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Abstract

We present the variational multiscale (VMS) method for partial differential equations
(PDEs) with stochastic coefficients and source terms. We use it as a method for generating
accurate coarse-scale solutions while accounting for the effect of the unresolved fine scales
through a model term that contains a fine-scale stochastic Green’s function. For a natural
choice of an “optimal” coarse-scale solution and L2-orthogonal stochastic basis functions,
we demonstrate that the fine-scale stochastic Green’s function is intimately linked to its
deterministic counterpart. In particular, (i) we demonstrate that whenever the deterministic
fine-scale function vanishes, the stochastic fine-scale function satisfies a weaker, and discrete
notion of vanishing stochastic coefficients, and (ii) derive an explicit formula for the fine-scale
stochastic Green’s function that only involves quantities needed to evaluate the fine-scale
deterministic Green’s function. We present numerical results that support our claims about
the physical support of the stochastic fine-scale function, and demonstrate the benefit of
using the VMS method when the fine-scale Green’s function is approximated by an easier
to implement, element Green’s function.

1 Introduction

The comprehensive design of engineering systems requires a sound understanding of the under-
lying physics, along with the recognition of different kinds of uncertainties influencing its re-
sponse. Often, these uncertainties are intrinsic to the physical phenomena under consideration.
It is necessary to characterize and study their propagation, facilitating quantitative predictions
about the uncertainty of relevant output quantities of interest. Experimental methodologies in
this regard may prove to be expensive, and impractical with increasing complexity. To that
end, the development of computational techniques assumes greater importance and the field of
uncertainty quantification (UQ) has come into its own.

In the probabilistic framework, representation of the uncertainties using random variables
and processes is the preliminary task in any UQ method. This is mostly accomplished by
relying on experimental data. The objective of the numerical technique can then be stated as
the task of determining the uncertainties of the output quantities of interest and possibly their
dependence on the characterized random inputs. Monte Carlo simulation (MCS) and related
sampling based methods are some of the earliest approaches used for the purpose of uncertainty
propagation [9]. However, owing to their slow convergence their use is limited. In particular,

Submitted to SIAM/ASA Journal on Uncertainty Quantification

1



in the case of large scale problems, where each deterministic solve at a sample point in itself is
computationally intensive, they may become inefficient.

In recent years methods based on generalized polynomial chaos (gPC) [34, 31, 36], a gen-
eralization of the classical polynomial chaos [30, 13], have been used extensively in UQ. These
involve expressing the stochastic solution in an orthogonal polynomial basis of the input random
parameters. The type of orthogonal polynomial chosen is dictated by the stochastic nature of
the random input. The solution is essentially a spectral representation in the random space,
and exhibits fast convergence when it depends smoothly on the random parameters. Numerical
schemes using gPC typically involve a Galerkin projection onto the finite dimensional subspace
spanned by the gPC basis in order to compute the expansion coefficients. This is the stochastic
Galerkin approach and generally results in a coupled system for all the gPC expansion coef-
ficients. It is labeled as intrusive, when requiring modification of the existing deterministic
solver.

On the other hand, stochastic collocation methods [24, 32, 11, 35, 3], which only need
repetitive realizations of the deterministic solver are an attractive alternative. They satisfy the
governing equations at a discrete set of points in the random space, and in this sense are similar
to MCS. However, the discrete set of points in the case of stochastic collocation methods are
chosen strategically using polynomial approximation theory to enhance convergence [36, 22].

If the input uncertainties are characterized by a large number of random variables, then in a
stochastic collocation method the set of discrete points becomes prohibitively large, thus impos-
ing a severe computational burden. Similarly, in the context of stochastic Galerkin approaches,
due to the tensor product construction of multi-dimensional bases the number of degrees of free-
dom grow exponentially with the number of random variables. In either case this exponential
growth in computational complexity with respect to the number of input random variables is
termed as the curse-of-dimensionality. Several advances have been reported that counter this
difficulty. In particular, multi-scale model reduction techniques when using stochastic Galerkin
approaches have been investigated in [6] and methods exploiting low-rank or sparsity structures
of quantities of interest have been presented in [7, 8, 33, 26, 5, 27, 14].

In this work, we achieve a reduction in computational complexity by developing a stochastic
variational method that is designed to provide accurate solutions while using a coarse discretiza-
tion in both physical and stochastic space. We recognize that by limiting our discretization
to fewer elements and low-order gPC expansions, there will remain unresolved physical and
stochastic features in the so called fine-scale space. However, we account for the effect of these
features on the coarse-scale terms by introducing model terms. In that sense, our approach
may be thought of as subgrid-modeling in the joint physical-stochastic space. We accomplish
this within the framework of the variational multiscale (VMS) method [18, 19, 16]. The VMS
method provides a consistent framework for introducing such models in a variational problem,
and has been extensively and effectively applied to problems in diverse areas such as compress-
ible and incompressible fluid mechanics [17], linear and non-linear elasticity [12, 21], acoustics
and electro-magnetics [28, 20], albeit predominantly in a deterministic setting.

The starting point of the VMS method is the definition of a coarse-scale space and a projector
P, that maps functions into this space. This projector defines the desired coarse-scale solution
and is a key part of the VMS formulation. The net result is a variational formulation posed on
the coarse-scale space whose solution is guaranteed to be the continuous solution projected on
to the coarse scales through the user-defined projector. This is accomplished by appending to
the original weak formulation a term that captures the effect of the scales that live outside the
coarse-scale space. This term comprises of the so called fine-scale Green’s operator acting on
the coarse-scale residual. The fine-scale Green’s operator completely defines the VMS method.

In [16] the authors have derived an expression for the abstract fine-scale Green’s operator for
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variational problems posed on standard Hilbert spaces. Thereafter, for the case of deterministic
PDEs, they have examined the locality of the fine-scale Green’s function. The Green’s function
for most problems is typically non-zero across the whole physical domain, but this is not the
case for the fine-scale Green’s function. It depends primarily on the projector used to construct
the VMS method, and with appropriate choices, the fine-scale Green’s function can be confined
to smaller regions. The locality plays an important role in designing simple operators that
approximate the effect of the fine-scale Green’s function, and hence make the VMS formulation
a viable numerical method.

In this manuscript we extend and apply this analysis to stochastic PDEs. We note that
in the context of stochastic PDEs there have been previous studies that use the VMS method
[25, 1, 2, 10], however, an explicit analysis of the fine-scale stochastic Green’s operator has
not been performed to the best of our knowledge. The main results of our analysis, which is
performed assuming that P is defined by the inner-product associated with the trial-solution
space and that the stochastic basis functions are L2-orthogonal, are:

1. A statement about the locality (in physical space) of the fine-scale stochastic Green’s oper-
ator. In particular we note that at the locations where the fine-scale deterministic Green’s
operator vanishes its stochastic counterpart need not vanish. However, at these locations
when the fine-scale function is expanded in terms of the stochastic basis functions, the
coefficients associated with the coarse-scale stochastic space will vanish.

2. An explicit expression for the fine-scale stochastic Green’s function purely in terms of
quantities required to construct the corresponding fine-scale deterministic Green’s func-
tion. Implying thereby, that whenever the fine-scale deterministic Green’s function is
known, its stochastic counterpart can also be constructed.

The first result suggests that even though the fine-scale stochastic Green’s operator is not local
in the physical space, it may be approximated by one as long its deterministic counterpart is
local. As a consequence, the implementation of the VMS method is simplified immensely. We
test the effect of this approximation and the performance of the resulting VMS method by
numerically solving the stochastic advection-diffusion problem.

An outline of the paper is as follows. In Section 2 we introduce the abstract problem and
explain the necessary mathematical framework. In Section 3 we apply the VMS formulation
to the abstract problem and present the two main results of this paper that link the form
and properties of the fine-scale stochastic Green’s function to its deterministic counterpart. In
Section 4 we consider the advection diffusion problem posed on one physical dimension and
explicitly evaluate and examine the fine-scale stochastic Green’s function. In Section 4.3 we
report numerical examples that test the performance of the VMS method when the fine-scale
stochastic Green’s function is approximated by the element Green’s function for problems with
single and multiple random variables. Finally in Section 5 we end with concluding remarks.

2 The abstract formulation

2.1 The abstract problem

Consider a stochastic linear boundary value problem, wherein we seek a stochastic function
u(x, ω) : D̄ ×Ω → R, such that the following equation holds almost surely in Ω,

Lu(x, ω) = f(x, ω), x ∈ D,

u(x, ω) = 0, x ∈ ∂D.

}
(2.1)
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L is a stochastic linear partial differential operator whose coefficients are one of the sources of
uncertainty in the problem, f(x, ω) is a prescribed stochastic source term, D is the physical
domain of the problem, and Ω is the set of elementary events (ω ∈ Ω).

2.1.1 Probabilistic framework

For computational purposes, we will assume that the uncertainty has been parametrized using
a finite set of independent real-valued random variables {ξi(ω)}

q
i=1. Here q is the number

of coordinates that sufficiently characterizes the stochastic nature of the problem, and will
henceforth be referred to as the stochastic dimension. ξ(ω) = (ξ1(ω), · · · , ξq(ω)) is a q-variate
random vector in a properly defined probability space (Ω,F ,P), where F is the minimal
σ-algebra of the subsets of Ω, and P is the probability measure on F .

We know that each random variable ξi is a map from the probability space (Ω,F ,P) to

either a subset or whole of the real line. Let Υi
def
= ξi(Ω) ⊆ R denote the image of ξi, and

ρi : Υi → R>0 its associated probability density function (PDF). The joint probability density
of the random vector ξ is

ρ(ξ) =

q∏

i=1

ρi(ξi), (2.2)

and has the support

Υ =

q∏

i=1

Υi ⊆ R
q. (2.3)

The solution to (2.1) now admits a finite dimensional representation, i.e.,

u(x, ξ)
def
= u (x, ξ1(ω), · · · , ξq(ω)) : D̄ ×Υ → R. (2.4)

2.2 The variational formulation

The appropriate space V to pose the variational problem is obtained by a tensor product of

function spaces constructed over D and Ω. Let Vd def
= H1

0 (D) be the first order Hilbert space
consisting of functions that vanish on the boundary ∂D, and L2(Υ) be the space of random

variables with finite variance with respect to the density function ρ(ξ). The space V
def
= Vd ⊗

L2(Υ) is the linear span of elements of the form νΨ, where ν ∈ Vd and Ψ ∈ L2(Υ), i.e.,

V =
{
v
∣∣∣v = νΨ,∀ν ∈ Vd,∀Ψ ∈ L2(Υ)

}
. (2.5)

The space V is equipped with an inner-product inherited from the respective individual function

spaces. The inner-product associated with Vd def
= H1

0 (D) is

(ν, ν̃)Vd

def
=

∫

x∈D
∇ν · ∇ν̃dx, ∀ν, ν̃ ∈ Vd, (2.6)

and the inner-product associated with L2(Υ) is

(Ψ, Ψ̃)L2(Ω)
def
= E

[
ΨΨ̃

]
=

∫

ξ∈Υ
ΨΨ̃ρdξ, ∀Ψ, Ψ̃ ∈ L2(Υ), (2.7)

where E is the mathematical expectation operator. The inner-product (·, ·)V : V × V → R is
defined as

(v, ṽ)V
def
= E

[∫

x∈D
∇v · ∇ṽdx

]
= E

[
(v, ṽ)Vd

]
, ∀v, ṽ ∈ V. (2.8)
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Let V∗ be the dual of V, and
V∗

〈
·, ·
〉
V
be the pairing between them. We define the bilinear

form associated with the dual pair
V∗

〈
·, ·
〉
V
: V∗ × V → R as

V∗

〈
χ, v

〉
V

def
= E

[∫

x∈D
χvdx

]
, ∀χ ∈ V∗,∀v ∈ V. (2.9)

Using (2.9), the variational statement of (2.1) is: find u ∈ V such that,

V∗

〈
Lu,w

〉
V
=

V∗

〈
f,w

〉
V
, ∀w ∈ V. (2.10)

If (2.1) were posed in a deterministic context, Vd would be the relevant space for its corre-
sponding variational problem. Denoting the dual of Vd by Vd∗, we establish a pairing between
them,

Vd∗

〈
·, ·
〉
Vd, with the associated bilinear form

Vd∗

〈
·, ·
〉
Vd : Vd∗ × Vd → R defined as,

Vd∗

〈
λ, ν

〉
Vd

def
=

∫

x∈D
λνdx, ∀λ ∈ Vd∗,∀ν ∈ Vd. (2.11)

2.2.1 Numerical approach

2.2.1.1 Spectral stochastic discretization In the context of the spectral stochastic meth-
ods, the solution u(x, ξ) of (2.10) is represented by an infinite series of the form

u(x, ξ) =
∑

m∈Nq
0

ûm(x)Φm(ξ), (2.12)

where N
q
0
def
=

{
(m1, · · · ,mq) : mi ∈ N ∪ {0}

}
is the set of multi-indices of size q defined on

non-negative integers. The set {Φm(ξ)} is a basis for L2(Υ), and consists of multi-dimensional
polynomials of random variables, referred to as generalized polynomial chaos (gPC). Let φmi

(ξi)
denote the univariate polynomial of degree mi orthogonal with respect to ρi(ξi). Each basis
function Φm(ξ) is a tensor product of the univariate polynomials φmi

(ξi),

Φm(ξ) = φm1
(ξ1)φm2

(ξ2) · · · φmq (ξq), m = N
q
0. (2.13)

The total order of Φm(ξ) is |m| =
∑q

i=1mi. It is assumed that the univariate polynomials are
normalized, which leads to the orthonormality property,

E [Φm(ξ)Φn(ξ)] =

∫

ξ∈Υ
Φm(ξ)Φn(ξ)ρ(ξ)dξ = δmn, ∀m,n ∈ N

q
0, (2.14)

where δmn is the Kronecker delta function. Using (2.14), we can interpret {ûm(x)} in (2.12) as
generalized Fourier coefficients obtained by the projection of u(x, ξ) onto each basis function
Φm(ξ), i.e.,

ûm(x) = E [u(x, ξ)Φm(ξ)] =

∫

ξ∈Υ
u(x, ξ)Φm(ξ)ρ(ξ)dξ, m ∈ N

q
0. (2.15)

2.2.1.2 The Galerkin projection The finite dimensional Galerkin approximation is ob-
tained by restricting the search in (2.10) to a finite dimensional subspace V̄ ⊂ V. It will consist
of only a finite number of spectral modes from the series representation (2.12). We define

V̄
def
= X h⊗Yp, where X h ⊂ Vd is the finite dimensional space of piecewise continuous polynomi-

als {Θi(x)}i=1,··· ,Nd defined on a partitioning of D, and Yp ⊂ L2(Υ) is the q-variate orthogonal
polynomial space of total degree at most p, i.e.,

Yp def
= span

{
Φm(ξ)

∣∣∣m ∈ N
q
0, |m| ≤ p

}
. (2.16)
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The dimensionality of the space Yp is,

N s =
(q + p)!

q!p!
, (2.17)

which increases exponentially as a function of the dimension q. The space X h with dimension-
ality Nd, will also be referred to by V̄d, a finite dimensional subspace of Vd. Any v̄ ∈ V̄ can be
written as,

v̄ =

Nd∑

i=1

p∑

|m|=0

vi,mΘi(x)Φm(ξ), m ∈ N
q
0. (2.18)

The finite dimensional Galerkin approximation of the exact solution u(x, ξ) is: find ū ∈ V̄
such that,

V∗

〈
Lū, w̄

〉
V
=

V∗

〈
f, w̄

〉
V
, ∀w̄ ∈ V̄. (2.19)

Remark (2.19) is referred to as the spectral stochastic finite element formulation. A non-
spectral discretization of the stochastic dimension leads to a similar system, and has been the
subject of previous work [4, 23].

3 The variational multiscale formulation

In this section we first review the concept of the variational multiscale formulation and the
fine-scale Green’s operator, and apply it to the stochastic PDE described in Section 2.1. For
this, we borrow ideas and closely follow the notation from [16] and refer the interested reader
to the same for a more elaborate discussion. Thereafter in Section 3.2, for a specific choice of
the projection operator, we prove two propositions that relate the deterministic and stochastic
VMS formulations. This leads us to the two main results of this manuscript. The first equates
the vanishing of the deterministic fine scales at certain physical locations to the vanishing of
the coarse-scale gPC coefficients of the stochastic fine scales at the same locations, and is
presented in Section 3.2. This provides insight into the locality of the fine-scale stochastic
Green’s operator, given the locality of its deterministic counterpart. The second result, which
is presented in Section 3.3, provides an explicit expression for the fine-scale stochastic Green’s
function in terms of the corresponding deterministic quantities. Therefore, if the fine-scale
Green’s function for the deterministic problem has been determined, then the corresponding
fine-scale Green’s function for the stochastic problem naturally follows.

3.1 The fine-scale Green’s operator for the stochastic PDE

As defined in the previous section, let V̄ be a closed subspace of V, and P be a linear projector
onto V̄; thus, P2 = P and Range(P) = V̄ . We assume P to be continuous in V, and further
define V ′ = span{v|v ∈ V,Pv = 0}. V ′ is indeed a closed subspace of V, and we have the
decomposition

V = V̄ ⊕ V ′. (3.1)

From a practical perspective, V̄ is the space of computable coarse scales and V ′ is the space
of unresolved fine scales. Any v ∈ V can be written uniquely as v = v̄ + v′, where v̄ ∈ V̄ and
v′ ∈ V ′. The coarse and fine-scale components can be expressed in terms of the projector P as,

v̄ = Pv, (3.2)

v′ = v − Pv. (3.3)
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In the standard variational problem (2.10), we seek the solution u ∈ V. The solution can
be split as u = ū+ u′. The objective of the VMS method is to construct a discrete variational
problem whose solution ū = Pu. The variational formulation (2.10) can be split by choosing the
weighting function from the coarse and fine-scale spaces successively: find ū ∈ V̄, and u′ ∈ V ′

such that,

V∗

〈
Lū, w̄

〉
V
+

V∗

〈
Lu′, w̄

〉
V
=

V∗

〈
f, w̄

〉
V
, ∀w̄ ∈ V̄, (3.4)

V∗

〈
Lū, w′

〉
V
+

V∗

〈
Lu′, w′

〉
V
=

V∗

〈
f,w′

〉
V
, ∀w′ ∈ V ′. (3.5)

We label (3.4) as the coarse-scale problem and assume that it is well posed for ū alone; i.e.,
given u′ and f we can determine a unique ū ∈ V̄. Analogously, (3.5) is labeled as the fine-scale
problem and is assumed to be well posed for u′ alone.

In (3.5), the fine-scale Green’s operator G′ : V∗ → V ′ yields u′ from the coarse-scale residual
f − Lū, i.e.,

u′ = G′(f − Lū). (3.6)

Using G′ we can eliminate u′ from (3.4) to obtain the VMS formulation for ū: find ū ∈ V̄ such
that,

V∗

〈
Lū, w̄

〉
V
−

V∗

〈
LG′Lū, w̄

〉
V︸ ︷︷ ︸

VMS contribution

=
V∗

〈
f, w̄

〉
V
−

V∗

〈
LG′f, w̄

〉
V︸ ︷︷ ︸

VMS contribution

, ∀w̄ ∈ V̄ . (3.7)

In [16], an expression for the fine-scale Green’s operator G′ was derived, and is given by,

G′ = G − GPT (PGPT )−1PG, (3.8)

where PT : V̄∗ → V∗ denotes the adjoint of P, and is defined as,

V∗

〈
PT µ̄, v

〉
V
=

V̄∗

〈
µ̄,Pv

〉
V̄
, ∀v ∈ V, µ̄ ∈ V̄∗. (3.9)

In (3.9) V̄∗ is the dual of V̄ and
V̄∗

〈
·, ·
〉
V̄
is the pairing between them. Using (3.8) it is easy to

show that,
G′PT = 0, and PG′ = 0. (3.10)

In practical computational studies, the coarse space V̄ is a finite dimensional subspace of
V. For this case an alternate, and arguably more useful expression for the fine-scale Green’s
operator may be derived as follows. If N = dim(V̄), we can determine a set of linear functionals
{µi}i=1,··· ,N such that, ∀v ∈ V,

V∗

〈
µi, v

〉
V
= 0, ∀i = 1, · · · , N ⇔ Pv = 0 (3.11)

Using (3.11) we can characterize v as a fine-scale function, i.e. v ∈ V ′. The set {µi}i=1,··· ,N

can be inferred to be a basis for the image of PT from (3.9). The discrete counterparts of the
properties in (3.10) are now given by,

G′µi = 0, ∀i = 1, · · · , N, (3.12)

and

V∗

〈
µi,G

′χ
〉
V
= 0, ∀χ ∈ V∗,∀i = 1, · · · , N. (3.13)

An expression for G′ for the finite dimensional case equivalent to (3.8), can now be constructed
in terms of the vector µ ∈ (V∗)N ,

µ
T =

[
µ1 · · · µN

]
, (3.14)
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the vector GµT ,
GµT =

[
Gµ1 · · · GµN

]
, (3.15)

the matrix µGµT ∈ R
N×N ,

µGµT =




V∗

〈
µ1,Gµ1

〉
V

· · ·
V∗

〈
µ1,GµN

〉
V

...
. . .

...

V∗

〈
µN ,Gµ1

〉
V

· · ·
V∗

〈
µN ,GµN

〉
V


 , (3.16)

and the vector of functionals µG : V∗ → R
N such that, ∀χ ∈ V∗

µG(χ) =




V∗

〈
µ1,Gχ

〉
V

...

V∗

〈
µN ,Gχ

〉
V


 . (3.17)

The expression for G′ in the finite dimensional case is

G′ = G − GµT [µGµT ]−1
µG. (3.18)

From (3.18), it is clear that in order to determine G′, we require an appropriately defined Green’s
operator G, and the set of linear functionals µ. In what follows, we demonstrate that if these are
known for the deterministic problem, then their stochastic counterparts can also be constructed.

3.2 An orthogonal projector for the stochastic problem

The projector P is one of the key ingredients of the VMS formulation. This is because the fine-
scale Green’s function is constructed to ensure that the solution to the coarse-scale problem is
the function Pu. Given that the solution to (2.10) resides in the Hilbert space V, a natural
choice for P (but not the only choice) is to select it to be the orthogonal projector associated
with the inner-product (·, ·)V defined in (2.8). In this manuscript we make this choice, i.e. we
select P such that,

(w̄,Pu)V = (w̄, u)V , ∀w̄ ∈ V̄,∀u ∈ V. (3.19)

It will be useful to define a deterministic, or a physical-space component of P, denoted by
Pd : Vd → V̄d, such that

(ϑ̄,Pdν)Vd = (ϑ̄, ν)Vd, ∀ϑ̄ ∈ V̄d,∀ν ∈ Vd. (3.20)

where the inner-product (·, ·)
Vd

is defined in (2.6).

In the remainder of this section we first establish a relation between P and Pd in Proposition
3.1. Thereafter we use this to determine an explicit relation between the functionals used to
characterize the stochastic and deterministic fine-scale spaces in Proposition 3.2. Finally, in
Result 3.1 we use these to prove that, at certain physical locations when the deterministic
fine scales vanish (and the coarse scales are exact), the stochastic fine scales have vanishing
coarse-scale gPC coefficients.

Proposition 3.1 Any element v ∈ V expressed using an infinite series of the form,

v(x, ξ) =
∞∑

|m|=0

v̂m(x)Φm(ξ), (3.21)
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admits the following series representation for its coarse-scale projection Pv ∈ V̄,

Pv =

p∑

|m|=0

Pdv̂m(x)Φm(ξ), (3.22)

where P and Pd are defined in (3.19) and (3.20), respectively.

Proof Any element w̄ ∈ V̄ can be written as

w̄ = ̂̄wk(x)Φm(ξ), (3.23)

where ̂̄wk(x) ∈ Vd and Φm(ξ) ∈ L2(Υ). Since Pv ∈ V̄ it admits the representation,

Pv =

p∑

|n|=0

P̂vn(x)Φn(ξ). (3.24)

Using (3.23),(3.24) and (3.21) in (3.19) we have,

(
̂̄wk(x)Φm(ξ),

p∑

|n|=0

P̂vn(x)Φn(ξ)
)
V
=

(
̂̄wk(x)Φm(ξ),

∞∑

|l|=0

v̂l(x)Φl(ξ)
)
V
, ∀ ̂̄wk(x)Φm(ξ) ∈ V.

(3.25)
Using (2.8) and the orthogonality of {Φm}|m|=0,··· ,p in (3.25) we have,

(
̂̄wk(x), P̂vm(x)

)
Vd

=
(
̂̄wk(x), v̂m(x)

)
Vd
, ∀ ̂̄wk ∈ V̄d. (3.26)

From (3.20) the above equation implies P̂vm(x) = Pdv̂m(x).

Proposition 3.2 Let {µd
i }i=1,··· ,Nd ∈ Vd∗ be a set of deterministic linear functionals such that,

∀ν ∈ Vd,

Vd∗

〈
µd
i , ν

〉
Vd = 0, ∀i = 1, · · · , Nd ⇔ Pdν = 0. (3.27)

We can then determine {µi,m} i =1,··· ,Nd

|m|=0,··· ,p

,

µi,m(x, ξ)
def
= µd

i (x)Φm(ξ), (3.28)

such that ∀v ∈ V,

V∗

〈
µi,m, v

〉
V
= 0, ∀

i =1, · · · , Nd

|m|=0, · · · , p
⇔ Pv = 0. (3.29)

In (3.29) we have used a tensor notation to index the functionals µ’s relevant for the stochastic
problem, in contrast to (3.11), where they were first introduced using a single index. This
change will be found convenient in elucidating the forthcoming results.

Proof We first show Pv = 0 ⇒
V∗

〈
µi,m, v

〉
V
= 0. Since Pv = 0, we conclude that v ∈ V ′,

and from (3.3) we have,
v = u− Pu, (3.30)
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where u ∈ V. Using the series expansions for u and Pu from Proposition 3.1 in (3.30) we have,

v(x, ξ) =

∞∑

|n|=0

ûn(x)Φn(ξ)−

p∑

|n|=0

Pdûn(x)Φn(ξ),

=

p∑

|n|=0

(ûn(x)− Pdûn(x))Φn(ξ) +

∞∑

|n|=p+1

ûn(x)Φn(ξ). (3.31)

From the above equation we conclude that for |n| ≤ p,

Pdv̂n(x) = Pd(ûn(x)− Pdûn(x)) = 0. (3.32)

We now consider
V∗

〈
µi,m, v

〉
V
. Using (3.28) we have,

V∗

〈
µi,m, v

〉
V
=

V∗

〈
µd
i (x)Φm(ξ),

∞∑

|n|=0

v̂n(x)Φn(ξ)
〉
V
, (3.33)

=

∞∑

|n|=0

E
[
Φm(ξ)Φn(ξ)

]
Vd∗

〈
µd
i (x), v̂n(x)

〉
Vd, (3.34)

=
Vd∗

〈
µd
i (x), v̂m(x)

〉
Vd = 0. (3.35)

In the development above to derive (3.34) we have made use of the relation between the duality
pairing for the stochastic and deterministic function spaces, to derive (3.35) we have made use
of the orthonormality of the stochastic basis functions, (3.32) and (3.27).

We now show Pv = 0 ⇐
V∗

〈
µi,m, v

〉
V
= 0 to complete the proof. Using (3.28) and (3.21),

the condition
V∗

〈
µi,m, v

〉
V
= 0 can be written as,

V∗

〈
µd
i (x)Φm(ξ),

∞∑

|n|=0

v̂n(x)Φn(ξ)
〉
V
= 0, (3.36)

⇒

∞∑

|n|=0

E
[
Φm(ξ)Φn(ξ)

]
Vd∗

〈
µd
i (x), v̂n(x)

〉
Vd = 0, (3.37)

⇒
Vd∗

〈
µd
i (x), v̂m(x)

〉
Vd

= 0. (3.38)

From (3.27) and (3.38) we conclude that Pdv̂m(x) = 0, which in conjunction with Proposition 3.1
yields Pv = 0.

Result 3.1 Let any deterministic functional µd
i be such that,

µd
i (x) = δ(x − xi), (3.39)

where xi ∈ D. The fine-scale Green’s operator G′ then satisfies the property,

E
[
Φm(ξ)G′(χ)|xi

]
= 0, ∀χ ∈ V∗. (3.40)

Proof From (3.13) we know that the fine-scale Green’s operator G′ is such that,

V∗

〈
µi,m,G′χ

〉
V
= 0, ∀χ ∈ V∗, ∀

i =1, · · · , Nd

|m|=0, · · · , p
. (3.41)

Using Proposition 3.2, µi,m(x, ξ) = δ(x− xi)Φm(ξ) and thus we have,

V∗

〈
δ(x− xi)Φm(ξ),G′(χ)

〉
V
= 0, (3.42)

⇒ E
[
Φm(ξ)G′(χ)|xi

]
= 0. (3.43)
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3.2.1 A Remark about the locality of the fine-scale stochastic Green’s operator

In the case of linear deterministic problems posed on one spatial dimension, the VMS method
using an H1 projector yields nodally exact solutions [18, 19]. As a result the functionals µd

i =
δ(x − xi), where xi are the coordinates of the physical nodes, completely characterize the fine-
scale solution. Result 3.1 describes an attribute of the appropriately adapted VMS method for
stochastic problems posed on one spatial dimension. The fine-scale solution is such that the
expectation of its product taken against each member of the basis for the coarse space of random
variables, vanishes at the physical nodes. Equivalently, if the fine-scale solution is expanded in
terms of a gPC expansion, then the coefficients of this expansion corresponding to the coarse
gPC modes will be zero.

Let us continue to assume that µd
i = δ(x− xi), where xi are the coordinates of the physical

nodes. Under these conditions as one refines in the stochastic space, the expectation of the
product of the fine scales with an ever increasing set of the coarse space basis functions must
vanish at the nodes. In the limit p → ∞, this implies that the fine scales vanish at the nodes.
Consequently, the fine-scale stochastic Green’s operator tends to a Green’s operator that is zero
on the physical nodes. This operator is called the element Green’s operator. A tremendous
practical benefit of this observation is the fact that the element Green’s operator is local in
that its support is restricted to within a single element, and hence including it in the VMS
formulation does not change the locality of the finite element method. Result 3.1 suggests that
for the stochastic problem, using the element Green’s operator instead of the fine-scale Green’s
operator might be a reasonable approximation. It is certainly a valid approximation in the limit
of a very well refined stochastic space, i.e., large enough p. This property is demonstrated in
Section 4.2 through a concrete numerical example.

3.3 The Green’s function for stochastic problems

We begin this section by relating the stochastic Green’s function to its deterministic counterpart.
Thereafter, by making use of this relation and the propositions proved in the previous section,
we derive an explicit expression for the fine-scale stochastic Green’s function in terms of the
deterministic Green’s function and the linear functionals µd

i . Since these quantities are required
in constructing the fine-scale deterministic Green’s function, a natural conclusion is that one
can construct the fine-scale stochastic Green’s function whenever the corresponding fine-scale
deterministic Green’s function can be constructed.

The solution u to (2.1) can be formally expressed as u = G(f), where G : V∗ → V is the
Green’s operator, i.e., G = L−1. The action of G on f ∈ V∗ is conveniently represented through
the convolution of the Green’s function g : D ×D × Ω×Ω → R with f ,

u
(
x, ξ

)
=

∫

x̃∈D

∫

ξ̃∈Υ
g(x, x̃; ξ, ξ̃)f(x̃, ξ̃)dx̃dξ̃. (3.44)

We label g as the stochastic Green’s function, and express it in terms of Green’s function for
deterministic problems. In this context, we interpret the deterministic Green’s function as
parametrized by the coefficients of the differential operator L in (2.1) for various realizations of
the random vector ξ, and use gdξ to denote the same. We develop this concept in the ensuing
discussion, and provide a definition for g.

Let β(x, ξ) be a stochastic function, representing a typical coefficient of the differential
operator L in (2.1), e.g., see Section 4.3.2 for an instance of β(x, ξ) in the case of advection-
diffusion equation. For every possible realization ξ̃ of the random vector ξ, β(x, ξ̃), which is a
function of the physical variable only, has an associated deterministic differential operator Ld

ξ̃
,
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and a dual term fd
ξ̃
(x)

def
= f(x, ξ̃). We interpret Ld

ξ̃
as the instance of constructing L in (2.1)

with coefficients β(x, ξ̃). Together, Ld

ξ̃
and fd

ξ̃
(x) define the problem,

Ld

ξ̃
ud
ξ̃
(x) = fd

ξ̃
(x). (3.45)

The solution to (3.45) can be obtained by using the Green’s function gd
ξ̃
: D ×D → R, i.e,

ud
ξ̃
(x) =

∫

x̃∈D
gd
ξ̃
(x, x̃)fd

ξ̃
(x̃)dx̃. (3.46)

Moreover, ud
ξ̃
(x) is equivalent to evaluating the solution u(x, ξ) to (2.1) at the realization ξ̃.

Thus an alternative way to write (3.46) having incorporated this property is

u
(
x, ξ̃

)
=

∫

x̃∈D
gd
ξ̃
(x, x̃)f(x̃, ξ̃)dx̃. (3.47)

The solution to (2.1) can thus be written as

u
(
x, ξ

)
=

∫

x̃∈D

∫

ξ̃∈Υ
gdξ (x, x̃)δ(ξ − ξ̃)f(x̃, ξ̃)dx̃dξ̃. (3.48)

The term inside the integral in (3.48) which convolves with f(x̃, ξ̃) is defined as the stochastic
Green’s function, i.e.,

g(x, x̃; ξ, ξ̃)
def
= gdξ (x, x̃)δ(ξ − ξ̃). (3.49)

3.3.1 The fine-scale stochastic Green’s function

The fine-scale stochastic Green’s function g′ : D×D×Ω×Ω → R, which represents the fine-scale
Green’s operator G′, yields the fine-scale component u′ from the coarse-scale residual. In the
finite dimensional case, we can express the action of g′ on any arbitrary χ ∈ V∗, in terms of
the deterministic Green’s function gdξ , and the µ’s relevant to the projection. Specifically, using
(3.18),

G′(χ) = G(χ)− GµT [µGµT ]−1
µG(χ). (3.50)

We can evaluate the individual terms in (3.50) using (3.44), (3.49) and Proposition 3.2 to obtain
the desired expression, i.e.,

G(χ) =

∫

x̃∈D
gdξ (x, x̃)χ(x̃, ξ)dx̃, (3.51)

[GµT ]i,m = Φm(ξ)

∫

x̃∈D
gdξ (x, x̃)µ

d
i (x̃)dx̃, (3.52)

[µGµT ]i,m,j,n =

∫

x∈D

∫

x̃∈D
µd
i (x)E

[
Φm(ξ)gdξ (x, x̃)Φn(ξ)

]
µd
j (x̃)dx̃dx, (3.53)

[µG(χ)]j,n =

∫

x∈D

∫

x̃∈D
µd
j (x)E

[
Φn(ξ)g

d
ξ (x, x̃)χ(x̃, ξ)

]
dx̃dx. (3.54)

(3.50)−(3.54) completely defines the explicit formula for the fine-scale stochastic Green’s func-
tion. It is the key building block for constructing the VMS formulation for a stochastic PDE.
Remarkably, the formula above is expressed entirely in terms of deterministic quantities. In
particular the deterministic Green’s function gdξ , and the deterministic functionals µd

i that char-
acterize the physical fine-scale space. Therefore we conclude that when it is possible to construct
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the VMS formulation for a deterministic PDE, then it is also possible to construct one for its
stochastic counterpart where the parameters that appear in the differential operator are random
variables.

Remark It was pointed out previously that µd
i = δ(x − xi), where xi are coordinates of the

physical nodes, are appropriate for deterministic problems posed on one spatial dimension when
the VMS method has been defined using an H1 projector. In the case of stochastic problems,
such a choice for µd

i will simplify the terms in (3.50) significantly. In particular,

[GµT ]i,m = gdξ (x, xi)Φm(ξ), (3.55)

[µGµT ]i,m,j,n = E
[
Φm(ξ)gdξ (xi, xj)Φn(ξ)

]
, (3.56)

[µG(χ)]j,n =

∫

x̃∈D
E
[
Φn(ξ)g

d
ξ (xj , x̃)χ(x̃, ξ)

]
dx̃. (3.57)

In the following section we use (3.50), (3.51), and (3.55)−(3.57), to determine the fine-scale
stochastic Green’s function for the advection-diffusion equation in one spatial dimension.

4 The stochastic advection diffusion model problem

In this section we apply the VMS formulation to the stochastic advection-diffusion problem in
one spatial dimension. We select P to be projector defined by the V-inner-product as in (3.19).
We first describe the problem statement and the VMS formulation in Section 4.1. Thereafter,
in Section 4.2 we explicitly evaluate the fine-scale stochastic Green’s function for this problem
and examine its locality in the physical space. We conclude that while the fine-scale stochastic
Green’s function is non-local, its magnitude outside the element domain under consideration
is very small. Motivated by this we approximate the fine-scale stochastic Green’s function in
each element by the element Green’s function, which is identically zero outside the element. We
evaluate the performance of the VMS formulation derived from this approximation on problems
with one and five random variables in Section 4.3.

4.1 The problem statement

As an instance of (2.1), we consider the advection diffusion problem posed on one physical
dimension. We seek the stochastic function u(x, ξ) : D̄ × Ω → R such that,

−κ∆u(x, ξ) + β(x, ξ) · ∇u(x, ξ) = f(x, ξ) x ∈ D,

u(x, ξ) = 0 x ∈ ∂D.

}
(4.1)

where D̄ = [0, L] is a finite one dimensional domain, κ > 0 is the scalar diffusivity. f(x, ξ) :
D × Ω → R is the source term, and β(x, ξ) : D × Ω → R is the advection field, both known
beforehand. The variational formulation, and the VMS formulation for (4.1) can be constructed
using the procedure outlined in Section 2.2 and Section 3. The VMS formulation written using
the fine-scale Green’s operator G′ is: find ū(x, ξ) ∈ V̄ such that,

E
[∫

x∈D
κ∇ū · ∇w̄dx+

∫

x∈D
β · ∇ūw̄dx

]
− E

[∫

x∈D
LG′ (Lū) w̄dx

]

= E
[∫

x∈D
fw̄dx

]
− E

[∫

x∈D
LG′ (f) w̄dx

]
, ∀w̄ ∈ V̄, (4.2)
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where L = −κ∆ + β(x, ξ) · ∇ is the stochastic advection diffusion differential operator. The
Green’s function for its deterministic counterpart is well known, [18, 19]. Hence the fine-
scale stochastic Green’s function g′, which defines the fine-scale stochastic Green’s operator G′,
can be constructed using the method detailed in Section 3.3.1. This is done in the following
development.

4.2 Linear finite elements and localization of the fine-scale space

(a) G(χ) (b) G′(χ)

Figure 4.1: Comparison of the action of stochastic Green’s function and fine-scale stochastic
Green’s function on a stochastic function χ specified in Section 4.2, with L = 1, κ = 10−3, a
uniform grid of nel = 20 elements, and a maximum order of gPC p = 2.

We consider a physical domain discretized using the grid of nodes, 0 = x0 < x1 < · · · <
xnel−1 < xnel

= L, where nel is the number of elements. An element spans the interval (xi−1, xi),
where i = 1, · · · , nel. We define a linear piecewise polynomial space for the physical discretiza-
tion, and use gPC of total order less than, or equal to, p, to discretize the stochastic dimension.
Using this setup, our objective is to examine the locality of the fine-scale Green’s function. The
stochastic coefficient β(x, ξ) is assumed constant in physical space, and a function of a single
uniformly distributed random variable. The explicit dependence is chosen to be,

β(x, ξ) = 1 + ξ2, ξ ∼ U(0, 1). (4.3)

In Figure 4.1a and 4.1b we plot the result of the Green’s function and the fine-scale Green’s
function acting on a source χ = δ(x−xs)(φ0(ξ)+φ1(ξ)+φ2(ξ)), where xs = 0.125 is the physical
location of the source, and φi(ξi), i = 0, 1, 2, are the first three Legendre polynomials defined on
[0, 1]. From Figure 4.1a we note that even though χ is local in physical space, the function G(χ)
is not. This points to the non-local nature of the Green’s operator in the physical space. On
the other hand from Figure 4.1b we observe that the function G′(χ) appears to be local, in that
its value beyond the element which bounds the extent of χ is very small. This indicates that
the fine-scale Green’s operator is local in the physical space. It is important to note that in our
experience the specific choice of the source χ, advection field β, and an arbitrary non-uniform
mesh, do not alter the local behavior of the fine-scale stochastic Green’s function discussed
above.
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Figure 4.2: The fine-scale function G′(χ) close to the source xs, where χ and xs are defined in
Section 4.2.

In Figure 4.1b, the precise spread of the fine-scale function isn’t clearly discernible. However,
from Figure 4.2, we observe that even though the resulting fine-scale function is small outside
the element, it is non-zero at the boundary of the element containing the source χ, and thus
not strictly local in the physical space. In Figure 4.3a and 4.3b we plot the fine-scale function
at the element boundaries x = xA, and x = xB, against the range of the random variable. As
seen from those plots, the variation of the fine-scale function is higher than quadratic when the
underlying gPC have a total order of p = 2; this is a direct manifestation of Result 3.1. If we
increase the order to p = 4, and again plot at the element boundaries x = xA, and x = xB, the
fine-scale function resulting with the same source χ, we observe through Figure 4.3c and 4.3d
that the variation is quintic or higher. Additionally, the magnitude of the fine-scale function
is significantly lower. This substantiates the earlier claim that in the limit p → ∞, the fine
scales vanish at the nodes, and the fine-scale Green’s function converges to the element Green’s
function.

From the viewpoint of a practical numerical method, the approximation of the fine-scale
Green’s function by the element Green’s function prevents any coupling between the elements
in the physical dimension. This ensures that the terms accounting for the effect of fine scales
in the coarse-scale VMS formulation, can be computed through the standard finite element
assembly procedure and do not alter the stencil of the problem.

The VMS term that appears in (4.2) simplifies considerably when (i) the fine-scale Green’s
function in each element is replaced by the element Green’s function, that is g′(x, x̃; ξ, ξ̃) ≈

gd,elξ (x, x̃)δ(ξ − ξ̃), where gd,elξ is the deterministic element Green’s function, (ii) it is recognized
that for linear finite elements the diffusive term does not contribute within element interiors,
and (iii) it is assumed that κ, β and source term f are piecewise constant across the physical
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Figure 4.3: The fine-scale function at the element boundaries xA and xB, with the source χ
present within the element. xA, xB and χ are defined in Section 4.2.

domain. Accounting for these, the VMS term in (4.2) is simplified as follows,

E
[∫

x∈D
LG′ (r) w̄dx

]
= E

[∫

x∈D

∫

x̃∈D

∫

ξ̃∈Υ
g′(x, x̃; ξ, ξ̃)r

(
x̃, ξ̃

)
L∗w̄(x, ξ)dx̃dξ̃dx

]
, (4.4)

≈ E
[ nel∑

i=1

∫ xi

xi−1

∫ xi

xi−1

∫

ξ̃∈Υ
gd,elξ (x, x̃)δ(ξ − ξ̃)r

(
x̃, ξ̃

)
L∗w̄(x, ξ)dx̃dξ̃dx

]
,

(4.5)

= E
[ nel∑

i=1

∫ xi

xi−1

∫ xi

xi−1

gd,elξ (x, x̃)r
(
x̃, ξ

)
L∗w̄(x, ξ)dx̃dx

]
, (4.6)

=

nel∑

i=1

E
[(∫ xi

xi−1

∫ xi

xi−1
gd,elξ (x, x̃)dxdx̃

hi

)
hir

(
x̃, ξ

)
L∗w̄(x, ξ)

]
, (4.7)

=

nel∑

i=1

E
[
τi(ξ)hir

(
ξ
)
L∗w̄(ξ)

]
, (4.8)

where r = f − Lū is the coarse-scale residual, L∗ = −κ∆ − β(x, ξ) · ∇ is the adjoint of L,
hi = xi−xi−1 is the size of the ith element, and the term τi(ξ) is recognized as the stabilization
parameter τ [18]. In this context however, it is necessary to note that τ is a stochastic function,
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which is piecewise constant across the physical domain. In particular,

τi(ξ) =

∫ xi

xi−1

∫ xi

xi−1
gd,elξ (x, x̃)dx̃dx

hi
=

hi
2β

(
coth(Pe(ξ)) −

1

Pe(ξ)

)
, (4.9)

where Pe(ξ) = hβ(ξ)/2κ is the mesh Peclét number.

Remarks

1. We note that the final expression (4.8) is valid only when it is assumed that the con-
tribution from the residual and the weighting function is constant (but random) over
an element. In the case of advection-diffusion equation this is true only for linear finite
elements with piecewise-constant problem parameters.

2. On the other hand, expression (4.6) is valid for any variation of the residual and weighting
functions. In that sense, (4.6) is a more general expression. In cases where the variation of
the residual and the contribution from the weighting functions is known to be of a certain
polynomial order, the double integral in the physical space can be simplified by expanding
τ as a polynomial function in x and x̃ (see [29] for example), and evaluating the integral
analytically.

3. The VMS solution is guaranteed to yield coarse-scale solutions that are optimal in the sense
defined by the projector P, for instance as defined in (3.19), if the exact expression for the
fine-scale Green’s function is used. With our choice of the projector in one dimension this
translates to the property that the coarse-scale solution will have exact gPC coefficients at
the physical nodal coordinates (Section 3.1). When we approximate the fine-scale Green’s
function with the element Green’s function, this is no longer guaranteed. However, since
we know this to be a reasonable approximation, we might expect the gPC coefficients at
the nodes to be quite close to the exact values. This hypothesis is numerically verified in
the following section for problems posed in a single and in five stochastic dimensions.

4.3 Numerical results

4.3.1 A single random variable example

If the advection field β(x, ξ) in (4.1) is defined identical to (4.3), it is possible to obtain a closed
form solution for the stochastic function u(x, ξ). In Figure 4.4a we plot the analytical solution
for the case when the source term f is a constant with no uncertainty. The realizations of the
standard Galerkin and VMS solutions for the instance ξ̃ of the random variable ξ is shown in
Figure 4.4b. Unlike the Galerkin method, the VMS solution doesn’t exhibit any oscillations and
is noticeably better. The mean and variance of the coarse-scale Galerkin and VMS solutions at
each interior physical node are shown in Figure 4.5a and 4.5b, respectively. We observe that in
addition to producing a solution that is accurate for a single draw, the VMS solution produces
accurate statistics of the solution. In Figure 4.6 we compare the errors in the gPC coefficients
of the coarse-scale Galerkin and VMS solutions evaluated at the physical nodal points. We
observe that the error in the coefficients for the VMS solution is smaller for most coefficients.
In particular the maximum error in any of the coefficients for the VMS solution is about two
orders of magnitude smaller than that for the Galerkin solution.
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(a) Analytical solution (b) Realization of the Galerkin and VMS solutions
using a uniform grid of nel = 20 elements, and a
maximum order of gPC p = 2.

Figure 4.4: The case of single random variable, with L = 1, κ = 10−3, and f = 1.

4.3.2 A problem with multiple random variables

We consider the scenario when the advection field β(x, ξ) is a function of multiple random
variables. It is defined such that, in a particular region (Xmin

k ,Xmax
k ) of the physical domain

D̄, it depends solely on the random variable ξk which is assumed to be uniformly distributed in
the interval (0, 1). The random variables ξk corresponding to different regions k are assumed
to be statistically independent. The exact functional dependence of the advection field on each
ξk is chosen identical to (4.3), i.e.,

β(x, ξ) =





1 + ξ21 , 0 ≤ x < Xmax
1 , ξ1 ∼ U(0, 1),

· · · · · ·

1 + ξ2k, Xmin
k ≤ x < Xmax

k , ξk ∼ U(0, 1),

· · · · · ·

1 + ξ2q , Xmin
q ≤ x ≤ L, ξq ∼ U(0, 1).

(4.10)

In Figure 4.7a, we plot the realization of the advection field for the instance ξ̃ of the random
vector ξ. As is apparent from the plot, there are five random variables and the advection field
is discontinuous across the physical domain. Such a situation can arise for instance, in species
transport through random porous media with independent layers. Considering once again the
case of a constant source term, and for the same instance ξ̃, in Figure 4.7b we plot the Galerkin
and VMS solutions obtained using the coarse scales, along with the converged Galerkin solution.
Once again we observe that the VMS solution is almost nodally exact, whereas the Galerkin
solution (for the same total order of gPC) is polluted by spurious oscillations.

The veracity of the converged Galerkin solution is established using a refinement study and
is depicted in Figure 4.8. In particular, Figure 4.8a is a plot of the realization of the standard
Galerkin solution for the instance ξ̃ for five different discretizations, and in Figure 4.8b we
plot the distance between successively finer discretizations as measured in the V norm. It is
apparent that the Galerkin method converges, and henceforth the solution obtained from the
discretization T h,p

5 , h = 1
320 , p = 6 will be referred to as the converged solution.
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(a) Mean (b) Variance

Figure 4.5: Statistical moments of the Galerkin and VMS solutions for the single random
variable example.

In Figure 4.9a and 4.9b we compare the mean and the variance, respectively, of the coarse-
scale Galerkin and VMS solutions with that of the converged solution. It is evident that even
for this multi-dimensional example the statistics of the numerical solution are better captured
with the VMS method. It is remarkable that they are almost nodally exact.

In Figure 4.10 we plot the error of the individual gPC coefficients of the coarse-scale Galerkin
and VMS solution; the error being computed with respect to the converged solution. It is
essential to point out that, the error for a large majority of the coefficients of the VMS method
aren’t depicted in the plot, since they are significantly smaller and outside the limits of the
ordinate. At each order of the gPC, the maximum error in the VMS coefficients is around two
orders of magnitude smaller that the corresponding Galerkin coefficients.

It is interesting to consider the drastic reduction in the size of the problem obtained by
adopting the VMS method. The converged Galerkin solution obtained using the discretization
T h,p
5 , h = 1

320 , p = 6 gives rise to a linear system with 147, 378 unknowns. In comparison, the
VMS solution (which is satisfactory for computing the mean, variance and the gPC coefficients

up to the second order) is obtained with the coarse-scale discretization T h,p
1 , h = 1

20 , p = 2
contains 399 unknowns, which is smaller by a factor of ≈ 370. In our view this makes a
compelling argument to include the VMS method in stochastic Galerkin solution approaches.

5 Conclusions

We have presented the variational multiscale method for PDEs with stochastic coefficients and
source terms. We have used it as a method for generating accurate coarse-scale solutions while
accounting for the effect of the missing scales through a model term that contains a fine-scale
stochastic Green’s function.

We have analyzed the fine-scale Green’s function for stochastic PDEs, and demonstrated
that it is closely related to its deterministic counterpart when the projector used to define the
“optimal” coarse-scale solution is induced by the natural inner-product of the space of trial-
solutions, and the basis functions for the space of random variables are L2-orthogonal. In
particular, we have (i) shown that at the physical locations where the fine-scale deterministic
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Figure 4.6: Error of the gPC coefficients at nodal locations for the Galerkin and VMS method
for the single random variable example.

Green’s function vanishes, the fine-scale stochastic function satisfies a weaker, and discrete
notion of vanishing stochastic coefficients, and (ii) derived an explicit formula for the fine-
scale stochastic Green’s function that only involves quantities needed to evaluate the fine-scale
deterministic Green’s function. By making use of the first observation, we have argued that the
fine-scale Green’s function may be reasonably approximated by the element Green’s function.
This results in a tremendous simplification in the VMS formulation of stochastic PDEs. We
have tested the consequence of making this approximation for the stochastic advection-diffusion
problem and noted that the resulting VMS method is more accurate than the standard stochastic
Galerkin approach.

We note that there are several interesting ideas to pursue that are related to the topic of this
manuscript. First, the VMS integral involving τ , the stabilization parameter in (4.8), which is
a complicated function of the stochastic parameters, can be computationally challenging. Thus
approximation for τ that are based on a polynomial expansion might be very useful in lowering
these costs. Second, the VMS method provides an estimate for u′, which can be thought of as
an approximation to the error in the coarse-scale solution. An interesting avenue of research
would be to develop an adaptive (in physical and stochastic spaces) refinement strategy based
on this error indicator [15].
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(a) Realization of the advection field (b) Realzation of the Galerkin and VMS solutions

Figure 4.7: A multiple random variable example with L = 1, κ = 10−3, f = 1, a uniform grid
of nel = 20 elements, and a total order of gPC p = 2.
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harmonic Maxwell equations using Nédélec elements. Journal of Computational Physics,
235(0):67 – 81, 2013.

[21] Ottmar Klaas, Antoinette Maniatty, and Mark S. Shephard. A stabilized mixed finite
element method for finite elasticity.: Formulation for linear displacement and pressure
interpolation . Computer Methods in Applied Mechanics and Engineering, 180(1–2):65 –
79, 1999.
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