=0.6

Figure 11: Evolution of the Smagorinsky coefficient C1 the mixed model for kh = 16,

Ma = 0.488.
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Figure 12: Evolution of Prt for the dynamic Smagorinsky model for kh = 16, Ma =

0.488.
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We have also performed these simulations with kh = 32 (not shown here). We ob-

serve the same trends however the differences between all the models are much smaller.

5.2 Effect of varying χ

In this section we examine the effect of varying the initial fraction of the compressible

turbulent kinetic energy. In particular we select χ = 0.2 and χ = 0.6 to add to the

χ = 0.4 case described in the previous section. The Mach number Ma = 0.488 is

unchanged.

When χ is small a greater proportion of the total initial kinetic energy is incompress-

ible. As a result a larger contribution from the deviatoric component of the subgrid

stress is required. The dynamic Smagorinsky and mixed models respond to this by

increasing the value of the model parameters with decreasing values of χ. This is seen

in Figure 10, where we have plotted value of the deviatoric parameter C0 as a function

of time. We observe that with increasing time all parameters tend to smaller values

because of the natural decay in the turbulence intensity. We also note that the value of

C0 for the mixed model is consistently smaller than the dynamic Smagorinsky model,

indicating that the dynamic procedure is accounting for the additional dissipation gen-

erated by the RBVM component of the mixed model. With increasing value of χ the

ratio of the average value of C0 for the mixed model to the corresponding value for the

dynamic Smagorinsky model appears to decreasing, indicating that for large values of

χ the mixed model is tending toward the RBVM model.

For completeness the variation of the other dynamic parameters that is C1 and Pr−1
t
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as a function of time is shown in Figures 11 and 12, respectively. The value of C1 in the

mixed model is selected to be zero as discussed in Section 3. The value of Pr−1
t for the

mixed model is also zero because the dynamic procedure yields a negative value which

is ignored.

In Figure 13 we have plotted the spectrum for the incompressible velocity component

for different models for χ = 0.2 and t/Te ≈ 6. We note that RBVM model is the

most accurate for low wavenumbers whereas the mixed model is the most accurate

for high wavenumbers. The DSYE model is too dissipative. The spectrum for the

compressible component is shown in Figure 14. All models are very accurate for small

wavenumbers whereas the RBVM and the mixed model are slightly more accurate for

high wavenumbers.

In Figure 15 we have plotted the spectrum for the incompressible velocity component

for different models for χ = 0.6 and t/Te ≈ 6. We note that RBVM model is the most

accurate overall followed by the mixed model. The DSYE model continues to be too

dissipative. The spectrum for the compressible component is shown in Figure 16. Here

all the models are very accurate for the entire range of wavenumbers.
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Figure 13: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.2, Ma = 0.488.
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Figure 14: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.2, Ma = 0.488.
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Figure 15: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.6, Ma = 0.488.
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Figure 16: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.6, Ma = 0.488.
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5.3 Effect of Ma

In this section we test the robustness of the LES models with regards to the inherent

compressibility of the flow by varying the Mach number. In addition to Ma = 0.488,

which was considered in Section 5.1, we consider Ma = 0.3 and Ma = 0.7, while fixing

χ = 0.4.

In Figure 17 we have plotted the spectrum of the incompressible component of the

velocity at t/Te ≈ 6 for Ma = 0.3. At this value of Ma the flow is nearly incompressible.

We note that the RBVM and the mixed model are very close to each other and to the

exact solution while the DSYE model is inaccurate. In Figure 21 we have plotted the

variation of the deviatoric parameter C0, as computed by the dynamic procedure, as a

function of time. We observe that for Ma = 0.3 this parameter is very small indicating

that the mixed model is essentially the same as the RBVM model.

From the plot of the spectrum of the compressible component of kinetic energy at

t/Te ≈ 6 (see Figure 18) we conclude that all the LES models are quite accurate.

In Figure 19 we have plotted the spectrum of the incompressible component of

the velocity at t/Te ≈ 6 for Ma = 0.7. At this high Mach number we expect the

compressible effects to be more pronounced and we would also expect the formation

relatively strong local shocks. From the plot we observe that the RBVM model is most

accurate in this case followed by the mixed model. The latter is somewhere between

the RBVM and the DSYE model. This may be understood by observing the variation

of C0 for these two models with time (see Figure 21). We note that the value of C0 for
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the mixed model is higher than it was for Ma = 0.3, indicating that its performance

will be closer to that of the DSYE model in this case.

From the plot of the spectrum of the compressible component of the velocity we

observe that the RBVM and the mixed models are very accurate while the DSYE

model underestimates the spectrum.

10
0

10
1

10
−3

10
−2

k

ES

 

 

DSYE
RBVM
Mixed
No Model
DNS

Figure 17: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.300.
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Figure 18: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.300.
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Figure 19: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.700.
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Figure 20: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.700.
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Figure 21: Comparison of the Smagorinsky coefficient C0 for the dynamic Smagorinsky

and the mixed model for kh = 16, χ = 0.4.
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5.4 High Reynolds number

In this section the performance of the LES models at a higher Reynolds number is

considered. The DNS was computed using 5123 modes (kh = 256) in and all other

parameters were the same as for the previous run, except the Reynolds number which

was set to Re = 843. In addition, χ = 0.4 and Ma = 0.488 were chosen. For the LES

models, which were performed with 323 modes (kh = 16), we used the truncated velocity

field obtained from the DNS at t/Te = 0.92 as initial condition, where Te = 0.667 is

the eddy turn-over time. We compare the performance of the models in the interval

t/Te = 0.92 − 7.0, which corresponds to a Taylor micro-scale Reynolds number of

Reλ = 120.95 − 41.97. For the RBVM and the mixed model, Fourier modes with

k ∈ (16, 24) were used to compute the approximate fine scales.

In Figures 22-25, we have plotted the Energy spectrum of the incompressible and

compressible velocity component at time t/Te ≈ 3 and t/Te ≈ 6. Once again, for

incompressible velocity component, we observe that the DSYE model is too dissipative.

However, the RBVM here is not dissipative enough, and the mixed model is the most

accurate, especially at time t/Te ≈ 6 in Figure 23. In Figure 22 and 25, for the

compressible velocity component, all the LES models are equally accurate; the DSYE

model is slightly dissipative in the middle wavenumber range.

In the examples presented in the previous section, the Reynolds number of the flow

was moderate. As a result the cross-stress term was the dominant term, and since the

RBVM model captured this term well there was little or no benefit in including the
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Reynolds stress term via the Smagorinsky model. However, after performing this test

at a higher Reynolds number, we can observe the benefit of using the mixed model.
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Figure 22: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 3, χ = 0.4, Ma = 0.488.
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Figure 23: Energy spectrum of the incompressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.488.
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Figure 24: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 3, χ = 0.4, Ma = 0.488.
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Figure 25: Energy spectrum of the compressible velocity component for kh = 16, at

t/Te ≈ 6, χ = 0.4, Ma = 0.488.

6 Conclusions

We have developed and implemented the residual-based variational multiscale (RBVM)

model for compressible turbulent flows. Motivated by earlier results for incompressible

flows we have also considered a mixed version of this model wherein Smagorinsky,

Yoshizawa and eddy-diffusivity terms are added in order to better model the Reynolds

stress contributions. Through energy analysis of the mixed model we have demonstrated

that the Yoshizawa model is redundant because the RBVM model itself introduces a

viable Reynolds stress term for the dilatational component of subgrid stresses. In

addition, from the dynamic procedure we have found that the eddy-diffusivity term
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in the energy equation is not required for the mixed RBVM model. As a result the

mixed RBVM model contains only one term in addition to the RBVM model. This

term models the Reynolds stress component of the deviatoric part of subgrid stresses

and is represented by a Smagorinsky-type model.

We have tested the performance of the RBVM, the mixed and the dynamic Smagorinsky-

Yoshizawa-eddy diffusivity (DSYE) models in predicting the decay of compressible, ho-

mogeneous, isotropic turbulence in regimes where shocklets are known to exist. We

have varied the level of compressibility of the flow by varying the initial proportion

of turbulent kinetic energy and by varying the Mach number. In all cases we have

found that RBVM and the mixed models are equally accurate and perform signifi-

cantly better than the DSYE model. We have also found that for the mixed model the

variational counterpart of the Germano identity automatically accounts for the dissipa-

tion produced by the RBVM terms and produces smaller Smagorinsky parameter when

compared to the dynamic Smagorinsky model.
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Appendix A: Derivation of the dynamic calculation

for C0, C1 and Prt.

In this section we describe the dynamic procedure we have used to determine the

unknown parameters in the LES models. We have utilized the variational counterpart

of the Germano identity described in [29, 30].

DSYE model

The equations for this model are given by (17) with U ′ = 0. In this equation, in order

to focus on the momentum equations we select W h = [0,wh, 0], to arrive at

(wh,mh
,t)− (∇wh,

mh ⊗mh

ρh
)− (∇ ·wh, ph) +

1

Re
(∇wh,σh)

+

(
∇wh, 2C0ρ

hh2|Sh|Shdev −
2

3
C1ρ

hh2|Sh|2I
)

= 0, ∀wh.

(31)

In the equations above h = π/kh, where kh is the cutoff wavenumber. The equations

for the same model used in a coarser discretization with the finite dimensional space

VH ⊂ Vh are given by

(wH ,mH
,t )− (∇wH ,

mH ⊗mH

ρH
)− (∇ ·wH , pH) +

1

Re
(∇wH ,σH)

+

(
∇wH , 2C0ρ

HH2|SH |SHdev −
2

3
C1ρ

HH2|SH |2I
)

= 0 ∀wH ,

(32)

where H = π/kH , where kH is the cutoff wavenumber at the H-scale. In this study we
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have selected kH = kh/2. Since VH ⊂ Vh, we replace wh with wH in (31), and subtract

the resulting equation from (32) to arrive at(
∇wH ,

mh ⊗mh

ρh
− m

H ⊗mH

ρH

)
=

−2C0

(
∇wH , ρHH2|SH |Shdev − ρhh2|Sh|Shdev

)
+

2

3
C1

(
∇wH , ρHH2|SH |2I − ρhh2|Sh|2I

)
, ∀wH .

(33)

In arriving the this equation we have set

(wH ,mH
,t −mh

,t) = 0,

(∇ ·wH , pH − ph) = 0,

(∇wH ,σH − σh) = 0,

(34)

The first two relations above hold exactly for a Fourier-spectral spatial discretization,

while the last is an assumption.

In (33) we select ∇wH = SHdev, and recognize that (Sdev, I) = 0, to arrive at(
SHdev,

mh ⊗mh

ρh
− m

H ⊗mH

ρH

)
=

−2C0(SHdev, ρ
HH2|SH |SHdev − ρhh2|Sh|Shdev),

(35)

which yields the final expression for C0,

C0 = −1

2

(
SHdev,

mh ⊗mh

ρh
− m

H ⊗mH

ρH

)
(
SHdev, ρ

HH2|SH |SHdev − ρhh2|Sh|Shdev
) . (36)
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In order to determine we select ∇wH = I in (33), to arrive at to arrive at(
1, tr

(mh ⊗mh

ρh
− m

H ⊗mH

ρH
))

=

2C1(1, ρHH2|SH |2 − ρhh2|Sh|2),

(37)

which yields

C1 =
1

2

(
1, tr

(mh ⊗mh

ρh
− m

H ⊗mH

ρH
))

(1, ρHH2|SH |2 − ρhh2|Sh|2)
. (38)

In order to determine the turbulent Prandtl number (17), we choose W h = [0, 0, qh] to

get

(qh, ph,t)− (∇qh,uhph)− (1− γ)(qh, ph∇ · uh)

− (γ − 1)

Re
(qh, Φh) +

1

M2
∞PrRe

(∇qh, µh∇T h)

+
(
∇qh, C0

PrtγM2
∞
h2ρh|Sh|∇T h

)
= 0, ∀qh.

(39)

Similarly at the H−scale we arrive at

(qH , pH,t )− (∇qH ,uHpH)− (1− γ)(qH , pH∇ · uH)

− (γ − 1)

Re
(qH , ΦH) +

1

M2
∞PrRe

(∇qH , µH∇TH)

+
(
∇qH , C0

PrtγM2
∞
H2ρH |SH |∇TH

)
= 0, ∀qH .

(40)

Since VH ⊂ Vh, we may replace qh with qH in (39) and subtract the result from (40)

to arrive at (
∇qH ,m

hph

ρh
− m

HpH

ρH

)
=

C0

PrtγM2
∞

(
∇qH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)
, ∀qH .

(41)
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Where we have made use of

(qH , pH,t )− (qH , ph,t) = 0,

(qH , pH∇ · uH)− (qH , ph∇ · uh) = 0,

(qH , ΦH)− (qH , Φh) = 0,

(∇qH , µH∇TH)− (∇qH , µh∇T h) = 0.

(42)

The first relation above holds exactly for a Fourier-spectral spatial discretization, while

the others are assumed. We let ∇qH = ∇TH , in (41) and arrive at(
∇TH ,m

hph

ρh
− m

HpH

ρH

)
=

C0

PrtγM2
∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)
.

(43)

This equation yields

Prt =
C0

γM2
∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇TH

)
(
∇TH ,m

hph

ρh
− m

HpH

ρH

) . (44)

Mixed model

The procedure in this case is the same as for the DYSE model, except in (17) U ′ 6= 0.

In particular we get

C0 = −1

2

(
SHdev,

(mh+m′)⊗(mh+m′)
ρh+ρ′

− (mH+m′′)⊗(mH+m′′)
ρH+ρ′′

)
(
SHdev, ρ

HH2|SH |SHdev − ρhh2|Sh|Shdev
) , (45)
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and

Prt =
C0

γM2
∞

(
∇TH , h2ρh|Sh|∇T h −H2ρH |SH |∇ TH

)
(
∇TH , (mh+m′)(ph+p′)

ρh+ρ′
− (mH+m′′)(pH+p′′)

ρH+ρ′′

) . (46)

Where ρ′, m′ and p′ are the fine scale variables at the h-scale and ρ′′, m′′ and p′′ are

the variables at the H-scale.
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