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The elastic modulus of two-dimensional random fibre networks is determined
for structures in which, the degree of cross-linking is varied. The relationship
between the network parameters – fibre axial and bending stiffness, fibre den-
sity and degree of cross-linking – and the overall elastic modulus is discussed
and presented in terms of a master curve. It is shown that master curves for
sparsely cross-linked networks with various degrees of cross-linking can be
collapsed to a unique curve, which is also valid in case of fully cross-linked
network.
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1. Introduction

Materials having a random fibre network as the main structural element are frequently
encountered in the biological and engineering world. Almost all types of tissue are
composed of random fibre networks of various compositions, while the structural ele-
ment of eukaryotic cells, the cytoskeleton, is a dense composite fibre network made
from F-actin and microtubules. The nucleus and cellular organelle are embedded in this
network, which transmits across the cell the stress/strain fields produced by the applied
tractions. The cytoskeleton is a highly dynamic network which reorganizes itself in
response to the applied mechanical excitations, continuously adjusting its degree of
cross-linking [1]. In the engineering realm, rubber and gels, paper, various types of non-
wovens, etc., personal care products, baby diapers, are just a few examples of fibre-
based materials and structures.

In some of these examples, the fibres are bonded to each other, forming a network
with a well-defined elastic behaviour, for example [2]; while in some others, fibres are
just entangled for example [3, 4]. In non-bonded entangled networks, the fibres slide
and rearrange relative to each other leading to hysteresis, rate sensitivity and unrecover-
able strains after monotonic loading [5].

Bonded networks exhibit an elastic response with finite stiffness once the density
and the density of cross-links are large enough, that is, beyond the stiffness percolation
threshold. Stiffness percolation takes place at higher densities than the geometric
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percolation, and for 2D structures with rigid cross-links at all fibre intersection points, it
occurs at a density which scales inversely with the fibre length, L0, as qp ¼ 6:7=L0 [6].

The response of bonded networks is generally non-linear [7], but can be approxi-
mated with a linear constitutive equation at small strains [8–12]. The elastic con-
stants depend on system parameters such as the fibre properties – axial and bending
stiffness (as well as torsional stiffness in 3D) – the network density and degree of
cross-linking. Fibre curl and crimp are also important parameters. Likewise, the exis-
tence of a residual, self-equilibrated stress state in the network before deformation
influences the elastic properties. The relationship between the small strains elastic
moduli and these system parameters has been discussed extensively in the literature.
The older works were mostly concerned with relatively dense networks [8,13], case
in which the deformation is approximately affine and the network behaves as a
(approximately) homogeneous material. Newer literature [9–12] has emphasized that
deformation is highly non-affine in low-density networks, such as those representa-
tive of some gels and biological materials. Both the affine limit and the non-affine
behavior were described using a constitutive law which was presented in the form
of a master curve [9–11].

In realistic networks, cross-linking is rarely occurring at all fibre crossings. In paper,
where the fibre number density is high, and fibres are pressed together and form
H-bonds, the system may be considered densely cross-linked. In most soft materials
having a fibre network structure, this is generally not the case. In [14], it was shown
that the degree of cross-linking in F-actin networks (e.g. the cytoskeleton) can be
controlled by controlling the concentration of the cross-linking protein scruin, such that
filaments are not physically bonded to each other at all points where they come in
contact or sufficiently close to each other. A similar situation is expected to exist in
other biological fibre networks, such as in most collagenous systems.

In this work we examine the variation of the network Young’s modulus, E, with the
degree of cross-linking, and we show that the previously developed master curve which
was obtained for fully cross-linked networks [9–11], remains valid for the sparsely
cross-linked systems, provided the density is normalized with a cross-link density-
dependent parameter. Therefore, the number of cross-links per fibre must be considered
as an additional parameter of the problem.

2. Model

The network studied here is constructed by depositing fibres of length, L0 in a 2D
domain, with random positions of their centroids and random orientation. Rigid cross-
links are introduced at points where the fibres intersect, with probability, �p. A rigid
cross-link prevents relative translations and rotations of the two fibres at the contact
point. A state characterized by �p ¼ 1, in which every contact point is a cross-link is
denoted as ‘fully cross-linked’. The works reported in references [9–11], refer to such
fully cross-linked systems.

The fibres are considered athermal and linear elastic, and hence are characterized by
their axial stiffness, EfA, and bending stiffness, Ef I , where Ef is the Young’s modulus
of the fibre and A and I are the cross-sectional area and moment of inertia. In these
models, all fibres in the given system are considered identical.
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The fibres are represented using the Timoshenko beam model [15]. The total energy
of the system is the sum of the strain energies associated with bending, axial and shear
deformation, that is,

U ¼ 1

2

X
fibres

Z
Ef I

dwðsÞ
ds

� �2

þEfA
duðsÞ
ds

� �2

þkGfA
dvðsÞ
ds

� wðsÞ
� �2

ds ð1Þ

In this expression, vðsÞ represents the transverse displacement and duðsÞ
ds is the axial

strain at position s along the fibre. The rotation of the fibre cross-section is dvðsÞ
ds , while

wðsÞ represents the rotation of a plane which remains perpendicular to the neutral axis

of the beam. Hence, dvðsÞ
ds � wðsÞ represents the shear deformation of the beam; k is a

constant which is considered 0.88 (for beams with circular cross-section).
Due to the pronounced heterogeneity of the network which is introduced by the ran-

dom process of network generation, the overall mechanical response is affected by
strong size effects. In [16], it was shown that the size effect is stronger in low-density
networks or in cases in which fibres are soft in bending. Under such conditions, the
model size should be at least 15 times larger than the fibre length in order to eliminate
the size effect. If the density is high or the bending stiffness of fibres is larger than the
axial stiffness, the system size should only be 2–3 times larger than the fibre length. In
this work we consider systems large enough to eliminate the size effects in all cases.

The network is deformed by applying boundary conditions along the perimeter of
the model, which is a square of size L. The solution is found by minimizing the poten-
tial energy, using a finite element solver.

As mentioned above, the system parameters are: the fibre length, L0, the fibre den-
sity, q ¼ NL0, where N is the fibre number density, the degree of cross-linking, �p, and
the fibre mechanical properties, Ef I and EfA. It has been discussed in the literature
[9–12] that the axial and bending stiffness of fibres enter the constitutive equation only

through the parameter, lb ¼ ðEf I
EfA

Þ1=2, which indicates the relative importance of the

bending and axial stiffness.

3. Results

The objective of the paper is to present a structure-property relation that predicts the
overall elasticity of networks with sparse (stochastic) cross-links. The system geometry
is discussed first. When the network is fully cross-linked, the fibre segment lengths are
Poisson distributed with the mean, lcð1Þ, which depends on density through the Corte-
Kallmes equation lcð1Þ ¼ p=2q [17]. Here it was made explicit that lcð1Þ depends on �p,
and for fully cross-linked systems, one has �p ¼ 1. It is possible to evaluate the probabil-
ity distribution function of segment lengths, p(l,�p), in systems with �p\ 1 since the
sparsely cross-linked system is constructed from the fully cross-linked one by randomly
removing cross-links at fibre intersection points. The probability of existence of a seg-
ment of specific length, l, in such network is the summation of the probabilities of exis-
tence of segments of length l formed by concatenating k (k= 1, 2, 3…) segments of the
network with �p ¼ 1. Let us call these ‘original segments’. The probability to have a
segment of total length l formed by concatenating two original segments of length l1
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and l2 is, dp1dl ¼ pðl1; lÞdl1pðl2; 1Þdl2�pð1� �pÞ ¼ pðl1; 1Þdl1p ðl � l1; 1Þdl�pð1� �pÞ. Con-
sidering that pðl; 1Þ is a Poisson distribution and after integrating over l1 (which takes
values from 0 to l), one obtains p1dl ¼ lpðl; 1Þ dl�pð1� �pÞ=lcð1Þ. Following the same
line of thought, the probability to have a segment of total length l formed by concate-

nating three original segments becomes p2dl ¼ l2pðl; 1Þdl�pð1� �pÞ2=2l2c ð1Þ. This expres-
sion can be generalized to k number of original segments. Then, the total probability
density to have a segment of length l composed from any number of original segments

can be calculated as pðl; �pÞ ¼ �ppðl; 1ÞP1
k¼0ðð1� �pÞl=lcð1ÞÞk=k!, which leads to

pðl; �pÞ ¼ �p=lcð1Þ expð��pl= lcð1ÞÞ. Note that, while in the fully cross-linked network the
probability density of having a segment of length l is pðl; 1Þ, the equivalent quantity in
the network with �p\ 1 is p0 ¼ pðl; 1Þ�p. The analysis indicates that the distribution
function for any cross-link density remains Poisson, with its mean related to the mean
of the fully cross-linked network distribution through lcð�pÞ ¼ lcð1Þ�p. Figure 1 shows
pðl; �pÞ for several values of �p, with the horizontal axis normalized by lcð�pÞ in order to
allow the means of all distributions to overlap at 1.This result is expected, given that
both network generation and cross-linking are random, uncorrelated stochastic pro-
cesses.

It should be observed that for a sparsely cross-linked network, the density q does
not determine unequivocally the mean segment length as in the Corte-Kallmes relation,
rather an additional parameter, such as �p, must be considered as, lcð�pÞ ¼ p=2q�p.

The elasticity of networks with various parameters lb, q and �p was investigated. Six
networks with L0 = 0.5, lb in the range (10�7,10�2) and q ¼ 100 were generated and
probed by imposing a prescribed uniaxial strain. The cross-linking density was varied
by changing parameter �p from 1 to 0.5; six values of �p in this range were considered.
For each of these 36 systems, ten replicas were generated and the results reported here
are averages over these replicas. The data for all these systems are shown in Figure 2.
The vertical axis shows the Young’s modulus of the network, E, normalized with qEfA
and a constant, a, which is a dimensionless quantity equal to 0.38. The variable of the
horizontal axis is w ¼ log10 ððL0=lcð�pÞÞxðlb=L0ÞyÞ. The exponents x and y are changed
until the data collapse on a master curve and we obtain x ¼ 7 and y ¼ 2. The blue
(diamond) symbols correspond to the fully cross-linked case, �p ¼ 1. The red (triangles)

Figure 1. Probability distribution functions of segment lengths for networks with different
crosslinking probabilities.
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represent sparsely cross-linked networks with �p\ 1. The data collapse is excellent and
it appears that one may define a unique master curve valid for all sparsely cross-linked
networks above the stiffness percolation threshold.

In order to underline the novelty of the present work, it is necessary to review the
literature on this subject. Master curves of this type have been reported in several publi-
cations [9–12]. Fully cross-linked networks (�p ¼ 1Þ were considered in all these works.
In this case, the classical Corte-Kallmes relation holds, and one can write the variable
of the horizontal axis as w ¼ log10ððqL0Þxðlb=L0ÞyÞ, that is, the only relevant parameters
are lb and q. The novelty of this work is the observation that if one uses lcð�pÞ in place
of lcð1Þ in w, all data for sparsely cross-linked systems overlap on a unique master
curve. The number of independent parameters in w now increases from 3 to 4. It should
be noted that the normalization of the vertical axis is independent of �p.

Although it has been discussed in the cited works [9–12], reviewing the physical
interpretation of the master curve is useful at this point. The curve has two well-defined
regimes. At large values of w, that is for large lb, large L0 and/or small lcð�pÞ, the curve
asymptotes to a horizontal, which indicates that E � qEfA. Note the independence of E
of L0, lb and �p. In this regime, the deformation is approximately affine and the strain
energy is stored predominantly in the axial deformation mode of the fibres. This is
reflected in the linear scaling of E with the axial stiffness of fibres, EfA. At low values

of w, it results that E � ðL0=lcð�pÞÞ7ðEf I=L20Þq � q8�p7L50Ef I . In this regime, the defor-
mation is highly non-affine and the strain energy is stored primarily in the bending
mode of fibres. This reflects in the linear scaling of E with the bending stiffness of
fibres, Ef I . The very strong dependence of the modulus on the density and on L0 was
discussed before [11]. The transition from the affine to non-affine behaviour is con-
trolled by two non-dimensional parameters, that is L0=lcð�pÞ and lb=L0 present in w. The
parameter L0=lcð�pÞ, which is equivalent to the average number of cross-links per fibre,
replaces parameter qL0 that appears in the constitutive relation in the fully cross-linked
case. The results also show that in the non-affine regime, the elasticity is dictated by
the number of cross-links per fibre, L0=lcð�pÞ, which is in agreement with the previous
theoretical work referring to fully cross-linked networks [18].

Figure 2. Master curve of Young’s modulus E of networks with various sets of parameters q, L0,
lb and �p. The blue (diamond) symbols correspond to fully cross-linked networks, �p ¼ 1, while the
red (triangles) symbols correspond to sparsely cross-lined network with 0:5\ �p\ 1.
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In the case of sparsely cross-linked networks, the modulus also depends strongly on
parameter �p. A realization of the network, with given density, would deform non-affi-
nely at low lb and low cross-linking density, while at large lb or/and large �p, would
deform affinely. Given the strong dependence of w on �p, small variations in the cross-
linking density has large effects on the degree of non-affinity of the deformation and
implicitly on the nature of the constitutive equation of the network.

4. Conclusion

Sparsely cross-linked networks behave similarly with fully cross-linked networks and a
unique master curve characterizing the behaviour of systems with any value of �p has
been defined. To make this unifying picture possible, one has to use the mean segment
length, which is a function of degree of cross-linking, �p, in the formulation in place of
the fibre density, q. The elastic modulus is independent of the degree of cross-linking
in the affine limit, but is very sensitive to this parameter (E � �p7) in the non-affine
regime.
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