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Abstract: A soft tissue’s macroscopic behavior is largely determined by its microstructural 
components (often a collagen fiber network surrounded by a non-fibrillar matrix (NFM)). 
In the present study, a coupled fiber-matrix model was developed to quantify fully the 
internal stress field within such a tissue and to explore interactions between the collagen 
fiber network and non-fibrillar matrix (NFM). Voronoi tessellations (representing collagen 
networks) were embedded in a continuous three-dimensional NFM. Fibers were 
represented as one-dimensional nonlinear springs and the NFM, meshed via tetrahedra, 
was modeled as a compressible neo-Hookean solid. Multi-dimensional finite element 
modeling was employed to couple the two tissue components, and uniaxial tension was 
applied to the composite RVE. In terms of the overall RVE response (average stress, fiber 
orientation, Poisson’s ratio), the coupled fiber-matrix model yielded results consistent with 
those obtained using a previously developed parallel model based upon superposition. The 
detailed stress field in the composite RVE demonstrated the high degree of inhomogeneity 
in NFM mechanics, which cannot be addressed by a parallel model. Distributions of 
maximum/minimum principal stresses in the NFM showed a transition from fiber-
dominated to matrix-dominated behavior as the matrix shear modulus increased. The 
matrix-dominated behavior also included a shift in the fiber kinematics toward the affine 
limit. We conclude that if only gross averaged parameters are of interest, parallel-type 
models are suitable. If, however, one is concerned with phenomena, such as individual cell-
fiber interactions or tissue failure, that could be altered by local variations in the stress 
field, then the detailed model is necessary in spite of its higher computational cost. 
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Introduction 

 The mechanical properties of many soft connective tissues are governed by a fiber 

network (primarily collagen in most tissues) and surrounding non-fibrillar matrix (NFM; 

e.g., proteoglycans, glycoaminoglycans, cells, etc.). To understand how healthy tissues 

function, and how properties change in injury and disease, it is necessary to quantify the 

mechanical response of both the collagen network and the NFM, as well as the nature of the 

interaction between these tissue constituents. Because the relative contribution of different 

tissue components is difficult to ascertain experimentally, mathematical modeling is 

frequently applied to empirical data to characterize and quantify the roles of collagen and 

NFM in imparting mechanical properties to soft tissues. Phenomenological models (e.g., [1-

3]) provided initial insights into the mechanics of fibrillar tissues, and, more recently, 

structural models (e.g., [4-12]) have emerged that capture more information about the 

tissue architecture. With the collagen network thus defined, the NFM is often modeled 

using a simple mathematical representation, such as a neo-Hookean [13-16] or Mooney-

Rivlin [17-20] solid, and assumed to contribute to the composite behavior in a summed or 

“parallel” sense.  A limitation of this approach is the inability to evaluate local interactions 

between fibers and NFM. Some models have utilized an additional term to account for 

fiber-matrix interactions [18, 21-23], but in general, the appropriate definition for the 

interaction term is unknown.  To overcome this limitation, the current study presents a 

method wherein the collagen fiber network and surrounding NFM are microscopically 

coupled, making it possible to evaluate specifically the interaction between fibers and 

matrix.   
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Recently, we developed a computational network-based microstructural model to 

examine how specific NFM properties alter the response of fiber-matrix composites under 

load [24]. This model, consisting of a representative volume element (RVE) containing a 

fiber network (collagen) and neo-Hookean solid (NFM), fit experimental data of collagen-

agarose co-gels [25] well and provided insight into the role of NFM in tensile mechanics. 

The NFM was found to preserve volume and restrict collagen fiber reorganization in a 

concentration-dependent manner.  Within a specific range of property values, the NFM 

pressurized the composite tissue in such a way as to result in a negative (compressive) 

stress in the loading direction, even though the RVE was loaded in tension.  Although this 

model provided useful results, it was constructed according to the conventional “parallel” 

approach of superposition of the two constituents (i.e., collagen network and NFM), so it 

was unable to examine interactions between collagen fibers and the surrounding NFM (as 

mentioned above) or to identify inhomogeneities in the stress field. For example, in a 

uniaxial extension experiment, the average transverse and shear stresses would be zero, 

but local shear would surely occur in the neighborhood of a fiber. Such local stresses could 

be much larger than average values, which could have important implications in initiating 

failure of the NFM or in greatly altering the site-specific cellular environment. Therefore, 

the objective of this study was to develop a microstructural modeling approach capable of 

(a) quantifying local stresses throughout the computational domain and (b) exploring 

interactions between NFM and the embedded collagen network. 

Methods 

Modeling Approach. Large-network models (e.g., [26-31]) are composed of an 

arrangement of interconnected fibers, which are often represented as one-dimensional 
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linear springs or nonlinear rods. The NFM surrounds the fibers and permeates the non-

fiber space in a fully three-dimensional manner.  In order to couple these components in a 

unified scheme, a multi-dimensional modeling approach was employed. Such a formulation 

is advantageous in that the total number of degrees of freedom can be reduced without 

overall loss of accuracy. For example, collagen fibers can still be modeled as one-

dimensional elements, thereby greatly reducing computational demand, while more 

detailed aspects of collagen fiber morphology (e.g., fiber crimp) can be taken into account 

mathematically (i.e., in the constitutive equation) instead of geometrically. A finite element 

mesh, constructed upon the framework of the fiber network, was then used to define the 

geometry of the NFM and to allow for coupled interactions between the NFM and specific 

fibers within the network. This study used a multidimensional meshing scheme to 

construct coupled representations of the collagen fiber network and the surrounding NFM 

in order to characterize the interactions between constituents in soft tissues subjected to 

tensile load. The newly developed coupled model was compared to our earlier parallel 

model [24].  

Network Generation. Collagen gels were modeled using Voronoi networks [30] as 

described previously [24]. Seed points placed randomly within representative volume 

elements (RVEs) were used to construct Voronoi tessellations (Fig.1). After construction of 

the network, seed points were removed, and nodes were placed at the intersections of 

Voronoi edges with each other or with the RVE boundaries. Nodes were represented as 

freely rotating pin-joints. Initially isotropic networks were rescaled in the loading (x1) 

direction and clipped to produce networks within a cubic domain whose alignment 

matched polarized light alignment data from collagen-agarose co-gel experiments [25].  
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Any isolated fibers or fiber clusters were removed to leave a single, fully interconnected 

network in each RVE.  Five similar but distinct RVEs were created (Table 1) and analyzed. 

Collagen fibers were represented as one-dimensional nonlinear springs with constitutive 

behavior defined as [13, 28, 32]: 

        � =
���

�
(��� − 1)     (1) 

where f is force in given fiber, Ef is fiber Young’s modulus in the zero-strain limit, A is cross-

sectional area, B is a nonlinearity constant, and ε is the fiber Green strain along the fiber.  

Equation 1 specified properties for individual fibers, but the mechanical response of each 

RVE resulted from the collective behavior of the full network of fibers.  Fiber parameters 

(i.e., Ef, A, and B) were defined using values similar to those used previously [24, 28]. The 

NFM was represented as a compressible neo-Hookean solid, with the Cauchy stress defined 

as [33]: 

                ���
���

= � �
������

�
− ����������                (2) 

where G is shear modulus, F is the deformation gradient tensor, J is the determinant of F,  

β = νnfm/(1-2νnfm), and νnfm is Poisson’s ratio of the NFM. As done previously [34], νnfm was 

set to 0.1.  The NFM shear modulus was varied over a range of values (G = 10, 110, 720 and 

4300 Pa) corresponding to 0.05, 0.125, 0.25 and 0.5 % w/v agarose [35] in our 

experimental collagen-agarose studies [25, 36]. To assess the role of compressibility, a set 

of simulations with νnfm=0.45 was also evaluated for G=110 Pa. Built upon this common 

framework, parallel and coupled models were evaluated for each network as described 

below. 

Parallel Model. We previously [24] presented results from simulations using a 
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parallel fiber-matrix model. In the current study, results obtained from simulating a wider 

range of G values are presented. Some relevant details of the parallel model are repeated 

here for clarity, and to highlight differences between the parallel approach and the newly-

developed coupled model (described below). In the parallel model, the stress due to the 

collagen network was computed via a volume-averaging approach [37, 38] based on the 

nodal forces on each RVE boundary: 

                  < ���
��� >=

�

�
	 xi f j
boundary
nodes

å     (3) 

where V is RVE volume, and fj are the forces acting on boundary nodes (at positions xi).    

Neo-Hookean NFM stresses were dependent only on the macroscopic deformation of the 

RVE, and the two stress components were combined in a simple summed (parallel) sense: 

                                        ���� =	< ���� > +� ���    (4) 

After application of RVE strain, positions of the internal nodes and of the unloaded 

boundaries were adjusted iteratively until the force balance at each internal node was 

satisfied and the total stresses on the free surfaces were minimized.  

Coupled Model. A coupled fiber-matrix microstructural model was developed and 

used to model the interactions between collagen fibers and NFM. A geometric model of the 

RVE with the two constituents (i.e. collagen fibers and surrounding NFM) was represented 

as a 3D non-manifold geometric model [39] with the embedded fiber network treated as 

1D wire edges. The work-flow of applying finite element method in the coupled model is 

shown in Fig. 2(a). The complete definition of a Voronoi fiber network including fiber 

connectivity (network topology) and crosslink coordinates (network shape) was provided 

by a fiber network generation module and then used as input for creating the multi-
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dimensional non-manifold geometry via Parasolid API [40]. Simmetrix [41, 42] meshing 

tools were used to create the conforming mesh from the generated RVE geometry.  

The generated mesh was multi-dimensional with 3D tetrahedra for the solid matrix 

and 1D truss elements for the collagen fibers. The solid matrix and embedded fiber 

network were meshed together such that mesh vertices and mesh edges on the fibers were 

shared with the adjacent 3D solid elements (Fig. 2(b)).  Fig. 2(c) shows the interior of the 

mixed dimensional mesh with shapes of elements intersecting the cutting plane retained.  

Displacements (u1, u2, and u3) were selected as the nodal variables, and linear shape 

functions were used to interpolate the displacement field. Since linear tetrahedral and truss 

elements have the same nodal displacement variable, consistency between the two 

different dimensional elements was ensured. Newton-Raphson iteration was used to solve 

the nonlinear finite element equations describing the mechanics of the coupled system. 

 Model Solution and Analysis. For the coupled model, 0.5% strain steps were 

applied incrementally in the 1-direction until an RVE strain of 10% was achieved (i.e., λ1max 

= 1.1).  The parallel model simulations were evaluated at a single displacement step of 10% 

for comparison. For both models, simulations were under quasi-static conditions, and 

stress-free boundaries were maintained in the transverse 2- and 3-directions. The 

following output measures were evaluated:  

 Normal Cauchy stress (σ11) from fibers and NFM  

 Apparent Poisson’s ratio of the composite RVE (νrve) obtained by averaging the 

values in 1-2 and 1-3 directions: 

                                                  ��� =	−
����

����
,      ��� =	−

����

����
                                                    (5) 

where λ1, λ2 andλ3 are stretch ratios in 1, 2 and 3 direction, respectively  
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 Average fiber stretch (λfib)  

 Fiber orientation measured using the axial component of the projected 2D 

orientation tensor, Ω11: 

                                            � =
∑ ��	�

������ ����������

���������� ������
�

∑ ��
,      ��� =

∑ �����
���

∑ ��
                               (6) 

In addition, the coupled model was used to evaluate stress distributions (for the six unique 

components of the Cauchy stress tensor) on transverse slices through the RVE mid-section 

(i.e., in the 2-3 plane), as well as distributions of maximum and minimum principal stress 

and fiber stretch. 

Results 

In the coupled fiber-matrix model, stress due to the fiber network increased with 

increasing NFM shear modulus, and the non-linearity of fiber stress-strain curves became 

less pronounced at higher G values (Fig.3(a)). As one might expect, the matrix stress  

increased with increasing NFM shear modulus (Fig.3(b)), which accounted for much of the 

increase in total stress (Fig.3(c)).  RVE Poisson’s ratio decreased with increasing G, but 

increased with strain for G=10 and 110 Pa (Fig.3(d)). In addition to comparing model 

results computed at the same imposed strain, results were also evaluated at the same 

imposed total stress (in this case, 200 Pa).  Matrix stress values increased with increasing 

shear modulus for both cases (Fig.4(a)).  In contrast, fiber stress values increased for the 

constant strain case, but decreased for the constant total stress case (Fig.4(b)), with the 

stiffer NFM shielding the collagen network.    

Results from the coupled model were similar to those from the parallel model. 

Specifically, parallel and coupled models produced nearly identical average matrix stress 
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values (Fig.5(a)). The coupled model exhibited smaller fiber stress values (Fig.5(b)), but 

both models showed similar fractions of total stress as a function of different G (Fig.5(c)).  

In both cases, when νnfm was increased from 0.1 to 0.45, a slight increase and decrease were 

seen in fiber and matrix stress, respectively, with no net change in total stress.   

In addition to normal stresses in the loading direction, several other metrics were 

similar for the coupled and parallel models. Average fiber stretch increased with increasing 

G (Fig.6(a)), while νrve (Fig.6(b)) and fiber orientation (represented via Ω11; Fig.6(c)) both 

decreased with increasing G.  For each of these output parameters, values were slightly 

smaller for the coupled model, but showed the same patterns of change as a function of 

shear modulus. At high NFM Poisson’s ratio (i.e., νnfm=0.45), λfib and νrve were slightly 

increased and decreased, respectively, with no change in Ω11.  

The use of the coupled model allowed for full-field quantification of the six 

independent Cauchy stress components of the matrix material, visualized via slice plots 

through the RVE midsection.  Figure 7 shows representative plots for G = 720 Pa, where 

black dots represent intersection points between fibers and the cutting plane. Tensile 

normal stresses (i.e., positive values) were evident in the loading direction (σ11), whereas 

compressive stresses were observed in the transverse axes (e.g., σ22 and σ33) in response to 

the extreme tendency of the collagen network to contract in the unloaded directions.  The 

stress distribution in the matrix material was highly inhomogeneous for all stress 

components.  Normal stress values in the loading direction were smaller in the vicinity of 

multiple fiber intersection points.  Stress concentrations (either positive or negative) 

occurred in locations where two or more fibers traversed the slice plane in close proximity.  
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The detailed mechanical response of the NFM in the coupled model was investigated 

by analyzing the distribution of maximum principal stresses (Fig.8(a)) and minimum 

principal stresses (Fig.8(b)) evaluated at the Gauss points of the matrix material mesh. As G 

increased, both the maximum and minimum principal stress distribution curves moved 

along the positive x-axis, indicating that more matrix elements experienced tension under 

applied stretch.  The mean values of the distribution curves approached values 

corresponding to the affine model at higher G, along with decreasing spread (i.e., standard 

deviation). In the curve of minimum principal stress distribution (Fig.8(b)), nearly all 

values were negative, indicating that much of the NFM was in compression.  

Distributions of fiber stretch values were plotted against varying shear modulus and 

compared to the affine model (Fig.9). For lower G values (i.e. G=10Pa and 110Pa), a 

majority of fibers exhibited values of ~1 (i.e., unstretched). At higher shear modulus, fiber 

stretch values became more distributed, with a larger portion near the higher limit of the 

distribution, and demonstrated distributions that were increasingly similar to results from 

the affine model. 

Discussion 

A coupled fiber-matrix microstructural model was developed and utilized to explore 

the interactions between constituents in soft tissues subjected to tensile load. Specifically, 

Voronoi tessellations, representing collagen fiber networks, were embedded in a 

continuous non-fibrillar matrix, represented via tetrahedral finite elements, and coupled 

using a multi-dimensional mesh framework.  In terms of the bulk properties and overall 

RVE response, the coupled model yielded results consistent with those obtained using a 

simplified parallel model (Figs.5 and 6) described previously [24]. Thus, for investigations 
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concerned only with average behavior, microstructural models that assume a 

superposition or rule-of-mixtures framework (e.g., [13, 14, 22-24, 27]) may be sufficient. In 

cases where additional detail regarding inhomogeneities in NFM mechanics and/or 

quantification of fiber-matrix interactions are desired, however, a fully coupled model, such 

as the one developed in this study, can provide insight that is not attainable using a 

parallel-type model. 

In our previous study [24], a parallel fiber-matrix microstructural model was used 

to predict the mechanical response of collagen-agarose co-gels, which have been used as a 

simple experimental test system to quantify the contribution of non-fibrillar matrix to soft 

tissue properties [25, 36]. In the present work, we compared the detailed coupled model to 

that parallel model. Both models predicted qualitatively the composition-dependent 

mechanical response of collagen-agarose co-gels in tension. Matrix stress (Fig. 5(a)), total 

stress fraction (Fig.5(c)), fiber orientation (Fig. 6(c)), and Poisson’s ratio values (Fig.6(b)) 

agreed particularly well between the two models, while the coupled model demonstrated 

slightly lower mean fiber stretch (Fig.6(a)) and fiber stress values (Fig. 5(b)) than the 

parallel model. This discrepancy could be due to a mechanism wherein the matrix material 

has a stronger stress shielding effect on the embedded collagen network in the coupled 

model than in the parallel model. The stress shielding effect is revealed in Fig.4(b), in which 

fiber stress decreased as matrix material stiffness increased at constant stress.     

Results obtained via the coupled model for bulk RVE properties were generally as 

expected.  Stress values increased with strain, and both fiber and matrix stresses at a given 

strain increased with NFM shear modulus (Fig.3).  A nonlinear toe-region was observed in 

the fiber stress-strain curve at small NFM modulus values, but nonlinearity was less 
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pronounced at larger NFM modulus values. The tendency toward linearity is consistent 

with a stiffer NFM eliminating the non-affine, low-stretch reorientation of the fiber network 

(Fig.9). This difference in reorientation also explains the decreased lateral compaction, and 

hence Poisson’s ratio, with increasing NFM stiffness.  In addition, the nonlinear relationship 

of Poisson’s ratio and strain at low G (Fig.3(d)) closely matched the relationship observed 

in experimental tests of collagen-agarose co-gels [25]. The bulk RVE stresses analyzed in 

this model were obtained from simulations at a constant strain value (e.g., 10% stretch). 

When results were computed at a constant total stress (200 Pa) for each of the varied 

simulations, fiber stresses decreased with increasing NFM modulus, demonstrating a stress 

shielding role of the NFM at large G. 

 A significant strength of the coupled model is its ability to quantify the internal RVE 

stress field and interaction between fiber and matrix materials. The embedded fiber 

network had a significant effect on the stress field of the surrounding matrix material, as 

demonstrated by the inhomogeneity of internal stress distribution (Fig. 7). Tensile normal 

stresses in the loading direction (σ11) were relatively consistent across the RVEs, although 

smaller values were observed in the vicinity of multiple fiber intersection points. 

Compressive normal stresses in traverse directions (i.e., σ22 and σ33) were caused by fibers 

squeezing the surrounding matrix material in the lateral direction during reorientation. 

Due to the Poisson effect, matrix material being compressed in the lateral directions was 

concurrently stretched in the loading direction, thereby decreasing the local tensile stress 

and leading to smaller σ11 values in areas of concentrated fiber intersection points. Finally, 

maps of internal shear stresses demonstrated complex patterns (Fig.7(bottom)), with areas 

of particularly high shear stress co-localized with significant fiber clustering.  
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 A defining characteristic of large-network simulations, in which fibers function in a 

fully-interacting organizational structure, is non-affine fiber kinematics [26]. After 

incorporating matrix material with the fiber network in this coupled model, we 

investigated how the NFM altered the relative affinity of the materials in the composite 

RVE. Distributions of maximum/minimum principal stress of the matrix material 

normalized by NFM shear modulus showed a transition from non-affine to affine behavior 

as the modulus increased (Fig.8). With higher matrix stiffness the system became 

dominated by the NFM, with more matrix stress values approaching the affine case. In 

other words, as the shear modulus increased, the composite response transitioned from a 

fiber-dominated to a matrix-dominated response. The matrix material also altered the 

kinematics of the embedded fiber network (Fig.9).  At low shear modulus, the NFM had less 

ability to prevent fibers from reorienting to the load direction, which resulted in minimal 

stretching of fibers as seen by the high frequency of fibers with low stretch values of ~1. 

With smaller matrix stiffness, the energy minimization of the matrix-fiber system was 

achieved mainly through fiber reorientation, which requires less work than fiber stretching. 

As the matrix stiffened and became more dominant, the fibers tended to stretch with their 

surrounding matrix material, leading to a higher frequency of large fiber stretch values (i.e., 

λfib > 1.05).  

 In conclusion, by providing detailed descriptions of the inhomogeneities and 

direction-dependence of internal RVE stress fields, the fully-coupled model has many 

potential applications, such as quantifying the local environment of cells or examining 

microscale local failure of tissues by stress concentration. Compared to a parallel model 

framework, however, the coupled model is much more computationally expensive. Since 
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both of these models provide good predictions in terms of gross average parameters (e.g., 

fiber orientation parameter, averaged stresses, etc.), parallel-type models are suitable, and 

even preferable, if specific details on fiber-matrix interactions are not needed.  
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Figure Captions 
 
Fig. 1: Computational representations of collagen fiber networks were constructed by 
randomly placing a set of seed points in a representative volume element, constructing a 
Voronoi tessellation about these points, defining fibers as the edges of Voronoi elements, 
removing seed points, and placing pin-joint nodes at each edge-edge and edge-boundary 
intersection 
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Fig. 2: Development of the coupled fiber-matrix model: (a) work-flow demonstrating 
construction protocol for the coupled model; (b) illustration of the conforming multi-
dimensional mesh and the mesh classification to the geometric model; (c) schematic 
showing the interior of the multi-dimensional mesh showing fibers (black lines) and 
meshed matrix (yellow elements with blue borders) 
 
Fig. 3: (a) Fiber stress, (b) matrix stress, (c) total stress, and (d) RVE Poisson’s ratio vs. 
engineering strain for the coupled fiber-matrix model at varying values of NFM shear 
modulus; stress values increased with increasing G, particularly for the matrix, while 
Poisson’s ratio decreased (data are representative results from a single network) 
 
Fig 4: Magnitude of stress contributions differed depending on whether simulations were 
evaluated at constant total strain (solid lines) or constant total stress (dashed lines); (a) 
while matrix stress values increased in both cases, (b) fiber stresses show opposite trends 
for the two cases, where decreasing values for the constant-stress case demonstrates 
stress-shielding (by the matrix) at high shear moduli  
 
Fig. 5: Average (a) matrix stress, (b) fiber stress, and (c) fraction of total stress at 10% 
strain and with νnfm=0.1 show good agreement between the parallel and coupled models; 
stress values at a larger Poisson’s ratio (i.e., νnfm=0.45) at G=110Pa show a small shift of 
stress from the matrix to fibers (mean±95%CI; n=5)  
 
Fig. 6: Average (a) fiber stretch, (b) RVE Poisson’s ratio, and (c) 11 (representing fiber 
orientation in the loading direction) at 10% strain and with νnfm=0.1 show decreased values 
for the coupled model compared to the parallel model, but similar qualitative changes as a 
function of increasing G; for the case where νnfm=0.1 and G=110Pa, fiber stretch and 
Poisson’s ratio increased and decreased, respectively, with no change in 11; (mean±95%CI; 
n=5) 
 
Fig. 7: Interior normal and shear stress fields at 10% strain on the mid-section slice for a 
representative network (G=720Pa; νnfm=0.1) demonstrates a highly inhomogeneous 
distribution for all six independent stress components; slices were cut normal to the 
loading (1-) direction in the 2-3 plane (represented by the dashed lines in the RVE 
schematic) and black dots indicate locations were fibers intersect the cutting plane; 
examples of two regions of high stress concentrations are indicated by arrows in σ23 plot 
 
Fig. 8:  (a) Maximum and (b) minimum principal stress (normalized by shear modulus of 
matrix material) distributions at 10% strain over all mesh elements of the matrix material; 
the mean value increased and the standard deviation decreased as G increased, with curves 
moving more towards the affine model (values from five networks lumped and plotted) 
 
Fig. 9: Distribution of fiber stretch values at 10% strain and with νnfm=0.1; values 
concentrated near ~1 when G was low (i.e. G=10Pa and 110Pa), but fibers were stretched 
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to a greater extent at higher G values, similar to what was shown in the affine model 
(values from five networks lumped and plotted) 
 
 
Tables  
 
Table 1: Initial properties of Voronoi networks evaluated in this study. 
 

 Number of Fibers Number of Nodes Orientation Tensor 
Network Total Boundary Internal Ω11 Ω22 Ω33 

1 689 194 296 0.590 0.196 0.214 
2 828 240 354 0.625 0.187 0.188 
3 668 196 285 0.607 0.196 0.197 

4 725 214 309 0.584 0.198 0.218 
5 682 216 287 0.597 0.203 0.200 

Mean 718.4 212.0 306.2 0.601 0.196 0.203 

Std. Dev. 64.8 18.6 28.3 0.016 0.006 0.012 
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