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Model selection for athermal cross-linked fiber networks
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Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli
or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded
joint. In this work we study the effect of these various modeling options on the dependence of the overall network
stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density
and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network
densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and
shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending
mode. The effect of the model size on the network stiffness is also discussed.
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I. INTRODUCTION

Systems composed from fibers are ubiquitous in the living
and artificial worlds. Connective tissue is composed from a
mixture of fibers of different types, while the cytoskeleton of
eukaryotic cells is composed from a dense network of F-actin
and a sparser network of much stiffer microtubules [1]. Man-
made fibers are used in a variety of consumer products such as
paper, tissue and hygiene products, in protective clothing and
packaging materials, to name just few applications. Fibers are
used as reinforcing elements in composites of various types,
ranging from common fiberglass to highly specific carbon-
based materials for re-entry thermal shields of space vehicles.

Fiber networks can be classified as either thermal or ather-
mal, depending on whether thermal fluctuations are important
in their mechanics or not. Fibers large enough, with large
bending stiffness, can be considered athermal [2]. For example,
the F-actin fibers of the cytoskeleton are sufficiently small for
thermal fluctuations to be important in their mechanics [1],
while the vast majority of artificial fibers are athermal.

Given the importance of these systems, modeling of fibrous
structures has become a necessity. The objectives of modeling
are usually to understand the mechanisms of deformation
and failure on system sub-scales, and to facilitate the design
of products made from such materials [3–7]. Modeling of
athermal fiber networks is usually performed by representing
each fiber as a truss, i.e., an element which carries only axial
loads, or a beam, which carries axial and transverse forces
and bending moments. Beams can be represented either with
Euler-Bernoulli (EB) or Timoshenko (T) models [7].

Several models are available for the cross-links between
fibers. Specifically, one may use pin joints, which transmit
no moments, rotating joints, which transmit moments only
along each of the two beams crossing at given crossing point
but not between them, and welded joints, which enforce
that the relative angles between the crossing beams at the
crossing point remain constant during deformation, and hence
transmit moments along and between crossing fibers. In special
applications, such as, for example, when modeling F-actin
binding proteins, more complex constitutive laws can be
ascribed to the cross-links [8].

An important parameter controlling the mechanics of fiber
networks is the mean coordination number, z. This represents

the number of fiber segments emerging from a given cross-link.
It has been shown that for z < 4 (in 2D) a network of trusses
has vanishing stiffness [9]. The role of z in controlling the
mechanics of fiber networks was studied extensively [10–13].
Note that if trusses are used, all cross-links are necessarily
pin joints. In most biological applications, and especially in
3D, only two fibers are in contact at each cross-link and hence
the coordination number is (at most) 4 [7]. For this reason we
focus here on the use of beam models for fibers and do not
consider pin joints.

In this article we present a comparison of various modeling
options for athermal random networks with the goal of guiding
model selection. In particular, we consider EB and T beam
models and welded and rotating representations for the cross-
links. The quantity of interest is the overall stiffness of the
network. The dependence of the network moduli (Young’s, E,
and shear, G) on system parameters was studied for 2D [14–17]
and 3D networks [12,13,18–20]. It has been shown that the key
parameters are the network density, ρ, defined as the total fiber
length per unit area, and the quantity lb, defined as the ratio of
the fiber bending and axial stiffness, l2

b = Ef I/Ef A (where I

and A are the moment of inertia and the cross-sectional area
of fibers, respectively). The fiber density can be expressed in
terms of the fiber number density, N , and the fiber length, L0,
as ρ = NL0. The findings of these works are discussed in the
Results section. Here it suffices to mention that the results in
all cited works [2,4,5,8–16,18–20] were obtained with the EB
model and assuming either welded or rotating joints.

II. MODEL

Two-dimensional networks are generated by depositing
fibers of length L0 in a square domain of dimension L with
random fiber orientation and centroid positions. Cross-links
are introduced at all points where fibers intersect and for these
nodes the coordination number is z = 4. The fiber dangling
ends are eliminated as they do not store elastic energy during
deformation. The cross-links at the ends of fibers have z = 2
or 3. Therefore, the mean coordination number takes values
between 3 and 4 and varies with L0 and ρ.

Loading is imposed by specifying displacements (a uniform
far-field uniaxial, biaxial, or shear strain field) along the bound-
ary of the domain. The results presented here are obtained
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for uniaxial far-field deformation (ε11 = 0; ε22 �= 0; ε12 = 0)
imposed on a square domain. All edges are forced to remain
straight during deformation and periodic boundary conditions
are applied. This allows for the simultaneous determination of
Young’s modulus, E, and Poisson’s ratio, υ.

The fiber material is considered linear elastic and fibers
are characterized by their bending, axial, and effective shear
stiffness, Ef I , Ef A, and Gf A, respectively. Ef and Gf

are the fiber Young’s and shear moduli, respectively. If the
Timoshenko model is used [21], the total energy of the system
is the sum of the strain energies associated with bending, axial,
and shear deformation, i.e.,

U = 1

2

∑
fibers

∫
Ef I

(
dψ(s)

ds

)2

+ Ef A

(
du(s)

ds

)2

+ λGf A

(
dv(s)

ds
− ψ(s)

)2

ds (1)

In this expression, v(s) represents the transverse displacement
and du(s)

ds
is the axial strain at position s along the fiber.

The rotation of the fiber cross-section is dv(s)
ds

, while ψ(s)
represents the rotation of a plane that remains perpendicular
to the neutral axis of the beam. Hence, dv(s)

ds
− ψ(s) represents

the shear deformation of the beam. λ is a constant that is
considered 0.88 (for beams with circular cross section). In the
Euler-Bernoulli model [21], the last term in Eq. (1) vanishes
since the model does not account for shear and, therefore,
dv(s)
ds

= ψ(s). The two models give identical predictions
for long, slender beams (beam length significantly larger
than the cross-sectional dimensions), while the Timoshenko
model gives more accurate predictions for short beams. In
random fiber-networks with random orientation of fibers,
the distribution function of segment lengths is Poisson [22].
Hence, a large number of short segments are present and,
for given fiber diameter, one expects many segments to be
too short to be properly modeled with the Euler-Bernoulli
formulation. This observation motivates the present study,
as we intend to establish at what system parameters the
EB model ceases to provide accurate results. Conversely,
we identify conditions under which the shear deformation
mode should be taken into account in the energy balance of the
system.

As mentioned in the Introduction, the system parameters are
the fiber length, L0, the fiber number density N , the network
density ρ = NL0, the mean segment length, lc = π/2ρ [22],
and lb = (Ef I/Ef A)1/2 [14]. Note that for a cylindrical fiber,
lb is equal to half of the cylinder radius. The system size L can
be considered as an additional parameter.

III. RESULTS

The objective of this work is to compare predictions of the
effective network moduli obtained using the various models
mentioned above. The moduli are expressed in terms of
parameters ρ, L0, and lb, which are sufficient to fully define a
random network of this type. Data for 96 networks with density
ρ ranging from 50 to 300, fiber length L0 ranging from 0.25 to
1, and lb in the interval (10−7,10−2) are presented in Fig. 1. The
unit of length is selected arbitrarily. In Fig. 1(a), the Young’s

FIG. 1. (Color online) (a) Master curve of the Young’s modulus
of the network in terms of system parameters (network density,
ρ, fiber length, L0, and parameter lb) for networks with welded
cross-links and in which the fibers are represented with the EB (red
triangles) and T (blue diamonds) models. The EB model becomes
inaccurate when w > 7. The thick lines are added to guide the eye.
The inclined continuous line has slope 1. (b) Uncollapsed data from
(a) corresponding to the T model and networks with L0 = 0.25
(dashed line) and 1 (solid line).

modulus E is normalized by Ef Aρ and a constant α, which
is a dimensionless quantity equal to 0.38. The variable of the
horizontal axis is w = log10[(ρL0)x(lb/L0)y]. Note that since
ρ ∼ l−1

c , it results that ρL0 ∼ L0/lc. The exponents x and y

are varied until the data collapse on a master curve. The two
exponents x and y result: x = 7 and y = 2. The uncollapsed
data for systems with L0 = 0.25 and 1 are shown in Fig. 1(b),
where the vertical axis is normalized by Ef .

The curve in Fig. 1(a) has two well-defined regions. At
low values of w (small ρ and/or small lb) the slope is 1,
which indicates that Young’s modulus E is proportional to
ρ8, L5

0, and to (Ef A)l2
b = (Ef A)(Ef I/Ef A) = Ef I (note

the normalization of the vertical axis with ρ, which leads
to E ∼ ρ8). The axial stiffness of fibers does not appear in
the expression of E in this regime. Therefore, the behavior
is controlled by the bending deformation mode of the fibers.
As w increases, the master curve converges to a horizontal
asymptote, which indicates that E is proportional to Ef Aρ.
In this regime the modulus is independent of the fiber length
L0 and of the bending stiffness of fibers, and the behavior is
controlled by the axial deformation mode. A much weaker,
linear scaling of E with the density is observed in this regime
(E ∼ ρ). This behavior is similar to that predicted based on the
affine deformation assumption, which requires that the local
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strain is identical to the global applied strain everywhere in the
problem domain. Direct measures of nonaffinity [23,24] also
indicate that in the small w range the deformation is strongly
nonaffine, while in the limit of large w, the nonaffinity is
small. The affine-nonaffine transition described by parameter
w can be also controlled by the coordination number, since
when z increases above the Maxwell limit (zc = 2d, where
d is the dimensionality of the space [10]) the axial mode
becomes dominant [13]. However, in 2D, this limit can
be approached by increasing L0 and the effects of increasing
L0 and z cannot be separated. Interesting results have been
obtained recently with a special type of 3D models [13,19,20]
in which the two parameters could be varied independently. For
the regime z � zc, which is relevant for the present discussion,
conclusions qualitatively similar to those obtained for 2D
networks resulted: the stiffness vanishes if the fibers have zero
bending stiffness, while when Ef I �= 0 a transition from the
axial (affine) to the bending (nonaffine) mode is observed as z

or/and w decrease.
The strong dependence of the overall modulus on density in

the nonaffine range has been studied extensively over the past
decade [8,9,11–20]. Numerical studies in Refs. [14,25] led
to a smaller exponent, x = 5.67, or E ∼ ρ6.67 for the small w

regime of 2D network deformation. Theoretical considerations
based on the floppy modes concept led to an exponent close
to this value [5]. A similar scaling analysis was presented
in Refs. [15,16], leading to the definition of the bending-
dominated (nonaffine) and axial-dominated (affine) regimes at
small and large w values, respectively. The discussion in these
references is in terms of a length parameter, λ = lc(lc/ lb)q ,
with L0/λ being similar to parameter w defined here. q = 1/3
gives the prefect collapse for the low-density data, which
results in scaling of shear modulus as G ∼ Ef Iρ9L6

0. The
value of exponent q leading to the best collapse at large
system densities is q = 2/5. Assuming that the modulus is
proportional to (Ef A)l2

b ∼ Ef I in the bending-dominated
regime, it is possible to infer from the data in Ref. [15] that
the shear modulus scales as G ∼ Ef Iρ8L5

0, which is identical
to our result [Fig. 1(a)]. An effective medium model presented
in Ref. [26] suggests a value of q = 1/4, smaller than those
discussed in Refs. [15,16]. In 3D, the exponents entering
parameter w are different. In the affine range the modulus
varies as Ef Aρ, as in the 2D case, while in the nonaffine
range it scales as G ∼ Ef Iρ3L2

0 [19].
We found that the models used to evaluate E are affected

by a strong size effect [17]. Figure 2 shows the variation of
the network Young’s modulus with the model size, L, for
two systems having different values of parameter w, i.e.,
w = −3.6 and 6.4. The density is ρ = 50 for both systems,
while lb = 10−7 and lb = 10−2 for the systems with w = −3.6
and 6.4, respectively. The vertical axis is normalized by
the horizontal asymptote of each curve, while the horizontal
axis is normalized by the fiber length, L0 (L0 = 0.5 in both
cases). As shown in the figure, the size effect is strong for
small w; in order to obtain model size-independent results
one needs to consider systems as large as 16 times the
fiber length. When w increases, the size effect becomes
weak. If models smaller than the threshold insuring model
size-independent results are used, data collapse on a master
curve may be obtained, but the resulting exponents are

FIG. 2. (Color online) Variation of modulus E with the model
size, L, for two values of w. The density ρ = 50 in both cases, and lb
= 10−7 and 10−2 for w = − 3.6 and 6.4, respectively. The modulus
has been normalized with the asymptote value (E∞) to make the
comparison possible. The size effect is more pronounced for the
system with nonaffine deformation field (w = −3.6), while when
the deformation field is affine (w = 6.4), the size effect becomes
negligible.

smaller than those reported here and the scatter is larger.
All data reported in this article are obtained with models
free of size effects; for most simulations, especially in the
nonaffine range of parameters, the system size was taken
L = 20L0.

Let us turn now to the analysis of the effect of model
selection on the results discussed above. Figure 1(a) shows
data for systems modeled with EB and T beams and with
welded cross-links. It is observed that the two models produce
similar results in the nonaffine range (w small). As w increases,
the EB data do not collapse anymore. This is expected since
the EB model is known to become less accurate when the
beam aspect ratio decreases, as, for example, in the case
of short, stubby network segments. Increasing the bending
stiffness (relative to the axial stiffness) results in smaller

FIG. 3. (Color online) Partition of the strain energy between
bending, axial, and shear deformation modes of fibers in systems
represented using the Timoshenko model and having welded cross-
links, for various values of parameter w. The shear component
becomes important for w > 7.

011923-3



A. SHAHSAVARI AND R. C. PICU PHYSICAL REVIEW E 86, 011923 (2012)

FIG. 4. (Color online) Master curve for the network Young’s
modulus for networks with welded and rotating cross-links and in
which the fibers are represented with the Timoshenko model.

lateral displacements (relative to the axial displacement) for
each segment and eventually it causes locking of the lateral
displacement. This happens for most short segments resulting
in almost rigid subdomains in the network, consequently
leading to higher values of the overall stiffness when the EB
model is used. This does not happen in the case of T beams
since this model has an extra degree of freedom associated
with shear deformation. The data indicate that the EB model
should be used only for w < 7. This is the central result of this
work.

To support the statement that the lack of collapse of the
EB data in the affine range is due to the failure of the EB
model in the respective range of system parameters, let us
consider the T model for the beams and evaluate the fraction
of energy stored in the axial, bending and shear deformation
modes of fibers. This amounts to reporting separately the three
terms in Eq. (1). The three energy components are shown
in Fig. 3 versus parameter w. In the non-affine range the
energy is dominated by the bending component, which is in
agreement with the observation stated above that E ∼ Ef I

in this regime. In the affine range (large w) the energy is
partitioned between the axial and shear components, with
the bending energy decreasing to zero as w increases. This
behavior cannot be captured by the EB model which does not

account for shear deformation. The shear component becomes
important (approximately 10% of the total energy) for w > 7.

Let us compare now systems in which the cross-links are
represented by welded and rotating joints. For this purpose,
the T model is used for the beams. Figure 4 shows results
for the two types of systems and for many networks with
different system parameters. The same value of parameter α

(α = 0.38) was used for all networks considered. It results that
the model used for the cross-links is largely inconsequential
for the network behavior. The importance of the nature of the
cross-links for the mechanical behavior of this type of network
was also studied in Refs. [14,27] and a similar conclusion was
reported.

The Poisson’s ratio was evaluated for all networks consid-
ered. This quantity is largely independent of system parameters
and takes values close to ν = 0.33 if T beams and rotating
joints are used. For the other three modeling options, the
Poisson’s ratio is ∼0.33 if w is small and the deformation is
nonaffine. As we have seen, using the EB model in the affine
regime (large w) results in a large variability of the Poisson’s
ratio from realization to realization and a strong dependence
on system parameters.

IV. CONCLUSIONS

In this work we have studied the effect of selecting
the EB and T models for fibers and welded and rotating
representations for the cross-links on the overall elasticity of
the network. It was concluded that the EB model should not
be used when the system parameters are such that w is larger
than 7. In these situations the shear deformation mode of fibers
becomes important, which can be captured only by using the
T model. The model used for the cross-links is less important,
both welded and rotating representations leading to the same
scaling and same master curve.

It has been also shown that the strong size effect affecting
the network moduli in the nonaffine deformation range may
lead to errors in the estimation of the scaling exponents of
system stiffness with ρ, L0, and lb. Using models large enough
to eliminate the size effect, the network modulus in the low
density-low lb range scales as E ∼ Ef Iρ8L5
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