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ABSTRACT

The simulation of complex physics problems over general 3D geometries can be

effectively done using unstructured meshes that in many cases will have millions or

billions of elements that can be only solved on massively parallel computers. The

objective of this thesis is to support specific new unstructured mesh functionalities

required by large-scale adaptive simulations building on the Flexible and distributed

Mesh DataBase (FMDB).

To extend FMDB’s functionalities in a sustainable manner that FMDB can

easily evolve to support future application requirements, this work introduces a set

of generic programming components for sets, iterators and tags designed for use in

adaptive simulation software tools.

FMDB is then extended to address three specific requirements from large scale

adaptive simulations. First, the generic set component is extended to support mesh

set functions for mesh entities in parallel and is applied to support boundary layer

mesh adaptations. Second, to support specific applications where the mesh rep-

resentation on specific unconnected geometric model entities must match, such as

applications with periodic boundary conditions, the capability of mesh matching

is developed. Third, since it is desirable to increase the number of processors in

the simulation as the mesh size increases, the capability to have multiple parts per

process is developed to define new mesh partitions with alternative partitioning

strategies and migration algorithms, based on an enhanced partition model.

With the addition of these capabilities, FMDB has been able to support a

large class of adaptive unstructured mesh simulations on petascale supercomputers,

including IBM BlueGene (BG/P) and Cray system. Applications on meshes of

billions of elements distributed over O(100, 000)’s of processors demonstrate the

effectiveness of the software components developed in this work.

xii



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Unstructured mesh methods, like finite elements and finite volumes, are used

to support effective analysis of complex physical behaviors modeled by partial differ-

ential equations (PDE) over general three-dimensional domains. The most reliable

and potentially efficient application of unstructured mesh methods is through the

application of adaptive methods where an error estimator, or indicator, is used to

control where and how the mesh is to be modified. Adaptive unstructured mesh sim-

ulations on general 3D geometries with complex physics require underlying meshes

with millions, or even billions, of entities. The simulation on such a large mesh

can be only carried out on massively parallel computers that require the mesh be

distributed over the computing nodes and/or cores of the parallel computer. The

following issues must be considered in the mesh operations [1]:

• Setting-up and constructing distributed meshes efficiently.

• Understanding of how to represent unstructured meshes to meet the applica-

tion requirements.

• Applying dynamic load balancing to regain load balance. As the mesh mod-

ifications change the number of mesh entities, the load balance of the mesh

between the processors is also changed.

The consequence of the above factors is that all steps in a large-scale adaptive

unstructured mesh simulation must be efficiently executed on a distributed mesh

and the mesh must be effectively redistributed as required at various steps in the

simulation.

Unstructured meshes are characterized by allowing any number of elements

adjacent to a single node. One obvious advantage that unstructured meshes have

over structured grids is to represent arbitrarily complex geometric domains. Com-

bined with appropriate numerical methods, adaptive unstructured mesh methods

1
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have demonstrated a number of extra advantages, such as improving the geometric

approximation as the mesh is adapted [2], generating anisotropic meshes to align

with the geometric and solution features [3]. Moreover, anisotropically adapted

meshes can provide two or three orders of magnitude fewer elements than a more

uniform mesh for the same level of accuracy. The RPI SCOREC group [2, 3, 4, 5, 6]

has developed an effective anisotropic mesh adaptation procedure controlled by an

anisotropic mesh metric field for realistic geometries to construct fully unstructured,

anisotropic meshes. This mesh adaptation procedure has been extended to support

viscous flow problems that require high-aspect ratio, orthogonal and graded layers

of elements at no-slip walls resulting in boundary layer meshes (see Figure 1.1).

Ini t ial  boundary layer mesh

Adap ted  boundary  layer  mesh

Figure 1.1: Anisotropic adaptivity, preserving boundary layer mesh
structure in an artery model [7].

Practical adaptive analysis problems often involve large scale and complicated

geometries such as patient-specific cardiovascular flow simulations [8], and place ex-

treme demands on the mesh infrastructure, which is executed underneath providing

all needed mesh-based operations and thus strongly influences the overall perfor-

mance of the simulation. However, those who develop the individual analysis or

adaptation code are typically not capable of developing all the required mesh data

structures and operations to support their applications and want to have the re-

quired mesh infrastructure taken care of by meshing experts. To support various

application requirements of representing and manipulating unstructured mesh data,

there needs a substantial effort at the mesh infrastructure level.
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One substantial effort to address the needs of unstructured meshes on mas-

sively parallel computers is the SciDAC Interoperable Technologies for Advanced

Petascale Simulations (ITAPS) Center [9], now continuing as part of the FASTMath

institute [10]. ITAPS includes three core data types: the geometric data, the mesh

data, and the field data [9, 11, 12]. These core data types are associated with each

other through data relation managers. The parallel ITAPS data model supports

a distributed memory representation where the mesh is distributed over indepen-

dent processors of the computer [13]. To support the needs of unstructured mesh

applications, ITAPS has defined a set of common interfaces: Geometry (iGeom),

Mesh (iMesh/iMeshP), Field (iField), Data Relation Manager (iRel), and iBase

that contains the utilities and definitions used by other interfaces [9, 11, 12, 13].

These interfaces are interoperable allowing multiples tools to integrate into a single

simulation [9]. Their efforts toward petascale simulations have demonstrated the

scalability of their tools that use the ITAPS interfaces and Zoltan [14] dynamic load

balancing services [13].

As an implementation of the ITAPS iMesh/iMeshP interface, the Flexible

and distributed Mesh DataBase (FMDB) [15, 16] is designed to provide the set of

functions needed to support the ITAPS mesh adapt services. FMDB focuses on

dealing with adaptively changed mesh data and provides all the needed mesh-based

operations, such as distributed mesh operations and dynamic mesh load balancing

in parallel computations. On top of a general topology-based mesh representation

and a partition model, FMDB supports a general distributed mesh representation.

Starting from the original FMDB implementation, the objective of this thesis work

is to address unstructured mesh representation and operations for specific appli-

cation requirements, especially in a distributed environment on massively parallel

computers, and thus to support large-scale adaptive unstructured mesh simulations

on petascale supercomputers.

To support a broad range of functionalities and future application needs in a

sustainable and extendable way in FMDB, this thesis work takes advantage of the

basic software engineering developments and applies generic programming meth-

ods [17, 18, 19]. In contrast to the traditional programming paradigm in which data
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structures and algorithms are developed for specific data types and requirements,

generic programming focuses on the development of efficient, reusable software com-

ponents which can be reused for many similar implementations through appropriate

abstractions for their common requirements. This thesis introduces an on-going

effort for efficient, reusable generic software components and their applications for

adaptive unstructured mesh-based simulations. In this work, the design and im-

plementation of the three generic components - set, iterator, and tag - which are

in use as utilities are presented. Their applications to satisfy various iterator, set

and tagging needs are demonstrated within the geometric model and mesh data

infrastructure.

Figure 1.2 demonstrates the main components in an adaptive simulation loop.

An adaptive mesh-based analysis usually starts with an initial mesh generated from

a mesh generation tool on a geometric model using a priori specification of the mesh

size. The initial mesh is distributed across the processors of the parallel computer.

Based on the resulting partitioned mesh, an analysis tool performs the computation

and obtains a solution. This solution is then evaluated by an error estimator [3, 5]

to specify the mesh size field [3] which quantifies the desired mesh resolution over

the problem domain. Local mesh modification operations [3, 20, 21] are carried out

to satisfy the specific mesh size field. The adapted mesh and computation solution

are then transferred to the next step of the adaptive loop. This process iterates

until it comes to an acceptable level of solution accuracy.

To move forward to petascale simulations, each software component in the

framework should be scalable and efficient. Prior to this research the software com-

ponents available could be carried out in serial as well as in parallel but with a

modest number of processing cores. To support various unstructured mesh applica-

tions on O(100, 000)’s of processing cores brings extra complexities. In this work,

the mesh infrastructure, FMDB, is extended to address the specific requirements.

More specifically, the extensions developed include:

• Extend the generic set component to fully support set functions for mesh

entity sets. A specific requirement from some applications such as boundary

layer mesh applications is the ability to maintain specific sets of mesh entities
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Figure 1.2: Key steps in parallel adaptive mesh-based simulation.

together during parallel computations. While the overall set functions must

support sets that may span multiple parts in a partition, the focus of this

work is to support sets that are constrained to a single part for the efficiency

issues. Two types of mesh sets are defined in parallel: P-set with the single

part constraint, and NP-set without the single part constraint. Parallel mesh

operations such as mesh partition and migration, and related algorithms are

developed to support the set operations for P-sets. The boundary layer mesh

adaptation in parallel clearly demonstrate the use of P-sets.

• Provide mesh matching to support specific classes of applications that have

the requirement for the mesh representation on specific geometric model faces

to be identical topologically and geometrically (transformed). Parallel mesh

operations such as mesh partition and migration, and related algorithms are

developed to deal with mesh matching.

• In the adaptive cycle of large-scale simulations, as the mesh size increases

through mesh adaptation, a mesh redistribution is desired on an adapted mesh
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to create new partitions on a larger number of parts so the subsequent steps

can be executed on a larger number of processors. In this work, multiple

parts per process partitioning has been developed and implemented such that

it can be easily applied with two alternative partitioning strategies and mesh

migration algorithms to define various new mesh partitions. This capability

enables the execution of adaptive simulations on meshes of billions of elements

running on O(100, 000)’s of processing cores.

1.2 Organization

The organization of this thesis is as follows. Chapter 2 gives an introduction of

the related work on mesh management components. This chapter introduces a gen-

eral topology-based mesh representation and distributed mesh representation based

on a partition model, followed by the discussions on main parallel mesh operations,

such as mesh partition and mesh migration. Chapter 3 presents an on-going ef-

fort for efficient, generic software components for adaptive mesh-based analysis and

demonstrates how they are applied in the mesh and geometric model to meet various

needs of set, iterator and tagging functionalities. Chapter 4 extends the generic set

component to fully support set operations of entity sets, and demonstrates the capa-

bility to deal with applications that have specific mesh entity grouping requirements

such as boundary layer mesh adaptations in parallel. Chapter 5 presents a general

technique of mesh matching to handle meshes on geometric models with periodic

boundary conditions. Chapter 6 presents the multiple pars per process partition-

ing, which addresses the need to change the number of parts in a mesh partition to

increase the number of processing cores in subsequent steps during adaptive simu-

lations. Chapter 7 concludes the study by summarizing the results obtained, and

discusses the future work.
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1.3 Nomenclature

V the model, V ∈ {G, P , M}, where G represents the geometric

model, P represents the partition model, and M represents the

mesh model.

{V {V d}} a set of topological entities of dimension d in model V .

V d
i the ith entity of dimension d in model V . d = 0 for a vertex, d = 1

for an edge, d = 2 for a face, and d = 3 for a region.

{∂(V d
i )} a set of entities on the boundary of V d

i .

{V d
i {V q}} a set of entities of dimension q in model V that are adjacent to V d

i .

V d
i {V q}j the jth entity in the set of entities of dimension q in model V that

are adjacent to V d
i .

Udi
i < V

dj
j classification indicating the unique association of entity Udi

i with

entity V
dj
j , di ≤ dj, where U , V ∈ {G, P , M} and U is lower than

V in terms of a hierarchy of domain decomposition.

Pi the ith part in a distributed mesh.

P[V d
i ] residence part operator which returns a set of part id(s) where entity

V d
i exists, V ∈ {P , M}.

Si the ith entity set.

For example, {M{M3}} is the set of all the regions in a 3D mesh; {M1
i {M2}}

include the mesh faces adjacent to mesh edge M1
i ; M

3
i {M2}1 is the 1st face adjacent

to mesh region M3
i ; M

2
i < G2

j means that mesh face M2
i is classified on geometric

model face G2
j .



CHAPTER 2

RELATED INVESTIGATIONS

This chapter provides the background technology in developing the new parallel

capabilities of the later chapters.

This chapter first presents the data models involved with an unstructured

mesh-based simulation in §2.1. Such a simulation often starts with a problem defi-

nition, including the geometric model and the attributes over the problem domain.

Then the problem domain is discretized into a piecewise decomposition, i.e. a mesh.

In a subsequent step in the simulation such as the error estimations, fields are defined

over the domain discretization to make use of the solution properly.

Unstructured mesh methods have common requirements of representing and

manipulating the mesh and associated data. One effective way to describe unstruc-

tured meshes is through a general topology-based mesh representation, in which

a hierarchy of topological entities, including regions, faces, edges and vertices, are

defined and their connections, in terms of adjacencies, are stored. The general

topology-based mesh representation is presented in §2.2.
To solve computationally demanding problems, such as applications involved

with complicated geometries with complex physics, parallel adaptive unstructured

mesh methods are used. In addition to a specific mesh representation, parallel

unstructured mesh methods introduce more complications, such as the need for (i)

the mesh (re)distribution, (ii) data communications, and (iii) distributed mesh data

operations.

A distributed mesh data structure supports a topological representation of the

distributed mesh and efficient distributed mesh manipulation operations. A general

distributed mesh representation built on top of a partition model is given in §2.3.
One common approach to perform the mesh distribution is through mesh

partitioning, which separates the mesh into a number of parts. §2.4 discusses mesh

partitioning techniques for unstructured meshes.

To move mesh entities from one part to another part in support of (i) mesh dis-

8
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tribution to parts, (ii) mesh load balancing, or (iii) obtaining mesh entities needed

for mesh modification operations, a parallel processing procedure, referred to as

mesh migration, is introduced in §2.5.

2.1 Data Models in Mesh-Based Simulation

Amesh-based simulation begins with a mathematical problem definition, which

consists of a description of the geometric domain1 with appropriate analysis at-

tributes [22, 23]. Then the geometric domain is decomposed into a set of small

pieces, the mesh, and the mathematical problem, modeled by continuous partial

differential equations (PDEs), is approximated on that mesh using mesh methods

such as finite volume, finite difference, or finite element. Once the domain and PDEs

are discretized, the numerical problems can be easily executed.

The data models used in such a mesh based simulation include: (i) the geo-

metric model which houses the topological and shape description of the domain of

the problem, (ii) attributes which describe the rest of information needed to define

the physical problem, (iii) the mesh which is the discretized representation of the

domain used by the analysis method, (iv) fields which house the distribution of

numerical solution tensors over the domain of the problem and numerical systems

resulting from the discretization processes.

2.1.1 Geometric model

The geometric model considered here is a subset of a three-dimensional space

bounded by a collection of geometric entities (points, curves, surfaces and vol-

umes) [24]. As the most common geometric representation in computer-aided design

(CAD) systems, boundary representations (b-reps) are effective for representing ge-

ometric models [25, 26].

The geometric model is a data model which provides a functional interface to

support the communication of geometry information to mesh-based applications.

Geometric entities: the primary constituents of a geometric model. They are,

1The problem domain considered here may also include a temporal component if the solution
changes with time [22].
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in the Radial Edge Data Structure [27], regions, shells, faces, loops, edges

and vertices and use entities for vertices, edges, loops and faces with a non-

manifold model2.

Adjacencies: how geometric entities are connected to each other [28].

Geometric interrogations: provide specific information relating to the shape of

geometric entities such as pointwise locations and shape coefficients [2, 25, 29].

Geometric entity sets: mechanism to group geometric entities for various pur-

poses [9, 30]. The useful attributes and requirements of geometric entity set

are: (i) entity uniqueness and entity insertion order preservation (ii) set pop-

ulation through entity addition or entity removal (iii) traversal through an

iterator per entity type (iv) set binary operations (union, subtraction, in-

tersection) (v) relationships among entity sets such as superset/subset and

parent/child.

Tags: mechanism to attach arbitrary user data, termed as tag data, to geometric

entity sets or geometric entities [9, 30]. Tag data is a single or array of a

specific type where it could be of primary data type such as integer, double,

geometric entity set, geometric entity, or arbitrary type represented as void∗.

Iterators: mechanism to traverse geometric entities by type either in an entity set

or in the entire model [9].

2.1.2 Attributes

In addition to the geometric model, the specification of a mesh-based applica-

tion problem requires extra mathematical information, such as equations, material

properties, forcing functions, boundary conditions, and initial conditions [23, 31].

For instance, a PDE solver may require a domain definition associated with the

mathematical form controlling the simulation and parameters associated with the

controlling mathematical equations [23]. Such kind of information is described in

2A non-manifold model consists of general combinations of solids, surfaces, and wires. Please
refer to reference [27] for detailed discussions.
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Figure 2.1: Example of geometry-based problem definition [23].

terms of attributes. Many attributes are tensorial in nature, and may vary in both

space and time.

Attributes can be associated with a specific portion of the geometric domain

being analyzed. In the problem definition, when attributes are primarily associated

with boundary value problems, a natural choice is to associate attributes with the

various topological geometric model entities in the boundary representation of the

geometric model [31, 32, 33].

A simple example of a problem definition is illustrated in Figure 2.1. The

problem being modeled here is a dam subjected to loads due to the gravity and the

water behind the dam. The attribute case for the problem definition covers a set of

attributed information nodes. If this case is associated with the geometric model,

attributes (indicated by triangles with A’s inside of them) are created and attached

to the individual geometric model entities on which they act [23, 34].

2.1.3 Mesh

The domain discretization is a piecewise decomposition of the problem do-

main, usually a mesh. Even though both spatial and temporal domains can employ

different discretizations, typically the more complex of the two is the definition of

the spatial mesh. Thus the focus herein is on the spatial mesh defined over the

geometric domain. A single mesh can cover the entire geometric (spatial) domain,
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while there are cases where more than one mesh is associated with a domain. For

instance, different full geometry meshes can be used during different stages of the

numerical solution, as in the case of adaptive mesh methods.

One effective way to describe an unstructured mesh is through a general

topology-based mesh representation [15, 35, 36, 37, 38, 39, 40], which supports

the ability to properly adapt the mesh fully accounting for the geometric domain

and attributes as the mesh changes [35, 41]. A detailed discussion on a general

topology-based mesh representation is given in §2.2.
The mesh is a data model which provides a description of the mesh information

in a manner that mesh-based operations can be efficiently performed. A minimum

set of functional requirements to support adaptive simulations includes:

Mesh entities: the constituents of a mesh. They are distinguished by their type,

i.e. topological dimension3, (vertex (0D), edge (1D), face (2D), or region

(3D)), and topology (for instance, triangle and quadrilateral for 2-dimensional

entities, or tetrahedron or hexahedron for 3-dimensional entities) [42].

Adjacencies: how the topological mesh entities connect to each other. For an

entity of dimension d, first-order adjacency returns all of the mesh entities

of dimension q, which are either on the closure of the entity for a downward

adjacency (d > q), or which it is part of the closure for an upward adjacency

(d < q) [11, 15, 16, 35, 39].

Geometric classification: a relation that each mesh entity maintains to a geo-

metric model entity for partial representation. Given a geometric model entity,

the set of equal dimension mesh entities classified on geometric entity is termed

as the reverse classification for the geometric entity [35].

Mesh entity sets: mechanism to group of mesh entities for various purposes [12,

30]. There are various kinds of sets depending on the following criteria. The

useful options of mesh entity set are the following.

• entity uniqueness

3In this thesis, entity dimension and entity type are interchangeable terms.
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Mesh

Field 1 = {Interpolation 1,
Interpolation 2, ... }

Interpolation 2

Interpolation 1

Figure 2.2: Representation of a field defined over a mesh [23].

• entity insertion order preservation

• entity type constraint

In addition, (i) set population through entity addition or entity removal (ii)

traversal through an iterator per entity type and/or topology (iii) set bi-

nary operations such as subtraction, intersection, and union (iv) relationships

among sets such as superset/subset and parent/child are needed for flexible

set manipulation.

Tags: mechanism to attach arbitrary user data, termed as tag data, to a part,

entity set or mesh entity [12, 30]. Tag data is a single or array of a specific

type where it could be of primary data type such as integer, double, mesh

entity set and mesh entity, or arbitrary type represented as void∗.

Iterators: mechanism to traverse mesh entities in a specific range with various

options [9, 12], such as (i) traversing entities by type and/or topology (ii)

traversing entities classified on a specific geometric model entity, and so on.

2.1.4 Solution fields

A solution field describes the variation of solution tensors over the mesh entities

to quantify the distribution of physical parameters. The spatial variation of the field

is defined in terms of interpolations defined over the mesh. A field is a collection of

individual interpolations, each of which is interpolating the same quantity, and is

associated with one or more mesh entities [23]. Figure 2.2 describes a field written

in terms of C0 interpolating distribution functions over a patch of mesh entities.
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Fields must be maintained in a form that can be used for queries and manipula-

tions as required, such as the transfer of fields to other meshes during a multiphysics

analysis step, or to maintain the description of the mesh on an adapted field [22, 23].

2.2 General Topology-Based Mesh Data Structure

One effective way to describe unstructured meshes is through a general topology-

based mesh representation [15, 16, 35, 36, 37, 38, 39]. The mesh consists of a collec-

tion of topological entities of controlled size, shape and distribution. The relations

of mesh entities defining the mesh are well described through topological adjacen-

cies. A mesh data structure is a toolbox that is able to answer various queries about

the mesh, and that provides the mesh-level services to higher level applications that

create and manipulate the mesh data.

There are three functional requirements of a general topology-based mesh data

structure [35], and they are (i) topological entities, (ii) adjacencies between entities,

and (iii) geometric classification.

2.2.1 Topological entities and adjacencies

Each topological mesh entity of dimension d, Md
i , is bounded by a set of

topological lower order mesh entities. The full set of mesh entities in a 3-D mesh are:

{{M{M0}}, {M{M1}}, {M{M2}}, {M{M3}}}, where {M{Md}}, d = 0, 1, 2, 3,

are, respectively, the set of vertices, edges, faces, and regions. A mesh can be

represented with the basic 0 to d dimensional topological entities, where d is the

dimension of the problem domain, with the following topological restrictions [35]:

• Regions and faces have no interior holes.

• Each entity of order di in a mesh, Mdi
i , may use a particular entity of lower

order, dj, M
dj
j , dj < di, at most once.

• For any entityMd
i , there is the unique set of entities of order d−1, {Md

i {Md−1}}
that are on the boundary of Md

i .

The first restriction means that a region can be represented by the faces that bound

the region, and a face can be represented by the edges that bound the face, and



15

0

1
M

3

2

1
M

0

1
M

2

M
0

3
M

0

2
M

0

2
M

3

Figure 2.3: Example of 3D mesh adajcencies.

so on. The second restriction supports the orientation of an entity in terms of its

boundary entities. The third restriction means that a mesh entity can be uniquely

specified by its bounding entities.

Note, mesh entities are distinguished by their type, i.e. topological dimension

(vertex (0D), edge (1D), face (2D), or region (3D)), and topology (such as, triangle

and quadrilateral for 2-dimensional entities, or tetrahedron or hexahedron for 3-

dimensional entities) [11, 12, 42].

Entity adjacencies describe how mesh entities connect to each other. Adja-

cency definition includes both first-order and second-order adjacencies [11, 12, 15,

16, 35, 39]:

• First-order adjacencies

For an entity of dimension d, a first-order adjacency returns all of the mesh

entities of dimension q, which are either on the closure of the entity for a

downward adjacency (d > q), or which it is part of the closure for an upward

adjacency (d < q).

• Second-order adjacencies

For an entity of dimension d, Md
i , second-order adjacencies describe all the

mesh entities of dimension q that share any adjacent entities of dimension b

with the entity Md
i , where d ̸= b and b ̸= q.
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A second-order adjacency indicates the set of topological entities of a given

dimension that are adjacent to entities sharing common boundary entities of the

specific dimension. Second-order adjacencies are useful for many applications to

provide needed neighboring information. Second-order adjacencies can be derived

from first-order adjacencies. For instance, in the small mesh in Figure 2.3, for

mesh face M2
1 (the shaded plane), the regions on either side of M2

1 include mesh

regions M3
1 and M3

2 (first order upward adjacencies, {M2
1{M3}}); the vertices that

bound M2
1 include mesh vertices M0

1 , M
0
2 , M

0
3 (first order downward adjacencies,

{M2
1{M0}}); the regions that share any vertex with mesh region M3

1 include all

other three neighboring mesh regions in the mesh (second-order adjacencies).

2.2.2 Geometric classification

Geometric classification is used to describe the relationship of the mesh with

the geometric model. The connection of the mesh to the geometric model is critical

for mesh generation and adaptation procedures since it can be used to improve

geometric approximations as the mesh is modified [35, 43].

The unique association of a mesh entity of dimension di, M
di
i to a geometric

model entity of dimension dj, G
dj
j where di ≤ dj, is called geometric classification,

and is denoted by Mdi
i < G

dj
j , where the classification symbol, <, indicates that the

left-hand entity, or set, is classified on the right-hand entity. Multiple mesh entities

(say Mdi
i ) can be classified on one geometric model entity G

dj
j . Mesh entities are

classified with respect to the possible lowest-order geometric model entity [35].

Figure 2.4 illustrates an example of geometric classification. A mesh of a simple

square model with entities labeled is shown with arrows, indicating the classification

of mesh entities onto the model entities. All interior mesh faces, mesh edges, and

mesh vertices are classified on model face G2
1.

2.2.3 Mesh representation options

Depending on the levels of entities and adjacencies that are explicitly stored

in the mesh representation, there are many options in the design of a mesh data

structure. The mesh representation can be categorized into two criteria [15, 16, 35,

39]:
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• Full or reduced

If a mesh representation stores all 0 to d level entities explicitly, it is a full

representation. Otherwise, it is a reduced representation.

• Complete or incomplete

In terms of the cost of adjacency retrieval, if a mesh representation is able to

provide any type of adjacencies requested in a constant time, it is a complete

representation. If the time required to determine a mesh adjacency is a func-

tion of the number of entities in the mesh, or it can not be determined, it is

an incomplete representation.

Figure 2.5 illustrates adjacency graphs of four 3D mesh representation options:

(a) is the greedy representation where 4 levels of entities and all possible 12 adjacen-

cies are stored [15, 37]; (b) is the one-level adjacency representation that maintains

adjacencies between entities one dimension apart [15, 35]; (c) stores mesh entities

of all dimensions and maintains only downward adjacencies between entities one

dimension apart [15]; (d) is the complete minimum sufficient representation that

consists of all mesh entities equally classified on the equal dimension model entities

and all vertices (minimum sufficient representation, MSR [15, 39]), plus upward

adjacencies from vertices to their bounding entities of dimension > 0 [15, 36]. In

Figure 2.5, solid boxes denote different dimension of mesh entities, and solid arrows

denote various adjacencies from outgoing levels to incoming levels. In Figure 2.5d,
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the boxes for mesh faces and edges and the lines for adjacency {M2{M0}} and

{M1{M0}} are dotted since only equally classified faces and edges are stored and

adjacency {M2{M0}} and {M1{M0}} are maintained only for the existing faces

and edges.

For the properties of the mesh representations in Figure 2.5 in terms of full

and complete criteria, (a) and (b) are full and complete due to all 0 to d levels of

entities exist and the 12 adjacencies are obtainable in O(1) time either by direct

access or local traversal. (c) is full and incomplete since it requires mesh level global

search or traversal to get proper adjacencies. (d) is reduced and complete [15].

In the design of mesh representation for applications, the factors that must

be considered are storage and computational efficiency. A mesh representation that

explicitly store all topological mesh entities and all the adjacencies between them can

perform mesh-level operations and queries efficiently, but it requires a large storage

space to store all the information and high computational efforts to maintain proper
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adjacencies as the mesh changes [15, 35, 37, 38, 39]. Although it is unnecessary

to explicitly store all possible adjacencies in a mesh representation, a complete

representation is needed to effectively support adaptive mesh-based applications,

since mesh modifications associated with adapting the mesh require accessing the

wide range of adjacencies and an O(1) time for efficiency is critical. In a reduced

mesh representation, it is also possible to achieve complete adjacencies through extra

software design efforts [15, 35, 36, 39].

2.3 Distributed Mesh Data Structure

To meet the requirements of adaptive simulations in a parallel computing

environment, maintaining mesh topological adjacencies for a mesh distributed over

a large number of processing cores, processors, is also needed.

A distributed mesh data structure is an infrastructure which executes under-

neath and supports all mesh based parallel functionalities, such as communications

between mesh entities distributed over processors, and mesh data movement between

processors [15, 20, 40, 44].

Key operations using the distributed mesh data structure are (i) dynamic

mesh load balancing [44, 45, 46, 47] and (ii) parallel mesh adaptation [20, 21, 48,

49, 50, 51]. The focus here is a general distributed unstructured mesh data structure

that is capable of handling general non-manifold models and effectively supporting

automated adaptive analysis.

2.3.1 Part and part boundary

A common approach for unstructured mesh distribution across the processors

is through mesh partition, which assigns sets of mesh entities, called parts4, to

specific processors.

Definition Part

A part is a set of mesh entities that is a subset of the entire mesh, and it is

uniquely identified by its part identifier (id), denoted by Pi, where 0 ≤ i ≤ N

4The original term in the FMDB is partition [15, 16], instead of part, assuming that one pro-
cessor has only one part.
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Figure 2.6: A distributed mesh on four processors with one part per pro-
cessor.

and N is the total number of parts. A part will reside on a single processor

during parallel computations.

Figure 2.6 depicts a 2D mesh that is distributed to four parts on four processors

where each processor contains one part. The dashed lines represent part boundaries

between parts.

Each part is treated as a serial mesh with the addition of part boundaries to

describe groups of mesh entities on part boundaries, called part boundary entities.

These mesh entities are duplicated on all parts for which they bound higher order

mesh entities and are therefore used in adjacency relations on that part [15, 16].

Mesh entities that are not on any part boundary reside on a single part and are

termed as interior mesh entities. In the 2D mesh illustrated in Figure 2.6, the part

boundary entities include all the mesh vertices and edges duplicated on more than

one parts for which they bound mesh faces. For instance, vertex M0
i is common to

four parts and duplicated on all the part, and mesh edges like M1
j are common to

two parts and duplicated on part P0 and part P1.

In order to denote the part(s) that a mesh entity resides, an operator is defined

to provide the residence parts of a mesh entity [15, 16].

Definition Residence part operator P[Md
i ]

An operator that returns a set of part id(s) where a mesh entity Md
i exists.
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The residence parts of Md
i , P[Md

i ], can be computed through residence part

equation [15, 16]. If {Md
i {M q}} = ∅, d < q, the mesh entity is not part of the

boundary of any higher order mesh entities, P[Md
i ] = {Pi} where Pi is the id of

the single part where Md
i exists. Otherwise, P[Md

i ] = ∪ P[M q
j | Md

i ∈ {∂(M
q
j )}]

which indicates the set of part id’s for all the mesh entities that Md
i bounds.

In parallel adaptive unstructured mesh applications, the mesh and its distri-

butions change all the time. Thus at the mesh level, it is required to maintain

the connections between part boundary entities duplicated on different parts. Part

boundary entities must be aware of where they are duplicated and what are their

duplicated copies [15, 16].

Definition Remote copy

If a mesh entity Md
i on part Pi is duplicated on another part Pj, where i ̸= j,

then the memory location of the entity on part Pj is a remote copy of the

entity Md
i on Pi, and vice versa.

For instance, in the 2D distributed mesh illustrated in Figure 2.6, the residence

parts of mesh vertex M0
i are {P0, P1, P2, P3}, which equals the union of residence

parts of its bounding edges. The mesh vertices M0
i on part P0, P1, P2, P3 are remote

copies to each other.

For duplicated copies of a part boundary entity, it is necessary to assign a

specific copy on one part as the owner of the other copies, and let the owner be

in charge of the communications or computations between the copies [15, 16]. The

entity ownership of a part boundary entity can be determined through two strategies:

(i) static ownership where the owner part is always fixed, and (ii) dynamic ownership

where the owner part is specified dynamically during parallel computations. For the

options to determine the entity ownership, please refer to references [15, 16, 46, 50].

In the case of parallel mesh adaptation applications, especially applications

involved with local mesh modifications, communications always happen between

mesh entities and their remote copies. To reduce the communication costs in parallel

computations, it is useful to perform efficient neighborhood communications [52, 53]

between neighboring parts.
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Definition Neighboring part

A part Pi neighbors another part Pj if there exists a mesh entity on part Pi

that has a remote copy on part Pj. In other word, part Pi neighbors another

part Pj, if there exists a mesh entity whose residence parts contain both Pi

and Pj.

2.3.2 Partition model

For the purpose of topological representation of a distributed mesh partitioning

and efficient parallel mesh-level operations, a partition model is developed as a

conceptual model existing between a geometric model and a mesh. Based on the fact

that part boundary entities share a set of residence parts depending on the locations

in a partition, a partition model consists of partition model entities [15, 16].

Definition Partition (model) entity

A topological entity in the partition model, P d
i , which represents a group of

mesh entities of dimension d, that have the same residence part(s) P. Each

partition model entity can be uniquely determined by its P.

By keeping a proper relation from a mesh entity to a partition model entity, the

required parallel mesh operations and inter-part communications on a distributed

mesh can be easily supported.

Definition Partition classification

The unique association of a mesh topological entity of dimension di, Mdi
i ,

to the topological entity of the partition model of dimension dj, P
dj
j , where

di ≤ dj, on which it lies is termed partition classification and is denoted as

Mdi
i < P

dj
j .

Definition Reverse partition classification

For each partition model entity, the set of equal dimension mesh entities clas-

sified on that entity defines the reverse partition classification. The reverse

partition classification is denoted as RC(P d
j ) = {Md

i |Md
i < P d

j }.
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Figure 2.7: Distributed mesh and its association with the partition model
via partition classifications.

Figure 2.7 depicts the 2D distributed mesh in Figure 2.6 and its association

with the partition model. The mesh entity arrows indicate the partition classification

of the mesh entities onto the partition model entities and its associated partition

model. The mesh vertices M0
i duplicated on four parts is classified on the partition

vertex P 0
1 . Other mesh vertices and edges (like mesh edge M1

j ) on part boundaries

are classified on partition edges. The remaining mesh entities are not part boundary

entities, and they are classified on the partition faces. Note the reverse classification

returns only the same dimension mesh entities. For instance, the reverse partition

classification of partition edge P 1
1 returns mesh edges located on the thick lines, and

the reverse partition classification of partition face P 2
i returns mesh faces on that

part.

2.4 Mesh Partitioning

The goal of mesh partitioning is to divide the computational work of a mesh

into parts. The computational work is typically associated with specific mesh entities

(vertices, edges, faces and regions) or groups of mesh entities and decompositions

can be computed with respect to any of these entities or to a combination of the

entities (such as, vertices and regions) [54]. To represent these entities, the term of

partition object is defined.

Definition Partition object

The basic unit to which a destination part id can be assigned through a par-
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titioning algorithm. Partition objects are uniquely identifiable data objects in

a partition.

For instance, the set of partition objects can be the set of mesh entities that

are not part of the boundary of any higher order mesh entities [15, 16]. In the

case of a non-manifold model, this includes all mesh regions, the mesh faces not

bounded by any mesh regions, the mesh edges not bounded by any mesh faces, and

mesh vertices not bounded by any mesh edges [15, 16] (for example, see Fig.2 in

reference [16]). In case of a manifold model, partition objects are all mesh regions

in 3D and all mesh faces in 2D. In the present work on process, mesh sets can also

be considered as partition objects (see later §3.3 for detailed discussions). In the

present work, each part contains a subset of the mesh, and the union of the mesh

entities on all parts is equal to the entire mesh.

In terms of the computational models used by a partitioning algorithm, there

are two commonly used partitioning categories: coordinate-based partition [55, 56,

57], and graph/hypergraph-based partition [13, 58, 59, 60] partition. Coordinate-

based approaches, such as Recursive Coordinate Bisection [55] and Space-Filling

Curves [56, 57], require geometric coordinates and only indirectly consider commu-

nication or data movement costs in the computational models. These approaches

are fast but do not typically produce an optimal partition for an unstructured mesh.

Graph/hypergraph-based partitioning approaches model the computation and

communication costs as a graph/hypergraph, and then divide the graph/hypergraph

into weighted subgraphs/hypergraphs through some multilevel heuristic strategies [13,

14, 59, 60]. These methods are well suited for the partitioning of unstructured

meshes [54, 59, 61, 62]. In this case, the mesh is used to construct a weighted graph

G(V ,E), where graph nodes V represent partition objects, and graph edges E rep-

resent dependencies between graph nodes, such as dependencies defined by mesh

entity adjacencies. The weights of graph nodes and graph edges represent compu-

tation cost and communication cost respectively. In the finite element calculations,

defining graph edges built from face/edge type adjacencies was observed to provide

a good set of graph edges for partitioning mesh regions/faces (partition objects) in

a 3D/2D mesh. Figure 2.8 depicts a 2D mesh and its partition object diagram,
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(a) (b)

Figure 2.8: Example of a 2D mesh (left) and its partition object diagram
(right).

where graph nodes are mesh faces, and graph edges are defined by edge adjacencies

between mesh faces.

Graph based partitioning is restricted to symmetric data dependencies, while

hypergraph partitioning is not. Hypergraph partitioning uses a hypergraph model

to add additional dependency information to potentially produce higher quality par-

titions [58]. In this work, we use the Zoltan library which is a collection of tools

for parallel partitioning and load-balancing [13, 14]. It includes a suite of partition-

ing tools, such as graph-based partitioner PARMETIS [60], Parallel Hypergraph

Partitioner (PHG) [58, 59, 63].

For adaptive unstructured mesh applications, the mesh evolves as mesh entities

are added and/or removed from the mesh. Dynamic repartitioning of the mesh,

also called dynamic load balancing [53, 64, 65], is desired for several reasons of (i)

balancing the work loads, (ii) minimizing the processor idle time, (iii) letting the

work loads not exceed the physical memory limitations on each processor. Although

dynamic load balancing has the same goals as general mesh partitioning, it has

additional desired features [53] as follows:

• Operate on a already distributed mesh.
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• Be as fast as possible as it is often performed frequently.

• Be incremental, in other word, small changes in the mesh only produce small

changes in the decomposition.

The third feature is desired since the cost of the mesh redistribution is often the

most significant part of a dynamic load balancing step.

2.5 Mesh Migration

As the mesh changes, mesh entities need to be periodically redistributed among

the parts. The redistribution requires the mesh entities being transferred from one

part to another part. This process is referred to as mesh migration.

An efficient mesh migration algorithm has been developed to support parallel

adaptive mesh-based simulations in the FMDB [15, 16]. The original distributed

mesh data structure was built on top of the partition model, assuming one part per

processor [15, 16]. With the redistribution information from either (i) the partition-

ing result from a partitioning tool (herein, Zoltan library) or (ii) mesh modification

operation request migration of specific entities, the pre-processing step converts the

redistribution information into a list of partition objects to migrate and their des-

tination part ids, referred to as POsToMove, as the input of the mesh migration

algorithm. The migration procedure performs the following steps [15, 16]:

Step 1: Given the POsToMove, collect a set of entities to be updated (EntitiesToUp-

date) and clear the partitioning data (partition classification) of them.

Step 2: Determine residence parts, update the partition classification of entities in

EntitiesToUpdate, and collect entities to remove from the local parts(EntitiesTo-

Remove).

Step 3: Exchange the entities contained in EntitiesToUpdate and update the re-

mote copies of affected entities.

Step 4: Remove unused entities in EntitiesToRemove.

Step 5: Update the owner parts of partition model entities in the partition model.
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Given a list of partition objects to migrate, Step 1 collects the entities whose

partitioning data (i.e., residence parts P, partition classification) will be updated

after migration. In Step 2, after the computation of residence parts P of these enti-

ties, their partition classifications are updated to reflect the changes in the partition

model. This step also determines and collects the entities to remove (EntitiesToRe-

move) from the local parts based on their residence parts P. Step 3 transfers the

required entities to the destination parts. After exchanging entities, the adjacency

relations associated with the newly created entities are properly maintained on desti-

nation parts, and the remote copy information of the affected part boundary entities

are updated. In Step 4, entities collected in EntitiesToRemove are deleted from the

local parts. The adjacency relations associated with the unused entities are deleted

also. For any part boundary entity in EntitiesToRemove, it will be removed from

other parts where it is kept as for remote copies. In the final step (Step 5), the

owner parts of partition entities are updated. The technical aspects of doing this

procedure efficiently in parallel for one part per processor are given in [15, 16].

Figure 2.9 illustrates a 2D partitioned mesh and its associated partition model

to be used for an example of mesh migration. Figure 2.9a is the initial partitioned

mesh where mesh faces (i.e. partition objects) are labeled with their destination

parts. Figure 2.9b is the partition model associated with the initial mesh in Fig-

ure 2.9a, where the owner part of a partition model vertex (edge) is illustrated with

a solid black circle (line). For instance, the owner part of partition vertex P 0
1 is part

P0. Therefore P 0
1 on P0 is depicted with a solid black circle, while P 0

1 on P1 and P2

is depicted with a hollow circle. Part boundary vertices M0
i and M0

j are classified

on partition entity P 0
1 and P 1

3 respectively. Figure 2.9c is the final partitioned mesh

after migrating the labeled partition objects to the destination parts. Figure 2.9d is

the final partition model associated with the mesh in Figure 2.9c. In Figure 2.9d, the

owner parts of partition model entities are updated. For instance, the owner part

of P 0
1 is updated to P1. M0

i becomes an interior entity, and M0
j becomes classified

on the partition vertex P 0
1 .

Mesh migration is critical in supporting of parallel adaptive unstructured mesh

applications that include mesh modification operations [16, 20, 21, 51]. For instance,
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Figure 2.9: Example of 2D mesh migration: (a) initial mesh with parti-
tion objects labeled with their destination parts; (b) partition
model of (a); (c) final mesh; (d) final partition model with
ownership.

when a mesh modification operation (such as, mesh coarsening or swapping and etc.)

on part boundaries is desired, migrating the mesh entities within the polyhedron

associated with the operation onto one part is required to apply the operation.

Migrating the user data associated with the mesh can be achieved through

specifying callback functions [15, 51] in the migration. This mechanism allows the

user to specify how to pack the user data within the message packing procedure and

how to unpack and attach the user data received from remote parts.



CHAPTER 3

GENERIC COMPONENTS

In the traditional programming paradigm, data structures and algorithms are de-

veloped for specific data type and requirements. This leads to code redundancy

and inflexibility thus not allowing effective code reuse for similar applications. One

effective approach to increase code reuse is through generic programming, which

focuses on the development of efficient, reusable software libraries through suitable

abstractions for common requirements. In this chapter, we present how we applied

generic programming to an on-going effort in support of mesh-based adaptive sim-

ulations on massively parallel computers. Three generic components, iterator, set

and tag, were developed using design pattern, C++ template programming and the

Standard Template Library (STL). The scaling studies on massively parallel su-

percomputer demonstrates the efficiency of the reusable, generic components which

do not sacrifice the performance of the previous tools developed in the traditional

object-oriented programming paradigm.

The rest of the chapter is organized as follows. §3.1 introduces the application

of generic programming in the scientific computing software development. §3.2
analyzes the abstract data models of a mesh-based simulation, and summarizes a

set of generic components for adaptive mesh-based simulations. Sections §3.3 - §3.5
present the three generic components developed, and describe how these generic

components are used to support automated adaptive simulations. §3.6 presents the

performance results of adaptive simulations on massively parallel computers, using

the generic components.

3.1 Generic Programming in Scientific Computing Software

The generic programming [17, 66] paradigm has emerged as a methodology to-

wards developing efficient, reusable component-based software libraries, and gained

popularity through the success of the C++ Standard Template Library (STL) [17,

67, 68]. Generic programming has been applied to scientific computing software

29
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packages such as:

• Matrix Template Library (MTL): a generic component library for high per-

formance numerical linear algebra [69],

• Generic Message Passing framework (GMP): message communication library [70],

• Grid Algorithms Library (GrAL): a generic grid toolbox for reusable mesh-

level components [71, 72],

• Computational Geometry Algorithms Library (CGAL): a library for general-

purpose geometric data structures and algorithms [73],

• A generic grid interface of parallel and adaptive scientific computing imple-

mented in DUNE [74, 75],

• A layer of generic software components used for parallelization of the finite

element solver and for solver coupling in multi-physics applications [76].

The software components for an adaptive analysis of partial differential equa-

tions (PDEs) include [22, 23, 34]: (i) the geometric model which houses the topolog-

ical and shape description of the domain of the problem, (ii) attributes describing

the rest of parameters needed to define and quantify the problem, (iii) the mesh

which describes the discretized representation of the domain used by the analysis

method, and (iv) fields which describe the distribution of solution tensors over the

mesh entities.

The most common approach for developing reusable simulation software is to

create libraries for specific data components such as mesh, geometric model, and

field and let them interact through well-defined API’s to perform needed operations

to accomplish scientific applications. The Interoperable Technologies for Advanced

Petascale Simulations (ITAPS) center [9] has defined a set of common interfaces

that support the abstract data model [9, 11, 12], including Geometry (iGeom),

Mesh (iMesh/iMeshP), Field (iField), Data Relation Manager (iRel) and one that

contains the utilities and definitions used by other interfaces (iBase). A common

set of utilities used in the functional components are iterator, set and tag.
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3.2 Simulation Data Model Analysis

The four data models central to the general numerical solution of PDEs with

mesh based methods are:

• Geometric model: geometric model interface that supports the ability to inter-

rogate solid models for topological adjacency and geometric shape information.

• Mesh: domain discretization that provides mesh-based operations.

• Field: representation of tensor fields to quantify the distribution of physical

parameters over mesh entities.

• Relationship manager: utility used to manage the relationships between meshes

and geometric models, tensor fields and meshes, and so on.

The design of reusable and efficient generic components with appropriate con-

cepts for mesh-based simulations is availed from understanding the common re-

quirements of essential data models for parallel mesh-based simulations as well as a

suitable level of abstractions in the form of concepts [17] of such requirements with

ultimate balance between commonality and specialization.

In addition to the four data models described above, adaptive simulations in a

parallel computing environment place extra demands to represent and manipulate

the distributed mesh data over a large number of processing cores (i.e. processors).

The subsections that follow present the data model and functional requirements

of the geometric model, and mesh, and distributed mesh as a first step towards

identifying essential, reusable generic components.

Based on the data model and requirement analysis from §2.1 in Chapter 2, a

set of generic components to support mesh level operations in adaptive mesh-based

simulations on a massively parallel computing environment includes:

Set : component for grouping arbitrary data with common set requirements.

Iterator : component for iterating over a range of data.

Tag : component for attaching arbitrary user data to arbitrary data or set with

common tagging requirements.
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A generic component can be reused in various situations in which the concepts

of the component are met as a minimal set of requirements and associated types.

For instance, the set component can be used on geometric entities, or mesh entities,

and so on. The iterator and tag components can be used on the geometric model,

the mesh, or sets.

The following sections (Sections 3.3 - 3.5) present the design and implementa-

tion of the three components - set, iterator, and tag - which are in use as utilities.

They also illustrate how the three generic components were used to implement

various iterator, set and tagging needs in the Flexible distributed Mesh DataBase

(FMDB) and Geometric Model Interface (GMI), a distributed mesh and geometric

model data infrastructure, to support parallel adaptive simulations [15, 16, 23].

3.3 Set Component

A set is a collection of objects or a container of data objects where a set can

contain other sets. Data objects from which a given set is composed are called

elements or members of the set. Each non-set data member in a set can have

relations to each other. A common relation useful in most applications is ordering.

Depending on whether there is the need to preserve the insertion order for non-set

data members or not, the two set types are defined [9, 12, 30]:

Ordered set : if any two data members are comparable in terms of the insertion

ordering, a set is an ordered set, which can contain duplicate data members.

Unordered set : if the insertion ordering is not preserved, a set is an unordered

set. An unordered set contains unique data members.

3.3.1 Design and implementation

To support set needs of parallel adaptive simulations, the primary constituents

of the set component include: (i) set handle for holding multiple arbitrary data of

the same type, (ii) set holder for maintaining all active sets uniquely identified by

the set handles, and (iii) settable object which models data containable in a set.

The syntax of set API’s for basic set operations, such as set creation/dele-

tion, set existence/type check, set data insertion/deletion and so on, is listed in the
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following. Two Standard Template Library (STL) containers [17, 77], std::list and

std::vector, are used as data types for the output arguments with multiple data.

// create set and store it in set holder

// type: ordered or unordered

template<typename Entity>

int SetHolder_CreateSet (SetHolder<Entity>*,

int type, Set<Entity>*);

// delete set and remove it from set holder

template<typename Entity>

int SetHolder_DelSet (SetHolder<Entity>*,

Set<Entity>*);

// check whether set exists in set holder

template<typename Entity>

int SetHolder_HasSet (SetHolder<Entity>*,

Set<Entity>*, int* exist);

// get a list of sets contained in set holder

template<typename Entity>

int SetHolder_GetSet (SetHolder<Entity>*,

vector<Set<Entity>* >&);

// get # sets contained in set holder

template<typename Entity>

int SetHolder_GetNumSet (SetHolder<Entity>*,

int* num);

// get type of set (ordered or unordered)

template<typename Entity>

int Set_GetType (Set<Entity>*, int* type);

// check whether set has data
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template<typename Entity>

int Set_HasEnt (Set<Entity>*, Entity*, int* exist);

// get # data contained in set

template<typename Entity>

int Set_GetNumEnt (Set<Entity>*, int* num);

// insert data into set

template<typename Entity>

int Set_AddEnt (Set<Entity>*, Entity*);

// insert multiple data into set

template<typename Entity>

int Set_AddEntArr (Set<Entity>*, vector<Entity*>&);

// remove data from set

template<typename Entity>

int Set_RmvEnt (Set<Entity>*, Entity*);

// remove multiple data from set

template<typename Entity>

int Set_RmvEntArr (Set<Entity>*, vector<Entity*>&);

Herein, Entity is a concept modeling a piece of data in a data model. In the

current unstructured mesh applications, Entity can be a mesh entity in a mesh, or a

model entity in a geometric model. Given a desired set type (ordered or unordered),

the function SetHolder CreateSet creates a set and stores its handle in the set holder

object provided.

To implement the data uniqueness and order preservation characteristics of

ordered/unordered sets efficiently, two STL containers, std::set and std::list, are ideal

for an unordered set and an ordered set, respectively. The factory method design

pattern [78], an object-oriented design method to define an interface for creating

a class object with yielding instantiation to sub-classes with specialization, is used
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Set
superset
subset
child
parent
addEnt (entity)
addSubset (set)
addChild (set)
union (set1, set2)
createSet (type)

Entity

Set* createSet (int type)
{
   if type = Ordered
      return new OrderedSet;
   if type = Unordered
      return new UnorderedSet;
}OrderedSet

ent_container: std::list
addEnt (entity)
union (set1, set2)

Entity
UnorderedSet

ent_container: std::set
addEnt (entity)
union (set1, set2)

Entity

Figure 3.1: Class diagram of the generic set component.

to support the dynamic container data structure selection upon the set type input

at runtime. As illustrated in Figure 3.1, the base class (Set) provides a uniform

interface (function createSet) and the factory method enables creation of ordered or

unordered set dynamically.

In addition to the general set functionality described above, it’s also desirable

to support set relations (parent/child and superset/subset) and set binary opera-

tions such as union, subtraction, and intersection for flexible set manipulation. The

following are the API’s for set binary operations.

// set operations: third argument is output set

template<typename Entity>

int Set_Unite (Set<Entity>*,

Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_Intersect (Set<Entity>*,

Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_Subtract (Set<Entity>*,

Set<Entity>*, Set<Entity>*);
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The following are the API’s for set relations.

// superset-subset operations

template<typename Entity>

int Set_AddSuperSub (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_RmvSuperSub (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_IsSubOf (Set<Entity>*, Set<Entity>*, int* isSub);

template<typename Entity>

int Set_GetNumSuper (Set<Entity>*, int* num);

template<typename Entity>

int Set_GetNumSub (Set<Entity>*, int* num);

template<typename Entity>

int Set_GetSuper (Set<Entity>*, list<Set<Entity>*>&);

template<typename Entity>

int Set_GetSub (Set<Entity>*, list<Set<Entity>*>&);

// parent-child operations

template<typename Entity>

int Set_AddPrntChld (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_RmvPrntChld (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_IsChldOf (Set<Entity>*, Set<Entity>*,

int* isChld);
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template<typename Entity>

int Set_GetNumChld (Set<Entity>*, int* num);

template<typename Entity>

int Set_GetNumPrnt (Set<Entity>*, int* num);

template<typename Entity>

int Set_GetChldn (Set<Entity>*, list<Set<Entity>*>&);

template<typename Entity>

int Set_GetPrnts (Set<Entity>*, list<Set<Entity>*>&);

3.3.2 Application

Due to the property of a mesh entity, which must be assigned to a part for

management, there are two types of entity sets used in unstructured mesh appli-

cations depending on the number of parts associated with the entities contained

in a set: (i) a set of entities residing on a single part, and (ii) a set with entities

spanning multiple parts. In support of parallel anisotropic adaptive meshing based

on mesh metric fields with adaptive boundary layer meshes [4], a stack of boundary

mesh entities is required to be on a single part for mesh modification, partition and

migration, and it is useful to differentiate an entity set with the single part restric-

tion from an entity set without such a restriction. Please refer to Chapter 4 for the

detailed discussions of mesh sets.

3.3.2.1 Mesh entity set for iMesh:

Using the set component with a mesh instance as a SetHolder, all requirements

of iMesh sets are easily supported [9]; (i) populating by addition or removal of en-

tities into or from the set, (ii) traversal through an iterator with various conditions

such as type, or topology of an entity, (iii) set binary operations (union, subtrac-

tion, intersection), and (iv) relationships among sets such as superset/subset and

parent/child.
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3.4 Iterator Component

An iterator is a generalization of a pointer, an object that points to another

object used to traverse over a range of objects. When an iterator is within a range,

the increment operator moves the iterator to the next object [17, 77]. In the STL,

the concept iterator models an object which traverses over a single one-dimensional

container [17, 77].

3.4.1 Design and implementation

To support iterator needs of parallel adaptive simulations, in addition to the

general iterator functionality such as initialization, advancement, reset, position

check, and iterator deletion, the iterator component should support: (i) filtering :

skipping unwanted data over traversal with various conditions specifiable by the

user, and (ii) resilience: validity with data modification such as data insertion or

deletion.

The following are the API’s for iterator initialization, advancement, reset, the

position check, and iterator deletion. The output of API functions is an integer

value notifying success (zero) or failure (predefined non-zero error code) to the user.

// iterator initialization

template<typename Iterator, typename Entity>

int Iter_Init (const Iterator& first,

const Iterator& last,

int type, int topo, void* ptr,

void (*Functor)(Iterator&, Iterator&,void*,int,int),

Iter<Iterator, Entity>*);

// iterator advancement

template<typename Iterator, typename Entity>

int Iter_GetNext (Iter<Iterator, Entity>*, Entity*);

// iterator reset

template<typename Iterator, typename Entity>

int Iter_Reset (Iter<Iterator, Entity>*);
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// iterator position check

template<typename Iterator, typename Entity>

int Iter_IsEnd (Iter<Iterator, Entity>*, int*);

// iterator deletion

template<typename Iterator, typename Entity>

int Iter_Del (Iter<Iterator, Entity>*);

Herein, Entity is a concept which is to represent a piece of data in a data

model, for instance, it can be a mesh entity in a mesh, a model entity in a geometric

model, or a mesh entity in a set. In a distributed mesh environment, mesh entity

traversals only consider mesh entities within a single part with an iterator to avoid

extra communication costs.

In Iter Init function, given the input arguments consisting of (i) a data range

represented by an iterator pair [first, last)1, (ii) type (dimension), (iii) topology,

(iv) void∗ type pointer (ptr), and (v) user-defined filtering function pointer (Func-

tor), an iterator instance is created and returned. The entity data which satisfies

the specified type, topology and filtering function pointer requirements within the

data range is traversed with the iterator. ptr is reserved for any user-defined data

structure that can be casted into a void∗ type pointer, and can be an empty null

pointer if unnecessary.

The function Iter GetNext fetches the entity data pointed by the current iter-

ator, and then advances the iterator to the next available entity data. If the iterator

reaches to the end of the data range, the function Iter GetNext returns a specific

pre-defined non-zero error code.

Unlike an STL iterator [77], the iterator component for adaptive unstructured

mesh simulations should be able to traverse multiple containers through a single

iterator since the topological model data is usually stored in multiple containers

per type. For instance, mesh entities can be stored in four containers with vertices,

edges, faces and regions being in separate containers. To support traversing multi-

1The notation [first, last) refers to all the iterators from first up to, but not including, last [77].
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ple containers with a single iterator, a linking method is developed in the iterator

advancement operator with which the end of the previous one-dimensional container

is connected to the beginning of the next container.

The following is the pseudo-code to traverse multiple containers with a single

iterator.

// cur_pos is the current iterator position

if cur_pos == current_container.end

if (current_container.end != data_range.end)

cur_pos = next_container.begin;

else

return;

else

advance cur_pos;

3.4.2 Applications

To support parallel adaptive simulations, the minimum set of iterators needed

in a mesh and geometric model includes (i) mesh entity traversal in a part by type

and/or topology, (ii) mesh entity traversal by reverse geometric classification, (iii)

part boundary mesh entity traversal, (iv) mesh entity traversal in a set by type

and/or topology, and (v) geometric entity traversal in the entire geometry by type.

For all cases, the iterator range for mesh entities is limited to entities on a single

part or a set.

In the FMDB, a single part uses an std::set container to store mesh entities

in terms of entity duplicate prevention. To be consistent with the std::set iterator

specification [77], an iterator is guaranteed to work properly in the presence of data

modifications with one exception, the case when the entity the iterator is currently

pointed at is deleted. However, even in such cases, on deletion of a mesh entity

currently being pointed by the iterator, the invalid iterator problem can be avoided

through a simple approach, which is to advance the iterator on entity deletion to

the next (not already deleted) entity member it would have proceeded to. In this

way, an iterator is guaranteed to always point at a valid entity member or to the
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end of the std::set container, in the case that the member being removed is the last

one.

3.4.2.1 Mesh entity traversal in part by type and/or topology:

An iterator for a mesh entity traversal is implemented by providing the first

and one past the end of an entity container as for the data range based on the

requested entity dimension and topology. If a multiple dimensional mesh entity

traversal is needed, the linking method is used to traverse multiple mesh entity

containers, in which mesh entities are stored per dimension.

To traverse mesh entities in a part by type and/or topology, the input of the

iterator creation API only requires the entity dimension and entity topology, so

various combinations of the type and topology pairs are possible for entity filtering.

Users can also specify all types (ALLTYPE ) and all topologies (ALLTOPO).

The following code illustrates how to initialize an iterator to implement a

mesh entity traversal in a part. For each part, the entity container of dimension i is

denoted as part→container.[i] where i={VERTEX, EDGE, FACE, REGION}. For
each entity container of dimension i, part→container[i].begin and part→container[i].e-

nd denote the first and one past the end of the container, respectively. pPart is a

pointer type to a part, and mEntity is the class name of mesh entity.

typedef entity_container_iterator_type part_iter;

typedef Iterator<part_iter, mEntity>* pPartEntIter;

// iterator initialization

int FMDB_PartEntIter_Init (pPart part, int type,

int topo, pPartEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part, &EntityProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,
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part->container[type].end, type, topo,

(void*)part, &EntityProcessFilter, iter);

}

Herein, if the input entity type is ALLTYPE, the iterator input range is speci-

fied as all the mesh entities of all dimensions, denoted by part→container[VERTEX].b-

egin and part→container[REGION].end. Otherwise, the iterator input range is spec-

ified as mesh entities of a specific dimension, denoted by part→container[type].begin

and part→container[type].end.

For readability, the predefined data type of an entity container iterator on each

part is part iter and pPartEntIter is a pointer to the template class Iterator<par-

t iter, mEntity>. The following pseudo code illustrates the function EntityProcess-

Filter, which moves the iterator to the next proper position that is a pointer to the

next mesh entity satisfying the type and topology criterion requested.

void EntityProcessFilter (part_iter& ibegin,

part_iter& iend, void* ptr, int type, int topo)

{

if ibegin==iend

return;

for each entity in range [ibegin, iend)

if entity->type==type && entity->topology==topo

ibegin = current_entity_position;

return;

ibegin=iend;

}

The following code illustrates how the iterator component is used to implement

other iterator functionalities in a mesh entity traversal in a part.

// iterator advancement

int FMDB_PartEntIter_GetNext

(pPartEntIter iter, mEnt* ent)

{
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return Iter_GetNext (iter, ent);

}

// iterator position check

int FMDB_PartEntIter_IsEnd

(pPartEntIter iter, int* isEnd)

{

return Iter_IsEnd(iter, isEnd);

}

// iterator deletion

int FMDB_PartEntIter_Del (pPartEntIter iter)

{

return Iter_Del (iter);

}

// iterator reset

int FMDB_PartEntIter_Reset (pPartEntIter iter)

{

return Iter_Reset (iter);

}

3.4.2.2 Mesh entity traversal by reverse classification:

For the input geometric entity of dimension d, mesh entity traversal by reverse

geometric classification is implemented using the iterator component with the filter-

ing function that checks the geometric classification of each mesh entity on traversal.

Note the cost of the reverse classification through iterator is O(n) where n is the

number of mesh entities in a part, while the reverse classification can be obtained

in O(1) cost using mesh adjacencies.

The following FMDB API illustrates how to initialize an iterator for a mesh

entity traversal by reverse classification in a part.

// iterator initialization
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int FMDB_PartEntIter_InitRevClas (pPart part,

pGeomEnt geomEnt, int type, pPartEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part_ent, &GeomClasProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,

part->container[type].end, type, topo,

(void*)part_ent, &GeomClasProcessFilter, iter);

}

Herein, pGeomEnt is a pointer type to a geometric entity. If the input entity

type is ALLTYPE, the iterator input range is specified as the mesh entities of all

dimensions. Otherwise, the iterator input range is specified as mesh entities of a

specific dimension. Using a data structure part ent that is casted into void∗ type

and contains a pair of local part and geometric entity, the input filtering function

GeomClasProcessFilter is used to increment the iterator to the next proper position

that points to a mesh entity classified on a given geometric entity geomEnt in the

range. Note that the local part stored in the data structure part ent is used by the

linking method to traverse multiple entity containers in a part. The following is the

pseudo code of function GeomClasProcessFilter.

void GeomClasProcessFilter(part_iter& ibegin,

part_iter& iend, void* ptr, int type, int topo)

{

ent = (cast<part_geomEnt*> ptr)->second;

if ibegin==iend

return;

for each entity in range [ibegin, iend)

if entity->geometric_classification

==cast<pGeomEnt> ent

ibegin = current_entity_position;
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return;

ibegin=iend;

}

An example usage is to calculate the number of mesh entities classified on a spe-

cific geometric entity through the FMDB API FMDB GeomEnt GetNumRevClas.

The pseudo code of Algorithm 1 illustrates the procedure, which consists of three

main steps: (i) initializing an iterator based on the input part, geometric entity (ge-

omEnt) and entity type, (ii) advancing the iterator one step forward in the entity

traversal loop, and (iii) deleting the iterator to avoid memory leak.

Data: part, geomEnt, type
Result: store the number of mesh entities classified on geomEnt into numEnt
begin

/* STEP 1: initialize an iterator */

numEnt ← 0;
iterEnd ← FMDB PartEntIter InitRevClas(part, geomEnt, type, iter);

/* STEP 2: traverse mesh entities in a loop */

while iterEnd = false do
iterEnd ← FMDB PartEntIter GetNext(iter, meshEnt);
if iterEnd = true then break;
++numEnt;

end

/* STEP 3: delete the iterator */

FMDB PartEntIter Del(iter);
return numEnt;

end

Algorithm 1: Example of mesh entity traversal by reverse classifica-
tion: to calculate the number of mesh entities classified on a specific
geometric entity in a part.

3.4.2.3 Part boundary mesh entity traversal:

A part boundary entity traversal is implemented using the iterator component

with the filtering function which checks the duplicated copy existence of each mesh

entity (also referred to as remote copy [15, 16]) on traversal. Given the input argu-

ments consisting of entity type, topology and non-local part id, called target part id,
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the iterator creation API initializes an iterator to traverse mesh entities duplicated

on the part boundary between the local part and target part.

int FMDB_PartEntIter_InitPartBdry (pPart part,

int target_part_id, int type, int topo,

pPartEntIter& iter)

{

part_pid=pair<part, target_part_id>;

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part_pid, &PartBdryProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,

part->container[type].end, type, topo,

(void*)part_pid, &PartBdryProcessFilter, iter);

}

Using a data structure part pid that is casted into void∗ type and contains

a pair of local part and target part id, the function PartBdryProcessFilter moves

the iterator to the next proper position, which points to a mesh entity that is on

the part boundary between the local part and target part with the help of partition

classification.

3.4.2.4 Mesh entity traversal in set by type and/or topology:

Similar to a mesh entity iterator in a part described in §3.4.2.1, a mesh entity

iterator in an entity set is implemented using the iterator component with the input

range [set→container.begin, set→container.end), and the function EntityProcessFil-

ter, where set→container denotes the entity container for a set.

3.4.2.5 Geometric entity traversal by type:

In the Geometric Model Interface (GMI) [79], an std::vector container is used

to store the model entities of a given dimension. Given the geometric model (model)
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and entity dimension (type), the following GMI API illustrates how to initialize an

iterator for a model entity traversal.

typedef model_entity_container_iterator_type model_iter;

typedef Iterator<model_iter, gEntity>* pGeomEntIter;

// iterator initialization

int GMI_GeomEntIter_Init (pGeomMdl model, int type,

pGeomEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (model->container[VERTEX].begin,

model->container[REGION].end, type, 0,

(void*)model, &GEntityProcessFilter, iter);

else

return Iter_Init (model->container[type].begin,

model->container[type].end, type, 0,

(void*)model, &GEntityProcessFilter, iter);

}

Herein, pGeomMdl is a pointer type to a geometric model, and gEntity is a

class of geometric entity. For readability, model iter is a predefined data type of

an iterator of the geometric model’s entity container. pGeomEntIter is a predefined

data type of a pointer to the template class Iterator<model iter, gEntity>.

Similar to a mesh entity iterator in a part described in §3.4.2.1, the model en-

tity container of dimension i is denoted as model→container[i] where i={VERTEX,
EDGE, FACE, REGION}. If the input entity type is ALLTYPE, the iterator’s

range is specified as the mesh entities of all dimensions (V ERTEX to REGION).

Otherwise, the iterator’s range is specified as the input. The geometric entity filter-

ing function GEntityProcessFilter moves the iterator to the next proper position in

the geometric model.

The following code illustrates how the iterator component is used to implement

iterator advancement, reset, the position check, and deletion functionalities in the

geometric model.
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// iterator advancement

int GMI_GeomEntIter_GetNext

(pGeomEntIter iter, pGeomEnt ent)

{

return Iter_GetNext (iter, ent);

}

// iterator position check

int GMI_GeomEntIter_IsEnd

(pGeomEntIter iter, int* isEnd)

{

return Iter_IsEnd(iter, isEnd);

}

// iterator deletion

int GMI_GeomEntIter_Del (pGeomEntIter iter)

{

return Iter_Del (iter);

}

// iterator reset

int GMI_GeomEntIter_Reset (pGeomEntIter iter)

{

return Iter_Reset (iter);

}

3.5 Tag Component

Tags are used as containers of arbitrary user-defined data that can be attached

to the geometric model, geometric model entities, mesh instance, part, mesh entities,

sets, and fields. Different values of a particular tag can be associated with different

data models, entities or sets [9, 12, 30].
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3.5.1 Design and implementation

The tag component consists of (i) tag data for representing arbitrary user data,

(ii) tag handle for holding a unique tag identifier attachable to primary data, (iii)

tag holder for maintaining all active tags identifiable with handle, and (iv) taggable

object which models the primary data to which tag data is attached with a tag

handle.

Each tag handle is uniquely identified by a pair of belonging tag holder and

string tag name and has two attributes, (i) tag data type which is primary type

(integer, double, entity and set) or arbitrary type data, and (ii) tag size which

specifies the number of data in tag data. If the tag size is 1, the tag data holds one

single piece of data of given tag type. If the tag size is greater than 1, the tag data

holds an array of data of given tag type.

The following are the API’s for tag handle creation/deletion and various

queries for tag handles within a tag holder.

// given tag name, tag type, and tag size,

// create tag handle and store it in tag holder

TagHandle* TagHolder_CreateTag

(TagHolder*, const char* name, int type, int size);

// delete tag handle and remove it from tag handle

int TagHolder_DelTag (TagHolder*, TagHandle*);

// remove all tags from tag handle

void TagHolder_ClearTag (TagHolder*);

// check tag type matches given type info

int TagHolder_CheckTag (TagHolder*, TagHandle*,

int tag_type);

// check tag exists in tag holder

int TagHolder_HasTag (TagHolder*, TagHandle*,

int *exist);
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// given tag name, find tag from tag holder

int TagHolder_FindTag (TagHolder*,

const char* tag_name, TagHandle*);

// get a list of tag stored in tag holder

void TagHolder_GetTag (TagHolder*, vector<TagHandle*>&);

For a taggable object and tag handle, the API’s for getting/setting a single

or array of tag data with a primary type (integer, double, entity and set) are the

following.

template<typename Type>

int Taggable_SetData (Taggable*, TagHandle*, Type*);

template<typename Type>

int Taggable_GetData (Taggable*, TagHandle*, Type[]);

For a taggable object and tag handle, the API’s to get/set a single or array of

void∗ tag data are presented below. Note that templated typename Type is required

to enable transforming void∗ tag data to specific tag type data specified on the tag

handle creation.

template<typename Type>

void Taggable_SetByteData (Taggable*, TagHandle*,

const void* data, int data_size);

template<typename Type>

void Taggable_SetByteArrData (Taggable*, TagHandle*,

const void* data, int data_size);

template<typename Type>

void Taggable_GetByteData (Taggable*, TagHandle*,

void** data, int* data_size);
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TagHolder
tag_list

Taggable
tag_data

mMesh mEntity

Figure 3.2: Class diagram of the mesh and mesh entity inherited from
the tag component’s classes.

template<typename Type>

void Taggable_GetByteArrData (Taggable*, TagHandle*,

void** data, int* data_size);

3.5.2 Application

To support tag handles created per mesh instance, the mesh class, mMesh,

inherits from the class TagHolder. To support efficient tag data access and automatic

tag data removal along the taggable object deletion, part, mesh set and mesh entity

classes inherit from the class Taggable. In Figure 3.2, class diagram illustrates

mMesh (the mesh class) inherited from TagHolder and mEntity (the mesh entity

class) inherited from Taggable, which are to support tag handles per mesh instance

and tagging functionality to mesh entities, respectively.

The following is the pseudo code to create a tag handle of specific name, type

and size. pMeshMdl is a pointer type to mesh data which is identical to mMesh∗.

int FMDB_Mesh_CreateTag (pMeshMdl mesh,

const char* tag_name, int tag_type,

int tag_size, TagHandle* tag)

{

if tag with given tag_name exists in mesh

tag = existing_tag;

else

tag = TagHolder_CreateTag(cast<TagHolder*>(mesh),
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tag_name, tag_type, tag_size);

return SUCCESS;

}

Herein, if a tag handle of the specific name, type and size already exists in the

tag holder object, i.e. the mesh, the function just returns the existing tag handle.

Otherwise, it creates a new tag handle and stores it in the mesh.

The following is the pseudo code to delete a specific tag handle from the mesh.

int FMDB_Mesh_DelTag (pMeshMdl mesh, TagHandle* tag)

{

TagHolder_DelTag(cast<TagHolder*>(mesh), tag);

delete tag;

return SUCCESS;

}

Herein, the function also deallocates the tag handle pointer to avoid the mem-

ory leak.

The following is the pseudo code to search and get tag handle(s).

// for input string name, find tag handle from mesh

int FMDB_Mesh_FindTag (pMeshMdl mesh, char* name,

TagHandle* tag)

{

return TagHolder_FindTag (cast<TagHolder*>(mesh),

name, tag);

}

// get all tag handles in mesh

int FMDB_Mesh_GetTag (pMeshMdl mesh,

vector<TagHandle*>& tags)

{

return TagHolder_GetTag (

cast<TagHolder*>(mesh), tags);

}
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The code to set/get integral tag data to a part, and delete tag data attached

to a part is illustrated below.

// set integral tag data to a part

int FMDB_Part_SetIntTag (pPart part, TagHandle* tag,

const int data)

{

return Taggable_SetData<int>(cast<Taggable*>(part),

tag, &data);

}

// get integral tag data from a part

int FMDB_Part_GetIntTag (pPart part, TagHandle* tag,

int* data)

{

return Taggable_GetData<int>(cast<Taggable*>(part),

tag, data);

}

// delete tag data attached to a part

int FMDB_Part_DelTag (pPart part, TagHandle* tag)

{

return Taggable_DelTag (cast<Taggable*>(part), tag);

}

The code to set/get an array of integral tag data with an entity set is given

below. pEntSet is a pointer type to a mesh entity set.

// get integral tag array data to a set

int FMDB_Set_SetIntArrTag (pEntSet set, TagHandle* tag,

const int* data, int data_size)

{

if data_size!=tag->size return ERROR;

return Taggable_SetData<int>(cast<Taggable*>(set),

tag, data);
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}

// get integral tag array data from a set

int FMDB_Set_GetIntArrTag (pEntSet set, TagHandle* tag,

int** data, int* data_size)

{

*data_size = tag->size;

return Taggable_GetData<int>(cast<Taggable*>(set),

tag, *data);

}

Contrary to the code to set/get primary type tag data in which accessing the

tag data is done in one step, the implementation to set/get byte type (void∗) tag

data is composed of two steps: (i) for a given tag handle, retrieve tag type and

transform the void∗ tag data to a specific (primary) type data if necessary and (ii)

if primary type, call single or array type set/get tag functions based on tag size

information. For instance, part of the code to set void∗ tag data with a mesh entity

(ent) is given below.

if tag->type==byte

out = Taggable_SetByteArrData<char>

(cast<Taggable*>(ent), tag, data, data_size);

if tag->type==integer

if tag->size==1 // single integer

out = Taggable_SetByteData<int>

(cast<Taggable*>(ent), tag, data, data_size);

else // multiple integers

out = Taggable_SetByteArrData<int>

(cast<Taggable*>(ent), tag, data, data_size);

The code to set void∗ tag data with other primary type, such as double, pMesh-

Ent or pEntSet, is implemented by replacing integer to other primary data type in

the code above. As aforementioned, tagging for a part, entity and entity set can
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be implemented easily by reusing the tag component through class inheritance and

template mechanism.

In parallel computations using the FMDB, migrating the tag data attached

to an entity along with the migration is achieved through specifying callback rou-

tines [15, 51] in the mesh migration, which is the mechanism to allow the user to

specify how to pack the tag data within the entity message packing procedure and

how to unpack and attach the tag data received from remote parts. If no callback

routine is specified, tag data is ignored during the migration and removed automat-

ically when an entity is eliminated from the part.

3.6 Scaling Studies on Mesh Adaptation Using Generic Com-

ponents

This section presents an example in parallel mesh adaptation developed us-

ing the geometric model and mesh (Geometric Model Interface (GMI) [79] and

FMDB) with the three generic components used underneath as utilities. The mesh

adaptation procedure developed in SCOREC [3, 20] is carried out on a flow simula-

tion example to compare the performance of mesh adaptation between traditional

object-oriented and generic programming paradigm. The mesh adaptation proce-

dure is chosen for testing, since it relies heavily on entity iteration and tag data

association. The iterator component is used to support traversing over either geo-

metric model entities or mesh entities, and the tag component is to support data

association with either of these entities. Associated data can be arbitrary, such as

a solution-based mesh size field.

In the adaptive flow simulation, a straight pipe model with air bubbles dis-

tributed in the pipe is used (see Figure 3.3). Figure 3.3a shows the mesh size field

which represents the motion of air bubbles in the geometric model. The smaller

size field is shown in blue, implying a fine mesh (or high resolution), and the rel-

ative large size field is shown in red, implying a coarse mesh. In multi-phase flow

simulations, fine meshes at phase boundaries are needed to capture the complicated

physical phenomena at the interface [1]. Figure 3.3b shows a segment of the straight

pipe model which involves the motion of five air bubbles by a distance of 1/5 of their
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Figure 3.3: Defined mesh size field (left) and a segment of straight pipe
model with air bubbles (right).

radius. A zoomed bubble in the mesh is colored by the magnitude of size field in

Figure 3.3b.

The mesh adaptation procedure starts with an initial uniform tetrahedral mesh

with 165 million tetrahedra, and obtains an adapted mesh of 188 million tetrahedra.

All the test cases were run on the ANL Intrepid (IBM BG/P system) [80]. The test

cases were executed on 1, 024 up to 32, 768 cores using 512MB per core memory. The

execution time of the mesh adaptation procedure for all the test cases are collected,

and scaling factors are computed based on the execution time on 1, 024 cores. The

scaling factor is defined as

s-factor = (npbase ∗ tbase)/(npi ∗ ti), (3.1)

where t represents the execution time and np represents the number of cores. For

instance, npbase represents the number of cores in the base case (here is the test case

running on 1, 024 cores), and tbase represents the execution time of the base case.

The performance results are summarized in Table 3.1, which compares the

performance of two methods including (i) the mesh adaptation procedure using the

iterator and tag components, and (ii) the mesh adaptation procedure using the tra-

ditional object-oriented programming paradigm. As shown in the last column of the
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Table 3.1: Scaling results of air-bubble mesh adaptation on ANL In-
trepid using two methods: mesh adaptation without using the
generic components (adapt without generic), and mesh adap-
tation using the generic components (adapt with generic).

adapt without generic adapt with generic time

num of cores time s-factor time s-factor increase(%)

1,024 (base) 475.90 1 476.07 1 0.04
2,048 329.94 0.72 330.81 0.72 0.26
4,096 220.17 0.54 220.99 0.54 0.37
8,192 107.78 0.55 110.32 0.54 2.36
16,384 74.46 0.40 74.72 0.40 0.35
32,768 44.15 0.34 44.33 0.34 0.41

table, the mesh adaptation procedure using the generic components requires at most

2.36% more time than the one without the generic components, and does not affect

the scaling. This time increase may due to the conditional statements implemented

for P-sets during mesh migration (refer to the P-set discussion in Chapter 4). In

summary, the generic components achieve code reusability and flexibility without

sacrificing the performance of mesh adaptation, compared to the traditional object-

oriented programming.



CHAPTER 4

ENTITY SET

The main purpose of using entity sets is to support the effective grouping of entities

for various applications. This chapter first introduces the mathematics definitions

of sets, and analyzes the entity set definitions and functionality. Then this chapter

extends the generic set component to deal with specific requirements of mesh entity

grouping for some unstructured mesh applications, especially boundary layer mesh

applications.

4.1 Introduction to Set Theory

A set is a collection of objects or a container of objects. Objects from which a

given set is composed are called elements or members of the set. An object x belongs

to a set A can be symbolically represented as x ∈ A [81, 82]. It is also assumed that

a set has common properties associated with a collection of objects. A set can be

described using a number of different ways, such as (i) to list up all the members

of a set, (ii) to describe the common properties for membership in a set, or (iii) to

give a recursive definition for membership of a set. Basic definitions used to build

up the fundamental axiom system for set theory are given in references [81, 82]. Key

definitions important to the development of mesh entity sets are given here:

Definition Empty set

The (unique) set with no elements is called the empty set, denoted by ∅.

Definition Subset

Set A is a subset of set B, if every element in A is also in B. Formally, A is a

subset of B, denoted by A ⊆ B, if ∀x, x ∈ A implies x ∈ B.

Correspondingly, set B is a superset of set A, denoted by B ⊇ A.

Definition Set equality

Two sets are equal if and only if they have the same elements. More formally,

58
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for any sets A and B, A = B if and only if ∀x, x ∈ A implies x ∈ B, and vice

versa.

Definition Set size

If a set A has n distinct elements for some natural number n, n is the set size1

of A and A is a finite set. The size of A is denoted by |A|.

For example, the size of the set {1, 2, 3, 4} is 4.
Sets can be combined in a number of different ways to produce another sets.

Simple set-theoretic operations (union, intersection, difference, and etc) are intro-

duced below [81, 82].

Definition Union

The union of sets A and B, denoted by A ∪ B, is the set defined as A ∪ B =

{x|x ∈ A and x ∈ B}.

Definition Intersection

The intersection of sets A and B, denoted by A∩B, is the set defined as A∩B
= {x|x ∈ A or x ∈ B}.

Definition Subtraction (Difference)

The difference of sets A and B, denoted by A−B, is the set defined as A−B

= {x|x ∈ A and x /∈ B}.

In general, A−B ̸= B − A.

A binary relation defined on a set can be used to reflect a binary relation

between the elements of the set, such as an ordering of the elements of a set. If any

two elements of a set A are comparable in terms of an ordering relation (≤), i.e.
either a ≤ b or b ≤ a exists where a, b ∈ A, then set A is a totally ordered set [81].

4.2 Entity Set Definitions

In a mesh-based numerical analysis environment, an entity set is an arbitrary

collections of entities for applications [12, 30]. Herein, entities can be either mesh

1For a more common and extensive term set cardinality, refer to set theory textbooks [81, 82].
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entities in a mesh, or geometric model entities in a geometric model. For instance,

an entity set could be used to represent the set of mesh faces classified on a geometric

model face. More formally, an entity set can be denoted as follows:

Si = {x|x ∈ V and P (x)}, (4.1)

where V ∈ {G,M,F}, G, M and F represents the geometric model, the mesh and

fields separately, and P (x) represents the common properties of entity members in

the set. A mesh (entity) set that contains unique mesh entities of dimension d is

denoted by

Si = {Md
i | Md

i ∈M and (∀x, y ∈ Si, x ̸= y)}. (4.2)

An entity set deals with entity members, and it supports general set properties

and operations defined in §4.1.
Relations between two entity sets S1 and S2 is a subset of the product of

S1 × S2. Entity set relations [12, 30] can be used to represent (i) superset and

subset relations, or (ii) logical relations between two sets, also referred to as parent

and child relation.

A logical relation can be used to represent entity sets in multigrid and adaptive

mesh sequences. A parent-child relation between two entity sets Si and Sj can be

denoted by

Si → Sj, (4.3)

where the relation → indicates the direction from Si to Sj. Si is a parent, and Sj,

is a child.

In an entity set Si, applications can define relations between entity members

(non-set members). Entity member relations will be subset of the product Si × Si.

A relation R defined on entity members in a set Si is denoted by

(Si, R). (4.4)

A common relation between entity members useful in many applications is ordering.

An entity set can be either a partially ordered set or totally ordered set. A totally
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ordered entity set is denoted by

(Si,≤), (4.5)

where ≤ represents a total ordering between any two entity members in the set Si.

Depending on whether there is the need to preserve the insertion order for

non-set entity members or not, we define two types of entity sets [9, 12, 30]:

Definition Ordered set

If any two entity members are comparable in terms of the entity insertion order,

a set is a (totally) ordered set, which can contain duplicate entity members.

Definition Unordered set

If no such ordering is preserved, a set is an unordered set.

In this work, we only consider (i) totally ordered entity set that preserves the

entity insertion order in the set, and (ii) unordered entity set that contains unique

entity members. For example, given two entity members (V di
i and V

dj
j ) in an ordered

set Si, V
di
i ≤ V

dj
j means that V di

i is inserted earlier than that V
dj
j is. On the other

hand, for any two elements x and y in an unordered set Sj, it can be concluded that

x ̸= y.

If an entity set contains another entity set, set contents can be queried recur-

sively or nonrecursively. For example, if set Si is a subset of set Sj, Si ⊆ Sj, a

recursive request for the contents of Sj will include (i) the entities in Sj and (ii) the

entities in the sets contained in Sj, such as entities in set Si.

4.3 Entity Set Functionality

For illustration purposes, mesh sets, sets which contain only mesh entities, are

used as an example to illustrate the entity set functionality. The mesh entity set

functionality considered here is based on the ITAPS specification [12, 30, 42].

The mesh set functionality is divided into three parts: (i) operations on the

mesh level, (ii) operations on the set level and (iii) operations on the entity level.

Operations on the mesh level, summarized in Table 4.1, include querying to deter-

mine the number of sets in a mesh; retrieving all the sets in a mesh; and iteration
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Table 4.1: Set functionality at mesh level.

Operation Description

Iteration over sets Loop through all the sets in a mesh
GetNumSet Get the number of sets in a mesh
GetSet Get all the sets in a mesh

over all the sets in a mesh. In general, iteration operations include initiating an

iterator based on the application’s requirements, retrieving the next iterator, and

resetting an iterator.

Operations on the set level are further divided into three parts: (i) basic set

functionality, (ii) hierarchical set relation, and (iii) set binary operations. The

basic set functionality, summarized in Table 4.2, includes creating and destroying

sets, adding and removing entities and sets into and from a set, and set specific

query functions. Sets are created empty. Sets can be of various types, thus the

specific type of a set must be specified when the set is created and can be queried

later. Entities can be added to or removed from a set individually or in blocks. If a

set allows duplicated members, the most recently added copy of duplicated members

will be the first to be deleted. It is allowed to add sets to or remove sets from each

other to represent relations such as subset and superset. A set can also be queried to

determine the number of member entities and sets that it contains, and to determine

whether a given entity or set belongs to that set. Entity traversal over a set is also

supported based on entity type and topology conditions.

Set relation operations, summarized in Table 4.3, include adding, removing,

counting and identifying parents and children, and deciding if one set is a child of

another.

Set binary operations (intersection, union and subtraction) are summarized in

Table 4.4. Set binary operations apply to both entity members and set members,

but do not preserve any set relations. In other words, the resulting set will not

have any relationships assigned automatically. Applications can later define any

relation(s) on the resulting set through set relation operations.

For all set binary operations, if and only if both input sets are ordered sets,
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Table 4.2: Basic set functionality at set level.

Operation Description

Create/Delete Create or delete a set of various types
AddEnt/RmvEnt Append or remove an entity to or from a set
AddEnts/RmvEnts Append or remove an array of entities to or from

a set
AddSet/RmvSet Append or remove a set to or from a set
GetType Decide the type of a set
GetNumEnt Get the number of entities in a set
GetNumSet Get the number of sets in a set
HasEnt Decide if a given entity belongs to a set
HasSet Decide if a given set belongs to a set
Iteration over entities Loop through entities in a set with specific type

and topology requirements

Table 4.3: Hierarchical set functionality at set level.

Operation Description

AddPrntChld Create a parent to child relationship
RmvPrntChld Remove a parent to child relationship
IsChldOf Decide if a set is a child of another set
GetNumChld Get the number of children of a set
GetNumChld Get the number of children of a set
GetChldn Get an array of children for a set
GetPrnts Get an array of parents for a set

Table 4.4: Set binary functionality at set level.

Operation Description

Intersect Set intersection of two sets
Union Set union of two sets
Subtract Get set difference of two sets
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the ordering of entity members in the resulting set is considered, and the resulting

set is an ordered set. The rules of three binary set operations (union, intersection

and subtraction) are follows2 (we assume that for any duplicated entity, the first

input set contains m copies of the entity, and the second set contains n copies of

the entity, where m,n ≥ 0):

Intersection: given two ordered sets, for any duplicated entity, only min(m,n)

copies of the entity will be contained in the resulting set. The copies and

other non-duplicate entities will appear in the same order as in the first input

set, keeping the first number of copies. Otherwise, as long as one input set is

unordered, both input sets are seen as unordered, and the intersection is to

collect all the common entity members in the two sets.

Union : given two ordered sets, union is just to concatenate the input sets. Oth-

erwise, as long as one input set is unordered, both input sets are seen as

unordered, and the union is to collect all the entity members in the two sets.

Subtraction: given two ordered sets, for any duplicated entity, only max(m−n, 0)
copies of the entity will be contained in the resulting set. The copies and other

non-duplicate entities will appear in the same order as in the first input set,

keeping the first number of copies. Otherwise, as long as one input set is

unordered, both input sets are seen as unordered, and the subtraction is to

collect entity members that are in the first set and not in the second set.

For example, for two ordered sets, (S1,≤) = {abacdbc} and (S2,≤) = {dabae},
and two unordered sets, S3 = {abcde} and S4 = {abc}, consider three cases: (i) both
input sets are ordered such as S1 and S2, (ii) both input sets are unordered such as

S3 and S4, and (iii) one input set is ordered while the other is unordered such as S1

and S3. Respectively, the resulting set of a binary set operation is:

Intersection :

(i) an ordered set, S1 ∩ S2 = {abad}, (ii) an unordered set, S3 ∩ S4 = {abc}
(iii) an unordered set, S1 ∩ S3 = {abcd}.

2These rules are consistent with the arbitrary rules defined in the ITAPS specification [12, 42].
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Table 4.5: Set functionality at entity level.

Operation Description

IsInSet Decide if an entity belongs to a set
GetSet Get all the sets associated with an entity

Union :

(i) an ordered set, S1 ∪ S2 = {abacdbcdabae}, (ii) an unordered set, S3 ∪ S4

= {abcde}, (iii) an unordered set, S1 ∩ S3 = {abcde}.

Subtraction :

(i) an ordered set, S1 − S2 = {bcc}, (ii) an unordered set, S3 − S4 = {de},
(iii) an unordered set, S1 − S3 = ∅.

Regardless of whether the entity members of a set are ordered or unordered,

the set members after a binary operation are always unordered and unique.

Two entity level operations are summarized in Table 4.53. One is to determine

if a given entity is inside any set, and the other is to get all the sets associated

with a given entity (it returns an empty array if the entity is not contained in any

set). These operations are useful for practical adaptive applications which require

retrieving the relation from an entity to a set, but they may be not efficient in some

cases if a set contains the whole mesh.

4.4 Mesh Sets to Deal with Boundary Layer Meshes

Due to the property of a mesh entity, which must be assigned to a part for

management, there are two types of entity sets used in unstructured mesh applica-

tions depending on the number of parts associated with the entities contained in a

set: (i) a set of entities residing on a single part, and (ii) a set with entities spanning

multiple parts.

In support of parallel anisotropic adaptive meshing based on mesh metric

fields with adaptive boundary layer meshes [4], a stack of boundary mesh entities

3These operations are not defined by the ITAPS requirement [12, 42].
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Figure 4.1: Part of a boundary layer mesh (the stacks of mesh entities
considered as entity sets).

is required to be on a single part for mesh modification, partition and migration,

and it is useful to differentiate an entity set with the single part restriction from an

entity set without such a restriction. In Figure 4.1, mesh entities contained in the

black polygon illustrate a stack of entities to be treated with a P-set.

Definition Part set (P-set)

A mesh entity set with the single part restriction that all mesh entities in the

set belong to the same part.

Definition N-Part set (NP-set)

A mesh entity set without the single part restriction, another word, a mesh

entity set spanning N parts, where N ≥ 1.

P-set is a special case of NP-set, where N = 1. Given a P-set, if it contains

at least one mesh entity not part of the boundary of any higher-order mesh entities,

the user can designate the set as a partition object so migrate all entities contained

in the set to the destination part during the migration stage.

NP-sets allow arbitrary grouping of mesh entities spanning more than one

parts and bring extra complexities in parallel computations, especially when the

mesh changes. Since the current goal is to support adaptive unstructured mesh

based applications, the focus herein is on the discussions of P-sets.

An important example of using mesh sets in unstructured mesh applications is

to support boundary layer mesh adaptation, which requires the following of a mesh

set.
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1. Mesh entities contained in a set are unique.

2. Mesh entities are ordered in a set based on their insertion order.

3. Mesh entities contained in a set are not part of the boundary of any higher

dimension mesh entities.

4. User can attach arbitrary data to a set.

5. Iterating over mesh entities in a set.

6. Migrating a set and constituting entities to another part.

7. Migrating tag data along the set migration.

Items 1-5 are supported by using the generic set component with a part as a

SetHolder. For Item 6 and 7, the user can designate a set as a partition object so all

the mesh entities contained in the set and tag data attached to the set are migrated

along when the set is migrated.

Note that the following discussions assume P-sets with the above requirements,

and also assume that P-sets do not contain any other set.

4.4.1 Partition objects

Partition objects are determined by the application. A partition object can

be either a mesh entity or a P-set. A partition object mesh entity is not bounded

by any higher dimension mesh entity and not in any P-set. Figure 4.2a depicts a

distributed 2D mesh with three P-sets, each of which consists of mesh faces and is

designated as a partition object. Figure 4.2b illustrates its corresponding partition

object diagram, where graph nodes (circles) represent partition objects and graph

edges (lines) represent entity adjacency information between partition objects.

Algorithm 2 illustrates the procedure to return the partition objects in a part.

In the first step, the algorithm traverses the mesh entities of all dimensions (say,

Md
i ) in the part, and checks if a mesh entity Md

i is not bounded by any higher order

mesh entity and does not belong to any P-set. If both are satisfied, the entity Md
i
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Figure 4.2: A distributed mesh with three P-sets (a) and partition object
diagram (b).

Data: a D-dimension (D ∈ {2, 3}) mesh M in a part
Result: store partition objects (PO) in M into a list ptnObj
begin

for d← 0 to D do
for each Md

i ∈ {M{Md}} do
if Md

i does not bound any higher order mesh entity then
if FMDB Ent IsInSet(Md

i ) = false then
store Md

i ’s GID into ptnObj;

end

end

end
for each P-set Si in M do

store Si’s GID into ptnObj;
end
return ptnObj;

end

Algorithm 2: Get the partition objects in a part
(FMDB Part GetPtnObj).

is added into the partition object list (ptnObj ). In the second step, the algorithm

traverses the P-sets in the part and adds them into ptnObj.

Note that in practice it is useful to identify a partition object through its

globally unique identifier (GID for short), which is a pair of the object address

(either an entity or a set) and the process rank of the current process where the

object exists.

As illustrated in Algorithm 2, the FMDB API naming convention [83] is to



69

have the operation target in the middle of the function name and the operation

performed on the target data in the end. For instance, (i) the function with Ent

in the middle of the name, such as FMDB Ent IsInSet and FMDB Ent GetSet, is

performed on a specific mesh entity, (ii) the function with Part in the middle of the

name is performed on a specific part, and (iii) the function with Set in the middle

of the name, such as FMDB Set AddEnt and FMDB Set Create, is performed on a

specific set.

4.4.2 Pre-processing for graph-based mesh partitioning

For a graph/hypergraph based mesh partitioning, graph nodes are defined as

partition objects in a mesh, and graph edges are often built through face adjacencies

between neighboring partition objects. It is required to find neighboring partition

objects of a partition object. To reduce the entity traversal and communication costs

during the process of finding neighboring partition objects for a P-set, two prepro-

cessing procedures are used. They are: (i) get boundary entities for a P-set (the

procedure FMDB Set GetBdryEnt), and (ii) exchange partition object information

between part boundary entities (the procedure FMDB Part ExchPtnObj ).

The procedure FMDB Set GetBdryEnt returns the boundary entities that

bound a given P-set (Si), formally Md
i ∈ ∂(Si). Algorithm 3 is the pseudo code

to illustrate this procedure. The algorithm traverses all member entities (Md
i ) in a

P-set (Si) and retrieves the boundary entities (Md−1
j ) of each member entity Md

i .

If the entity Md−1
j is on any part boundary, it stores Md−1

j into the return list.

Otherwise, if the entity Md−1
j is adjacent to another partition object not equal to

Si (either an entity or another set), Md−1
j is also added to the return list.

If two partition objects reside on two separate parts in a distributed mesh,

one round of communication is needed to collect neighboring partition objects for

each other on the remote parts. To reduce the accumulated communication costs

of exchanging small messages between parts, it is necessary to pre-store neighbor-

ing partition objects on the remote parts in part boundary entities. Algorithm 4

illustrates the procedure FMDB Part ExchPtnObj. The algorithm first collects part

boundary entities in a part, and then exchanges the information of neighboring par-
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Data: a P-set Si in a part M
Result: store all boundary entities that bound Si into a list bdryEnt
begin

for each Md
i ∈ Si do

for each Md−1
j ∈ ∂(Md

i ) do

if FMDB Ent IsOnPartBdry(Md−1
j ) then

store Md−1
j into bdryEnt;

continue;

end

/* check if Md−1
j bounds another partition object */

for each Md
k ∈ {Md−1

j {Md}} do
if FMDB Ent IsInSet(Md

k) = false then
store Md−1

j into bdryEnt;
break;

else if Sl ← FMDB Ent GetSet(Md
k) and Sl ̸= Si then

store Md−1
j into bdryEnt;

break;
end

end

end

end
return bdryEnt;

end

Algorithm 3: Get boundary entities for a P-set
(FMDB Set GetBdryEnt).

tition objects between part boundary entities and their remote copies through one

round of communication. The information of neighboring partition objects is then

associated with part boundary entities through data tagging.

By using the two preprocessing steps, the pseudo code of Algorithm 5 illus-

trates the procedure to find neighboring partition objects for the partition objects in

a part (the procedure FMDB Part GetNborPtnObj ). Given a partition object in a

part, the algorithm traverses the boundary entities of the partition object, formally

eitherMd−1
j ∈ ∂(Md

i ) orM
d−1
j ∈ ∂(Si), and retrieves the partition objects (not equal

to the given partition object) adjacent to each boundary entity (̸= Md
i or ̸= Si). For

example, given a P-set Si, the algorithm retrieves its pre-stored boundary entities

through the procedure FMDB Set GetBdryEnt. For each boundary entity (Md−1
j ) of
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Data: a d-dimension (d ∈ {2, 3}) manifold mesh M in a part
Result: get adjacent partition object (PO) for each part boundary entity of

dimension d− 1, and exchange them between neighboring parts
begin

/* STEP 1: get all part boundary entities {M{Md−1}} */

for each Md−1
i ∈ {M{Md−1}} do

if FMDB Ent IsOnPartBdry(Md−1
i ) = true then

store Md−1
i into entOnPartBdry;

end
/* STEP 2: exchange PO between part boundary entities */

for each Md−1
i ∈ entOnPartBdry do

/* get the PO that Md−1
i bounds */;

get Md
j that Md−1

i ∈ ∂(Md
j );

if FMDB Ent IsInSet(Md
j ) then

Sk ← FMDB Ent GetSet(Md
j ) ;

pack Sk in message A;

else pack Md
j in message A;

for each remote copy Md−1
i on remote part Pi do

send message A (Sk or Md
j on Plocal, M

d−1
i on Pi) to Pi;

end

end
while Pi receives message A from Psender do

FMDB Ent SetTagData(Md−1
i , bdryEntTag, the GID of Sk or Md

j on

Psender);

end

end

Algorithm 4: Exchange partition object information between part
boundary entities (FMDB Part ExchPtnObj).

the P-set Si, if M
d−1
j is on a part boundary, the remote partition object information

(pre-stored through the procedure FMDB Part ExchPtnObj ) is retrieved directly

through the tagged data. Otherwise, the algorithm retrieves the higher dimension

entity (Md
k ) bounded by entity Md−1

j through adjacencies, and decides the neigh-

boring partition object (either Md
k or its belonging P-set) adjacent to the current

partition object.

For example, using edge adjacencies on the 2D mesh of Figure 4.2a, the P-set

S1 neighbors two partition objects: faces M2
2 and M2

4 (see the two circles connected

to the S1 circle in Figure 4.2b), while the mesh face M2
2 neighbors three partition
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Data: a d-dimension (d ∈ {2, 3}) mesh M of a part
Result: store neighboring partition objects (PO) in nborPtnObj for each PO

in M
begin

/* STEP 1: traverse all P-sets in M */

for each P-set Si ∈ M do
bdryEnt ← FMDB Set GetBdryEnt(Si);

for each Md−1
j ∈ bdryEnt do

if FMDB Ent IsOnPartBdry(Md−1
j ) then

adjPO ← FMDB Ent GetTagData(Md−1
j , bdryEntTag);

store adjPO into nborPtnObj;
continue;

end

store each Md−1
j ’s adjacent PO (either entity or P-set, ̸= Si) into

Md
i ’s nborPtnObj;

end
make unique the elements in nborPtnObj of Si;

end
/* STEP 2: traverse all entities of dim d in M */

for each Md
i ∈ {M{Md}} do

if FMDB Ent IsInSet(Md
i ) then continue;

for each Md−1
j ∈ ∂(Md

i ) do

if FMDB Ent IsOnPartBdry(Md−1
j ) then

adjPO ← FMDB Ent GetTagData(Md−1
j , bdryEntTag);

store adjPO into nborPtnObj;
continue;

end

store each Md−1
j ’s adjacent PO (either entity or P-set, ̸= Md

i ) into

Md
i ’s nborPtnObj;

end
make unique the elements in nborPtnObj of Md

i ;

end

end

Algorithm 5: Get neighboring partition objects for each partition
object in a part (FMDB Part GetNborPtnObj).
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objects: P-set S1, faces M
2
1 and M2

3 (see the three circles connected to the M2
2 circle

in Figure 4.2b).

For illustration purposes, Algorithm 4 and Algorithm 5 assume a d-dimension

manifold mesh. In a 3D (2D) manifold mesh, a mesh face (edge) is adjacent to

at most two mesh regions (faces). These algorithms can be extended to handle

non-manifold meshes through adding extra conditional statements.

Note that the pre-stored tagged data associated with sets and entities will be

removed immediately after mesh partitioning to avoid memory leaking.

4.4.3 Mesh migration algorithm

To support boundary layer mesh adaptation in parallel, the mesh migration

algorithm developed in Reference [15, 16] was improved to migrate both mesh en-

tities and P-sets. Given an array of entities of dimension d to migrate, the pseudo

code of Algorithm 6 illustrates the mesh entity exchange procedure to move mesh

entities and P-sets to destination parts in mesh migration. Note each P-set handle

is attached (tagged) to each consisting entity to expedite the P-set manipulation

and migration.

The main steps in Algorithm 6 are listed below:

Step 1: packs messages and sends them to destination parts. Before sending a

message (A) of a mesh entity (Md
i ) in EntitiesToUpdate[d], check if the entity

is in a set (say, Si), and pack the message A with a variable (isInSetFlag) to

indicate whether the message contains set data or not. If yes, i.e. isInSetFlag

equals true, pack the set data within the message A also.

Step 2: initializes a set map to keep track of P-sets. On each process, create a set

map PSetMap to store the pairwise relations between an original set (Si) from

the sending part (Pi) and its local copy (Sj).

Step 3: unpacks messages and creates entities and P-sets. When a part Pi receives

the message A from the sender (Psender), it creates a new mesh entity Md
i
′
.

Then it checks the variable isInSetFlag contained in the message A. If neces-

sary, i.e. isInSetFlag equals true, it searches PSetMap for a local copy of the
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set Si from the part Psender. If a local copy Sj exists, the new entity is added

into the existing set Sj. Otherwise, a new set Si
′ is created, a new entry for

the set Si
′ is added into PSetMap, and Md

i
′
is added into the new set Si

′.

Data: EntitiesToUpdate[d]
Result: entities and P-sets are migrated to destination parts
begin

/* STEP 1: pack messages and send to destination parts */

for each Md
i ∈ EntitiesToUpdate[d] do

pack message A (entity info of Md
i , ...);

if FMDB Ent IsInSet(Md
i ) = false then

isInSetFlag ← false;
append (isInSetFlag) to message A;

else
isInSetFlag ← true;
Si ← FMDB Ent GetSet(Md

i );
entPos ← FMDB Set GetEntOrder(Si, M

d
i );

append (isInSetFlag, Si, entPos) to message A;

end
Plocal sends message A to Pi;

end

/* STEP 2: initialize a map to track P-sets */

PSetMap ← map<pair< Pi, Si >, Sj >;

/* STEP 3: unpack messages and create entities and P-sets */

while Pi receives message A from Psender do

Md
i
′ ← FMDB Ent Create(Pi, entity info);

if isInSetFlag = false then continue;
if PSetMap [pair< Psender, Si >] exists then

Sj ← PSetMap [pair< Psender, Si >];

FMDB Set AddEnt(Sj, M
d
i
′
, entPos);

else
Si

′ ← FMDB Set Create(Pi, PSET);
PSetMap [pair< Psender, Si >] ← Si

′;

FMDB Set AddEnt(Si
′, Md

i
′
, entPos);

end

end

end

Algorithm 6: The mesh entity exchange procedure to move mesh
entities and P-sets to destination parts.
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(a) (b)

Figure 4.3: Distributed boundary layer mesh on four parts.

In Algorithm 6, since the entity insertion order (entPos) is retrieved, the

tagged data of a set can be migrated along with the first entity in the set.

4.5 Examples and Applications

In a boundary layer mesh, a stack of mesh entities is considered as a P-set and is

treated as a partition object during mesh partition and migration. The graph-based

partitioner, ParMetis [60] is applied here for boundary layer mesh partitioning.

Two examples are considered here. The first example investigates the per-

formance of mesh partition and migration with P-sets within the FMDB on two

boundary layer meshes. The second example shows the results of parallel boundary

layer mesh adaptation using the FMDB with P-sets. The two examples demonstrate

the capability of the P-set implementation to effectively preserve boundary layers

in anisotropic boundary layer mesh adaptive applications, especially in parallel.

4.5.1 Mesh partition and migration with P-sets

In the first case, a small mesh with 9, 705 regions (9K mesh) on a simple

geometry, which is a sector part of a pipe model (see the mesh in Figure 4.3),

is considered. On the initial 9K mesh, a stack of wedges contains four layers of

wedges and is considered as a P-set, and 424 P-sets are constructed from the curved

bottom boundary of the geometric model. The initial serial mesh was partitioned

into a distributed mesh over four parts, as shown in Figure 4.3a, where different
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Figure 4.4: Whole body model composed of 78 arteries along with labels
for sections (left) and labels of main arteries in the magnified
view (right) [8].

colors represent different parts. The partitioning process was carried out on the

SCOREC Piglet cluster [84], an AMD Opteron machine with eight quad-core nodes

and 64GB in total of memory. As shown in one part of the distributed mesh (in

Figure 4.3b), the four wedges in each stack were kept together as a unit, during the

process of mesh partitioning and migration.

In the second case, a larger mesh with 7, 094, 564 regions (7M mesh) on a

complex geometry that simulates the blood flow in a 3D whole body (see the model

in Figure 4.4) is considered. A stack of wedges (see the detail of stacks in Figure 1.1)

is treated as a P-set, and 648, 783 P-sets are constructed in the initial 7M mesh.

Note that it took 9.91 seconds to construct 648, 783 P-sets through mesh adjacencies

on the SCOREC Piglet cluster.

The second test case includes three steps: (1) partitioning the initial 7M

mesh to 16 parts on the SCOREC Piglet cluster, (2) repartitioning the resulting
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Table 4.6: The average execution time (in seconds) of mesh partition,
migration and total execution on the 7M mesh on 256 proces-
sors on NERSC Hopper through the global partitioning with
ParMetis.

Total Partition Migration Total

#parts #RgnsToMove #SetsToMove (sec) (sec) (sec)

512 7,088,837 648,225 0.39 4.05 4.44
1,024 7,082,937 647,811 0.49 3.97 4.46
2,048 7,092,442 648,583 0.65 4.13 4.78
4,096 7,093,698 648,718 0.83 4.22 5.05

partitioned mesh of 16 parts (from the first step) to 256 parts on 16 processors,

and (3) repartitioning the resulting partitioned mesh of 256 parts (from the second

step) to various partitions containing 512 up to 4, 096 parts on 256 processors. The

repartitioning in the last two steps was carried out through the capability of multiple

parts per process in the FMDB on the NERSC Hopper system, using 12 cores per

node with 2.58GB of memory for each core. After the repartitioning, each processor

contains multiple parts. For example, in the 4, 096 part partition, each processor

contains 16 parts.

Table 4.6 lists the average execution time (in seconds) of the mesh Partition

stage (in the 4th column), mesh Migration stage (in the 5th column) and Total

partitioning process (in the 6th column) to obtain different partitions on 256 pro-

cessors on the NERSC Hopper, along with the total number of regions to migrate

(RgnsToMove) and the total number of P-sets to migrate (SetsToMove) during the

migration stage. As shown in the 2nd and 3rd columns, due to the global parti-

tioning, almost all the partition objects (both regions and P-sets) were migrated.

Since the average number of regions on a part is small (eg. in the 512 part partition,

average number of regions on a part is 13, 857), the repartitioning from 256 parts to

512 up to 4, 096 parts takes about 5 seconds, and does not increase much time. In

the subsequent simulation, the scaling studies can be performed on 256 up to 4, 096

processors on these partitioned boundary layer meshes containing 256 up to 4, 096

parts, respectively.
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(a) (b)

Figure 4.5: Anisotropic adaptivity, preserving boundary layer mesh
structure from an initial mesh of 2K regions to an adapted
and partitioned mesh of 556K regions.

Figure 4.6: Two example parts of the partitioned mesh of 556K regions
adapted from the anisotropic adaptivity.

4.5.2 Support boundary layer mesh adaptation

This section presents the example usage of the parallel boundary layer mesh

adaptation results developed on top of the software tools, including the geometric

model interface (GMI), the mesh adaptation procedure developed in SCOREC [85],

and the mesh database FMDB with the P-set implementation.

The first case uses a small boundary layer mesh of about 2, 000 (2K) regions

on a simple pipe model. The anisotropic boundary layer adaptation is carried out on

this pipe model based on a specified analytical mesh size field [20]. The initial serial
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Figure 4.7: Clip-plane mesh view of a boundary layer adapted mesh of
4.5M regions [85].

mesh (see Figure 4.5a) was partitioned and then adapted to a partitioned mesh (see

Figure 4.5b) of 556, 000 (556K) regions on 8 parts. The whole adaptation process

was performed on Piglet machine. As shown in the two parts of the partitioned mesh

in Figure 4.6, the boundary layers are preserved after the mesh partition, migration

and adaptation stages.

The second case uses a larger boundary layer mesh of about 450, 000 (450K)

regions on a manifold heat exchanger model, in which a large flow rate comes in a

larger tube and dumps into a thin rectangular geometry where the flow is distributed

into smaller pipes [85]. The solution based anisotropic boundary layer adaptation

is carried out on this model to capture the flow features. The resulting adapted

boundary layer mesh contains about 4.5 million (4.5M) regions. The clip-plane

views of the interior boundary layer mesh structures before and after the boundary

layer mesh adaptation are shown in Figure 4.7.



CHAPTER 5

MESH MATCHING

When solving differential equations using numerical methods, like finite element

methods, there are some cases where the boundary conditions are periodic, in which

case the solution repeats itself on specific matched boundary entities. To most effec-

tively apply periodic boundary conditions the mesh entities on matched boundaries

should match topologically and geometrically. Reference [86] presented a general

methodology for applying periodic boundary conditions that requires maintaining

all mesh entities identical on periodic faces, with a periodic master of each mesh

entity on a selected periodic face, defined to control all the match periodic faces.

Reference [87] presented a technique to build adaptive meshes on periodic domains

through moving the current periodic boundaries towards the interior of the mesh,

and thus to enable adapting periodic meshes using standard non-periodic mesh

adaptation routines.

These references clearly indicate that applying periodic boundary conditions

can be most easily handled by the matching of the meshes on the periodic bound-

aries, where matching means the mesh on one periodic boundary is identical to the

other once it is transformed. Doing this allows the simple matching of unknowns in

the solution. This chapter addresses the specific requirement of mesh matching and

presents a general technique that maintains the entire mesh topology on 3D models

for a general set of matching requirements.

We start from a geometric model and a mesh where the mesh entities on peri-

odic boundaries are identical and aware of each other. The initial mesh is generated

by a mesh generation tool such as Simmetrix [34], and the information of identical

entities in the initial mesh is also given by the mesh generation tool. This initial

mesh is converted into the FMDB format mesh through file import/export. All the

mesh operations discussed in this chapter are performed on the geometric model and

the converted FMDB mesh. The goal is to maintain the matching information for

identical entities classified on periodic boundaries as the mesh changes, especially

80
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in parallel operations.

In this chapter, the relation between periodic boundary conditions and the

geometric model is presented in §5.1. The definitions and functionality of matched

mesh and matched entity are given in §5.2, followed by the implementation of the

mesh entity data structure. §5.3 presents the conversion from an initial matched

mesh generated from a mesh generation tool to an FMDB format mesh. §5.4 and §5.5
investigate the parallel operations to deal with matched meshes, mesh partitioning

and migration, respectively. §5.6 presents the results of the parallel operations in

the FMDB and the mesh adaptation procedure on matched meshes.

5.1 Geometric Model with Periodic Boundary Conditions

When boundary conditions involve periodicity, the solution repeats itself after

a certain spatial interval, in a given direction. This fact can be used to equate the

solution variables at the ends of the periodic interval, which can be any combination

of translation and rotation. For example, Figure 5.1a is part of a mesh on a cube

geometry with transformed periodic boundary conditions, the left yellow face and

the right grey face of the geometric model are specified as periodic boundaries (the

front face of the geometry is hidden to show the yellow model face). Figure 5.1b is

another example with axisymmetry periodicity. The upper yellow face and the lower

grey face of the geometric model are periodic boundaries. This match is determined

by rotating a 90-degree angle between the two periodic faces.

(a) (b)

Figure 5.1: Two types of periodic boundary conditions: transformed
(left) and rotated (right) periodic boundary conditions [34].
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Figure 5.2: Example of a distributed 2D matched mesh on two parts, left
model boundary A and right model boundary B are periodic
boundaries.

In the case of automatic adaptive finite element analysis, the mesh may be

varied over the course of several analysis runs, but the geometric model, the topo-

logical description of the physical domain, remains fixed. Thus boundary condition

attributes need to be associated with the geometric model rather than the mesh,

and this association provides a reliable approach to their application [33]. Since

mesh-model classification [35] provides the unique association of mesh entities on

the geometric model entities, classification can be used to transfer the desired bound-

ary condition attributes from model entities to the mesh entities that are classified

on them. Thus periodic boundary conditions are defined as attributes assigned at

the model level, and then model entities apply the attributes to the mesh entities

classified on them [88].

5.2 Matched Mesh Definition and Functionality

Mesh entities classified on periodic boundaries on a geometric model are iden-

tical to each other, respectively. For example, Figure 5.2 depicts a 2D mesh on a

plate model distributed on two parts P0 and P1. The dashed line represents the

part boundary between the two parts. The model edges A and B (in thick blue
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lines) are periodic edges. Thus mesh edges M1
0 - M1

3 classified on the model edge

A are matched to identical, but translated, mesh edges M1
4 - M1

7 classified on the

model edge B, respectively. The mesh vertices (in identical shapes) classified on

boundaries A and B are also matched to each other. Such mesh entities classified

on periodic boundaries are called matched entities, and a mesh which contains such

matched entities is called a matched mesh.

Information must be maintained so that the matched entities know what they

are matched to, and which parts they exist on. To maintain the entire mesh topol-

ogy, matched entities can be classified on spatially unconnected geometric model

entities. Moreover, if multiple periodic boundary conditions exist, a matched entity

can match multiple mesh entities, and should know all the entities that it matches.

In a distributed environment, a matched mesh is distributed across a number of parts

and matched entities can reside on different parts, thus a matched entity needs to

know which part on which its matched entity exists. If a matched entity is on a

part boundary, its remote copy (or copies) and matched entity (or entities) should

know each other. An entity can have multiple matched entities from a single part.

For example, in the 2D mesh in Figure 5.2, part boundary mesh vertex M0
0 matches

mesh vertex M0
1 on part P1. Two remote copies of vertex M0

0 know vertex M0
1 on

part P1, and vertex M0
1 knows the two copies.

In summary, at the mesh entity level, the following functions are required:

• FMDB Ent IsMatch

Check if a given entity is a matched entity. If yes, this returns true, otherwise,

this returns false.

• FMDB Ent GetMatch

Given a mesh entity Md
i , return the mesh entity Md

j that matches Md
i and the

part id where Md
j exists. If more than one entity matches Md

i , return a list of

pairs, containing all the matched entities and the part id’s where they exist.

• FMDB Ent GetNumMatch

Given a mesh entity Md
i , return the number of mesh entities that match Md

i .

If there is no such entity, this returns zero.
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As the mesh changes, it is necessary to rebuild or remove matching connections

between a set of matched entities. Thus two more functions are required:

• FMDB Ent AddMatch

Given two matched entities, add the second entity and its part id into the

matched entity information stored in the first entity.

• FMDB Ent RmvMatch

Given two matched entities, remove the second entity and its part id from the

matched entity information stored in the first entity.

In the implementation of mesh entity data structure, matched entity informa-

tion is stored as an STL multimap [77]. Each entry in the multimap represents one

matched entity, including the key value of the part id and the mapped valued of the

entity address. By using STL multimap, a matched entity allows different matched

entities from a single part. For example, in the mesh of Figure 5.2, vertex M0
0 on

part P0 matches vertex M0
1 on part P1. The multimap of matched entity information

stored in vertex M0
1 on part P1 includes two entries: vertex M0

0 on P0, and vertex

M0
0 on P1, this is also the output of the function FMDB Ent GetMatch for M0

1 .

5.3 Construct Matched Mesh from Mesh File

The mesh import/export procedures let the user export the mesh into a mesh

file and recover the mesh later from the file. Since an initial matched mesh generated

from a mesh generation tool is not recognized by the FMDB, it is required to convert

the initial mesh into the FMDB format mesh file.

Based on the FMDB mesh file format, matched entity information obtained

from a mesh generator is stored at the end of the mesh file. The extra information

includes:

• Starting with the keyword ’Matching’ in a single line.

• The number of groups for each entity dimension (0 to 2 for vertex/edge/face),

where mesh entities match each other in each group.
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Figure 5.3: Example of a graph-based mesh partitioning, (a) is a 2D
mesh, (b) is the dual graph of the mesh without considering
periodic boundaries, and (c) is the dual graph of the mesh
with A and B being periodic boundaries.

• The information of each matched entity group, including the number of mesh

entities in the group, the number of vertices in each entity, and the information

of each entity.

Note that matched edges/faces are adjacent to the same number of mesh

vertices. If a matched entity is a vertex, the entity information is the vertex id.

Otherwise, the entity information includes the vertex id’s of all the vertices that

bound the current entity. Herein, a vertex id is the ordering number of a mesh

vertex M0
i visited in the previous part of the mesh file, starting from number 1. For

each edge/face, vertices are listed in the order consistent with downward adjacencies.

5.4 Pre-processing for Graph-based Mesh Partitioning

In a graph-based mesh partitioning, graph nodes represent partition objects,

and graph edges between graph nodes represent dependencies between partition ob-

jects. In a matched mesh partitioning, two dependencies exist: entity adjacency and

matched entity relation. Besides adjacency type dependency, if two partition ob-

jects (e.g. regions) are bounded by a couple of matched entities (e.g. faces), a graph

edge should be built between them. For example, in the 2D mesh in Figure 5.3a,

without considering periodic boundaries, graph nodes are mesh faces, graph edges

are built through edge adjacencies. The resulting graph is shown in Figure 5.3b. On
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the other hand, if model edges A and B are periodic boundaries, two extra graph

edges are built to reflect matched entity dependencies, as shown in Figure 5.3c.

To build graph edges, an important step is to find all the partition objects

that have dependencies to a given partition object. To reduce entity traversal and

communication cost, a pre-processing procedures is used to exchange partition object

information between matched entities.

Algorithm 7 is the pseudo code to illustrate this pre-processing procedure.

Given a mesh on a part Pi, the algorithm includes the following main steps:

Step 1: defines a tag handle matchEntTag to hold a unique tag identifier attachable

to any matched entity.

Step 2: traverses all the mesh entities of dimension d − 1 on the part, collects all

the matched entities of dimension d − 1, and stores them into an entity list

(matchEnts).

Step 3: for each matched entity Md−1
i in the list matchEnts:

Step 3.1: initiates a partition object list tagPOi and attach it to entity Md−1
i

with the tag matchEntTag;

Step 3.2: retrieves the partition object (Md
i ) that M

d−1
i bounds;

Step 3.3: traverses each matched entity (say, Md−1
j on part Pj) of the current

entity Md−1
i , and check if Md−1

j is on the local part (Pi). If yes, store the

partition object (Md
j ) that M

d−1
j bounds into tagPOi attached to Md−1

i .

Otherwise, send a message A to the matched entity Md−1
j on part Pj.

The message A includes the address of Md−1
j and the partition object

Md
i .

Step 4: When part Pj receives the message A, it retrieves the attached partition

object list (tagPOj) from the received matched entity Md−1
j , and stores the

received partition object Md
i into the list tagPOj.

In Algorithm 7, the attached partition object list (tagPOi) of a matched entity

(Md−1
i ) should include unique partition objects that are not equal to the partition

object (Md
i ) bounded by the current entity Md−1

i .
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Data: a d-dimension (d ∈ {2, 3}) mesh M on a part Pi

Result: exchange partition object information between matched faces
begin

/* STEP 1: initiate matchEntTag */

/* STEP 2: collect all matched entities in M */

for each Md−1
i ∈ {M{Md−1}} on part Pi do

if FMDB Ent IsMatch(Md−1
i ) = true then

store Md−1
i into matchEnts;

end

end
/* STEP 3: send message to matched entity */

for each Md−1
i ∈ matchEnts do

initiate tagPOi;

FMDB Ent SetTagData(Md−1
i , matchEntTag, tagPOi);

get Md
i that Md−1

i ∈ ∂(Md
i );

for each matched entity Md−1
j on part Pj do

if Pi = Pj then
get Md

j that Md−1
j ∈ ∂(Md

j );

if Md
j /∈ tagPOi then

store Md
j ’s GID into Md−1

i ’s tagPOi;

end

else
send a message A (Md−1

j , Md
i ) to part Pj;

end

end

end
/* STEP 4: receive message from matched entity */

while part Pj receives message A from Pi do
tagPOj ← FMDB Ent GetTagData(Md−1

j , matchEntTag);

if Md
i /∈ tagPOj then

store Md
i ’s GID into Md−1

j ’s tagPOj;

end

end

end

Algorithm 7: Exchange partition object information between
matched entities.
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Data: a d-dimension (d ∈ {2, 3}) mesh M on a part Pi

Result: store dependent partition objects (PO) in dependPtnObj of each PO
in M

begin
retrieve matchEntTag and bdryEntTag;
/* traverse all partition objects in M */

for each Md
i ∈ {M{Md}} on part Pi do

for each Md−1
j ∈ ∂(Md

i ) do

get Md
l that Md−1

j ∈ ∂(Md
l );

if Md
l ̸= Md

i then
store Md

l ’s GID into Md
i ’s dependPtnObj;

end

if FMDB Ent IsMatch(Md−1
j ) then

tagPOj ← FMDB Ent GetTagData(Md−1
j , matchEntTag);

for each Md
k ∈ tagPOj do

store Md
k ’s GID into Md

i ’s dependPtnObj;
end

end

if FMDB Ent IsOnPartBdry(Md−1
j ) then

Md
j ← FMDB Ent GetTagData(Md−1

j , bdryEntTag);

store Md
j ’s GID into Md

i ’s dependPtnObj;

end

end

end

end

Algorithm 8: Get all partition objects that depends on a partition
object in a part.

Algorithm 8 illustrates the procedure to collect the partition objects that have

dependencies to a partition object on a part. Given a partition object Md
i on a part

Pi, the algorithm stores all its dependent partition objects into a list dependPtnObj.

The algorithm first traverses all the boundary entities of the partition object, i.e.

Md−1
j ∈ ∂(Md

i ). For each boundary entity Md−1
j , it performs the following steps:

• Retrieve the partition object bounded by Md−1
j through adjacencies, and store

it into the list dependPtnObj.

• If Md−1
j is a matched entity, get the attached partition object list tagPOj

(pre-stored through Algorithm 7), store each partition object in tagPOj into
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Figure 5.4: Example of a 2D mesh migration: before (left) and after
(right) mesh migration with matched entities

the list dependPtnObj ;

• If Md−1
j is on a part boundary, get the attached remote partition object (pre-

stored through the procedure FMDB Part ExchPtnObj in §4.4.2), store it into
the list dependPtnObj ;

Note for illustration purposes, Algorithm 7 and Algorithm 8 consider only

meshes on manifold models without P-sets, where each mesh face (or edge) is adja-

cent to at most two mesh regions in a 3D (or faces in a 2D) mesh.

5.5 Mesh Migration Algorithm

The mesh migration procedure moves mesh entities between parts. Figure 5.4

shows an example of the mesh entity migration process in a 2D matched mesh.

Figure 5.4a depicts the initial 2D mesh on part P0. The geometric model includes

two periodic model edges (in thick red lines). Mesh faces M2
5 and M2

6 will migrate

to part P1, and mesh faces M2
2 , M

2
3 , and M2

4 will migrate to part P2. Figure 5.4b

depicts the distributed mesh on three parts after mesh migration. The dashed

lines represent the part boundaries between parts. The mesh edges (in thick lines)

classified on periodic edges match each other respectively, as well as the vertices (of

the small squares). Matched entities such as mesh vertices M0
0 and M0

5 exist on the
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part boundaries, and their remote copies and matched entities will know each other.

For example, vertex M0
4 on part P0 knows the two copies of vertex M0

5 .

Given the partition objects to migrate and their destination parts (POsTo-

Move), the following are the main steps of the overall mesh migration procedure:

Step 1: given the POsToMove, collects entities to process (entitiesToUpdate) and

clears their partitioning data (residence parts and partition classification).

Step 2: determines the residence parts of entities in entitiesToUpdate, updates par-

tition classification and the partition model, and collects entities to remove

(entitiesToRemove).

Step 3: exchanges mesh entities in entitiesToUpdate, updates their remote copy

and matched entity information.

Step 4: removes unused entities in entitiesToRemove from local parts, updates re-

lated remote copy and matched entity information.

Step 5: updates the ownership of partition entities.

Step 1, 2, 5 are the same as given in references [15, 16]. Step 3, exchange

entities, and Step 4, remove unused entities, must explicitly consider matched mesh

information and are discussed as follows.

5.5.1 Exchange entities

In Step 3 of the mesh migration algorithm, mesh entities are exchanged from

low to high dimension, since an entity of dimension > 0 is bounded by lower dimen-

sion entities [15, 16]. Mesh entities in entitiesToUpdate are transferred from source

parts to destination parts, and new entities are created on the destination parts.

Algorithm 9 is the pseudo code to illustrate the procedure of exchanging the

mesh entities in entitiesToUpdate[d]. The following are the main steps of Algo-

rithm 9:

Step 3.1: sends messages to destination parts to create new mesh entities. For

each entity Md
i in entitiesToUpdate[d], if Md

i resides on more than one part,
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Data: entitiesToUpdate [d]
Result: create entities on destination parts and update remote copy and

matched entity information
begin

/* STEP 3.1: send message to destination part */

for each Md
i ∈ entitiesToUpdate [d ] do

choose Pbc to send message A (Md
i on Pbc, information of Md

i ) to Pi

where Pi ∈ P[Md
i ] and no copy exists on Pi;

end
/* STEP 3.2: create new entity and report to broadcaster */

while Pi receives message A from Pbc do
create Md

i on Pi, add remote copy or matched entity information if
necessary;
if Md

i ̸= partition object then send message B (Md
i on Pbc, new Md

i

on Pi) to Pbc;

end
/* STEP 3.3: broadcaster forward the new entity */

while Pbc receives message B from Pi do
Md

i saves the Md
i on Pi as a remote copy;

for each remote copy of Md
i on part Premote do

isRemoteCopyFlag ← true;
send message C (isRemoteCopyFlag, Md

i on Premote, M
d
i on Pi) to

Premote;

end
for each matched entity Md

j on part Premote do
isRemoteCopyFlag ← false;
send message C (isRemoteCopyFlag, Md

j on Premote, M
d
i on Pi) to

Premote;

end

end
/* STEP 3.4: update remote copy or matched entity */

while Premote receives message C from Pbc do
if isRemoteCopyFlag = true then

FMDB Ent AddCopy(Md
i , M

d
i on Pi);

else
FMDB Ent AddMatch(Md

j , M
d
i on Pi);

end

end

end

Algorithm 9: Exchange mesh entities and update remote copy and
matched entity information.
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to reduce the communication cost between parts, the part with the minimum

part id where Md
i exists is assigned as the broadcaster (Pbc). Then the broad-

caster Pbc sends a message A to the destination part (Pi) where Pi is in the

residence parts of Md
i (i.e. ∈P[Md

i ]) and no copy exists on Pi. The message

A to send includes: entity shape information, required adjacencies, geometric

classification, partitioning data, remote copy and matched entity information.

Step 3.2: when the destination part Pi receives the message A, a new entity Md
i

is created on Pi. If the message A contains remote copy or matched entity

information, the new entity Md
i will store the information. If the new entity

Md
i is not a partition object, Pi will send the address of Md

i back to the

broadcaster (Md
i on Pbc). The message B to send back to Pbc consists of the

address Md
i on Pbc and the address of the newly created entity on Pi.

Step 3.3: when the broadcaster Pbc receives the message B from part Pi, it saves

the address of Md
i on Pi as a remote copy of local Md

i , and forwards the

message to any remote copy or matched entity on remote part (Premote). It

uses a flag (isRemoteCopyFlag) to indicate whether the message is for remote

copy or for matched entity. The forwarded message C to send includes the

flag isRemoteCopyFlag, the address of Md
i on Pi, and the address of the entity

(either remote copy Md
i or matched entity Md

j ) on Premote.

Step 3.4: when the part Premote receives the message C from the broadcaster Pbc,

it checks the flag isRemoteCopyFlag. If the message is for a remote copy, the

remote copy Md
i on Premote is updated to include the address of Md

i on Pi.

If the message is for a matched entity, the matched entity Md
j on Premote is

updated to include the address of Md
i on Pi.

In Algorithm 9, a broadcaster (part Pbc) is in charge of updating the remote

copy and matched entity information of an entity (Md
i ) over all parts.

5.5.2 Remove unused entities

In Step 4 of the migration algorithm, unused mesh entities collected in the

previous step are removed from local parts. If the entity to remove is a part boundary
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entity, it must be removed from other parts where it is kept as remote copies. If the

entity to remove is a matched entity, it must be removed from other parts where it

is kept as matched entities. Mesh entities are removed from high to low dimension,

in the opposite direction of entity creation. Algorithm 10 is the pseudo code to

illustrate this procedure.

Given mesh entities to remove (entitiesToRemove), Algorithm 10 includes the

following main steps:

Step 4.1: sends messages to remote parts to update remote copy and matched entity

information. For each entity Md
i in entitiesToRemove[d] on part Pi, if M

d
i has

a remote copy or matched entity on a remote part Premote, a message (A) is sent

to the remote part Premote. The message A uses a flag (isRemoteCopyFlag)

to indicate whether the message is for remote copy or matched entity. Along

with that flag, the message includes the address of Md
i on Pi and the address

of the entity (either remote copy Md
i or matched entity Md

j ) on Premote.

Step 4.2: when the part Premote receives the message A from the part Pi, it checks

the flag isRemoteCopyFlag. If the message is for a remote copy, the remote

copy Md
i on Premote is updated to remove the address of Md

i on Pi. If the

message is for a matched entity, the matched entity Md
j on Premote is updated

to remove the address of Md
i on Pi.

Step 4.3: removes all the mesh entities in entitiesToRemove from high to low di-

mension on local parts.

5.6 Examples and Applications

The first example is to investigate the capability of parallel mesh operations

in the FMDB, mesh partition and migration, to deal with matched meshes. The

second example is to demonstrate the mesh matching capability to support mesh

adaptation on matched meshes. All the initial meshes are generated by the mesh

generation tool Simmetrix [34], and then converted into the FMDB matched meshes.
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Data: a mesh M of dimension dim on a part Pi, entitiesToRemove
Result: remove unused entities and update remote copy and matched entity

information
begin

/* STEP 4.1: send message to remote copy or matched entity

*/

for d← dim −1 to 0 do
for each Md

i ∈ entitiesToRemove[d] on part Pi do
for each remote copy of Md

i on part Premote do
isRemoteCopyFlag ← true;
send message A (isRemoteCopyFlag, Md

i on Premote, M
d
i on Pi)

to Premote;

end
for each matched entity Md

j on part Premote do
isRemoteCopyFlag ← false;
send message A (isRemoteCopyFlag, Md

j on Premote, M
d
i on Pi)

to Premote;

end

end

end
/* STEP 4.2: update remote copy or matched entity */

while Premote receives message A from Pi do
if isRemoteCopyFlag = true then

FMDB Ent RmvCopy(Md
i , M

d
i on Pi);

else
FMDB Ent RmvMatch(Md

j , M
d
i on Pi);

end

end
/* STEP 4.3: remove unused entities */

for d← dim to 0 do
for each Md

i ∈ entitiesToRemove[d] on part Pi do
FMDB Part RmvEnt(M, Md

i );
end

end

end

Algorithm 10: Remove unused mesh entities and update related re-
mote copy and matched entity information from a part.
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Figure 5.5: The partitioned meshes for 8 parts (left) and 32 parts (right)
obtained from mesh partition and migration on the initial
71,966-region mesh on the CCNI BG/L. The colors represent
various parts.

5.6.1 Mesh partition and migration

A matched mesh of 71, 966 regions on a cube geometric model is considered.

Two opposite model faces are periodic faces. This mesh contains 1, 074 matched

vertices, 2, 944 matched edges, and 1, 871 matched faces.

In the first case, the initial mesh is first loaded and partitioned into 8 parts,

and then all mesh entities are migrated back to a single part to write out another

mesh. The entity ordering in the mesh file is preserved. The initial mesh file and the

output mesh file contain the same matched entity information, this demonstrates

that parallel mesh operations can maintain matched entity information properly.

All the steps are carried out on 8 processors on the SCOREC Piglet cluster [84], an

AMD Opteron machine with eight quad-core nodes and 64GB in total of memory.

In the second case, the initial mesh is loaded and partitioned on the CCNI

BlueGene/L system [89], using 8 up to 256 processing cores with 512MB per core

memory. The mesh partitioning is carried out through the graph-based partitioner,

ParMetis [60]. Figure 5.5 depicts the partitioned meshes for 8 parts and 32 parts,

respectively. Table 5.1 lists the average execution time (in seconds) of the mesh

partition stage (Partition in the 3rd column), mesh migration stage (Migration in

the 4th column), and total execution (Total in the 5th column), along with the

total number of regions to migrate (RgnsToMove in the 2nd column) during the

migration stage. Since the initial mesh is small, the total execution time does not
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Table 5.1: The average execution time (in seconds) of mesh partition,
migration, total execution on the 71,966-region mesh of the
cube model running on up to 256 processors on the CCNI
BG/L.

Total Partition Migration Total

#parts #RgnsToMove (sec) (sec) (sec)

8 62,984 2.15 29.56 31.71
16 67,470 2.11 29.61 31.72
32 69,716 2.12 30.00 32.12
64 70,839 2.13 30.00 32.13
128 71,401 2.17 30.00 32.17
256 71,683 2.29 30.44 32.73

increase much as the total number of parts increases.

5.6.2 Support matched mesh adaptation

The mesh adaptation procedure through local mesh modifications [3], includ-

ing mesh refinement, coarsening and projecting mesh vertices to geometric model

boundaries (called snap operation), is carried out on two types of geometries. All

the tests are carried out on one processor on the SCOREC Piglet cluster [84].

The first is a sector of a pipe geometry with (i) the front and back model

faces being periodic, and (ii) the left and right side model faces being periodic.

Figure 5.6 depicts an initial coarse mesh and an adapted mesh. After the mesh

adaptation procedure, the entities on the front and back periodic boundaries match

each other, and the entities on the left and right side periodic boundaries match

each other.

The second is a pipe model with two opposite model faces being periodic

boundaries. Figure 5.7 depicts an example of an initial 17, 976 region mesh to an

adapted 735, 651 region mesh on the pipe model. After mesh adaptation with an

analytical size field [20], as shown in the circle of Figure 5.7, the matched entities

classified on two periodic boundaries are overlapped and still match each other.
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Figure 5.6: Example of mesh adaptation on a geometric model with dou-
ble periodic boundary conditions: (a) is the initial coarse
mesh, and (b) is the adapted mesh going through mesh re-
finement, coarsening and snap operations.

Figure 5.7: Example of mesh adaptation on a coarse mesh on a pipe
model with periodic boundary conditions: (a) is the ini-
tial mesh of 17,976 regions, and (b) is the adapted mesh of
735,651 regions.



CHAPTER 6

MULTIPLE PARTS PER PROCESS

A parallel adaptive mesh-based simulation typically starts with a relative coarse

initial mesh, and solution based mesh adaptation is carried out to improve the

mesh resolution to efficiently resolve the problem. During this process, the number

of mesh entities in the unstructured mesh can increase by orders of magnitude,

consequently the number of processing cores, i.e., processors, to effectively solve the

problem needs to be increased to account for the mesh size increase.

The original Flexible distributed Mesh Database (FMDB) [15, 16] allows only

one part per process in the mesh partition, which constrains the simulation to a fixed

number of processors and is not ideal for an adaptive simulation where the mesh

size increases dramatically, and thus processors will eventually run out of memory,

when the number of mesh entity increase on a part becomes too large. Also, it is

not efficient to start with too many processors in the beginning of a simulation loop,

especially since a priori estimation of the number of mesh entities (and therefore

processors) needed is not possible [8].

To address the resulting need to be able to change the number of parts and

processors during an adaptive simulation, the capability of multiple parts per process

was developed. Allowing multiple parts per process is also useful as a preprocessing

stage for partition redistribution. In such a case, the simulation may be performed

on various computer architectures with different amount of per core memory, there-

fore the number of processors required will be different even for a fixed-size mesh

problem [8]. For instance, each processing core at NERSC Hopper [90] (Cray XE6)

can have 2.58GB memory, while the one at ANL Intrepid [80] (IBM BG/P) can have

512MB. The simulation which fits in 1, 0248 cores on Hopper may require more than

4, 096 cores on Intrepid.

The objective is to support changing (especially increasing) the number of

parts during mesh partitioning. This was implemented as an extension of the FMDB.

The distributed mesh data structure based on an enhanced partition model is intro-

98
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duced in §6.1. The global and local partitioning strategies for graph/hypergraph-

based mesh partitioning are presented in §6.2, followed by the mesh migration pro-

cedure in §6.3. In the end, the performance results of the multiple parts per process

partitioning are discussed in §6.4.

6.1 Distributed Mesh Data Structure

In parallel adaptive simulations, a mesh is distributed to a set of parts over

a number of processes. A distributed mesh data structure supports a topological

representation of the distributed mesh and efficient distributed mesh manipulation

functions. A distributed mesh representation, referred to as a partition model, that

will support the needed capabilities includes the information on parts, and part

boundaries, and supports mesh migration and mesh partitioning [15, 16].

6.1.1 Part and part id

When a mesh is distributed to N parts, each part is assigned to a process, and

more than one part can be assigned to a single process. Herein, a process can be seen

as a processing unit with a single (unique) memory space in the parallel computation,

and a process can be identified through its unique process rank, denoted by Ci.

A part is a subset of mesh entities of the entire mesh, uniquely identified by its

part handle or id, denoted by Pi, 0 ≤ i < N . Figure 6.1 depicts a 2D mesh that is

distributed on four parts over two processes where each process contains two parts.

The dashed lines represent intra-process part boundaries within a process and the

solid black lines represent inter-process part boundaries between processes.

A part (Pi) can have two kinds of part id’s:

• Global part id, denoted by Pi, which is globally unique over all the processes.

• Local part id, denoted by lPi, which is local and unique to only one process

where the part resides.

Note, without specification, part id is short for global part id in the following

chapter.
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Figure 6.1: Example of a 2D distributed mesh on two processes with two
parts per process.

In practice, for representing global part id’s, the use of single and continuous

integers may be not ideal for applications of adaptive mesh methods, which require

(i) the creation of multiple parts per process, (ii) the movement of mesh entities

between parts, and (iii) the movement of parts between processes. For instance,

one way to represent a global part id is to use a pair of integers, including the local

part id and process rank where the part resides, denoted by (lPi, Ci).

Since single integers allow simple storage and modification compared to pairs

of integers, this work uses single, non-continuous integers to represent global part

id’s. The global part id’s are calculated based on a default base number (say,

maxNumPart), which defines the maximum number of parts that a process can

contain. The base number maxNumPart is positive and consistent over all the

processes, and can be redefined by the application. If local part id’s are assumed

to be continuous on each process and all the numbers start from zero, given a part

id Pi on a process rank Ci, the global part id (Pi) and local part id (lPi) can be

converted to each other as follows.

lPi = Pi % maxNumPart; (6.1)

Pi = Ci × maxNumPart + lPi. (6.2)
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Figure 6.2: The partition model of the distributed mesh in Figure 6.1
(left) and the partition model viewed from the process level
(right).

The process rank Ci can be also calculated through the global part id Pi.

Ci = Pi ÷ maxNumPart. (6.3)

6.1.2 Enhanced partition model

A partition model is a topological representation of a mesh partitioning, and

consists of partition entities. Through partition classification and reverse partition

classification, a partition model defines the relations between mesh entities and

partition entities [15, 16].

An enhanced partition model allows an arbitrary number of parts existing on a

single process, and contains two levels of domain decomposition views including: (i)

the partition view at the part level and (ii) the partition view at the process level.

For the 2D distributed mesh in Figure 6.1, Figure 6.2 depicts the whole partition

model and its partition view from the process level .

In the part level view, each part is treated as a serial mesh with the addition

of part boundary entities and their remote copies. Each part is uniquely identified

by a part handle or id, denoted by Pi. Duplicated part boundaries can exist on a

process. The partition classification is maintained for each mesh entity on a part.

In the process level view, each process stores (i) all parts that reside on the

process, and (ii) all partition entities on which the on-process mesh entities are

classified. If a partition entity P d
i whose residence parts contain a part Pi on a
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process Cj, i.e. Pi ∈ P[P d
i ], partition entity P d

i will be stored on the process Cj.

In practice, for effective manipulation of multiple parts per process, a mesh

instance is defined on each process to contain all the part handles on that process.

Part handles are accessible only through the mesh instance on a process. The

number of part handles stored in a mesh instance decides the existing number of

parts residing on the process. The ordering of part handles stored in a mesh instance

decides the continuous local part id’s of the parts on the process, and thus their

global part id’s.

6.1.3 Partition entities

As the mesh changes in parallel computations such as mesh (re)partitioning,

the partition model changes, as well as its associated partition entities. For the sake

of memory efficiency, a partition entity does not store reverse partition classification

explicitly. In addition to the dimension, id, residence parts and the owning part [15,

16], a partition entity stores an entity counter to record the number of existing mesh

entities classified on the partition entity. The entity counters help to clean up unused

partition entities in the partition model, and thus help to calculate neighboring parts

on-the-fly in any stage of mesh modification.

The rules to calculate an entity counter in a partition entity P d
i include:

• When the partition entity P d
i is first created, the counter is set as zero.

• If a mesh entity is classified on the partition entity P d
i , the counter is increased

by one.

• If a mesh entity changes its partition classification from the partition entity

P d
i to another partition entity P q

j , then the counter in P q
j is increased by one

and the one in P d
i is decreased by one.

• If a mesh entity classified on the partition entity P d
i is deleted from the mesh,

the counter in P d
i is decreased by one.

• If the counter is decreased to zero, the partition entity P d
i will be deleted from

the partition model.
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Data: a part Pi on a process Ci

Result: store all neighboring parts for the part Pi into nborParts
begin

/* STEP 1: traverse all partition entities on process */

for each partition entity P d
i stored on Ci do

for each part Pj ∈ P[P d
i ] do

if Pj = Pi then
store P d

i into ptnEnts;
break;

end

end

end
/* STEP 2: traverse partition entities in ptnEnts */

for each P d
i ∈ ptnEnts do

for each part Pj ∈ P[P d
i ] do

if Pj ̸= Pi then store Pj into nborParts;
end

end
/* STEP 3: make neighboring parts unique */

make the neighboring parts unique in nborParts;
return nborParts;

end

Algorithm 11: Get neighboring parts of a specific part on a process.

Algorithm 11 illustrates the procedure to collect the neighboring parts for a

specific part (Pi) on a process (Cj). In the first step, the algorithm traverses all

partition entities stored on the process, and collects all partition entities where the

mesh entities on the current part Pi are classified, through checking if the residence

parts of a partition entity P d
i , i.e. P[P d

i ], contain the part Pi. If yes, the partition

entity will be stored into a list ptnEnts. In the second step, the algorithm traverses

all partition entities in the list ptnEnts. For each partition entity, it traverses its

residence parts, and stores the residence parts except the current part Pi into the

neighboring part list nborParts. The third step is to make sure that the collected

neighboring parts of the part Pi are unique in the return list nborParts.

Since the number of partition entities stored on a process is much smaller

than the mesh entities on the process, Algorithm 11 will be more efficient than an

algorithm which requires traversing all mesh entities on any part boundary to obtain
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Figure 6.3: Example of a mesh distribution from three parts to six parts
through the global (b) and local (c) partitioning strategies.

the neighboring parts of a given part.

6.2 Global and Local Graph-based Partitioning

To obtain the destination part labeling for partition objects, two partitioning

strategies can be used to provide data to the graph/hypergraph based partitioning

tools: the global partitioning and local partitioning strategies. The global parti-

tioning considers all the graph nodes and edges over all processes, and provides a

balanced partition with the global minimum inter-part communication. On the other

hand, the local partitioning considers only the on-process graph nodes and edges

without knowing the existence of other graph nodes and edges on other processes.

Thus the local partitioning can be carried out independently on each process.

Figure 6.3 shows an example of a mesh distribution from three parts to six

parts. Figure 6.3a is an initial 2D distributed mesh on three parts. The redistri-

bution of the 2D mesh can be performed by the global or local partitioning. The

black solid lines represent the inter-process part boundaries, and the dashed lines

represent the on-process part boundaries. In the global partitioning in Figure 6.3b,

the original three inter-process part boundaries are changed. On the other hand,

in the local partitioning in Figure 6.3c, each previous part is split into two smaller

parts, thus the original three inter-process part boundaries stay fixed.

Depending on the requirements of applications, the two partitioning strategies

can be used separately or in combination. Since it considers only graph nodes

and edges on a process, the local partitioning requires less computational resources
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(both time and memory) compared to the global partitioning, especially with a large

number of processes. However, due to the limited local information, the quality of

the partition will be reduced if the local partitioning is used repeatedly.

The current study uses the Zoltan partitioning library [14] to perform the

graph/hypergraph-based partitioning for unstructured meshes. Both the global and

local partitioning through the graph/hypergraph-based partitioning tools require the

application provide (i) all partition objects on a process, and (ii) the neighboring

partitioning objects for all partition objects on a process.

6.2.1 Partition objects

In a mesh partitioning for an unstructured mesh, partition objects can be

either mesh entities not on the boundary of any higher dimension mesh entities and

not in any P-sets or P-sets (please refer to the discussions in §4.4.1).

Data: a mesh M with N parts on a process Ci

Result: store all partition objects in M into a partition object list ptnObj
begin

for i← 0 to N − 1 do
Pi ← FMDB Mesh GetPart(M, i);
FMDB Part GetPtnObj(Pi, ptnObj);

end
return ptnObj;

end

Algorithm 12: Get all partition objects in the mesh instance on a
process.

The pseudo code of Algorithm 12 illustrates the procedure to collect all par-

tition objects on all parts in a process. To traverse all partition objects on each

part in the process (by calling the procedure FMDB Part GetPtnObj ), a loop over

the number of parts on the process is required in the algorithm. The procedure

FMDB Part GetPtnObj, as illustrated in Algorithm 2 in §4.4.1, is to collect all par-

tition objects on a part.
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6.2.2 Collecting neighboring partition objects for global partitioning

Since two neighboring partition objects can exist on two separate parts, it

is necessary to pre-store neighboring partition object information on the remote

copies of part boundary entities to reduce the communication costs. In §4.4.2, the
procedure FMDB Part ExchPtnObj, as illustrated in Algorithm 4, is to exchange

the adjacent partition object information between part boundary entities and their

remote copies in a part, storing the remote partition object information in part

boundary entities, and the procedure FMDB Part GetNborPtnObj, as illustrated in

Algorithm 5, is to collect all neighboring partition objects for all partition objects

on a part.

Data: a mesh instance M with N parts on a process Ci

Result: store the neighboring partition objects in nborPtnObj of all partition
objects in M

begin
for i← 0 to N − 1 do

Pi ← FMDB Mesh GetPart(M, i);
FMDB Part GetNborPtnObj(Pi, nborPtnObj);

end
return nborPtnObj;

end

Algorithm 13: Get neighboring partition objects for each partition
object on a process.

The pseudo code of Algorithm 13 illustrates the procedure to collect all neigh-

boring partition objects for all partition objects on a process for the global graph-

based partitioning. Compared to Algorithm 5, Algorithm 13 adds a loop which tra-

verses all parts on the process, and calls the procedure FMDB Part GetNborPtnObj

on each part.

6.2.3 Collecting neighboring partition objects for local partitioning

Since a local mesh partitioning only considers partition objects and their on-

process neighboring partition objects on each process, a part boundary entity only

needs to communicate with its on-process remote copies to exchange the adjacent

partition object information. The pseudo code of Algorithm 14 illustrates the pro-
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Data: a d-dimension (d ∈ {2, 3}) mesh instance on a process Ci

Result: exchange the on-process partition object information between part
boundary entities that are adjacent to partition objects.

begin
/* STEP 1: get all part boundary entities adjacent to

partition objects */

for each Md−1
i ∈ {M{Md−1}} do

if FMDB Ent IsOnPartBdry(Md−1
i ) = true then

store Md−1
i into entOnPartBdry;

end
/* STEP 2: exchange between part boundary entities */

for each Md−1
i ∈ entOnPartBdry do

Md
j ← Md−1

i ∈ ∂(Md
j );

if FMDB Ent IsInSet(Md
j ) then

adjPtnObj ← FMDB Ent GetSet(Md
j ) ;

else adjPtnObj ← Md
j ;

/* tag data to only on-process remote copies */

for each remote copy Md−1
i

′
of Md−1

i on remote part Premote do

FMDB Ent SetTagData(Md−1
i

′
, adjPtnObj);

end

end

end

Algorithm 14: Exchange the on-process partition object information
between part boundary entities on a process for the local partition-
ing.

cedure to exchange the adjacent partition object information. The input of this

algorithm is a mesh instance on a process. In the first step, the algorithm traverses

all mesh entities to collect part boundary entities that bound partition objects on

the process. In the second step, for each entity Md−1
i in the collected part boundary

entity list entOnPartBdry, the algorithm gets the adjacent partition object (adjPO,

either an entity or a P-set) of Md−1
i through adjacencies, then tags the adjacent

partition object to its on-process remote copies. The remote copies can be accessed

without message passing through the share memory space.

Once the adjacent partition objects are pre-stored in part boundary entities,

Algorithm 13 can be used to collect all neighboring partition objects for all partition

objects on a process.
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For illustration purposes, Algorithm 14 only considers neighboring partition

objects through edge/face adjacencies in a 2D/3D manifold mesh in which partition

objects are mesh faces/regions.

6.2.4 Post-processing

A mesh partitioning procedure indicates which partition object should go to

which destination part, and a mesh migration procedure moves mesh entities from

one part to another part. It is necessary to construct the input of the migration

from the partitioning result.

In the message passing implementation, when one part sends a message and

another part receives the message, only the process rank of the sending part, instead

of the part id, can be obtained automatically. However, to build the relations

between part boundary entities and their remote copies through message passing,

both the destination and source parts are required. Since it is not efficient to access

the source part of a mesh entity through either (i) storing the local part id (of the

source part) inside each mesh entity on a part or (ii) traversing the whole mesh on

a process, it is required to construct the input of the migration procedure as a list

of partition objects to migrate and their destination and source part id’s, referred

to as POsToMove.

In the implementation, POsToMove can be constructed directly through the

partitioning result obtained from the graph/hypergraph based partitioners in the

Zoltan library, which can contain partition objects, the destination part id’s, and

the source part id’s tagged to the partition objects. However, since the partitioning

result returns single, continuous destination part id’s, a conversion may be required

to change the output destination part id’s to the single, non-continuous part id’s,

especially with the various number of parts setting on each process.

6.3 Mesh Migration Algorithm

6.3.1 Entity migration algorithm

A mesh migration algorithm is designed to move mesh entities between parts.

Algorithm 15 illustrates the procedure of migrating mesh entities (the procedure
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Data: a mesh instance on a process M, POsToMove
Result: migrate partition objects in POsToMove
begin

/* STEP 1: create new empty parts on process */

if curNumPart < tgtNumPart then
for i← curNumPart to tgtNumPart do FMDB Mesh CreatePart(M);

end
/* STEP 2: collect entitiesToUpdate and entitiesToRemove */

for each Md
i ∈ POsToMove do

insert Md
i into entitiesToUpdate[d];

for each M q
j ∈ {∂(Md

i )} do insert M q
j into entitiesToUpdate[q];

end
FMDB Ent SetResidencePart(POsToMove, entitiesToUpdate[q]);
for d← 3 to 0 do

for each Md
i ∈ entitiesToUpdate[d] do

if Plocal /∈ P[Md
i ] then insert Md

i into entitiesToRemove[d];
end

end
/* STEP 3: exchange entities in entitiesToUpdate */

for d← 0 to 3 do
FMDB Mesh ExchEnt(M, entitiesToUpdate[d]);

end
/* STEP 4: remove unused entities in entitiesToRemove */

for d← 3 to 0 do
for each Md

i ∈ entitiesToRemove[d] do
if FMDB Ent IsOnPartBdry(Md

i ) = true then
remove copies of Md

i on remote parts;
end
remove Md

i ;

end

end
/* STEP 5: remove unused parts on process */

if tgtNumPart < curNumPart then
for i← tgtNumPart to curNumPart do FMDB Mesh DelPart(M);

end
/* STEP 6: update ownerships of partition entities */

for each P d
i on the process do update the owning part of P d

i ;

end

Algorithm 15: Migrate partition objects in POsToMove
(FMDB Mesh MigrateEnt).
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FMDB Mesh MigrateEnt). The input of the algorithm includes (i) the mesh in-

stance (Mesh) and (ii) a list of partition objects to migrate with their source and

destination parts (POsToMove).

For illustration purposes, only mesh entities that do not bound any other

higher dimension mesh entities are considered as partition objects in this algorithm.

The following are the main steps of the migration procedure in Algorithm 15:

Step 1: creates new empty parts on a process. It compares the current existing

number of parts on a process (curNumPart) and the target number of parts

on the process (tgtNumPart). If tgtNumPart is greater than curNumPart, new

empty part(s) are created on the process and added to the end of the mesh

instance (Mesh). The number of new part(s) equals the result of subtracting

curNumPart from tgtNumPart.

Step 2: based on POsToMove, collects the entities to process (entitiesToUpdate)

whose partitioning data (residence parts P and partition classification) will be

updated after migration. The residence parts of these entities (entitiesToUp-

date) are calculated, and the partition classification is updated to reflect the

changes in the updated partition model. Based on the calculated residence

parts P, this step also determines and collects the entities to remove (enti-

tiesToRemove) from the local parts.

Step 3: migrates required mesh entities in entitiesToUpdate to the destination

parts. The adjacencies associated with the newly created entities are prop-

erly maintained on the destination parts, and remote copy information of the

affected part boundary entities are updated.

Step 4: deletes mesh entities collected in EntitiesToRemove from the local parts.

The adjacencies associated with the unused entities are deleted also. For any

entity in EntitiesToRemove that is on a part boundary, it will be removed

from other parts where it is kept as remote copies.

Step 5: removes the unused parts stored at the end of the mesh instance (Mesh), if

tgtNumPart is less than curNumPart on the process. The number of deleted



111

part(s) equals the result of subtracting tgtNumPart from curNumPart.

Step 6: The ownerships of the partition entities on a process are updated.

Herein, the current existing number of parts on a process (curNumPart) is equal

to the size of part handles stored in a given mesh instance (Mesh) on a process,

and the target number of parts that should exist on the process after the migra-

tion (tgtNumPart) is defined by the application that requests the mesh migration

procedure.

Figure 6.4 and Figure 6.5 illustrate the entity migration procedure. The initial

mesh of Figure 6.4a is a 2D mesh distributed on 3 parts over 3 processes. The solid

lines represent the inter-process part boundaries. As illustrated in Figure 6.4a, the

partition objects (mesh faces) to migrate are labeled with their destination part

id’s. The objective is to migrate mesh entities to destination parts, creating 6 parts

on 3 processes with 2 parts per process. First, since the target number of parts

(tgtNumPart = 2) is greater than the current number of parts (curNumPart = 1) on

each process, a new empty part (see the shaded plane in Figure 6.4b) is created and

added to the end of the mesh instance on each process. Then, all affected entities are

transferred to their destination parts, and all unused entities are removed from the

local parts. The adjacencies and remote copies of these mesh entities are updated, as

well as the partition model and partition entities. Figure 6.5c depicts the resulting

mesh, in which the dashed lines represent the intra-process part boundaries. The

partition model of the resulting mesh is presented in Figure 6.5d. As illustrated in

the two figures, the part id’s are labeled based on the number of 1, 000.

In Algorithm 15, Step 1 and Step 5 are easy to understand. For detailed

explanations on Steps 2, 4, 6 in Algorithm 15, please refer to the migration algorithm

in references [15, 16]. Step 3 will be discussed in the next subsection.

6.3.2 Communications between part boundary entities

Step 3 of the migration procedure is used to demonstrate how to handle com-

munications between part boundary entities during the migration (the procedure

FMDB Mesh ExchEnt), since it involves three rounds of communications.
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Data: a mesh instance M, entitiesToUpdate[d]
Result: create entities on destination parts and update remote copies
begin

/* STEP 3.1: send message to destination parts */

for each Md
i ∈ entitiesToUpdate[d] do

if Psrc ̸= minimum part id where Md
i exists then continue;

for each part id Pi ∈ P[Md
i ] do

if Md
i has remote copy on Pi then continue;

Ci ← FMDB Part GetRank(Pi);
send message A (address of Md

i on Psrc, entity information of Md
i ,

Pi and Psrc) to Ci;

end

end
/* STEP 3.2: create entities and report to broadcaster */

while Ci receives message A from Pbc do
part handle Pi ← FMDB Mesh GetPart(M, Pi);
create Md

i on Pi with the entity information of Md
i ;

if Md
i ̸= partition object then

Cbc ← FMDB Part GetRank(Pbc);
send message B (address of Md

i on Pbc, address of M
d
i created, Pi

and Pbc) to Cbc;

end

end
/* STEP 3.3: broadcaster forwards new entity information */

while Cbc receives message B from Pi do
Md

i ← entity located in the address of Md
i on Pbc;

Md
i saves the address of Md

i on Pi as for the remote copy on Pi;
for each remote copy of Md

i on remote part Premote do
Cremote ← FMDB Part GetRank(Premote);
send message C (address of Md

i on Premote, address of M
d
i on Pi, Pi

and Premote) to Cremote;

end

end
/* STEP 3.4: update remote copies */

while Cremote receives message C from Pbc do
Md

i ← entity located in the address of Md
i on Premote;

Md
i saves the address of Md

i on Pi as for the remote copy on Pi;

end

end

Algorithm 16: Exchange mesh entities in the migration procedure
(FMDB Mesh ExchEnt).
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In Step 3 of the migration procedure in Algorithm 15, mesh entities are ex-

changed from low to high dimensions, because a higher dimension mesh entity is

bounded by lower dimension mesh entities [15, 16]. This step exchanges entities

from dimension 0 to 3, transfers entities to the destination parts and updates the

remote copies of the affected part boundary entities. Algorithm 16 illustrates the

procedure that exchanges the entities contained in entitiesToUpdate[d], where d =

0, 1, 2, 3. The input of this algorithm incudes (i) the mesh instance on a process

(Mesh) and (ii) entitiesToUpdate[d] which consists of a list of mesh entities and

their source parts. The source parts of the mesh entities to process are derived from

their bounding partition objects in the previous Step 2 in the migration.

The following are the main steps of the entity exchanging procedure in Algo-

rithm 16:

Step 3.1: sends a message to the destination parts. For each entity Md
i in enti-

tiesToUpdate[d], the part with the minimum part id where Md
i exists is as-

signed as the broadcaster (Pbc, i.e. Psrc), and sends a message to the destina-

tion parts (Pi) to create new mesh entities. Before sending a message to Pi,

the source part Psrc first checks if M
d
i already exists on Pi through its remote

copies, and then determines on which process the part Pi exists (Ci). If Md
i

has a copy on Pi already, it will not send the message. For each entity Md
i to

migrate, Psrc sends to process Ci a message A, composed of (i) the address of

Md
i on Psrc, (ii) the information of Md

i necessary for entity creation, (iii) the

source part id Psrc and (iv) the destination part id Pi.

Step 3.2: creates a new entity and reports the information to the broadcaster.

When the process Ci receives the message A from the part Pbc, it analyzes

the message and decides that the part Pi is the destination part. Then a new

entity Md
i is created on Pi. If the newly created entity Md

i is not a partition

object, Pi should send the address of Md
i back to the sender (Md

i on Pbc) to

update the remote copy relation. The message B is sent back to the process

where Pbc exists (Cbc), and is composed of (i) the address of Md
i on Pbc, (ii) the

address of Md
i created on Pi, (iii) the source part id Pi and (iv) the destination

part id Pbc.
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Step 3.3: forwards the new entity information from the broadcaster. When the

process Cbc receives the message B from the part Pi, the address of Md
i on Pi

is saved as the remote copy of Md
i on Pbc. The message C is then forwarded

to all other remote copies of Md
i on remote parts (Premote). Before sending the

message to each remote part, Pbc determines on which process the part Premote

exists.

Step 3.4: updates the remote copies. When the process Cremote receives the message

from Pbc, it updates the remote copy of Md
i on the part Premote to include the

address of Md
i on Pi.

In the message passing, when a part Pi sends a message to another part Pj, it

needs to determine on which process the part Pj exists and then sends the message

to the process. In the implementation, if two parts are on the same process, they

can get the information directly through the shared memory space. The function

FMDB Part GetRank performs the conversion between a part id and its correspond-

ing process rank through Equation 6.3. On the contrary, whenever a process Ci

receives a message, to set up remote copy relations, it needs to figure out which part

sends the message (the source part) and which part should handle the message (the

destination part). As illustrated in Algorithm 16, the current approach is to pack

the part id’s of both the source and the destination parts within a message. Thus

when a process receives a message, the process unpacks the message and knows

the destination part, and then the destination part will handle the remains of the

message and build remote copy connections with the entity from the source part.

6.3.3 Entire part migration algorithm

There are applications where multiple parts are defined on one process and

then specific parts are migrated to another process. This procedure can be more

efficient than the general mesh entity migration procedure, since the only data that

is changed is the partition model and its associated partition entities. Migrating an

entire part can be viewed as two steps: (i) creates a new part on the destination

process, and then (ii) migrates all the mesh entities from a given source part to the

destination part. The second step can call the mesh entity migration procedure.
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Algorithm 17 illustrates the procedure of migrating an entire part from one

process to another process. The input of this algorithm includes the mesh instance

on a process (Mesh), the source part to migrate with part id Pi, and the destination

process Cj. It is assumed that the destination part will be added to the mesh

instance on the destination process Cj as the last part.

The following are the main steps of the part migration procedure in Algo-

rithm 17:

Step 1: sets up the target number of parts on processes. On the process where the

source part Pi exists (Ci), the target number of parts is set to the existing

number of parts on the process minus one (curNumPart−1). On the destina-

tion process Cj, the target number of parts is set to the existing number of

parts on the process plus one (curNumPart+1).

Step 2: creates a new empty part on the destination process Cj. Then Cj sends a

message A (the part id of the new part Pj) to the process Ci where the source

part Pi exists.

Step 3: receives the message and prepares a list of partition objects to migrate.

When the process Ci receives the message A from Cj, it traverses all partition

objects on the part Pi, and constructs a list of partition objects to migrate

and their destination and source parts (POsToMove), where the destination

parts are Pj and the source parts are Pi.

Step 4: calls the mesh entity migration procedure with the mesh instance Mesh

and POsToMove as the input.

In the mesh entity migration in Step 4, since tgtNumPart is less than cur-

NumPart on the process Ci, the unused part Pi will be deleted automatically. For

illustration purposes, Algorithm 17 only considerers partition objects that are mesh

entities.
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Data: a mesh instance M, the source part Pi, the destination process Cj

Result: migrate the entire part Pi to the process Cj

begin
/* STEP 1: set tgtNumPart on affected processes */

Ci ← FMDB Part GetRank(Pi);
if the current process is Ci then

tgtNumPart ← curNumPart −1;
end
if the current process is Cj then

tgtNumPart ← curNumPart +1;
end
/* STEP 2: create new part and send message from the

destination */

if the current process is Cj then
N ← FMDB Mesh GetNumPart(M);
Pj ← FMDB Mesh CreatePart(M, N);
send a message A (part id Pj) to Cj;

end
/* STEP 3: receive message and prepare POsToMove on the

source */

while Ci receives message A from Cj do
for each entity Md

i on Pi do
if Md

i does not bound any higher order mesh entity then
initialize a pair of integers pid;
pid.first ← Pj; // the destination part id

pid.second ← Pi; // the source part id

POsToMove [Md
i ] ← pid;

end

end

end
/* STEP 4: call entity migration procedure */

FMDB Mesh MigrateEnt(M, POsToMove);

end

Algorithm 17: Migrate an entire part from one process to another
process.
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Figure 6.6: Geometry and a mesh of an AAA model [1].

6.4 Examples and Applications

This section demonstrates the capability and efficiency of multiple parts per

process procedure in operations of importance to parallel adaptive simulations. In

the following examples, meshes on a patient-specific abdominal aortic aneurysm

(AAA) model are considered (see the model of Figure 6.6). The meshes are ob-

tained through adaptive refinement on an anisotropic mesh obtained from previous

adaptation cycles.

The first and second examples (in §6.4.1 and §6.4.2) investigate the perfor-

mance of global and local partitioning strategies to create partitions containing

multiple parts per process. The graph-based partitioner ParMetis [60] (the latest

version 4.0.2 [91]) is used in both examples. The time usage of the two main stages

of mesh partition and mesh migration is measured. Section §6.4.3 gives one adaptive
analysis usage of multiple parts per process, combined with predictive load balanc-

ing [1]. §6.4.4 presents an actual use case of a large-scale adaptive fluid simulation

on partitioned meshes of billions of elements.

The quality of a partition is measured in terms of region (partition object)

imbalance ratio of a partition, which is defined as the maximum number of mesh

regions on a part over the average number of regions per part across the partition.
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Figure 6.7: Number of regions on each part of a 133M region mesh for a
partition with 2,048 parts.

An input to the load balancing procedure is the imbalance tolerance (e.g., 1.03) [92].

If the number of mesh partition objects on each part over the average number of mesh

regions across the partition is smaller than the imbalance tolerance, the balance of

the partition is satisfied. For example, a mesh with 133 million regions is distributed

on 2, 048 parts, and the average number of regions on each part is 133, 973, 440/2, 048

= 65, 417. If a part of 66, 937 regions contains more regions than all the other 2, 047

parts, then the region imbalance ratio of this partition equals 66, 937/65, 417 = 1.023

(i.e., 2.3% region imbalance). Given the imbalance tolerance of 1.03, this partition

is measured as a balanced partition. Figure 6.7 depicts the number of regions on

each part of this 2, 048 part mesh. X-axis represents the part number, and y-axis

represents the number of regions on a part. There are some parts contains a small

number of regions in the partition. Since the heavily loaded parts in this partition

dictate the scaling performance while a small number of lightly loaded parts has a

very small influence, it is only the most heavily load part that is used in defining

the region imbalance [8].
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6.4.1 AAA model with O(108) elements on 512 processors

A well-balanced 133, 973, 440 (133M where M denotes millions) mesh of the

AAA model, distributed on 512 parts with a 1.2% region imbalance is considered.

The global and local partitioning with different region imbalance tolerance numbers

are applied to produce various partitions containing 1, 024 parts up to 16, 384 parts

respectively. The partitioning is carried out on 512 processors at NERSC Hopper

(Cray XE6) system [90], using 24 cores per node with 1.29GB of memory per core.

After repartitioning, each processor will contain multiple parts. For instance, each

processor has 32 parts in the 16, 384 part partition.

This example consists of three test cases using three methods, respectively. In

§6.4.1.1, the global partitioning is applied, and the time usage and region imbal-

ance for each obtained partition are presented. In §6.4.1.2, the local partitioning is

applied, and the time usage and region imbalance for each obtained partition are

presented. In §6.4.1.3, a combined approach is applied, including the local parti-

tioning with ParMetis, followed by running ParMA [54], an iterative improvement

procedure for balancing multiple entity types. The time usage and region imbalance

for each obtained partition are presented. §6.4.1.4 analyzes the result of these three

methods, and demonstrates that the local partitioning related methods are much

faster (at least 1.5 times faster) than the global partitioning, to obtain partitions of

region imbalance with the requested 3% imbalance.

6.4.1.1 Graph-based global partitioning

The global partitioning strategy is applied with the graph-based partitioner,

ParMetis [60]. The imbalance tolerance is set at 3% for each mesh partition. Ta-

ble 6.1 lists the average execution time of mesh partition stage (Partition in the 3rd

column), mesh migration stage (Migration in the 4th column) and total execution

(Total in the 5th column) time) in seconds, along with the total number of regions

to migrate (RgnsToMove) during the migration stage. As the total number of parts

increases, it requires more time to perform mesh partition, migration and thus the

total execution. As shown in the 2nd column of the table, during the migration

stage, nearly all the partition objects (regions) are migrated globally. Table 6.2
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Table 6.1: The average execution time (in seconds) of mesh partition,
migration and total execution on the 133M mesh of the AAA
model on 512 processors on NERSC Hopper through the
global partitioning strategy with ParMetis.

Total#parts #RgnsToMove Partition(sec) Migration(sec) Total(sec)

1,024 133,948,240 37.86 36.87 74.73
2,048 133,843,442 39.05 40.25 79.30
4,096 133,973,432 40.97 40.52 81.49
8,192 133,961,971 42.66 42.11 84.77
16,384 133,973,355 45.42 45.70 91.12

Table 6.2: The average number of regions on each part of various par-
titions (with region imbalance in percentage) on the 133M
mesh of the AAA model on 512 processors on NERSC Hop-
per through the global partitioning strategy with ParMetis.

Total#parts Local#parts Ave.#rgns Rgn. imb.

1,024 2 130,833 2.3
2,048 4 65,417 2.1
4,096 8 32,708 2.1
8,192 16 16,354 1.9
16,384 32 8,177 2.2

lists the average number of regions on each part (the 3rd column) in each partition,

along with the region imbalance in percentage (the 4th column). Due to the global

partitioning, the region imbalance of each resulting partition is at most 2.3% and

satisfies the imbalance tolerance globally.

6.4.1.2 Graph-based local partitioning

The local partitioning is applied with the graph-based partitioner, ParMetis [60].

The imbalance tolerance is set at 1% for each mesh partition. The tolerance set in

this case is slightly smaller than the 3% set for the global partitioning. The reason is

that the region imbalance ratio in the local partitioning could easily go up due to the

compounding effect, since the local partitioning considers only the average number
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Table 6.3: The average execution time (in seconds) of mesh partition,
migration and total execution on the 133M mesh of the AAA
model on 512 processors on NERSC Hopper through the local
partitioning strategy with ParMetis.

Total#parts #RgnsToMove Partition(sec) Migration(sec) Total(sec)

1,024 66,982,773 7.26 19.22 26.48
2,048 100,480,328 7.31 28.79 36.10
4,096 117,219,929 7.34 34.55 41.89
8,192 125,600,240 7.38 39.00 46.38
16,384 129,786,485 7.46 44.07 51.53

of regions across the parts on a process instead of the average number of regions

across all the parts in the whole partition. For example, given the 512 part mesh of

1.2% initial region imbalance and the region imbalance tolerance of 3%, the result

region imbalance ratio obtained from the local partitioning could be 1.2%+3.0% =

4.2% region imbalance. If the imbalance tolerance is set at 1%, the expected region

imbalance is 1.2% + 1.0% = 2.2%.

The execution time (in seconds) of the mesh partition stage (Partition in

the 3rd column), mesh migration stage (Migration in the 4th column) and total

execution (Total in the 5th column) time) to obtain the various partitions is collected

in Table 6.3, as well as the total number of regions to migrate (RgnsToMove) during

the migration stage. As the total number of parts increases, the total number of

regions to migrate increases from almost half to all the regions in the whole mesh,

and the time to do migration increases, as well as the total execution time. The

time to do partition does not increase much, since the local partitioning considers

only local information on each process in each partition. Table 6.4 lists the average

number of regions on each part (the 3rd column) in each partition, along with the

region imbalance in percentage (the 4th column). The region imbalance of each

resulting partition is less than or equal to 2.3%, almost as expected.
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Table 6.4: The average number of regions on each part of various par-
titions (with region imbalance in percentage) on the 133M
mesh of the AAA model on 512 processors on NERSC Hop-
per through the local partitioning strategy with ParMetis.

Total#parts Local#parts Ave.#Rgns Rgn. imb.

1,024 2 130,833 1.3
2,048 4 65,417 2.0
4,096 8 32,708 2.3
8,192 16 16,354 2.2
16,384 32 8,177 2.3

6.4.1.3 Graph-based local partitioning followed by ParMA

The local partitioning is applied first on the 133M mesh, distributed on 512

parts, to obtain various partitions containing 1, 024 up to 16, 384 parts. The region

imbalance tolerance for each partition is set at 3%. Then the ParMA tool is applied

on each partition to improve the region balance. ParMA is an under-development

tool for balancing multiple mesh entity types by migrating selected mesh entities

from heavily loaded part to lightly loaded part, globally and iteratively, also aiming

to reduce the inter-part communication costs [54]. In each iteration step of ParMA,

a greedy algorithm is applied to select mesh entities to migrate in the part neigh-

borhood, and the mesh entity migration algorithm developed in this chapter is used

as the underlying mesh migration procedure. In the ParMA of this case, the region

imbalance tolerance is set at 2% for each partition and the number of iteration steps

is set at 50.

Table 6.5 lists the average execution time (in seconds) of mesh partition stage

(Partition in the 3rd column), mesh migration stage (Migration in the 4th column),

ParMA stage (in the 5rd column), and total execution (Total in the 6th column),

along with the total number of regions to migrate (RgnsToMove) during the mi-

gration stage. As the total number of parts increases, the time for migration and

ParMA increases, as well as the total execution time. Due to the local partitioning,

the time for partitioning does not increase much in each partition.

Table 6.6 lists the average number of regions per part (the 3rd column) in
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Table 6.5: The average execution time (in seconds) of mesh partition,
migration, ParMA and total execution on the 133M mesh of
the AAA model on 512 processors on NERSC Hopper through
the local partitioning strategy (with ParMetis) followed by
ParMA.

Total #RgnsToMove Partition Migration ParMA Total

#parts (sec) (sec) (sec) (sec)

1,024 66,975,240 7.24 19.13 0.90 27.27
2,048 100,490,369 7.36 28.80 0.41 36.57
4,096 117,222,748 7.40 34.35 1.01 42.76
8,192 125,600,685 7.41 38.39 4.50 50.30
16,384 129,786,233 7.48 43.34 8.13 58.95

Table 6.6: The average number of regions on each part of various par-
titions with region imbalance (in percentage) on the 133M
mesh of the AAA model on 512 processors on NERSC Hop-
per through the local partitioning strategy (with ParMetis)
followed by ParMA.

Rgn. imb. Rgn. imb.

Total#parts Local#parts Ave.#Rgns (Local) (ParMA)

1,024 2 130,833 4.3 2.9
2,048 4 65,417 2.9 2.0
4,096 8 32,708 3.6 2.8
8,192 16 16,354 4.0 3.0
16,384 32 8,177 4.3 3.0

each partition, along with the region imbalance (in percentage) after running the

local partitioning and ParMA (in the 4th and 5 columns), respectively. As shown

in Table 6.6, with the region imbalance tolerance set at 3%, the region imbalance

in most partitions obtained from the local partitioning is above 3%. By running

ParMA, the region imbalance in each partition is down to 3%.

6.4.1.4 Compare the three methods

This subsection compares the time usage and region imbalance for each par-

tition through three methods: the global partitioning with the region imbalance
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Table 6.7: Compare the average total execution time (in seconds) of mesh
repartition on the 133M mesh of the AAA model on 512 pro-
cessors on NERSC Hopper through three methods: Global
partitioning, Local partitioning and Combined method (local
partitioning followed by ParMA).

Total Global Local Global/ Combined Global/

#parts tol=3% tol=1% Local tol=3%,tol=2% Combined

1,024 74.73 26.48 2.8 27.27 2.7
2,048 79.30 36.10 2.2 36.57 2.2
4,096 81.49 41.89 1.9 42.76 1.9
8,192 84.77 46.38 1.8 50.30 1.7
16,384 91.12 51.53 1.8 58.95 1.5

tolerance of 3% (Global), the local partitioning with the region imbalance tolerance

of 1% (Local), and the combined method of the local partitioning with region im-

balance tolerance of 3% followed by ParMA with the region imbalance tolerance of

2% (Combined).

Table 6.7 compares the average total execution time (in seconds) for each

partition through the three methods: Global (in the 2nd column), Local (in the 3rd

column), and Combined (in the 5th column). The 4th column lists the time ratio

of the global partitioning over the local partitioning in each partition, and the 6th

column lists the time ratio of the global partitioning over the combined method in

each partition. As shown in the 4th and 6th columns, to produce various partitions,

the local partitioning is at least 1.8 times faster than the global partitioning, and

the combined method is at least 1.5 times faster than the global partitioning.

Table 6.8 compares the region imbalance (in percentage) of various partitions

through the three methods: Global (in the 2nd column), Local (in the 3rd column),

and Combined (in the 4th column). The region imbalance in each partition is less

than or equal to 3%, but the region imbalance obtained from the combined method

is a currently slightly higher than that from the other two methods. Note ParMA

is under development, thus the results are likely to change as the development

continues.
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Table 6.8: Compare the region imbalance (in percentage) of various par-
titions on the 133M mesh of the AAA model on 512 processors
on NERSC Hopper through three methods: Global partition-
ing, Local partitioning, and Combined method (local parti-
tioning followed by ParMA).

Total#parts Global Local Combined

1,024 2.3 1.3 2.9
2,048 2.1 2.0 2.0
4,096 2.1 2.3 2.8
8,192 1.9 2.2 3.0
16,384 2.2 2.3 3.0

6.4.2 AAA model with O(108) elements on 2, 048 processors

Two well-balanced 133, 973, 440 (133M where M denotes millions) meshes of

the AAA model distributed on 2, 048 parts are considered: one is of 2.3% region im-

balance and the other is of 1.0% region imbalance. The global and local partitioning

are applied on the two meshes to create various partitions containing 4, 096 parts

up to 131, 072 parts respectively. The partitioning is carried out on 512 processors

at NERSC Hopper (Cray XE6) system [90], using 24 cores per node with 1.29GB of

memory per core. After repartitioning, each processor will contain multiple parts.

For instance, each processor has 8 parts in the 16, 384 part partition.

This example consists three test cases using three methods: (i) the global

graph-based partitioning on the 2, 048 part mesh of 2.3% region imbalance (in

§6.4.2.1); (ii) the local graph-based partitioning on the 2, 048 part mesh of 1.0%

region imbalance (in §6.4.2.2); (iii) the local hypergraph-based partitioning on the

2, 048 part mesh of 1.0% region imbalance(in §6.4.2.3). §6.4.2.4 compares the time

usage and region imbalance of the three methods, and demonstrates that both the

graph-based and hypergraph-based local partitioning are much faster (at least 2

times) than the global partitioning, to obtain partitions of region imbalance with

the requested 3% imbalance.

The initial 2, 048-part meshes are obtained through the graph-based global

partitioning on the previous 133M mesh, distributed on 512 parts on 512 processing
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Table 6.9: The average execution time (in seconds) of mesh partition,
migration and total execution and the region imbalance (in
percentage) of the 2,048 part partition on the 133M mesh of
the AAA model on 512 processors on NERSC Hopper through
the global partitioning strategy with ParMetis.

Total#parts RgnImbTol ResultRgnImb Partition Migration Total

(%) (%) (sec) (sec) (sec)

2,048 1.0 1.0 39.58 40.00 79.58

cores on NERSC Hopper, with different region imbalance tolerance set for each

partition. With the imbalance tolerance set at 3%, the partitioning obtains a 2, 048

part mesh of 2.3% region imbalance, in about 79.30 seconds (in the 5th column of

Table 6.1). With the imbalance tolerance set at 1%, the partitioning obtains a 2, 048

part mesh of 1.0% region imbalance, in about 79.58 seconds (in the 6th column of

Table 6.9). The total partitioning time spent in the two partitions are very close,

and the partitioning of 1% region imbalance tolerance is slightly slower (about 0.4%)

than that of 3% region imbalance tolerance.

6.4.2.1 Graph-based global partitioning

The global partitioning with the graph-based partitioner, ParMetis [60] is ap-

plied on the 2, 048 part mesh of 2.3% region imbalance. The imbalance tolerance is

set at 3% for each partition. The repartitions to 65, 536 and 131, 072 parts failed and

reported the error of running out of memory from the Hopper system. Table 6.10

lists the average execution time (in seconds) of the mesh partition stage (Partition

in the 3rd column), mesh migration stage (Migration in the 4th column) and total

execution (Total in the 5th column) time, along with the total number of regions to

migrate (RgnsToMove) during the migration stage. As shown in this table, as the

total number of parts increases, the total execution time increases as well as the time

for mesh partition. The time for mesh migration does not increase much, around

10 seconds, since nearly all the partition objects (regions) are migrated during this

stage. Table 6.11 lists the average number of regions on each part (the 3rd column)

in each partition, along with the region imbalance (the 4th column). Due to the
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Table 6.10: The average execution time (in seconds) of mesh partition,
migration and total execution on the 133M mesh of the AAA
model on 2,048 processors on NERSC Hopper through the
global partitioning strategy with ParMetis.

Total#parts #RgnsToMove Partition Migration Total Exec.

4,096 133,950,085 14.33 9.69 24.02
8,192 133,952,150 16.06 9.87 25.93
16,384 133,973,348 18.29 10.00 28.29
32,768 133,971,242 24.27 10.85 35.12

Table 6.11: The average number of regions on each part of various par-
titions (with region imbalance in percentage) on the 133M
mesh of the AAA model on 2,048 processors on NERSC Hop-
per through the global partitioning strategy with ParMetis.

Total#parts Local#parts Ave.#Rgns Rgn. imb.

4,096 2 32,708 2.2
8,192 4 16,354 2.4
16,384 8 8,177 2.2
32,768 16 4,088 2.2

global partitioning, the region imbalance (partition objects) of each partition is at

most 2.4% and satisfies the imbalance tolerance globally.

6.4.2.2 Graph-based local partitioning

The local partitioning with the graph-based partitioner, ParMetis [60] is ap-

plied on the 2, 048 part mesh of 1.0% region imbalance. The imbalance tolerance

is set at 1% or 2% for each mesh partition. The partition result with better region

imbalance is listed in the following tables. Note this case considers the 2, 048 part

mesh of 1.0% region imbalance, instead of the one of 2.3% region imbalance, since

the goal is to obtain various partitions with the region imbalance within 3%. Oth-

erwise, given the 2, 048 part mesh of 2.3% region imbalance in the local partitioning

and 1% region imbalance tolerance, the region imbalance in a resulting partition

could easily go up to 2.3% + 1.0% = 3.3%.
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Table 6.12: The average execution time (in seconds) of mesh partition,
migration and total execution on the 133M mesh of the AAA
model on 2,048 processors on NERSC Hopper through the
local partitioning strategy with ParMetis.

Total#parts #RgnsToMove Partition(sec) Migration(sec) Total(sec)

4,096 66,987,061 3.53 4.61 8.14
8,192 100,483,219 3.49 6.92 10.41
16,384 117,224,100 3.51 8.24 11.75
32,768 125,600,912 3.55 9.34 12.89
65,536 129,786,818 3.57 10.72 14.29
131,072 131,879,721 3.59 13.99 17.58

Table 6.13: The average number of regions on each part of various par-
titions (with region imbalance in percentage) on the 133M
mesh of the AAA model on 2,048 processors on NERSC Hop-
per through the local partitioning strategy with ParMetis.

Total#parts Local#parts Ave.#Rgns Rgn. imb.

4,096 2 32,708 2.0
8,192 4 16,354 2.0
16,384 8 8,177 2.0
32,768 16 4,088 3.9
65,536 32 2,044 4.8
131,072 64 1,022 4.9

The average execution time (in seconds) of mesh partition (Partition in the

3rd column), mesh migration (Migration in the 4th column) and total execution

(Total in the 5th column) is collected in Table 6.12, along with the total number of

regions to migrate (RgnsToMove) during the migration stage. As the total number

of parts increases, the total execution time as well as the time for mesh migration

increases, since the total number of regions to migrate increases. The time for mesh

partition does not increase much, since the local partitioning only considers the local

information on each process.

Table 6.13 lists the average number of regions on each part (the 3rd column) in

each partition, along with the region imbalance in percentage (the 4th column). As
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Figure 6.8: Region imbalance ratio on each part of a 133M region mesh
for a partition with 65,536 parts.

the total number of parts increases, the region imbalance in the 4, 096 up to 16, 384

part partitions is exactly 2%, while the region imbalance in the 32, 768 up to 131, 072

part partitions increases to almost 5%. Figure 6.8 depicts the region imbalance ratio

on each part in the 65, 536 part partition. In this figure, the region imbalance of

most parts is below 3%, i.e. imbalance ratio ≤ 1.03. The region imbalance of only

two parts is close to 5% (the two spikes). The local partitioning has been applied

with various region imbalance tolerance, such as 1%, 2% or 0.5%, set in the graph

partitioner ParMetis, but the spikes in the 32, 768 up to 131, 072 part partitions still

exist.

6.4.2.3 Hypergraph-based local partitioning

The local partitioning with the hypergraph-based partitioner, PHG [92], is

applied on the 2, 048 part mesh of 1.0% region imbalance to obtain various partitions,

containing 4, 096 up to 131, 072 parts. The imbalance tolerance is set at 1% for each

mesh partition.

The average execution time (in seconds) of mesh partition (Partition in the 3rd

column), mesh migration (Migration in the 4th column) and total execution (Total
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Table 6.14: The average execution time (in seconds) of mesh partition,
migration and total execution on the 133M mesh of the AAA
model on 2,048 processors on NERSC Hopper through the
local partitioning strategy with PHG.

Total#parts #RgnsToMove Partition(sec) Migration(sec) Total(sec)

4,096 66,534,505 2.33 4.66 6.99
8,192 100,190,323 3.13 7.05 10.18
16,384 117,067,747 3.89 8.40 12.29
32,768 125,518,648 4.73 9.76 14.49
65,536 129,745,852 5.55 11.53 17.08
131,072 131,859,752 6.70 15.52 22.22

in the 5th column) to obtain various partitions is collected in Table 6.14, along with

the total number of regions to migrate (RgnsToMove) during the migration stage. As

the total number of parts increases, the total execution time increases. During the

migration stage, since the total number of regions to migrate increases from almost

half to all the regions in the partition, the time for migration increases. Although the

local partitioning only considers the local information on each process, the time for

mesh partition increases as the total number of parts increases. This is not the case

in the graph-based local partitioning, where the time for mesh partition is around

3.54 seconds. Part of the reason is that the hypergraph partitioning usually produces

partitions of higher quality than the graph partitioning [92]. Table 6.15 lists the

average number of regions on each part (the 3rd column) in each partition, along

with the region imbalance in percentage (the 4th column). The region imbalance in

each partition is fixed at 2%.

6.4.2.4 Compare the three methods

This subsection compares the time usage and region imbalance for each parti-

tion through three methods: the graph-based global partitioning (Global ParMetis),

the graph-based local partitioning with the ParMetis (Local ParMetis), and the

hypergraph-based local partitioning with the PHG (Local PHG).

Table 6.16 compares the average total execution time (in seconds) on the 133M
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Table 6.15: The average number of regions on each part of various par-
titions (with region imbalance in percentage) on the 133M
mesh of the AAA model on 2,048 processors on NERSC Hop-
per through the local partitioning strategy with PHG.

Total#parts Local#parts Ave.#Rgns Rgn. imb.

4,096 2 32,708 2.0
8,192 4 16,354 2.0
16,384 8 8,177 2.0
32,768 16 4,088 2.0
65,536 32 2,044 2.0
131,072 64 1,022 2.0

Table 6.16: Compare the average total execution time (in seconds) of
mesh repartition on the 133M mesh of the AAA model on
2,048 processors on NERSC Hopper through three methods:
Global partitioning with ParMetis, Local partitioning with
ParMetis and Local partitioning with PHG.

Total Global Local Global/ Local Global/ Local(PHG)/

#parts ParMetis ParMetis Local(Par) PHG Local(PHG) Local(Par)

4,096 24.02 8.14 3.0 6.99 3.4 0.9
8,192 25.93 10.41 2.5 10.18 2.5 1.0
16,384 28.29 11.75 2.4 12.29 2.3 1.0
32,768 35.12 12.89 2.7 14.49 2.4 1.1
65,536 N/A 14.29 N/A 17.08 N/A 1.2
131,072 N/A 17.58 N/A 22.22 N/A 1.3

mesh partitioning on 2, 048 processors of the three methods: Global ParMetis (in

the 2nd column), Local ParMetis (in the 3rd column), and Local PHG (in the 5th

column). The 4th column (Global/Local(Par)) lists the time ratio of the global

partitioning over the graph-based local partitioning. The 6th column (Global/Lo-

cal(PHG)) lists the time ratio of the global partitioning over the hypergraph-based

local partitioning. The 7th column (Local(PHG)/Local(Par)) lists the time ratio of

the hypergraph-based local partitioning over the graph-based local partitioning. It

shows that in the 2, 048 part mesh case:
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• To obtain various partitions of the region imbalance within 3%, the local

partitioning (either hypergraph or graph based) is at least 2.3 times faster

than the global partitioning.

• As the total number of parts increases, the global partitioning could fail due to

the insufficient computer resources. For example, for the partition using 2, 048

processors on Hopper system with 1.29GB of memory per core, the repartition

from 2, 048 parts to 65, 536 and 131, 072 parts fails in the global partitioning

due to the insufficient per core memory, and succeeds in the local partitioning.

• As the total number of parts increases, the time for the hypergraph-based local

partitioning increases much faster than the graph-based local partitioning. For

example, in the 4, 096 and 8, 192 part partitions, the hypergraph-based local

partitioning takes less time than the graph-based partitioning, while in the

16, 384 up to 131, 072 part partitions, the hypergraph-based local partitioning

takes more time than the graph-based partitioning.

Combined with the cost to generate the 2, 048 part partition from 512 part

mesh through the global partitioning with different region imbalance tolerance, the

local partitioning is still faster than the global partitioning. For example, to create

a 32, 768 part partition, the local graph-based partitioning is 1.2 times faster than

the global graph-based partitioning. The time usage is calculated as follows:

• The global partitioning takes 79.30 + 35.12 = 114.42 seconds in total: 79.30

seconds for the global partitioning from 512 to 2, 048 parts, and 35.12 seconds

for the global partitioning from 2, 048 to 32, 768 parts.

• The local partitioning takes 79.58 + 12.89 = 92.47 seconds in total: 79.58

seconds for the global partitioning from 512 to 2, 048 parts, and 12.89 seconds

for the local partitioning from 2, 048 to 32, 768 parts.

Table 6.17 compares the region imbalance (in percentage) of various partitions

on the 133M mesh of the AAA model on 2, 048 processors on NERSC Hopper

through the three methods: Global ParMetis (in the 2nd column), Local ParMetis

(in the 3rd column), and Local PHG (in the 4th column). The region imbalance
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Table 6.17: Compare the region imbalance (in percentage) of various par-
titions on the 133M mesh of the AAA model on 2,048 proces-
sors on NERSC Hopper through three methods: Global par-
titioning with ParMetis, Local partitioning with ParMetis,
and Local partitioning with PHG.

Total#parts Global(ParMetis) Local(ParMetis) Local(PHG)

4,096 2.2 2.0 2.0
8,192 2.4 2.0 2.0
16,384 2.2 2.0 2.0
32,768 2.2 3.9 2.0
65,536 N/A 4.8 2.0
131,072 N/A 4.9 2.0

obtained from the local hypergraph-based partitioning is fixed at 2.0%, and is less

than or equal to any other obtained from either the global or local graph-based

partitioning. The local graph-based partitioning could create partitions of region

imbalance above 3%, as the total number of parts increases.

6.4.3 Mesh partitioning with predictive load balancing

The goal of mesh adaptation is to modify the mesh so that the element sizes

and distribution provide the desired mesh resolution for nearly an optimum number

of elements. To achieve this goal, mesh refinement and coarsening is carried out

over various portions of the mesh domain. In this process some parts that have

most of the mesh refinement can often exceed the limit of the physical memory of

the processors, this may slow down or even kill the process of mesh repartitioning

after mesh adaptation. To avoid running out of memory in the whole adaptation

process, predictive load balancing [1] can be used to improve the balance of mesh

regions in the adapted mesh. However, as long as mesh adaptation is performed on

a fixed number of processors, the mesh size could increase and eventually exceed the

limit of the physical memory of processors. The capability to have multiple parts

per process helps to solve this problem. Combining predictive load balancing with

multiple parts per process partitioning can support mesh adaptation more effectively

and efficiently in terms of memory usage, this is especially useful on supercomputers
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with relatively smaller per core memory, such as BG/L and BG/P system with only

512 MB or 1GB per core memory.
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Figure 6.9: The number of regions on each part of the mesh of 187 mil-
lion regions on 1,024 parts after mesh adaptation with and
without PredLB on a straight pipe model with air bubbles.
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Figure 6.10: The number of regions on each part of the mesh of 187 mil-
lion regions on 4,096 parts after mesh adaptation with and
without PredLB on a straight pipe model with air bubbles.

Predictive load balancing is a mesh repartitioning step applied before mesh

adaptation. In the predictive load balancing step, mesh repartition is carried out
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based on the partition object (element) weight, which is specified to each of the

current elements based on a prediction of how many elements will fill the space of

that element, and thus the mesh will be nearly balanced after mesh adaptation [1].

An initial mesh on a straight pipe model with air bubbles distributing in the

pipe is considered. Figure 3.3a shows the mesh size field which represents the motion

of air bubbles in the geometric model. A zoomed bubble in the mesh is colored by

the magnitude of size field in Figure 3.3b.

In the first case, the mesh adaptation procedure developed in SCOREC [3,

20] is carried out on the initial mesh on 1, 024 parts of 164, 728, 413 regions, with

and without predictive load balancing respectively, on 1, 024 processors on NERSC

Hopper, using 1.29GB per core memory. The adapted meshes contain about 187

million regions. Figure 6.9 shows the number of regions after adaptation with (green

line) and without (red line) using predictive load balancing (PredLB) on 1, 024

parts. Without PredLB, the number of regions on some parts are much higher than

others after mesh adaptation. For example, the part of the highest spike (red line)

contains 1, 055, 737 regions after mesh adaptation. The balance of mesh regions in

the adapted mesh is improved by using PredLB (green line), where the maximum

number of regions on a part in the adapted mesh is 278, 292.

In the second case, the mesh on 1, 024 parts is first repartitioned into 4, 096

parts through the global partitioning. Then the mesh adaptation procedure is car-

ried out on the resulting 4, 096 part mesh of 164, 728, 413 regions, with and without

predictive load balancing respectively, on 4, 096 processors on NERSC Hopper, using

1.29GB per core memory. Figure 6.10 shows the number of regions after adaptation

with (green line) and without (red line) using predictive load balancing (PredLB)

on 4, 096 parts. Without PredLB, the number of regions on some parts are much

higher than others after mesh adaptation. For example, the part of the highest spike

(red line) contains 497, 257 regions after adaptation, nearly half of that (1, 055, 737)

in the previous case without PredLB. By using PredLB the balance of mesh regions

in the adapted mesh (green line) is improved, where the maximum number of re-

gions on a part is 84, 967, which is less than 1/3 of that (278, 292) in the previous

case with using PredLB and also less than 1/10 of that (1, 055, 737) in the previous
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case without using PredLB. In other word, by using predictive load balancing and

multiple part per process partitioning together, the required memory per part for

mesh adaptation can be reduced by more than 90%.

6.4.4 AAA model with billions of elements for large-scale adaptive sim-

ulations

The mesh adaptation procedure developed in SCOREC [3, 20] is applied on

the well balanced 133M mesh, distributed on 512 parts with a 1.2% region imbalance

of the AAA model, to generate meshes of billions of elements through two methods:

(i) the original FMDB allowing only one part per process, and (ii) the improved

FMDB allowing multiple parts per process. All the tests are carried out on NERSC

Hopper. Based on the partitioned meshes of billions of elements, an actual use case

of a large-scale adaptive simulation is presented.

In the first case, one uniform refinement is applied on the 133M mesh on

512 processing cores on NERSC Hopper, using 1.29GB memory per core. The test

fails and reports the error of running out of memory. This failure is proved by

the second step, where the same adaptation process is performed on 512 processing

cores using increased 2.58GB memory per core and obtains an adapted mesh of

1, 071, 787, 520 (1B) regions distributed on 512 parts (1.3% region imbalance with

2, 093, 335 regions per part in average). In the next step, another uniform refinement

is further applied on the resulting well-balanced 1B mesh on 512 processing cores,

using 2.58GB memory per core, and fails again because of running out of memory.

In the second case, instead of adapting the 133M mesh on 512 processing

cores directly, a global partitioning is first carried out on the 133M mesh to obtain

a 2, 048 part partition (with 4 parts per process) on 512 processing cores using

1.29GB memory per core on NERSC Hopper. Then one uniform refinement is

performed on the well-balanced 133M mesh on 2, 048 parts (2.3% region imbalance

with 65, 417 regions per part in average) on 2, 048 processing cores using 1.29GB

memory per core, and obtains an adapted mesh of 1, 071, 787, 520 (1B) regions (2.4%

region imbalance with 523, 334 regions per part in average). Figure 6.11 depicts the

number of regions on each part of this 1B mesh distributed on 2, 048 parts. In the
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Figure 6.11: Number of regions on each part of a 1B region mesh for a
partition with 2,048 parts.

next step, the resulting 1B mesh is further repartitioned from 2, 048 to 16, 384 parts

through the global partitioning on 2, 048 processing cores using 1.29GB memory per

core. This 16, 384-part partitioned mesh could be further adapted to another mesh

of 8.57 billion regions (with about 523, 334 regions per part in average) on 16, 384

processing cores, still using 1.29GB memory per core.

In the first case, since the simulation is constrained to a fixed number of

processors (e.g. 512 processing cores) by the original FMDB implementation, the

per core memory space becomes the bottleneck of the whole simulation as the mesh

size increases. This resulting 1B mesh could not be even fit on any supercomputer

with smaller per core memory, such as IBM BG/L and BG/P with only 512MB or

1GB of memory per core. In the second case, the memory is no longer a bottleneck of

the whole simulation as the mesh size increases, by using multiple parts per process

partitioning.

In the third case, a large partitioned mesh with 8.57 billion (8.57B) regions on

the same AAA model with 16, 384 parts is first generated from an anisotropic mesh

of 133 million regions using the previous steps in the second case. Based on the

globally balanced partitioned 16, 384 part mesh, various partitions are then created
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Table 6.18: The average number of regions per part of the 8.57B-region
mesh on the AAA model, along with the region imbalance
(in percentage) [93].

Total#parts Local#parts Local#rgn Rgn. imb.

32,768 2 261,670 5.1
65,536 4 130,830 5.1
98,304 6 87,222 5.1
131,072 8 65,417 5.1
294,912 18 29,074 5.1

by further splitting each part into multiple parts locally through the hypergraph-

based partitioner, PHG [92]. The region imbalance tolerance is set at 3% for each

partition. Table 6.18 presents the average number of regions on a part for each

partition along with the region imbalance. Due to the local partitioning, the region

imbalance in each resulting partition is 5.1%.

Using these partitioned meshes of 8.57B regions on the AAA model listed in

Table 6.18, scaling studies of an adaptive dynamic fluid simulation are performed on

Intrepid (IBM BG/P) and Kraken (Cray XT5), and a 3D unstructured mesh fluid

flow analysis tool, PHASTA, has demonstrated a excellent strong scaling on up to

131, 072 processing cores on Intrepid (IBM BG/P) and super-linear speedup on up

to 98, 304 processing cores on Kraken (Cray XT5), respectively [93].



CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis has presented a set of mesh data management software components,

building on the FMDB mesh database, which are used in the adaptive control of

unstructured meshes.

To extend FMDB in a manner that FMDB can continue evolving to support

a broad range of future application requirements, this thesis extended the generic

programming methods in FMDB with the introduction of set, iterator and tagging

functionalities. The performance result of the mesh adaptation on air bubble meshes

on massively parallel computers demonstrates the efficiency of these reusable, generic

components, which achieve code reusability without sacrificing the performance of

mesh adaptation, compared to the traditional object-oriented programming.

The generic set component was then extended to support two types of mesh

sets: P-sets that require all the entity members staying on a single part together,

and NP-sets that contain mesh entities spanning multiple parts. Efficient algorithms

for mesh partitioning and mesh migration were developed using P-sets. In mesh

migration, all the members in a P-set are required to be migrated as a unit. The

support for boundary layer mesh adaptations in parallel clearly demonstrates the

effective usage of P-sets.

The capability of mesh matching was developed to deal with applications that

require the mesh representation related to specific geometric model entities, par-

ticularly applications with periodic boundary conditions, be identical. Chapter 5

introduced the definitions and operations for mesh matching. Mesh partitioning

and migration algorithms were developed to maintain matched entity information

for matched entities. The support for mesh adaptation demonstrates the capability

to deal with matched meshes.

Multiple parts per process partitioning was developed to support changing

the number of processors being used during a parallel computation. The partition

model and entity migration algorithm were extended to support multiple parts per

141
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process partitioning. Chapter 6 compared the performance results of mesh parti-

tioning through the global and local partitioning strategies, and has demonstrated

the capability to support adaptive simulations on meshes of millions or billions of

elements on hundreds of thousands of processors.

In the future, the iterator, set and tagging functionalities will support geo-

metric model and field libraries through their well-defined API’s. At the same time,

for better supporting unstructured mesh applications, more generic components will

be designed and developed, such as the (i) the relation component for relating ar-

bitrary data in different data models when no direct interactions through API’s

are available, and (ii) the communicator component for supporting efficient parallel

functionalities such as architecture-aware communication and data distribution on

massively parallel computers.

More software engineering techniques and generic programming methods can

be applied in the software component design for adaptive unstructured mesh sim-

ulations. For example, instead of using raw function pointers, the generic iterator

component discussed in Chapter 3 can use Boost.Function library [94], thus to al-

low user greater flexibility in the implementation. However, running the third party

software libraries on supercomputers needs to consider the portability issue.

In the current multiple parts per process partitioning, each part, either on-

process or off-process, is treated as a serial mesh. Thus duplicated part bound-

ary entities can exist on a process. An on-going research development focused on

multiple-core per node computer architectures is considering the distributed mesh

data structures and algorithms which will eliminate data duplication for part bound-

aries on a node.

In a large-scale mesh-based adaptive simulation, the volume of mesh data

created by the simulation can be overwhelming, such as the mesh files written from

a multiple parts per process partitioning. An on-going research development is to

remove the file import/export procedures and to realize fileless connections between

the steps in the adaptive cycle of a simulation.
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