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ABSTRACT: Dislocation mediated plasticity in the α phase of the energetic
molecular crystal cyclotrimethylene trinitramine (RDX) was investigated using a
combination of atomistic simulations and the Peierls−Nabarro (PN) model. A
detailed investigation of core structures and dislocation Peierls stress was
conducted using athermal atomistic simulations at atmospheric pressure to
determine the active slip systems. Generalized stacking fault energy surfaces
calculated using atomistic simulations were used in the PN model to also
estimate the critical shear stress for dislocation motion. The primary slip plane is
found to be (010) in agreement with experimental observations, with the (010)
[100] slip systems having the lowest Peierls stress. In addition, atomistic
simulations predict the (021)[01 ̅2], (021)[100], (011)[100], (001)[100], and
(001)[010] slip systems to have Peierls stress values small enough to allow
plastic activity. However, there are less than five independent slip systems in this material in all situations. The ranking of slip
systems based on the Peierls stress values is provided, and implications are discussed in relation to experimental data from
nanoindentation and shock-induced plastic deformation.

1. INTRODUCTION

Cyclotrimethylene trinitramine (RDX), an energetic molecular
crystal, is used in many explosive formulations for both civilian
and military purposes. Initiation and detonation in explosives is
considered to happen by formation of regions of localized
energy called “hot spots.” Theoretical considerations1 have
proposed that hot spots need to have micrometer dimensions
and sustain high temperatures (∼500 °C) for microseconds.
Various theories have been proposed regarding the precise
mechanisms of hot-spot formation. In polymer bonded
explosives, local heterogeneity, presence of defects (disloca-
tions, pores, cracks), and/or adiabatic heating due to plastic
deformation are thought to contribute toward formation of hot
spots. Experimental and theoretical studies in single crystals
have suggested different mechanisms. Dislocation pileup and
subsequent energy release on depinning have been proposed2

as a mechanism for hot-spot formation in single crystals.
Anisotropic activation of slip systems was found to correlate
with the observed anisotropic response of shock-loaded
pentaerythritol tetranitrate single crystals, and this led to the
development of the steric hindrance model.3 According to this
model, the lack of activated slip systems for a particular
crystallographic orientation leads to deformation of molecules,
resulting in bond breaking and subsequent release of energy
which eventually produces initiation.
Owing to their suspected role in processes leading to

detonation, plastic deformation mechanisms operating in RDX
have been investigated by computational and experimental

means. Dynamic yield points determined from shock loading of
single crystals at a Rankine−Hugoniot pressure (PRH) of 2.25
GPa for (111), (021), and (100) planes were reported to be
isotropic.4 The response, described in terms of the shape of the
velocity history profiles, was found to exhibit significant
variation depending on the shock direction. Plate impact
experiments in the (111) direction5 indicated a change in
response as the pressure varied from 1.25 to 2.25 GPa. This
variation was attributed to the nucleation of (001)[010] partials
upon shock loading and subsequent plastic hardening, which
was validated using molecular dynamics simulations. The
observation was also used to explain the anomalous response
of (021) shocked RDX crystals.6 High pressure (7−20 GPa)
plate impact experiments on the (111), (210), and (100)
planes7 revealed considerable anisotropy in shock decom-
position of RDX. Crystals shocked perpendicular to the (210)
and (100) planes were found to be more sensitive compared to
those shocked perpendicular to the (111) plane. In the present
study we propose an interpretation of this observation based on
the mechanisms of dislocation-mediated plasticity.
X-ray diffraction, microindentation, and etch-pitting were

used to correlate deformation features with possible active slip
systems in RDX. Experimental studies from different sources
have proposed (010) as the primary slip plane.8,9 Micro-
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indentation studies by Gallagher et al.10 suggested slip systems
of the {021}[100] and (010)[001] type. Investigations by
Halfpenny et al.11 also suggest (010) as the primary slip plane
and hinted at the possibility that {011} or {021} could be
secondary slip planes. Nanoindentation experiments performed
on (210), (021), and (001) oriented crystals of RDX showed
elastic−plastic load excursion at estimated resolved shear
stresses within the G/15 to G/10 range,12 where G is the
shear modulus. These observations were attributed to the
homogeneous nucleation of dislocations. The hardness values
were reported to be nearly isotropic, but significant variation
was observed for the load at the first “pop-in” event.
Tomography of indent impressions revealed features consistent
with slip on (010), {021}, and {011} planes, and it was
conjectured that RDX exhibits hindered plasticity due to the
lack of independent slip systems. Munday et al.13 investigated
the competition between ductile deformation and brittle
fracture using generalized stacking fault surfaces coupled with
Rice’s criterion for dislocation emission from the crack tip.14

They found that the (010), (011), (021), and (001) planes
possess slip systems exhibiting ductile behavior.
A consensus exists in the literature regarding slip on the

(010), {021}, and {011} planes.8,9,11−13 Recent molecular
dynamics simulations have also indicated possible slip on (001)
planes.5,13 Activation of slip systems requires that the resolved
shear stress is higher than the critical stress (Peierls stress)
required for the motion of individual dislocations on the
respective slip system. Knowledge of Peierls stresses is essential
in understanding preferential activation of slip systems under a
general state of stress.
In this study, fully atomistic simulations are performed to

evaluate this critical stress. The investigation was conducted for
the (010), (001), (011), and (021) crystallographic planes in α-
RDX, which are shown in Figure 1. As discussed above, these
planes are expected to display ductile behavior. The [100] slip
direction in all the above planes is studied, which has been
proposed12,13,15 as a possible cross-slip direction. In addition,
the (010)[001], (001)[010], (021)[01̅2], and (011)[01 ̅1]
systems are considered, which have been also suggested in
the literature as possible slip systems.13,15

2. METHODOLOGY

α-RDX is modeled using the flexible Smith−Bharadwaj
potential developed for condensed phase nitramines.16 The
potential has been reported to accurately reproduce elastic and
thermal properties of RDX.5 Nonbonded interactions, which
includes electrostatic and van der Waals interactions, are
explicitly considered up to a cutoff radius of 10 Å.The charges
are modified to account for the effects of polarization in the
condensed phases.16 Bonded interactions are represented with
angle-bending, bond-stretching, and dihedral interactions.
Compared with the other potential available for RDX, the
Sorescu−Rice−Thompson potential,17 which represents the
molecules as rigid entities, the Smith−Bharadwaj potential
allows molecular flexibility. As discussed in this paper,
molecular conformation changes are important in the
mechanics of crystal defects. This has determined the choice
of force field in this work. A schematic of the simulation setup
is shown in Figure 2. For the (010) and (001) planes, the
simulation cell is of size 100 × 2 × 100 unit cells respectively in
the n, p, and q directions and consists of 3 360 000 atoms. The
simulation cell size was selected as large as possible in order to

Figure 1. (a) Unit cell of α-RDX in the [100] projection. (b) α-RDX crystal in the (100) projection with the slip planes considered in this study
shown. The two types of slip plane (P1 and P2) are indicated for (001).

Figure 2. Simulation setup. In the figure, p, q, and n form an
orthogonal coordinate system. In all simulations, the glide plane
normal (g) is aligned with n. For edge dislocation dipoles, the
dislocation line direction (ξ) is aligned with p and the Burgers vector
(b) is aligned with q. For screw dislocation dipoles, ξ and b are aligned
along p. τa represents the applied shear stress in the b direction and is
shown in the figure as applied to an edge dislocation dipole. L denotes
the length of the simulation cell.
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reduce the effect of the boundary conditions on the quantities
of interest, while staying within our current computational
capabilities. In all simulations, the glide plane normal (g) is
aligned with n. For edge dislocation dipoles, the dislocation line
direction (ξ) is aligned with p and the Burgers vector (b) is
aligned with q. For screw dislocation dipoles, ξ and b are
aligned with p. Long-range interactions are calculated using the
particle-particle-particle-mesh (PPPM) algorithm.
For the (011) and (021) planes, periodicity in the glide plane

requires use of nonorthogonal simulation cells. For simulations
on these slip planes, the simulation cell were of sizes 30 × 2 ×
50 and 20 × 2 × 32, respectively, in the n, p, and q directions.
The Ewald/N algorithm was used to calculate long-range
interactions in simulations with nonorthogonal cells. In all
cases, a vacuum pad is included in the direction perpendicular
to the glide plane. Both orthogonal and nonorthogonal cells are
shown in Figure 3.

α-RDX has an orthorhombic structure with the space group
Pbca. There are eight molecules per unit cell, with all molecules
in the Caae conformation. The conformational state of RDX
molecule is defined by the shape of the ring (chair denoted by
“C”, boat denoted by “B”, or twist denoted by “T”) and the
position of the three nitro groups (axial denoted by “a” and
equatorial denoted by “e”). A nitro group oriented in the
direction parallel to the ring normal is considered axial.
The initial structure was created using neutron-diffraction

data from Choi and Prince19 and was allowed to relax at 0 K
and atmospheric pressure. A dislocation dipole was created by
imposing the Volterra displacement field on the centers of mass
(COM) of the molecules, which ensures that the molecular
bonds and angles are not distorted by the applied displacement
field. The individual dislocations of the dipole are arranged on
the same glide plane in such a way that a periodic array of
dipoles results (on the glide plane) upon application of periodic
boundary conditions. The distances between the dislocations in
the unit cell and that between these and their images are equal.
This ensures that the Peach−Koehler force acting on each
dislocation due to the interaction with others in the periodic
array vanishes in the initial, unloaded configuration. This holds
in materials with generic anisotropy since the resolved shear
stress in the direction of the Burgers vector and in the glide
plane is always symmetric relative to the position of the core.18

An image exists in the direction of the vacuum pads, but no
infinite array of images exists in the n direction. When the
model is distorted and the dislocation cores shift, the

interaction with images in the glide plane produces a net
Peach−Koehler force on each dislocation of the dipole. This
introduces a small error in the estimation of the Peierls stress.
This error was estimated using the linear elastic solution, based
on the shift of the cores by b/2, i.e., a shift corresponding to the
peak of the Peierls barrier, and was found to be less than 1% in
all cases considered.
It should also be noted that, since each molecule remains

electrically neutral during deformation, the cores do not carry
electric charges. Electric dipoles may exist due to the large
deformations, but their field decays faster than the elastic field;
hence the dipole−dipole interaction of the cores with their
images is weak.
An infinitely long (and straight) dislocation is created upon

application of periodic boundary conditions in the p direction.
A resolved shear stress (τ) is imposed so that the individual
dislocations of each dipole move toward each other, i.e., toward
the center of the simulation cell. This is done by applying a
homogeneous shear strain to all COM of molecules in the
relaxed model, followed by relaxation while holding the
boundaries of the model fixed. The boundary is maintained
fixed by zeroing the forces in all directions on a layer of two
unit cell thickness at the boundary. The presence of the vacuum
pads in the n direction facilitates the application of this
distortion. To prevent significant steric hindrance due to the
rigid shift of the molecules in this step, the relaxation is divided
in two stages. In the first stage a repulsive potential is added to
the nonbonded interactions to help separate the potentially
overlapping molecules and few relaxation steps are taken. Then,
this dummy field is removed and relaxation proceeds normally.
In addition, the displacement imposed in each loading step is
kept small to reduce the likelihood of overlaps.
The applied shear strain was increased, starting each time

with the relaxed stress-free dislocation structure, until the
dislocation was found to shift by at least one lattice spacing.
The corresponding stress value is the Peierls−Nabarro stress
(τPN) of an infinitely long, straight dislocation of the particular
type. For partials, the Peierls−Nabarro stress is calculated as the
sum of the critical stress and the contribution to the Peach−
Koehler force from the stacking fault. When considering
partials, the stacking fault is always located between the two
dislocations explicitly represented in the model; hence its
action is to pull them toward each other. The stacking fault
energy was obtained from the literature.13

All simulations were performed using LAMMPS, a molecular
simulation code from Sandia National Laboratories.20 Mini-
mizations were performed using the conjugate gradient
algorithm. Residual kinetic energy was drained by running
damped dynamics with a damping constant of 20 kcal/mol·fs
until the temperature of the simulation cell was below 0.2 K.
Simulations were performed using 1024 processors on the
Blue-Gene/L at the Computational Center for Nanotechnology
Innovations (CCNI) at Rensselaer Polytechnic Institute.

3. RESULTS

3.1. Structure of Dislocation Cores. The core structure is
evaluated by calculating the relative displacement of the COM
of molecules across the glide planes (u(x)).The width of the
dislocation, w, is defined as the distance between the two
inflection points of u(x), i.e., approximately b/4 ≤ u(x) ≤ 3b/4.
A wide, planar core would be easier to move than a compact
core. The equation u(x) = b arctan[(x − x0)/w] is fitted to the

Figure 3. Schematic of the simulation cells used in the study. Z
represents the simulation box vector used to define the periodicity. n,
q, and L are defined in Figure 2. (a) Orthogonal cells were used for the
(010) and (001) slip planes. (b) Nonorthogonal cells were used for
the (011) and (021) slip planes.
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core profiles of stable dislocations resulting from the simulation
in order to evaluate the widths.
Dislocations are considered to be stable if, upon

minimization, the molecular layers on either side of the glide
plane did not separate (cleave) and the magnitude of the
Burgers vector remained equal to that corresponding to the
applied displacement field. The various slip planes considered
in the study are schematically represented in Figure 1, and the
core structures obtained from atomistic calculations are
presented in this section. For each crystallographic plane
there exist two parallel slip planes which differ in the nature of
intermolecular bonding across the glide plane. An example is
shown in Figure 1, where it is apparent that two different types
of (001) planes form the stacking, with two others in the
sequence being identical, but rotated by 180° relative to the
[001] axis. The planes differ in attachment (cohesive) energies
as described previously.13 In the present study only the planes
with lower cohesive energies are considered.
3.1.1. (010) Plane. Two directions of the Burgers vector are

considered in the (010) plane: the [100] and the [001]. In each
case the screw and edge dislocations are studied. The (010)
[100] slip system has been reported in previous studies to
exhibit dislocation activity.12,13 Slip was also reported in the
(010)[001] system in previous experimental investigations.8,10

The [100] direction was reported13 to have a stable stacking
fault at b = 1/2[100] with a stacking fault energy of 101 mJ/m2.
Let us consider first the edge dislocation. It was found in our

simulations that the edge dislocations of the (010)[100] type
with b = [100] are not stable and dissociate into partials of pure
edge character with b = 1/2[100], therefore providing support
to the observation of a minimum in the [100] trace of the γ-
surface at a relative shift of 1/2[100]. The structure of the
relaxed core is compared to the structure of the Volterra
dislocation21 in Figure 4a. Figure 4b shows the structure of a b
= 1/2[100] partial dislocation. The split of the dislocation with
b = [100] in two partials is clearly observed in Figure 4a, while
the partial dislocation with b = 1/2[100] has a compact core,
very close to that of the Volterra dislocation.
Full screw dislocations of the (010)[100] type were stable

when τ = 0, but were found to split into partials with b = 1/
2[100] when a resolved shear stress of at least 0.2 GPa was
applied. Therefore, the core with full Burgers vector, b = [100],
is lattice trapped and is essentially unstable. The resolved stress
applied to assist the split of the dislocation into partials is close
to the resolved stress required to move the b = 1/2[100]
partial. This perturbation helps the system to reduce its energy
into a configuration compatible with the minimum of the γ-

surface mentioned above. Dislocations of the (010)[001] type
did not split and relaxed to narrow core structures with b =
[001]. The calculated widths of all stable configurations are
reported in Table 1.

3.1.2. (001) Plane. Experimental studies8 have suggested the
(001) plane to be a cleavage plane in RDX. Molecular dynamics
simulations of shocked RDX crystals5 reported nucleation of
0.16[010] partials on the (001) planes. Ductile behavior was
reported for both the (001)[100] and (001)[010] slip systems
in ref 13 with stable stacking faults at b = 1/2[100] and b = 1/
2[010]. The [010] and [100] directions in this plane are
investigated in this study.
Edge and screw dislocations with b = [100] split into partials

of 1/2[100] type upon the application of a resolved shear
stresses of at least 0.4 GPa. This lattice trapping effect is similar
to that discussed for the (010) plane. The width of (001)[100]
dislocations are reported in Table 1.
Only screw type full dislocations with b = [010] were stable.

Edge dislocations with the same Burgers vector were unstable

Figure 4. Structure of the (010)[100] edge dislocation. (a) The dislocation with b = [100] splits into two partials of b = 1/2[100]. (b) Structure of
the b = 1/2[100] partial.

Table 1. Ranking of Slip Systems Resulting from the
Atomistic Models

slip
plane type

τa
(GPa)

ϵτa
(GPa)

τSF
(GPa)

τPN
(GPa) w (Å)

(010) 1/2[100]/
edge

0.050 0.012 0.151 0.201 29.48

(010) 1/2[100]/
screw

0.129 0.034 0.151 0.280 21.68

(001) [010]/screw 0.458 0.044 0.000 0.458 17.08
(001) 1/2[100]/

screw
0.170 0.012 0.308 0.478 20.29

(021) 1/2[01 ̅2]/
screw

0.356 0.039 0.142 0.498 10.20

(011) [100]/screw 0.518 0.064 0.000 0.518 14.11
(021) [100]/screw 0.524 0.037 0.000 0.524 8.85
(021) 1/2[100]/

edge
0.296 0.037 0.280 0.576 16.95

(011) [100]/edge 0.583 0.064 0.000 0.583 20.25
(001) 1/2[100]/

edge
0.287 0.048 0.308 0.595 36.89

(021) [01̅2]/screw 0.635 0.039 0.000 0.635 8.33
(001) 1/2[010]/

edge
0.240 0.044 0.406 0.646 30.07

(021) 1/2[100]/
screw

0.382 0.037 0.280 0.662 14.94

(010) [001]/edge 0.782 0.059 0.000 0.782 12.77
(010) [001]/screw 0.831 0.059 0.000 0.831 14.77
(011) [01̅1]/screw 0.896 0.075 0.000 0.896 6.51
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and only partials with b = 1/2[010] could be stabilized. The
core structures of the (001)1/2[010] edge dislocations are
shown in Figure 5a. For these partials, rotation and conforma-
tional flips (Caae to Caee) of the molecules across the glide
plane are observed and an out-of-plane component with b =
0.1[100] develops.
The atomistic core structure of the edge partial is shown in

Figure 5b. Conformation changes of the molecules are
observed in the core and in the region of the stacking fault.
The molecules colored in blue are in the Caee state, those in
red are in the Caaa state, and all others are in the Caae ground
state. Most molecules in the stacking fault are in the Caae
conformation, but are rotated relative to the molecules in the
perfect crystal. Different packing is observed in the stacking
fault region. It should be also noted that the rotation of the
molecules leads to a shift of the COM which reflects in the u(x)
profiles shown in Figure 5a. The apparent out-of-plane
component, u[100](x), as well as the deviation of the u[010](x)
trace from the Volterra solution in the stacking fault region
(right side of the plot) are due to this COM shift and do not
represent physical dislocation components or a real variation of
the Burgers vector length.
3.1.3. (021) Plane. The (021) plane contains the slip systems

(021)[100] and (021)[01 ̅2]. Edge and screw dislocations with
b = [100] and b = 1/2[100] were found to be stable. This
agrees with the presence of a minimum in the γ-surface
reported for the (021)[100] system at the 1/2[100] position.13

Upon application of a resolved shear stress of 0.55 GPa, an
edge dislocation with the full Burgers vector, b = [100], was
found to lead to cleavage starting from the core, which indicates

that the lattice trapping is too strong in this direction to let the
core relax and split into partials. The screw dislocation with b =
[100] does not lead to cleavage but is also incapable of
relaxation by splitting into partials. The partials with b = 1/
2[100] are stable in both the edge and screw configurations,
and their core profiles are shown in Figure 6. As with the (001)
[010] partial of Figure 5, apparent out-of-plane components of
b = 0.1[01 ̅2] type are observed upon relaxation; these are due
to COM shifts associated with molecular conformation changes
in the core. Screw dislocations with b = [01̅2] and b = 1/
2[01 ̅2] were found to be stable, and the calculated widths are
reported in Table 1.

3.1.4. (011) Plane. The [100] and [01̅1] directions are
considered in this plane. The possibility of cross-slip in the
[100] direction was postulated in previous studies.12,13 The
(011)[01 ̅1] slip system was reported to exhibit brittle response.
A stable stacking fault at b = 1/2[100] was reported in ref 13
but was not reproduced in our atomistic simulations. The
widths of stable dislocations with full Burgers vector on the
(011)[100] and (011)[01 ̅1] slip systems are reported in Table
1.

3.2. Ranking of Slip Systems. 3.2.1. Peierls Stress from
Atomistic Simulations. The stable dislocations are ranked in
Table 1 in the order of increasing τPN. Table 1 also includes the
critical stress applied in the simulation (τa) which puts the
dislocation in motion, the contribution from the stacking fault
energy (τSF) to the Peach−Koehler force, and the width (w)
calculated by fitting the relaxed core structure, as described in
section 3.1.The contribution of the stacking fault to the critical
stress is calculated as

Figure 5. Core structure of the (001)[010] edge dislocation with b = 1/2[010]. (a) Relative displacement of COM across the glide plane. (b)
Molecular conformational state of the core in (a). Caaa molecules are colored in red, Caee are in blue, and Caae are in gray.

Figure 6. Core structure of b = 1/2 [100] dislocations residing on the (021) plane. (a) Screw dislocation. (b) Edge dislocation.
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τ
γ

=
bSF
SF

(1)

where γSF is the stable stacking fault energy and b is the
magnitude of the Burgers vector. The Peierls stress is calculated
as

τ τ τ= +PN a SF (2)

indicating the fact that the stacking fault aids the motion of
partials in all models considered. The error in τa, ϵτa, is the
range in which the Peierls stress is observed. Specifically, the
dislocation moves at the stress denoted as τa, but it does not
move at τa − ϵτa.
The Peierls stresses for stable dislocations are shown in

Figure 7 as a function of the theoretical strength. The bars in

Figure 7 represent ϵτa. The theoretical strength is calculated
using the formula21

τ
π

= a d
G

( / )
2TS (3)

Here G represents the shear modulus in the appropriate
crystallographic direction, a is the intermolecular spacing in the
b direction, and d is the interplanar spacing for the respective
glide plane. One observes a clear demarcation in the
distribution of the Peierls stress values close to 350 MPa.
This value is close to Gv/20, where Gv is the Voigt average
shear modulus, calculated as22

= + + − − −

+ + +

G C C C C C C

C C C

1
15

( )

1
5

( )

v 11 22 33 23 13 12

44 55 66 (4)

Here Cii are the components of the stiffness matrix. The
calculated value of Gv at 0 K using the moduli reproduced by
this potential is equal to 7.004 GPa, and the τPN values are
discussed here in terms of the fraction of Gv.
Dislocations on the (010)[100] slip system have the lowest

Peierls stress (τPN < Gv/20). Thus the (010) plane is found to
be the primary slip plane, in agreement with multiple
experimental observations. For slip systems of the type (021)

[01 ̅2], (021)[100], (011)[100], (001)[010], and (001)[100],
the simulations yield Gv/20 < τPN < Gv/10. The third regime
consists of slip systems of the type (011)[01 ̅1] and (010)[001],
with τPN > Gv/10. Out of the slip systems in the third regime,
(010)[001] systems can be considered inactive, since the
critical stresses calculated are close to the theoretical strength
and cleavage is likely to happen before plastic deformation. This
result is not in agreement with previous suggestions made
based on indirect experimental observations.8,12

It is noted here that screw dislocations of the [100] type on
the (021), (001), and (011) planes have critical stress values of
0.524, 0.478, and 0.518 GPa, thus indicating the possibility of
cross-slip between these planes, in situations where the resolved
stresses are higher than 0.524 GPa. Cross-slip has been
suggested between planes containing the common [100] slip
direction in other studies.12,13,15 The present results confirm
that this is possible from the point of view of the lattice
resistance to slip. The unstable stacking fault energies for these
slip systems reported in the literature13 are also within a narrow
range of each other. The critical stress for the [100] screw
dislocation on the (010) plane is 0.28 GPa, which is much
lower than the values for the other planes.

3.2.2. Peierls Stress Calculations Using the Peierls−
Nabarro Model. The Peierls−Nabarro (PN) model is based
on an interpretation of the core of a dislocation as a continuous
distribution of infinitesimal dislocations on the glide plane. The
relevant parameter describing the core shape becomes the
density of these infinitesimal dislocations, ρ = ∂u/∂x. The
model requires the equilibrium of the distribution, which is
written in terms of the force resulting from the elastic
interaction of the infinitesimal dislocations, the lattice rebound
force, and the applied far-field resolved shear stress. All PN
models assume that the core is planar. The equilibrium
condition is written as

∫π
τ′

− ′
′
′

′ = +γ
−∞

∞G
x x

u x
x

x F u x
2

1 d( ( ))
d

d ( ( ))
(5)

where

θ
ν

θ γ′ =
−

+ = −γ

⎛
⎝⎜

⎞
⎠⎟G G F

u
u

sin
1

cos ) and
d ( )

d

2
2

(6)

Here G′/2π is the energy prefactor, θ is the angle between
vectors b and ξ, G is the isotropic shear modulus, ν is the
Poisson’s ratio, Fγ is the lattice restoring force obtained as the
derivative of the γ-surface trace in the direction of b, and τ is
the applied resolved shear stress. A normalization condition is
required, which is written as

∫ ′
′

′ =
−∞

∞ u x
x

x b
d( ( ))

d
d

(7)

The equilibrium core structure, u(x), is obtained by solving eq
5 without the applied shear stress. The unknown function u(x)
is written as a superposition of arctan functions as

∑
π

α=
−

+
=

⎛
⎝⎜

⎞
⎠⎟u x

b x x
c

b
( ) arctan

2i
i

i

i1

4

(8)

The Peierls stress can be obtained by increasing the value of τ
until no solutions are found for eq 5. This value of τ is the
critical stress required to move the dislocation on the glide
plane (τPN

γ ). Note that this version of the PN model provides

Figure 7. Peierls stress values evaluated in atomistic simulations versus
the theoretical strength in the respective crystal direction. The “e” and
“s” labels stand for edge and screw dislocations, respectively. The bars
represent the range in which the Peierls stress is observed. The limits
defining the two shaded areas are selected arbitrarily to correspond to
Gv/20 and Gv/10, where Gv is the Voigt shear modulus, eq 4. Gv/10 is
close to the theoretical shear strength of the crystal.
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only an approximation of the dislocation core since it does not
include nonlocal effects and out-of-plane displacements
(shear−tension coupling). If the relative motion of the crystal
planes involves dynamic changes of the conformation state of
the molecules, the PN model cannot account for this physics
even when the restoring force is computed from the γ-surface
evaluated from atomistic models (eq 6).
γ-surfaces for the slip systems considered in this study have

been published elsewhere.13 The Peierls stress values obtained
from the PN model (τPN

γ ) are compared with the values
obtained from atomistic simulations in Figure 8.

The (010)[100] system is found to be the most easily
activated system with τPN

γ < Gv/20 in agreement with the
predictions obtained from atomistic simulations. Slip systems of
the types (010)[001] and (011)[01 ̅1] and edge dislocations
with b = 1/2[010] on (001) planes were found to have τPN

γ >
Gv/10. The values obtained from the PN model for all slip
systems are within 20% of the atomistic results, except for the
(021)[01 ̅2], (011)[100], and (001)[100] slip systems for
which the error is about 25%. This provides support for the use
of the PN model when estimating Peierls stresses. The
computational effort associated with estimating the γ-surface
and solving the PN model for a particular slip system is much
smaller than that required to determine the Peierls stress from
full atomistic simulations, since very large atomistic models are
required in the latter case.

4. DISCUSSION
The atomistic results can be analyzed from a classical
continuum perspective. Compatibility conditions require that
five independent slip systems are required in a crystal to
accommodate an arbitrary applied strain. This constraint is

relaxed in complex ways near surfaces. The ability of the RDX
crystal to accommodate an arbitrary plastic strain can be
investigated using the method proposed by Kocks23 and Kelly
and Groves24 for low symmetry crystal structures. This method
was recently employed for RDX using information resulting
indirectly from nanoindentation experiments.12 The strains
produced by unit slip on all slip systems considered in this
study are shown in Table 2.
Assuming that all eight slip systems considered are activated,

one can form a total of 56 (8C5) unique combinations of
possible groups of five slip systems. Though this is the case,
none of these 56 groups possess the required five independent
slip systems. At the most, one obtains four independent
systems and this points to the fact that plasticity in RDX is
hindered even when all eight slip systems investigated are
active.
Additional considerations come into play when the ranking

of slip systems presented in Table 1 is taken into account.
Recent nanoindentation experiments12 performed on RDX
reported first pop-in events at 246, 368, and 994 μN applied
indentation force for indents in the (210), (021), and (001)
faces, respectively. A simple analysis based on Schmid factors
shows that, without taking into account the Peierls stress, five,
three, and two slip systems could be activated for the (210),
(021), and (001) cases, respectively. Let us consider the point
located at 0.48a, with a being the contact radius of the indenter,
below the surface and on the symmetry axis. In an isotropic
material, this is the point where the maximum shear stress is
reached and is also the point where homogeneous dislocation
nucleation is usually assumed to take place. We compute the
resolved shear stress in all slip systems studied with the goal of
estimating the number of systems in which activity may take
place at the critical indentation loads observed in experiments.
These resolved shear stresses are plotted against the lowest
values of τPN for the respective slip systems in Figure 9.
For indentation on the (210) face, activity is enabled on the

(010)[100] system, for indentation on the (021) plane only
screw dislocations on (001)[010] can move, and indentation
on the (001) face leads to the activation of (021)[01 ̅2] at the
load corresponding to the first pop-in event. This indicates that
at the first plastic event only one slip system is activated in all
situations. This is meaningful since one expects that the first
sign of plasticity under the indenter may be produced by
activity on one slip system only. However, the critical loads
predicted using our data would underestimate the loads
observed in experiments. Specifically, the (010)[100] system
is activated when the applied force normal to the (210) face is
12 μN, the (001)[010] system would operate at a force normal
to the (021) face of 208 μN, and the (011)[01 ̅1] system
becomes active at a critical load perpendicular to the (001) face

Figure 8. Comparison between Peierls stress values obtained from the
PN model (τPN

γ ) and atomistic simulations (τPN).

Table 2. Components of Strain Resulting from Unit Slip on Specific Slip Systems

slip system slip plane normal slip vector ε11 ε22 ε33 2ε23 2ε31 2ε12

(010)[100] [0 1 0] [1 0 0] 0 0 0 0 0 1
(010)[001] [0 1 0] [0 0 1] 0 0 0 1 0 0
(001)[100] [0 0 1] [1 0 0] 0 0 0 0 1 0
(001)[010] [0 0 1] [0 1 0] 0 0 0 1 0 0
(021)[100] [0 0.877 0.481] [1 0 0] 0 0 0 0 0.481 0.877
(021)[01 ̅2] [0 0.877 0.481] [0 −0.481 0.877] 0 −0.422 0.422 0.538 0 0
(011)[100] [0 0.674 0.739] [1 0 0] 0 0 0 0 0.739 0.674
(011)[01 ̅1] [0 0.674 0.739] [0 −0.739 0.674] 0 −0.498 0.498 −0.092 0 0
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of 295 μN. The present analysis predicts the proper anisotropy
of the indentation response, with the (210) indents having the
lowest critical load and the (001) indents having the highest
one. The underestimation is also expected. If the pop-in event
is produced by dislocations that nucleate homogeneously under
the indenter, the load required for nucleation should be much
larger than that required for motion of an existing dislocation
since the respective energetic barriers are quite different.
Likewise, if the pop-in event is due to preexisting dislocations,
the critical load should not only put these dislocations in
motion, but should also be large enough to render unstable the
preexisting dislocation structures. Therefore, in both situations,
the first pop-in loads predicted based on the Peierls stress
values are expected to be smaller than those observed
experimentally. Since the mechanism leading to the first pop-
in is not entirely known, the observation made here that the
ranking of the activated slip systems in terms of Peierls stresses
matches the experimental anisotropy in indentation should not
be overemphasized. We interpret it as a suggestion that, since
Peierls stresses are very large in these crystals, the critical stress
required to put dislocations in motion should be close to the
critical stress of the mechanism leading to criticality in
indentation.
Let us consider the implications of the results presented in

this article in the context of anisotropic sensitivity of RDX
shocked perpendicular to the (111), (210), and (100) planes.
Calculation of Schmid factors shows7 that (111) shocks could
activate seven slip systems, (210) shocks provide nonzero
resolved shear stress on five slip systems, and (100) shocks do
not activate any slip system, even when the (001) systems are
taken into consideration. (111) shocks activate systems (001)
[100], (001)[010], and (010)[001], which are not available for
(210) shocks.
Interesting observations can be made by considering specific

shock strengths.PRH values of magnitude 7, 2.14, and 1.24 GPa
are considered. These values are chosen on the basis of
previous experimental studies4,5,7 and represent critical thresh-
olds for RDX. PRH = 7 GPa is the minimum experimental peak
stress reported for decomposition in RDX.7 Low stress flyer-
plate impact experiments reported an abrupt change in the
response of RDX for (111)4 and (021)6 shocks for 1.24 < PRH
< 2.14 GPa. Values of the resolved shear stress (τRSS) for all slip
systems are shown in Figure 10 against the lowest values of τPN
in the respective system, for (111) shocks with PRH = 7, 2.14,
and 1.24 GPa and for a (210) shock withPRH = 7 GPa.

For a PRH of 7 GPa it results that all seven slip systems with
nonvanishing Schmid factors have τRSS > τPN for (111) shocks.
(210) shocks activate five slip systems. However, the sensitivity
is higher for (210) shocks.7 On the basis of this observation a
lower number of slip systems results in hindered plasticity and
the inability of the crystal to relax the applied stress. Thus the
present study confirms the validity of the steric hindrance
model pertaining to the decomposition of RDX. A recent
computational study of compressive dynamic loading using a
reactive force field also supports the validity of the steric
hindrance model.25 It should be noted that the RDX crystals
undergo an α−γ phase transition at pressures above 4.5 GPa26

for shock and between 2 and 4 GPa27,28 under quasi-static
loading conditions. In addition to the phase transition, the high
strain rates and temperatures involved in a shock might result
in more complicated deformation mechanisms compared to
what can be inferred from quasi-static simulations.
For PRH = 2.14 GPa in a (111) shock, at least five slip

systems (with m ≠ 0) remain active. If one considers PRH =
1.24 GPa and the (111) shock, only the (010)[100] system is
clearly activated. Thus the observed change in response of
(111) oriented crystals can be attributed to the activation of a
higher number of slip systems as the shock pressure increases.
Also, for (111) shocks, the cross-slip of [100] screw
dislocations will be inhibited at lower shock pressure and this
might also play a role in controlling the deformation behavior.
In the case of (021) shocks (not shown), PRH = 2.14 GPa

activates the (001)[010] and (010)[001] slip systems. A shock
of PRH = 1.24 GPa will activate only the (001)[010] system.
Thus the above conclusion that anisotropic response can be
correlated with differential activation of slip systems remains
unchanged for the (021) shocks.
Shocks normal to the (100) plane activate none of the slip

systems considered in this work. It is possible that other
deformation mechanisms4,29 and/or other slip systems become
active in order to accommodate the imposed deformation.

5. CONCLUSIONS
Atomistic simulations in conjunction with the Peierls−Nabarro
model were used to study the mobility of dislocations in RDX.
This study indicates that the (010)[100] slip system has the
least resistance to dislocation motion. Screw dislocations of the
[100] type on (021), (001), and (011) planes were found to
have Peierls stress values within 10% of each other, supporting

Figure 9. Activation of slip systems in indentation experiments
perpendicular to the (001), (021), and (210) crystal planes.12 “e” and
“s” stand for edge and screw dislocations, respectively. Figure 10. Activation of slip systems for (111) and (210) shocks.
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the conjecture that cross-slip of screw segments with [100]
orientation is possible. Critical stresses were found to be
between Gv/20 and Gv/10 for the majority of the slip systems
investigated. However, the number of independent slip systems
is always lower than the minimum of five required for the
accommodation of a general strain state; hence plasticity in
RDX is hindered. The anisotropic sensitivity of RDX crystals
shocked in (111) and (210) directions can be explained in
terms of differential mobility on available slip systems, and this
supports the validity of the steric hindrance model for this
material. An explanation for the anomalous response at low
shock pressures is also provided in terms of the activation of
available slip systems.
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