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The transformation of dislocation cores from the shuffle to the glide set of {111} glide planes in Si is

examined in this work. The transformation is thermally activated and is favored by a resolved shear

stress which applies no force on the original perfect shuffle dislocation. A resolved shear stress driving

dislocation motion in the glide plane is not observed to promote the transition. The stress-dependent

activation energy for the described shuffle-glide transformation mechanism is evaluated using a

statistical analysis. It is observed that the transformation is not associated with an intermediate

metastable state, as has been previously suggested in the literature. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4793635]

I. INTRODUCTION

Silicon has a covalently bonded diamond cubic crystal

with glide planes of {111} type. The {111} stacking involves

two types of planes: the glide and the shuffle sets. These are

shown schematically in a {110}-projection in Fig. 1. The

interplanar spacing of the shuffle set (2.35 Å) is larger than

that of the glide set (0.78 Å), but the bond density across the

glide set is higher than that across the shuffle set by a factor

of three. This observation suggests that the motion of dislo-

cations is different in the two planes and this should have

consequences on the mechanics of the crystal.

In macroscopic experiments, it is observed that Si is

brittle at low temperatures and becomes ductile above

873 K—the temperature of the brittle-to-ductile transition.1

This transition is produced in part by changes of the mobility

of dislocations with temperature, and is intimately related to

the contribution of the two types of glide planes to plasticity.

The competition between shuffle and glide systems has

received significant attention over the past several decades,2–8

in part due to the attempt to understand dislocation nucleation

and motion in Si devices. It was concluded that a crystal

deformed at low temperatures and large stresses deforms pri-

marily by the motion of shuffle dislocations. At high tempera-

tures and lower stress, mostly dislocations nucleating and

moving in the glide plane cause plasticity.

Dislocation cores in the shuffle plane are undissociated,

while those on the glide plane dissociate in partials. This can

be explained based on the structure of the c-surface corre-

sponding to the two types of planes. The glide-set c-surface

has a minimum at the 1=2h112i position of the usual partial in

face centered cubic crystals, while the shuffle-set c-surface

has no such minimum. Despite significant advances in the

direct observation of core structures,9,10 electron microscopy

cannot distinguish directly between the shuffle and the glide

sets, and the observation of dissociation usually indicates that

the respective defect is located on the glide-set. In line with

the above, at low temperatures dislocations are generally

observed to be un-dissociated, while at high temperatures the

situation is largely reversed.

Atomistic studies have shown that dislocations nucleate

differently in the two sets. Shima et al.11 calculated the acti-

vation energy for dislocation nucleation from a sharp 90�

corner on the surface of Si as a function of the applied

resolved shear stress. A full dislocation was considered when

investigating the shuffle-set, while the nucleation of a partial

was considered for the glide-set. It was observed that the

curves representing the activation energy versus the applied

stress intersect, which indicates that at low stresses nuclea-

tion in the glide set is favored. Interestingly, the activation

energy for nucleation in the shuffle-set decreases with

increasing pressure, while the activation energy correspond-

ing to the glide-set is insensitive to the stress acting normal

to the glide plane.

Considering that experimental observations indicate a

preponderance of glide dislocations at high temperatures, the

question remains whether dislocations can switch from one

plane set to the other as the temperature is modified across the

brittle-to-ductile transition. This has been a puzzle for a num-

ber of years. Theoretically, the transition can happen by climb

for edge components of dislocations, or cross-slip for screw

segments. Attempting an experimental demonstration of this

idea, Saka et al.12 tested single crystals of Si under supersatu-

ration of interstitials and performed TEM observations. They

concluded that the pre-existing shuffle set dislocations trans-

formed to glide-set dislocations with dissociated cores, at

about 400 �C. It should be noticed that these transitions are

only observed at sharp bends of the dislocations. Dislocation

climb was postulated to be the main mechanism controlling

this physics. Under equilibrium concentration of vacancies,

Justo et al.13 observed no such transformation, further sup-

porting the idea that climb controls shuffle-glide transitions.

Another obvious mechanism leading to the same effect is the

cross-slip of screw segments. This was postulated in Ref. 14,

but was not directly observed in experiments. Rabier and

Demenet15 used TEM to examine the nucleation and migra-

tion of shuffle- and glide-set dislocations under different
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loading conditions and did not uphold the possibility of dislo-

cation core transformation.

A closer look at the potential mechanism of the shuffle-

glide transformation, and focusing on screw segments, indicates

that, before transformation, the shuffle core can be located at 3

types of positions denoted by A, B, and C (Fig. 1). The A and

C cores are located at the intersection of two shuffle-set and

two glide-set planes, respectively, while the B core lies at the

intersection of a shuffle-set with a glide-set plane. It was found

by density functional theory (DFT) and molecular dynamics

(MD) simulations16,17 that the B core has higher energy than

the A and C cores. As a result, it can be assumed that the trans-

formation from shuffle to glide requires overcoming a barrier

before dissociation in the glide plane can happen.16 Pizzagalli

and Beauchamp18 used first principle calculations to study the

transition at 0 K and noted that the A to C transformation is not

observed in their models. Guenole et al.19 performed calcula-

tions combining the nudged elastic band method (NEB) and

empirical potentials and obtained an activation energy ranging

from 2.3 to 2.5 eV, function of the potential used. They con-

cluded that the barrier is too high for the formation of the C

core from A to be probable.

In this work, we study the shuffle to glide transition for

screw dislocation segments at different temperatures and

applied stresses. We consider stress states which do and do

not produce a net driving force on the perfect, undissociated

dislocation and show that the transition is favored by a stress

with no shear component in the direction of the Burgers

vector. The stress-dependent activation energy is evaluated.

A resolved shear stress is not observed to lead to the transi-

tion rather its effect is to simply move the dislocation in the

respective plane. The model and simulation methodology are

presented in Sec. II, the phenomenology observed in simula-

tions is discussed in Sec. III A, followed by the evaluation of

the activation energy in Sec. III B. In Sec. III C, we discuss

another phenomenon which takes over at very large stresses.

II. MODEL AND SIMULATION METHODOLOGY

Silicon is represented in these simulations using the

three-body Stillinger-Weber (SW) potential,20 which was

used extensively in atomistic simulations of Si crystal

mechanics. Given the technological importance of this

material, a large number of potentials have been developed

for Si, the most broadly used being SW, Tersoff,21,22 and

EDIP (Environment-dependent interatomic potential).23

These potentials perform differently in different situations,

each having its strengths and weaknesses. The SW potential

is known to represent properly the energetics of reconstruc-

tion in the core of 30� partials in the glide plane, but to fail

to represent the reconstruction predicted by ab initio models

for the core of 90� glide partials.23 The Tersoff potential fails

to predict the reconstruction of the 30� partial. The newer

EDIP potential appears to perform better with respect to the

energetics of core reconstruction of both partials. An early

comparison of many potentials, including SW and Tersoff is

performed by Balamane et al.24 The comparison performed

in the EDIP article23 leads to the conclusions mentioned

above. In a more recent work, Godet et al.25 compared these

three potentials against ab initio data (DFT-local density

approximation, DFT-LDA) specifically with respect to their

performance with respect to large shear strains applied in the

shuffle and glide {111} planes. This analysis is most relevant

for the ability of potentials to represent dislocations. They

conclude that the SW potential better reproduces the ab initio
results with respect to the smoothness and the amplitude of

the energy variation, as well as the localization of shear in the

shuffle set. The SW potential provides the best approximation

of the maximum restoring force for the h110i direction in the

shuffle plane and the h112i direction in the glide plane, and

for the theoretical shear strength and the strain associated with

this critical stress in both planes. The un-relaxed unstable

stacking fault energy for traces in the Burgers vector direction

is best predicted for the h110i direction in the shuffle plane by

the SW potential, and for the h112i direction of the glide plane

by the EDIP potential. The values of the relaxed unstable

stacking fault energy are best predicted by the Tersoff poten-

tial in both these crystal directions. In what concerns the

proper representation of the motion of dislocations and the

Peierls stress, the unstable stacking fault energy is less impor-

tant than the rebound force of the lattice subjected to large

deformations. Based on these results we infer that the SW

potential is best suited to represent, at a minimum, un-

dissociated shuffle dislocations and 30� partials in the glide

plane, which are of main concern in this article.

The system is advanced in time using standard molecular

dynamics and its parallel implementation in the LAMMPS pack-

age.26 Let us consider the model shown in Fig. 2. The 3D simu-

lation box has dimensions of 42 � 42 � 42 a3
0, where

a0¼ 5.43 Å is the lattice parameter of Si. The model contains

604 800 atoms. The crystal orientation is indicated in the figure,

with GP1 and GP2 being two {111}-type glide planes (either of

shuffle or glide type). A dipole of perfect screw dislocations

with Burgers’ vector ½01�1� is placed in the shuffle set of GP1

by displacing the atoms according to the anisotropic Volterra-

Stroh solution. Initially, both dislocations are straight, with the

dislocation lines lying along the ½01�1� direction. Periodic

boundary conditions are used in all directions. Note that the

model is large enough such that the periodic boundary condi-

tions in the direction parallel to the dislocation line do not force

the dislocations to remain straight during the simulation.

FIG. 1. {110} projection of the perfect Si lattice. The lines indicate {111}

planes, with shuffle and glide planes shown with green dashed and red con-

tinuous lines, respectively. A, B, and C are three possible locations of the

core.
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The two dislocations forming the dipole attract each

other. In order to have proper control on the applied stress,

we eliminate the effect of the interaction by applying along

the boundary of the model a uniform far field stress state pro-

ducing exclusively a resolved shear stress which leads to a

Peach-Koehler force that exactly balances that due to the

interaction. Let us denote this stress by r0. The far field is

applied in the form of imposed displacements which are

computed using the anisotropic elastic stiffness tensor corre-

sponding to the SW potential.

Two other types of far field stress are additionally consid-

ered (Fig. 2): a far field resolved shear stress, rr, which may

move the two dislocations in plane GP2, and a far field stress

with a shear component in the direction perpendicular to the

Burgers vector in plane GP2, rp. This second field does not drive

dislocation motion in any glide plane, while the first should pro-

mote cross-slip and dislocation motion in GP2. These states are

applied in separate simulations, i.e., in given simulation the far

field stress is either r0þrp or r0þrr. Note that this is a sche-

matic notation since r0, rr, and rp stand for entire stress tensors.

In the discussion below, a numerical value specified for these pa-

rameters refers to the shear stress resolved in the direction of the

Burgers vector in GP2 (in the case of rr) or the shear stress

acting perpendicular to the Burgers vector in GP2 (in the case

of rp), which are the only physically relevant quantities here.

As mentioned in the Introduction, a stress applied nor-

mal to the glide plane influences the nucleation and possibly

the mobility of shuffle dislocations.11 It has been also noted

that this type of stress modifies the stacking fault and the

unstable stacking fault energies for the shuffle plane while

having only a marginal influence on these quantities corre-

sponding to the glide plane.27 Therefore, the mobility of

shuffle dislocations depends on the normal stress on the glide

plane. In order to avoid this effect, a hydrostatic stress is

added to remove the normal stress.

III. RESULTS

A. The shuffle to glide transformation

To study the shuffle-glide transition, we consider first

the stress state r0þrr. Under this stress, and provided the

driving rr is larger than the (temperature-dependent) Peierls

stress, it was observed that the dislocation moves in GP2

while remaining in the shuffle plane. This conclusion holds

for all temperatures studied, in the range 1 to 1500 K. In

experiments, it is observed that glide-set dislocations pre-

dominate at high temperatures and low stresses and one

would expect that as the temperature increases the transition

to the glide-set should take place. Our observation suggests

that simply increasing the temperature does not lead to the

shuffle-glide transition under this type of stress.

When the stress state r0þrp is applied, the results are

more interesting. At low temperatures, the dislocation

remains un-dissociated and in the shuffle plane as long as

rp< 5 GPa. Above approximately 1000 K, the dislocation

shifts to the glide set of planes of GP2 and dissociates. The

signature of a thermally activated process is observed: The

process is stochastic and the transition happens with higher

probability when the temperature and rp increase. In terms

of the general phenomenology, this is in line with experi-

mental observations and previous computational studies,

while also indicating that the transition is driven by a non-

resolved shear stress component.

Let us analyze the transition in more detail. Figure 3

shows a view of the glide plane GP2. The yellow line shows

the position of the initial shuffle screw dislocation core. The

several snapshots shown in Figs. 3(a)–3(c) are obtained from

a molecular dynamics run in which dissociation was observed,

at T¼ 1200 K and rp¼ 3.4 GPa. The red lines mark the loca-

tion of the cores of two 30� partials belonging to the same

glide-set plane. Denoting the partials as 30� is based on the

orientation of their Burgers vector relative to the ½0�11� direc-

tion of the initial screw dislocation. The partials nucleate from

the original shuffle screw and spread sidewise in the glide-set.

The green lines demarcate the un-dissociated and dissociated

regions of the original screw dislocation. The region between

the partials is a staking fault located in the glide-set of GP2.

The partials exhibit reconstructed configurations with

successive rings containing 5 and 8 atoms. These recon-

structed configurations, shown in Fig. 3(d), have been recog-

nized as the ground-state of the 30� partial dislocations in the

glide-set plane.28 It has been found that the reconstruction of

the dislocation core reduces the core energy by 0.36 eV/A.8,29

The partials move by the propagation of kinks, as can be seen

in Fig. 3.

Figure 4 shows a close-up view of the region marked by

the continuous green line in Fig. 3(b) where the perfect

screw dislocation residing in the shuffle-set decomposes in

two partials located in the glide-set. The crystal is shown in

the [011] projection. The region on the left of the image cor-

responds to the un-dissociated screw core, while that on the

right represents the dissociated domain. Comparing the core

structures observed here with those published in Refs. 19

and 28 and considered representative for specific planes, we

confirm that the un-dissociated screw resides in the shuffle

plane, while the dissociated partials are located in the glide

set. This was further confirmed by measuring the inter-

atomic planar shift in successive glide and shuffle planes par-

allel to GP2. Multiple sets of such snapshots resulting from

simulations performed at other temperatures and applied

FIG. 2. Schematic representation of the model used, with two of the far field

loadings shown. The two dislocations are of screw type. Therefore, rr

produces a Peach-Koehler force, while rp does not.
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stresses were also analyzed and similar conclusions were

drawn. It is also observed that the transition is abrupt, with

no intermediate state being present between the shuffle and

the glide-set segments of the dislocation. The transition takes

place over a distance smaller than a0 along the dislocation

line, the core shifting from one atomic plane to the next.

These observations are important. They indicate that the

shuffle to glide transformation does not involve an interme-

diate state as suggested in the literature.19 Also, the transfor-

mation can be regarded as a nucleation process of the partial

dipole located in the glide-set from a material defect, which

is the shuffle screw dislocation in this case. The stress rp,

acting perpendicular to the direction of the initial screw

dislocation line and in GP2, leads to a Peach-Koehler force

acting on the edge components of the two resulting partials,

therefore favoring the dissociation. Since partials with edge

components may exist only in the glide-set, it results that rp

acts as an effective driving force for the transition. This sub-

stantiates the claim made above that the shuffle to glide tran-

sition is favored by a stress state which does not produce a

Peach-Koehler force on the original screw dislocation.

B. Evaluation of the activation energy

Since the transition bears the signature of a thermally

activated process, we performed a statistical analysis aimed

at estimating the stress-dependent activation energy. To this

end, let us consider that the Arrhenius formulation holds,

and compute the occurrence rate of a transformation event as

_nðrsl; TÞ ¼ Nv0 exp �EðrpÞ
kBT

� �
; (1)

where n is the number of events observed, N is the number of

sites where a transformation may take place, v0 is the attempt

frequency, E(rp) is the activation energy, and kBT is the

energy of the thermal bath. M¼N�0 is the attempt rate, while

n is the number of successful attempts. The activation energy

is usually considered stress-dependent. The cumulative fraction

function F(t, rp, T) can be related to the transformation rate _n
by considering that the time derivative of the cumulative frac-

tion function _Fðt; rp; TÞ is proportional to the number of the

transformation free replicas and to the transformation rate

_Fðt; rp; TÞ ¼ ½1� Fðt; rp; TÞ� � _nðrp; TÞ: (2)

By integrating this equation and substituting _n from Eq. (1),

the expression of the cumulative fraction function can be

obtained as

exp �Nv0t exp �EðrpÞ
kBT

� �� �
¼ 1� Fðt; rp; TÞ: (3)

The activation energy results from (3) as

EðrpÞ ¼ kBTflogðN�0tÞ � log½�logð1� Fðt; rp; TÞÞ�g: (4)

The quantity F results directly from the simulations,

t¼ t0¼ 50 ps is kept constant in all simulations, N represents

FIG. 4. Ball-stick representation of the undissociated shuffle screw–dissociated

glide partials interface in the (011) projection. The green line indicates the

interface of the dissociated and undissociated regions and corresponds to the

continuous green line in Fig. 3(b). The undissociated screw dislocation lies

on the left side of the green line, while the dissociated partials are on the

right side. The core of the undissociated screw dislocation is indicated with

the yellow line.

FIG. 3. (a)-(c) Snapshots representing

intermediate atomic structures of the

glide plane during the core transforma-

tion process. The dislocation lines for

the 30� partials located in the glide set

are indicated by the red lines. The initial

position of the undissociated shuffle-set

screw dislocation is indicated by the yel-

low line. The green lines in (b) indicate

the boundary between dissociated and

undissociated regions of the shuffle

screw. (d) Ideal (reconstructed) core

structure of the 30� partial located on the

glide-set plane.28 The coordinate system

refers to all figures (a-d).
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the number of sites along the initial screw dislocation at

which the transformation may take place, �0 is the vibration

frequency for the specific crystal. The value of N can be

predicted from the nucleation properties, lattice type, and

the size of the simulation box; the value of �0 can be

assumed to be equal to the Debye frequency.30 However,

for better accuracy, we perform MD simulations at various

temperatures and stress levels and determine the cumulative

fraction F for each condition. The cumulative function is

estimated from at least M¼ 90 replicas of given set of

conditions.

Let us rearrange Eq. (4) as

T log½�logð1� Fðt0; rp; TÞÞ� ¼ T log ðNv0t0Þ �
EðrpÞ

kB
; (5)

set the applied stress at rp¼ 2.9 GPa, and consider situations

with T¼ 1150, 1200, 1250, and 1300 K. The estimate for finite

M of the left side of Eq. (5), A ¼ T log½�logð1� Fðt0; rp; TÞ�,
results from the simulations. This quantity is plotted in Fig. 5

versus T and the line represents the best fit to the data. The

slope represents logðN�0t0Þ. The error bars are estimated by

considering the process to be Poisson, with the probability of

having n events out of M trials being Pðn;MÞ ¼ e�
�FM

ð �FMÞn=n!, with �F being the large M limit of F. Then, the var-

iance of n results hðn� �FMÞ2i ¼
P1

n0¼0ðn0 � �FMÞ2Pðn0;MÞ
¼ �FM. We estimate �F as the asymptote to which F converges

in the limit of large M and then compute the standard deviation

of F (shown in Fig. 5) as
ffiffiffiffiffiffiffiffiffiffi
�F=M

p
. The data align reasonably

well, which provides support for the use of the Arrhenius func-

tion of Eq. (1). From the slope, and with t0¼ 50 ps, we estimate

N�0 to be 1.97� 106 GHz. This value is in the expected range

since for Si the Debye frequency is 2� 104 GHz and the num-

ber of possible nucleation sites along the dislocation line, N, is

on the order of 100. We note that if the distribution function of

A is Poisson, fitting the mean values in Fig. 5 is equivalent to

fitting the entire distributions of A at all four values of the tem-

perature. Disregarding this fact, the range of the slope of lines

that can be drawn within the error bars in Fig. 5 is 630%

around the slope of the line fitted to the means (and shown in

the figure).

To determine the stress dependence of the activation

energy, simulations were performed at T¼ 1200 K and with

rp¼ 2.7, 2.9, 3.1, 3.4, 3.7, and 3.9 GPa. Equation (4) is used

to estimate E(rp), with F computed by considering at least

M¼ 100 replicas for each stress state. Figure 6 shows the

results. The activation energy varies linearly with the applied

stress, EðrpÞ ¼ E0 � rpV, where E0 is the activation energy

at zero stress and V is the activation volume. Fitting the data

leads to E0¼ 1.97 eV and activation volume V¼ 0.67|b|3.

The small value of V is related to the observation that the

transition from shuffle to glide is a localized process, as dis-

cussed in Sec. III A and shown in Fig. 4. No intermediate

state was observed, rather, the screw dislocation shifts

directly from the shuffle to the glide plane under the action

of the applied stress.

The activation energy for the mechanism proposed here

is �15% smaller than that associated with the mechanism

discussed in Ref. 18 involving a transition from the A to the

C core structure.

C. The large stress limit

Although less relevant for applications, it is worth not-

ing another phenomenon which takes over at large values of

rp. The process described in Sec. III A is controlled by the

distortion of the core due to the applied shear stress rp. The

distortion leads to the formation of an initially small edge

dipole in the core of the screw dislocation, while the total

edge component of the dislocation remains zero. The far

field rp performs work on this dipole and, when its magni-

tude is large enough, leads to the formation of the two 30�

partials, as described in Sec. III A. The interesting observa-

tion made in this context is that the partials shift to the glide-

set of {111} planes, since partials may exist only in the

glide-set.

When the stress increases, a transition is observed to the

formation of full 60� dislocations instead of 30� partials. As

FIG. 5. Variation of the left side of Eq. (5), A, with the temperature. The

line is the best fit to the data.

FIG. 6. Variation of the activation energy for the shuffle to glide transition

of the screw dislocation with the applied stress rp. The squares indicate the

values of E(rp) obtained from Eq. (4). The line is the best fit to the data.
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before, denoting them as 60� dislocations is based on the ori-

entation of their Burgers vector relative to the ½0�11� direction

of the initial screw dislocation. This is still a core effect and

occurs once the work performed by rp is large enough to

overcome the barrier associated with the nucleation of the

two 60� full dislocations from the original screw dislocation.

Obviously, the edge components of the Burgers vectors of

the nucleated 60� dislocations have opposite sign such that

their recombination leads to the original screw Burgers vec-

tor. Their magnitude is
ffiffiffi
6
p

=4a0, much larger than the magni-

tude of the edge component of the Burgers vector of the 30�

partials, which is only
ffiffiffi
6
p

=12a0. The Schmid factor equalsffiffiffi
3
p

=2 for the 60� dislocations and 1/2 for the 30� partials.

Importantly, the resulting dislocations remain in the shuffle

plane and are not dissociated.

Figure 7 shows a series of snapshots of the shuffle plane

GP2 with the position of the original screw dislocation

marked by the straight yellow line. The simulation was per-

formed at T¼ 1200 K and rp¼ 5 GPa, i.e., a stress value

above the range considered in Sec. III B. The position of the

nucleating dislocations is marked by black lines. The color

coding indicates the absolute value of the slip vector, which

is the relative displacement of the atoms on the two sides of

the shuffle plane. This relative displacement takes place in

the direction of the Burgers vector which is shown in

Fig. 7(d) for the two branches of the nucleating dislocations.

The cores remain in the shuffle plane of GP2. It is also inter-

esting to note the evolution of the slip vector during the ini-

tial stage of formation of the two 60� dislocations: A slip

vector of length equal to that of the full Burgers vector

appears only after the two nodes are separated by more than

about 9a0 (compare the color within the loop in Figs. 7(a)

to 7(c)). In the initial stages, a nucleus with a smaller slip

vector increases in size and only once it reaches a critical

size, the slip vector magnitude increases to the length of the

Burgers vector.31 The two nucleating half loops are of half-

hexagonal shape which was also observed in other MD simu-

lations32 and in experiments performed at low temperature.33

This nucleation process is also thermally activated. The

critical stress at which the 60� dipole nucleates decreases

slightly as the temperature increases, but remains always sig-

nificantly larger than the critical stress at which nucleation of

the glide-set 30� partials is observed. This indicates that the

energetic barrier for the nucleation of the shuffle-set dipole

is larger than that discussed in Sec. III B. This barrier was

not estimated since, given the large stresses involved, the im-

portance of this phenomenon is obviously smaller than that

of the shuffle-glide transition process.

IV. CONCLUSIONS

A mechanism of transformation of dislocations from the

shuffle to the glide-set of planes in Si was described. It was

shown that simple dislocation motion in the glide mode does

not lead to the transition even as the temperature increases.

The transition occurs when the core is distorted by a stress

state which produces no Peach-Koehler force on the original

shuffle dislocation. The distortion favors the formation of 30�

partials which may exist only in the glide-set planes, and

hence this stress drives the transition from the shuffle to the

glide set. The process is thermally activated and the activation

energy depends linearly on the applied stress. The zero-stress

barrier height is estimated at 1.97 eV. As the stress distorting

the core becomes larger, the process shifts to the nucleation

from the original shuffle screw dislocation of a dipole of un-

dissociated 60� full dislocations. The nucleated dipole resides

FIG. 7. Snapshots representing interme-

diate configurations of the shuffle-set of

planes containing the initial screw dislo-

cation (yellow straight line) and an

un-dissociated 60� dislocation dipole

nucleating from the screw. The colors

represent the magnitude of the slip vec-

tor for each atom; b in the color bar

equals 3.84 Å, representing the magni-

tude of the Burgers vector of a 60�

dislocation.
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in the same shuffle-set plane as the initial screw. Core non-

linearities control both nucleation processes.
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