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SUMMARY

We consider the problem of determining the distribution of the complex-valued shear modulus for an
incompressible linear viscoelastic material undergoing infinitesimal time-harmonic deformation, given the
knowledge of the displacement field in its interior. In particular, we focus on the two-dimensional prob-
lems of anti-plane shear and plane stress. These problems are motivated by applications in biomechanical
imaging, where the material modulus distributions are used to detect and/or diagnose cancerous tumors. We
analyze the well-posedness of the strong form of these problems and conclude that for the solution to exist,
the measured displacement field is required to satisfy rather restrictive compatibility conditions. We propose
a weak, or a variational formulation, and prove the existence and uniqueness of solutions under milder con-
ditions on measured data. This formulation is derived by weighting the original PDE for the shear modulus
by the adjoint operator acting on the complex-conjugate of the weighting functions. For this reason, we refer
to it as the complex adjoint weighted equation (CAWE). We consider a straightforward finite element dis-
cretization of these equations with total variation regularization, and test its performance with synthetically
generated and experimentally measured data. We find that the CAWE method is, in general, less diffusive
than a corresponding least squares solution, and that the total variation regularization significantly improves
its performance in the presence of noise. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent developments in imaging technology have made it possible to determine the displacement
field in the interior of tissue in response to a dynamic excitation [1–3]. This is typically accom-
plished using MRI or ultrasound. When MRI is used, the excitation is at a fixed frequency, and
thus the time-harmonic response of the tissue is measured. On the other hand, when ultrasound
is used, the excitation is dynamic and broad-band. However, even in this case, the dynamic dis-
placement field is often resolved into its time-harmonic components via a Fourier transform. The
time-harmonic displacement in the interior of the tissue offers a wealth of information that may be
used to characterize its material properties. In particular, it may be used to determine the spatial
variation of its viscoelastic properties by solving an inverse problem. These properties in turn carry
information about the tissue microstructure and pathology. For example, it is well recognized that
cancerous tumors tend to be stiffer than their surroundings because of the recruitment of collagen
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during tumorigenesis [4]. This has been verified in ex vivo mechanical tests of breast tissue samples
[5]. Thus creating images of the stiffness of tissue may aid in the detection and diagnosis of cancer.

There has been substantial work devoted to solving the time-harmonic inverse elasticity problem.
In the algebraic inversion approach [6], the pressure field in the equations is ignored and an assump-
tion of local homogeneity is made. This yields three algebraic equations for the shear modulus at
each spatial location, which are solved in a least-squares sense. In the curl-based algebraic inver-
sion method [3], the pressure is first eliminated by taking the curl of the equations of motion, and
then material homogeneity is invoked. This also yields an algebraic set of equations for the spatial
distribution of the shear modulus. However, the operation of taking the curl introduces higher order
derivatives, which may lead to instabilities in the presence of noise. In [7], the authors have consid-
ered the inverse time-harmonic elasticity problem in two dimensions and, after invoking the plane
strain hypothesis, developed a stable numerical scheme for solving for the pressure and shear modu-
lus. Their approach derives its stability in part from the transformation of the shear modulus, � to its
log, v D log�. In [8], the authors work with the discretized form of the equations of motion and treat
them as the equations for the pressure and the shear modulus. Thereafter, they assume that the gra-
dient of the pressure and the shear modulus at the domain boundaries is small and can be neglected
and obtain an overdetermined system of equations and solve it using a least-squares formulation. In
contrast to the ‘direct’ approaches described earlier, [9] solves the inverse problem by posing it as a
minimization problem and solve it iteratively by utilizing gradient based techniques. The objective
function is a measure of the difference between the predicted and a measured displacement field,
which is required to satisfy the equations of motion, and the optimization parameters are the spatial
values of the material properties. This approach avoids the differentiation of the noisy measured dis-
placement fields, but incurs a higher computational cost, that the authors control through a domain
decomposition technique.

The work presented in this manuscript differs from the effort described earlier primarily in the
approach used to solve the inverse problem. We develop a weak, or a variational, formulation of
the original problem and examine its well-posedness. We conclude that in this regard, it has better
properties than the original strong formulation. Thereafter, we present and implement a straight-
forward finite element discretization of this formulation. Our work builds on our previous effort
for the quasi-static inverse elasticity problem [10, 11], where we developed a weak formulation
by weighting the original differential equation by its adjoint operating on a weighting function.
For the time-harmonic viscoelastic case, we note that we have to work with complex-conjugate of
the adjoint operator in order to retain stability. Hence, we dub the new formulation as the com-
plex adjoint weighted equations (CAWE). We consider two special cases of two-dimensional (2D)
viscoelasticity not considered elsewhere, namely the anti-plane shear and the plane stress condi-
tions. In the former, the pressure field does not appear in the equations of interest, whereas in the
latter, we eliminate the pressure field by utilizing the plane stress condition (we do not assume it to
be zero). Finally, we do not rely on boundary data for the shear modulus and the pressure, recogniz-
ing that these quantities will be difficult to measure in any practical experiment. The only prescribed
data we utilize is the value of the shear modulus measured at one point.

The format of the remainder of the paper is as follows. In Section 2, we present the strong
form of the problem we wish to solve and analyze its well-posedness. In Section 3, we present
the CAWE and analyze their properties. In Section 4, we present a regularized version of this algo-
rithm. Thereafter in Section 5, we consider a straightforward, finite element based approximation
of these equations and present numerical results on synthetic (computer-generated) and experimen-
tally measured data that demonstrate the performance of the method. We end with conclusions
in Section 6.

2. PROBLEM FORMULATION

At relatively low frequencies (when the acoustic wavelength is much larger than the domain size),
many soft tissues may be modeled as linear, incompressible, isotropic, and viscoelastic materials.
For time-harmonic excitation with frequency !, the equations of motion are then given as follows:
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r � � C �!2uD 0, (1)

r � uD 0, (2)

along with the constitutive equation

� D�p1C 2��. (3)

Here, u.x/ is the displacement vector, �.x/D 1
2

�
ruCruT

�
is the infinitesimal strain tensor, � .x/

is the stress tensor, p.x/ is the pressure, � is the density (assumed constant here), and �.x/ is the
shear modulus. In these equations, all fields, except the constants � and !, are complex variables. A
complex, frequency-dependent � allows the material to be modeled as a viscoelastic material, where
the imaginary part of � is associated with viscous relaxation. In the forward elasticity problem, the
material properties � and � and the boundary conditions are specified, and the equations earlier are
solved to determine the displacement vector u and the pressure p. In the inverse problem we are
considering, the displacement field is specified, and the spatial distribution of the shear modulus
is sought.

We consider two 2D approximations of these equations. These are motivated by the fact that in
several imaging scenarios, the displacement field is determined on a plane and not in a volume.
Thus, some approximation is necessary. As shown in the following paragraphs, in both cases, the
problem reduces to: given �.x0/D �0 at point x0 find �.x/, for x 2� such that

r �
�
a.i/�

�
C f .i/ D 0, in� i D 1, 2. (4)

Anti-plane shear. Here, we assume that the measurements are made in the x�y plane, whereas the
displacement is out-of-plane. That is uD u.x,y/e´, where e´ is a unit vector along the ´�direction.
We also assume that the pressure and the shear modulus do not have any out-of-plane variations.
With these assumptions, (1) reduces to the scalar Helmholtz equation. That is given the measured
field u.x/, the uniform density � and frequency ! determine the modulus �.x/ such that

r � .�ru/C �!2uD 0. (5)

In order to characterize this equation, we consider the corresponding real system of equations
obtained for �D Œ�r ,�i �T . From (5), we conclude the following:

G ,x�,x CG ,y�,y Cr
2.G /�C �!2uD 0. (6)

Here G D

�
ur �ui
ui ur

�
, u D Œur ,ui �T and Œr2.G /�ij D r2Gij . The type of the system of PDEs

above and hence the required boundary data is determined by the form of the matrix G . In partic-
ular, when the characteristic equation det.G ,x � �G ,y/ D 0 permits real valued � , the system is
hyperbolic. This occurs iff ur ,xui ,y D ur ,yui ,x . Otherwise, the system is elliptic. In most practical
cases, we expect the system to be elliptic.

In the applications we are considering, it is highly unlikely that data for � will be available on
the boundaries. Hence, we resort to multiple measured fields in order to determine � uniquely. We
assume that we are given two measured fields u.i/, i D 1, 2, and we would like to find a � that
satisfies the equations

r �
�
�ru.i/

�
C �!2u.i/ D 0, i D 1, 2. (7)

These equations may be written as (4), where a.i/ Dru.i/ and f .i/ D �!2u.i/.

Plane stress approximation. The plane stress approximation is valid for objects with very small
thickness (dimension in the ´-direction), where the traction free boundary conditions at the top
and bottom surfaces imply that �x´ D �y´ D �´´ D 0 is a reasonable assumption throughout.
In the time-harmonic case, it also implies that the inertia term in the momentum equation for
the ´-direction drops out. The zero stress conditions imply that ux D ux.x,y/,uy D uy.x,y/
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and that p D 2�u´,´ D �2�.ux,x C uy,y/. Using this expression for pressure in the x and y,
momentum equations then yield (4), where a.1/ D Œ4ux,x C 2uy,y ,ux,y C uy,x�

T and a.2/ D
Œux,y C uy,x , 2ux,x C 4uy,y �

T and f .1/ D �!2ux and f .2/ D �!2uy .

2.1. Analysis of the strong form

For both anti-plane shear and plane stress approximations, we are lead to solving (4) for the shear
modulus. This system has a solution given by �D �hC�p , where

�h.x/D �0 exp.�
Z x

xp

A�1.x0/a.x0/ � dx0/ (8)

�p.x/D��h.x/

Z x

xp

A�1.x0/f .x0/

�h.x0/
� dx0. (9)

This solution exists provided the matrixA � a.1/�˝a.1/Ca.2/�˝a.2/ is invertible and u.i/ satisfy
the following compatibility conditions (Appendix A).

r � .A�1a/D 0 (10)

C W r.A�1f /C .A�1f / �C .A�1a/D 0, (11)

where a D a.1/�r � a.1/ C a.2/�r � a.2/,f D a.1/�f .1/ C a.2/�f .2/ and C D

�
0 1

�1 0

�
. The

superscript � represents the complex-conjugate of a complex field. In practice, u.i/ will be cor-
rupted by noise and, hence, it is likely that the compatibility conditions earlier will not be satisfied.
Thus a single valued solution of (4) may not exist; in other words, the value of the path integrals in
Equation (9) may depend upon the integration path between xp and x. In the next section, we
present a weak or a variational formulation of this problem, which overcomes this difficulty by
allowing solutions under less restrictive conditions. It also ensures that the weak solution will be
equal to the strong solution when the latter exists.

3. COMPLEX ADJOINT WEIGHTED EQUATIONS

The proposed weak form is motivated by our previous work on the quasi-static elasticity problem
[11]. In that case, we developed a weak or a variational form by weighting the residual of the orig-
inal equations by the L2-adjoint of the differential operator operating on a test function. For the
time-harmonic case, we do the same but operate on the complex-conjugate of the test function. This
ensures the stability of the formulation.

3.1. Problem formulation

In order to analyze the CAWE formulation, it is convenient to work with a zero specified mean
problem instead of a point-specified problem. To this end, we look for a O�.x/ such that

r �
�
O�a.i/

�
C f .i/ D 0, i D 1, 2, (12)

with the constraint 1
V

R
�
O�dx D N�, where V Dmeas.�/. Here, N� is selected such that O�.x0/D �0,

which guarantees that O�.x/ D �.x/. The equation for specified zero-mean shear modulus Q�.x/ D
O�.x/� N� is then given by

r �
�
Q�a.i/

�
C Qf .i/ D 0, i D 1, 2, (13)

along with the constraint 1
V

R
�
Q�dx D 0. Here, Qf .i/ D f .i/C N�r �a.i/. In order to simplify notation

from hereon, we suppress the tilde superscript. Thus, the problem we wish to solve is as follows:
given a.i/ and f .i/ find � such that
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r �
�
�a.i/

�
C f .i/ D 0, i D 1, 2, in�, (14)

and 1
V

R
�
�dx D 0

The CAWE for this problem is given as follows: find � 2 V �
®
v 2H 1.�/j

R
� vdx D 0

¯
such that

b.w,�/D l.w/,8w 2 V . (15)

Here

b.w,�/D .rw,Ar�/C .rw, a�/, (16)

l.w/D�.rw,f /, (17)

and .w, v/D
R
�w

�u dx. Recall,A D a.1/�˝a.1/Ca.2/�˝a.2/, aD a.1/�r �a.1/Ca.2/�r �a.2/

and f D a.1/�f .1/C a.2/�f .2/.

Remark
Another straightforward approach to solving (14) is to look for the function that minimizes the
residual of (14) measured in theL2 norm. This yields the least-squares (LS) formulation: find � 2 V
such that

2X
iD1

Re
°�
r � .wa.i//,r � .�a.i//C f .i/

�±
D 0,8w 2 V . (18)

This formulation coincides with the CAWE formulation when r � a.i/ D 0. In Section 5, we com-
pare the performance of the LS formulation with the CAWE formulation, and in keeping with earlier
observations [12], conclude that the LS formulation tends to be overly diffusive.

3.2. Analysis of complex adjoint weighted equation formulation

We now make assumptions on the measured data that determine the well-posedness of the
CAWE formulation.

1. We note that by construction, A.x/ is Hermitian positive semi-definite and thus has non-
negative real eigenvalues �1.x/ and �2.x/. We further assume that these eigenvalues are
positive and bounded everywhere in the domain, that is

0 < �0 6 �1.x/, �2.x/6 �1 <1. (19)

2. Let q2.x/D jr � a1j2C jr � a2j2. We assume that q2 is bounded from above. That is

q2.x/6 q20 <1. (20)

3. Let CP be the Poincare constant for �. That is, kwk2 6 Ckrwk2,8w 2 V ,8C > CP . We
assume that the constants �0 and q0 are such that

q0

s
CP

�0
6 1. (21)

Theorem 1
When all these three conditions hold, b.w,w/ is coercive and the variational problem (15) has a
unique solution.

Proof
Our proof relies on the fact that for w 2 V , the H 1 semi-norm krwk defines a norm.
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We first prove the coercivity of the bilinear form. From the definition of the bilinear form (16)
jb.w,w/j>Re¹b.w,w/º

D .rw,Arw/CRe
°
.a.1/ � rw, .r � a.1//w/

±
CRe

°
.a.2/ � rw, .r � a.2//w/

±
(22)

For any 	 > 0

Re
°
.a.1/ � rw, .r � a.1//w/

±
> �	

2
ka.1/ � rwk2 �

1

2	
k
�
r � a.1/

�
wk2 (23)

Using this in (22) and recalling that q2.x/D jr � a1j2C jr � a2j2, we arrive at

jb.w,w/j> .rw,Arw/
�
1�

	

2

�
�
1

2	
kwqk2 (24)

> krwk2�0
�
1�

	

2

�
� kwk2

q20
2	

(25)

> krwk2�0
�
1�

	

2
�
q20CP

2�0	

	
(26)

> krwk2�0

 
1� q0

s
CP

�0

!
(27)

> CSkrwk2, (28)

where CS D �0

�
1� q0

q
CP
�0

�
. In deriving this relation, in the second line, we have made use of

(19) and (20), in the third line, we have used the Poincare inequality, and in the fourth line, we

have set 	 D q0
q
CP
�0

. When (21) is satisfied, the stability parameter CS > 0 and the bilinear form
is coercive.

We prove that the bilinear form is bounded as follows,

jb.w,�/j6 j.rw,Ar�/j C j.a.1/ � rw, .r � a.1//�/j

C j.a.2/ � rw, .r � a.2//�/j (29)

6 krwkkAr�kC ka.1/ � rwkk.r � a.1//�k
C ka.2/ � rwkk.r � a.2//�k (30)

6 �1krwkkr�kC 2
p
�1q0krwkk�k (31)

6 CAkrwkkr�k, (32)

where CA D �1

�
1C 2q0

p
CPp

�1

�
. In deriving this result, in the second line, we have used the

Cauchy-Schwarz inequality, in the third line, we have used (19) and (20), and to get to the final
result, we have used the Poincare inequality.

Next we prove that the linear form l.w/ is bounded 8w 2 V . From the definition of l.w/ (17)
we have

jl.w/j6 �!2
2X
nD1

j
�
a.n/ � rw,u.n/

�
j C�0

2X
nD1

j
�
a.n/ � rw,r � a.n/

�
j (33)

6 �!2
2X
nD1

ka.n/ � rwkku.n/kC�0

2X
nD1

ka.n/ � rwkkr � a.n/k (34)

6 krwkp�1

 
�!2

2X
nD1

ku.n/kC�0

2X
nD1

kr � a.n/k

!
(35)

6 krwk2p�1
�
�!2

p
CP �1V C�0q0V

�
. (36)
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Recall that V D meas.�/. In the second line of the previous equation, we have made use of the
Cauchy–Schwarz inequality, to get to the third line, we have used (19), and to get to the final result,
we have made use of (20) and recognized that ku.n/k2 6 CP kru.n/k2 D CP ka.n/k2 6 CP �1V .

Thus b.w,�/ is a bounded, coercive bilinear form, and l.w/ is a bounded linear from, hence from
Lax–Milgram theorem (see for example [13]) the solution to (15) exists and is unique. �

Remark
When only conditions 1 and 2 are satisfied, we can no longer prove that b.w,w/ is coercive.
However, by making use of Fredholm’s alternative, we are guaranteed the existence of a solu-
tion. When the corresponding homogeneous problem has no non-trivial solutions, this solution is
unique. However, when the homogeneous problem has multiple solutions, our problem too has
multiple solutions.

4. REGULARIZATION OF THE COMPLEX ADJOINT WEIGHTED
EQUATION FORMULATION

4.1. Motivation for the need for regularization

It is instructive to see when condition 3 is not satisfied because when this occurs, the CAWE formu-
lation loses its uniqueness. For the quasi-static case (! D 0), steep gradients in the solution � imply
large values of r � a because a � r�C �r � a D 0. Large values of r � a in turn imply a large q0,
which could lead to the violation of condition 3. Thus, in the quasi-static case, we may lose stability
near steep gradients in �. In the time-harmonic case, this may happen even when � is smooth as
described in the following.

For propagating solutions of the Helmholtz equation u� exp.ikn � x/, where k is the wavenum-
ber and n is the direction of propagation. This yields the estimates jaj � k, and hence �0 � jAj �
k2. Further q20 � jr � aj

2 � k4. In addition, the Poincare constant CP � L2, where L is the char-
acteristic size of the domain. Using these estimates in (21), we note that condition 3 holds when
kL6 1. This indicates that the CAWE formulation may cease to be well-posed for problems at high
frequencies (domains that are several multiples of the wavelength). Thus we need to regularize the
CAWE formulation at large frequencies.

We may also motivate the use of regularization by analyzing the effect of noise. To do this, we
write the CAWE as follows:

b.w,�Id/D l.wId/,8w 2 V , (37)

where d D Œa.1/,f .1/, a.2/,f .2/�. In rewriting the original equation this way, we are making the
dependence on measured data explicit. In the case of any practical measurement, the data will be
tainted by noise ıd . The solution, �C ı�, will satisfy

b.w,�C ı�Id C ıd/D l.wId C ıd/,8w 2 V . (38)

Assuming that the noise is small so that all terms that are larger than O.ı/ may be ignored, we use
the equations earlier to arrive at an approximate equation for ı�,

b.w, ı�Iu/DDd l.wId/ � ıd �Ddb.w,�Id/ � ıd ,8w 2 V . (39)

Using the stability estimate (28), we have

CSkrı�k
2 6 jb.ı�, ı�Id/j6 jDd l.ı�Id/ � ıd j C jDdb.ı�,�Id/ � ıd j. (40)

Or

krı�k2 6 jDd l.ı�Id/ � ıd j C jDdb.ı�,�Id/ � ıd j

CS
, (41)

which indicates that ı� may become unbounded when CS ! 0. This will happen when q0
q
CP
�0
!

1, implying thereby that we need to regularize the problem in this limit.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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4.2. Regularized complex adjoint weighted equation

We regularize the CAWE formulation with total variation (TV) regularization [14, 15]. We use TV
in order to preserve the sharp changes we expect to see at the interface of two different materials.
We implement the TV in the following form:

RŒ��D
Z
�

p
jr�j2C ˇ2d�. (42)

Augmenting CAWE withD�RŒ�� �w leads to the following weak formulation: find � 2 V such that

b.w,�/C ˛Re

 
rw,

r�p
jr�j2C ˇ2

!
D l.w/,8w 2 V . (43)

Here, ˛ is the regularization parameter, and ˇ is a parameter selected to ensure that the regulariza-
tion term is continuous at r�D 0. We note that the regularization term is non-linear and, as a result,
the solution of the problem is also nonlinear.

5. NUMERICAL APPROXIMATION

We approximate the variational problem (15) by approximating the space of functions V with its
finite dimensional counterpart Vh � V . For constructing Vh, we use the standard piecewise con-
stant finite element shape functions. Thus the numerical solution �h 	 � satisfies the following
variational equation: find �h 2 Vh such that

b
�
wh,�h

�
D l

�
wh
�

,8wh 2 Vh. (44)

Because Vh � V , the continuous solution � also satisfies (44). That is

b
�
wh,�

�
D l

�
wh
�

,8wh 2 Vh. (45)

Next, we prove that our numerical solution converges at optimal rates to the exact solution under
the restrictions of Section 3. We define the error e D �� �h and recognize that it is orthogonal to
the finite dimensional space of weighting functions. That is subtracting (44) from (45), we have

b
�
wh, e

�
D 0,8wh 2 Vh. (46)

We split the error e D 
C eh, where 
D ���i and eh D �i ��h. Here, �i is the best approxi-
mation to � in the space Vh. It could be, for example, the nodal interpolant of �. Using the stability
estimate, we have

CSkre
hk2 6 jb.eh, eh/j

6 jb.eh, e � 
/j .Since e D 
C eh/

6 jb.eh, 
/j .from .46//

6 CAkrehkkr
k .from .32// (47)

which yields

krehk6 CA
CS
kr
k. (48)

That is, the error in the finite element approximation is of the same order as the error of the
best approximation.

We now test the performance of the finite element approximation of the regularized CAWE for-
mulation on synthetically generated data and displacement measurements in tissue mimicking gels.
In all cases, we consider anti-plane shear case and work with a non-dimensional version of (7),
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where we scale the displacements with a reference value Uref , the shear modulus with a refer-
ence value �ref , and distances with the representative length scale of the domain L. With this
non-dimensionalization, these equations transform to

r �
�
�ru.i/

�
C k2L2u.i/ D 0, i D 1, 2 (49)

where k D
p
�!2=�ref is the wavenumber. In each case, we use bilinear quadrilateral finite

elements to solve the problem.

5.1. Synthetic data

The first problem consists of a rectangular inclusion (denoted by a red rectangle in Figure 1) embed-
ded in a homogeneous background. The shear modulus for the background is �bgnd D 1C0.1i , that
of the inclusion is �incl D 2.5C 0.35i , the wavenumber kL D 30, and the domain of the problem
is a unit square. These values are selected so that the problem corresponds to a likely scenario in
elasticity imaging of tissue.

We solve the forward problem of anti-plane shear using a uniform mesh of 100 � 100 finite
elements. We model the infinite domain using the perfectly matched layers described in [16]. We
consider two point sources placed at the bottom left and the top left corners (Figure 1). These yield
the two ‘measured’ displacement fields u.1/ and u.2/. We calculate the derivatives of these fields by
solving the variational problems�

wh, a.i/
�
D
�
wh,ru.i/

�
, i D 1, 2. (50)

This yields a.i/ on a piecewise continuous finite element basis. In order to evaluate r � a.i/, we
simply take the derivative of a.i/ within each element.

We note that although the fields u.i/ are the same in the forward and the inverse problems, their
gradients are not the same. For the forward problem, the gradient fields are ru.i/, whereas for the
inverse problem, they are the L2 projection of ru.i/ on to a piecewise continuous finite element
basis (50). Thus even for the case with no noise, we are not committing the so-called inverse crime.

We use the synthetically created measured data u.i/, a.i/ and r � a.i/ to reconstruct the shear
modulus in a subset of the original domain, as indicated by the square in Figure 1. We work with the
reduced domain so that there are no sources present in the region of reconstruction. In this figure, we
also indicate the extent of the inclusion with a red rectangle. We use a mesh of 40� 40 elements for
the inverse problem. We fix the shear modulus value at the origin to the correct value of the back-
ground, that is 1C0.1i . We note that even though there is no explicit noise in the data, the numerical
differentiation of u.i/ introduces noise, and this effect is clearly seen in the reconstructions.

In Figure 2, we have shown the reconstruction using the CAWE formulation. From the plot of
the real part of �, we observe that we recover the shape and the location of the inclusion well. We
also recover the value of the modulus in the background and in the inclusion accurately. There are,
however, some artifacts that are introduced through the noise in the derivatives of the measured data.

Figure 1. Real part of the wave fields used for the inverse problem.
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These are in the form of wavy variations in the background and the inclusion and as overshoots at
the interface. These artifacts are more obvious in the image of the imaginary part of the shear mod-
ulus, where they tend to overwhelm the entire image. We note that the amplitude of these variations
is about the same for the real and the imaginary components of the shear modulus. They are seen

Figure 2. Reconstruction of the shear modulus using CAWE with zero-noise displacement fields. Left: real
component; right: imaginary component.

Figure 3. Reconstruction of the shear modulus using least squares with zero-noise displacement fields. Left:
real component; right: imaginary component.

Figure 4. Variation of material properties along a horizontal line through the center of the inclusion with no
noise and regularization. Left: real component; right: imaginary component.
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more clearly in the latter because the absolute value of the latter is smaller. In Figure 4, we have
plotted the variation in the reconstructed shear modulus along a horizontal line running through the
center of the inclusion. This plot reaffirms the observations made in this paragraph.

In order to compare the performance of the CAWE formulation, we solve the same problem using
an LS formulation. This formulation is given by (18) in Section 3. The reconstructions are shown
in Figure 3. The measured data is exactly the same as that used for the CAWE formulation. We
observe that LS formulation has similar artifacts and that they appear to be stronger. Also, the con-
trast between the inclusion and the background appears to be underestimated, and the variations
within these regions (which are homogeneous) appear to be stronger. This is clearly seen in the plot
of the material properties along a horizontal line through the center of the inclusion (Figure 4).

In Figures 5–7, we present results for the CAWE and LS formulations using the same data, but
with TV regularization. The regularization parameter ˛ D 100 was the same for both cases. For the
CAWE formulation, we observe that the shape of the inclusion is captured accurately, and there is
an error of about 0.15 units in the contrast. However, the overshoots and undershoots at the very
sharp interface between the inclusion at the background persist. In comparison, the LS formulation
is more inaccurate. The error in the contrast is about 0.5 units, there are variations in the background
and (especially) the inclusions, and there are sharp oscillations at the interface. We also note that LS
solutions tend to be ‘diffusing’ away from the sources, which are located on the left edge.

Next, we add 3% Gaussian white noise to the displacement fields and test the performance of
the algorithms. The regularization parameter ˛ D 1000, and all other aspects of the reconstructions
are unchanged. We remark that in evaluating the derivatives of the displacement fields, we do not
perform any smoothing. Instead, we rely on the regularization term to provide all the necessary
smoothing. The reconstruction for the CAWE formulation is shown in Figure 8. We observe that the

Figure 5. Reconstruction of the shear modulus using complex adjoint weighted equation with zero-noise
displacement fields (˛ D 100). Left: real component; right: imaginary component.

Figure 6. Reconstruction of the shear modulus using least squares with zero-noise displacement fields
(˛ D 100). Left: real component; right: imaginary component.
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Figure 7. Variation of material properties along a horizontal line through the center of the inclusion with no
noise and ˛ D 1.0e2. Left: real component; right: imaginary component.

Figure 8. Reconstruction of the shear modulus using complex adjoint weighted equation with noisy
displacement fields (˛ D 1000). Left: real component; right: imaginary component.

shape and the location of the inclusion is recovered well, whereas the contrast in the real component
is diminished by about 20%. This is to be expected because of the higher value of the regulariza-
tion parameter. We also observe that the background and the inclusion now have sharp oscillations.
These may be tempered somewhat, at the expense of losing contrast, by increasing the regularization
parameter. We remark that although the reconstruction of the imaginary part of the modulus looks
much poorer when compared with the real part, the magnitude of the error in both is about the same.
We observe that the LS results in this case are completely incorrect (Figure 9). They tend to decay
uniformly away from the left edge where the sources and the Dirichlet data for � is specified. The
comparison between the CAWE and LS reconstructions are shown in Figure 10.

5.2. Gelatin phantom

In this section, we apply the CAWE formulation to determine the shear modulus of a tissue-
mimicking gelatin phantom using experiments performed at the Mayo clinic [17, 18]. The sample
consists of two cylindrical inclusions embedded in a homogeneous background. The diameters of
the inclusions are 16 and 3mm. The inclusions and the background were constructed using different
gelatin concentrations in order to achieve a contrast in material properties. The shear modulus was
estimated to be 20.˙3/ kPa in the background and 130.˙10/ kPa in the inclusions using a local
frequency estimation technique [17]. The details of the experiment are described in [18].
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Figure 9. Reconstruction of the shear modulus using least squares with noisy displacement fields
(˛ D 1000). Left: real component; right: imaginary component.

Figure 10. Variation of material properties along a horizontal line through the center of the inclusion with
3% noise and ˛ D 1.0e3 Left: real component; right: imaginary component.

The specimen was excited using a harmonic mechanical force and the three-dimensional time-
harmonic displacements were measured by a phase-contrast MRI sequence with special cyclic
motion encoding gradients [1]. The mechanical force was applied at the surface of the phantom via
a contact plate, which oscillates in the out-of-plane direction, parallel to the axes of the cylindrical
inclusions. This configuration approximated the state of anti-plane shear discussed in Section 2.
The excitation frequency was 300 Hz. The imaging plane consisted of 200 � 160 pixels of size
0.6275 � 0.6275 mm2. Displacements were measured at eight time instances. This data was trans-
formed to the frequency domain to obtain displacement at the driving frequency, ! D 2��300 rad/s.
The density of gelatin was assumed to be �D 1000 kg/m3.

With the discussion on anti-plane shear in Section 2, we expect that the shear modulus satisfies
an elliptic boundary value problem. Hence, we require data for the shear modulus on the entire
boundary of the domain of interest. The value of the shear modulus on the boundary was deter-
mined by fitting a plane wave in the lower, homogeneous, region of the phantom to first estimate the
wavenumber and then the shear modulus. It was found that � D .20.C i0.5/ kPa provided a good
fit. This value was used as boundary data.

The measured displacement data was smoothed using a quadratic LS filter. This filter performed
an LS fit of the displacement on to a quadratic surface (with 1, x,y, xy, x2, &y2 monomials) over
4� 4 window, and thus generated smooth displacements and strains.
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The problem was non-dimensionalized with �ref D 20 kPa, Uref D 1.32 � 10�4 m and
L D Lx D 0.0998 m. This led to a wavenumber of kL D 42. The non-dimensionalized smoothed
displacement field in the out-of-plane direction is shown in Figure 11. In this figure, we can clearly
observe the scattering of the wave by the larger of the two inclusions. The effect of the smaller
inclusion is not seen in this figure.

The boundary data, along with the smoothed displacement and strain data, were used in the reg-
ularized CAWE algorithm in order to evaluate the complex shear modulus. The reconstruction was
performed on the same mesh as the displacement measurement. Only the real part of the shear
modulus was recovered because the imaginary part was much smaller in comparison.

In a typical inverse problem, the regularization parameter may be determined using either
Morozov’s discrepancy principle or the L-curve (e.g., [19]). Morozov’s principle requires a pre-
cise estimate of measurement noise in an appropriate norm, which is not available to us. Further, we
have found that theL-curve tends not to work well in conjunction with TV regularization. Instead of
these, we have used a priori information in order to select the value of the parameter. In particular,
because we know that the background is homogeneous, we have selected the smallest value of the
regularization parameter, which yields a roughly uniform background.

The result, obtained with the regularization parameter ˛ D 4000 is shown in Figure 12. In
this figure, both inclusions are seen quite clearly. The shape of the inclusions is also recovered,
although a portion of the larger inclusion, which is in the ‘shadow’ of the incident wave, is some-
what diminished. In this region, the displacement magnitude is small and, as a result, the ratio of the

Figure 11. Out-of-plane component of the smooth displacement field. Left: real component; right:
imaginary component.

Figure 12. Reconstruction of the real component of the shear modulus for the gelatin phantom using
complex adjoint weighted equation with the displacement field (˛ D 4000).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme



SOLUTION OF THE TIME-HARMONIC VISCOELASTIC INVERSE PROBLEM

Figure 13. Reconstruction of the real component of the shear modulus for the gelatin phantom using
complex adjoint weighted equation with the displacement field. Left: ˛ D 2000; right: ˛ D 8000.

regularization term to the data matching term in (43) is large. Consequently, the effect of the regular-
ization term is greater, which leads to a reduced contrast between the inclusion and the background.
This makes the inclusion appear incomplete. This may be overcome by selecting a regularization
parameter that is proportional to the local magnitude of the data matching term and, hence, maintains
the same ratio between the data matching and regularization terms.

The contrast in the shear modulus between the large inclusion and the background is about five,
whereas for the smaller inclusion, it is around three. The actual value (obtained from an independent
test) is around 6.5 for both. For the large inclusion, this translates to an error of about 20%, which
may be attributed to the tendency of the TV regularization to reduce the total variation, and hence
the contrast in the image. The additional loss in contrast for the smaller inclusion may be attributed
to the spatial smoothing of the displacement field. We note that we have employed a window of 4�
4 pixels for this smoothing, and thus we expect it to have a significant effect on the small inclusion,
which is only about 5 pixels in diameter.

It is worth noting that in this example, using magnetic resonance elastography and the CAWE
method, we are able to detect an inclusion as small as 3 mm in diameter. This has implications in
the early detection of breast cancer, in particular, in the detection of ductal carcinoma in situ, which
is typically small in size as it is confined to a single milk duct.

The effect of varying the regularization parameter, ˛, is displayed in Figure 13, where we have
plotted reconstructions obtained with ˛ D 2000 and ˛ D 8000, which correspond to half and two
times, respectively, the value used in Figure 12. We note that with decreasing ˛, the contrast in the
inclusions increases. However, this also leads to spurious oscillations in the background.

6. CONCLUSIONS

We have considered the problem of determining the spatial distribution of the complex-valued shear
modulus within an incompressible linear viscoelastic solid undergoing infinitesimal, time-harmonic
deformation, from the knowledge of the displacement field in its interior. We have restricted our
attention to the 2D problems of anti-plane shear and plane stress. For both these cases (two mea-
surements for anti-plane shear and one for plane stress), the shear modulus is required to satisfy
two independent inverse Helmholtz equations. These equations permit the existence of a strong
solution given that the measured data satisfy compatibility equations that are unlikely to hold for
noisy measurements.

We have addressed this issue by formulating a weak, or a variational, formulation of these
equations, which is obtained by weighting the original partial differential equation by its adjoint
operating on the complex-conjugate of an arbitrary weighting function. We term this formulation
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the CAWE. We prove that these equations lead to a well-posed variational problem under less restric-
tive conditions on the measured data. However, at high frequency, or with rough data, they too may
become ill-posed. For this reason, we append to our formulation a regularization term.

We have developed a numerical method from the regularized CAWE formulation by restricting
the function spaces to standard, bilinear finite element function spaces. We have tested the per-
formance of this method on synthetically generated data and experimentally measured data. The
method successfully reconstructs real and imaginary parts of shear modulus from simulated data
with 3% added noise, and further successfully reconstructs the real part of the shear modulus from
measured data.

APPENDIX A

Equations for � are

a.i/ � r�C�r � a.i/C f .i/ D 0, i D 1, 2. (A.1)

Multiplying these by a.i/� and adding the resulting equations, we arrive at

A � r�C a�C f D 0. (A.2)

The solution to this equation is given by the sum of a homogeneous and a particular part � D
�hC�p , where the equation for �h is

r�hCA�1a�h D 0. (A.3)

We write �p D �hg, which yields the following equation for g,

rgC
A�1f

�h
D 0. (A.4)

The solution to (A.3) and (A.4) yield,

�h.x/D �0 exp.�
Z x

xp

A�1.x0/a.x0/ � dx0/ (A.5)

�p.x/D��h.x/

Z x

xp

A�1.x0/f .x0/

�h.x0/
� dx0 (A.6)

Taking the curl of (A.3) yields the compatibility condition for �h to exist, viz.

r � .A�1a/D 0. (A.7)

Taking the curl of (A.4) and eliminating �h using (A.3) yields the following compatibility
condition for �p to exist

C W r.A�1f /C .A�1f / �C .A�1a/D 0, (A.8)

where C D

�
0 1

�1 0

�
.
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