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Several non-Schmid effects of plasticity in Si are discussed in this article. The contribution of shear strain
applied in the direction of the Burgers vector and normal to it in the glide plane, and of strain applied
normal to the glide plane to defining the Peierls stress are analyzed. The analysis is performed using a
combination of atomistic simulations and the Peierls–Nabarro model based on generalized stacking
faults. It is shown that a shear strain acting in the direction of the Burgers vector decreases the Peierls
stress and the effect is due to the reduction of the shear modulus. Bonding across the glide plane has
the most important contribution to the Peierls stress, but the elastic non-linearity of the surrounding
material contributes to reducing the instability threshold. A shear strain acting perpendicular to the Bur-
gers vector has no effect on the Peierls stress. A compressive strain normal to the glide plane reduces the
Peierls stress for shuffle dislocations and has a weak increasing effect on the critical stress of glide-set
dislocations.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Plastic deformation in crystalline materials takes place by the
motion of dislocations on specific slip systems. The resistance dis-
locations face during motion is due to their interaction with the
lattice and with other obstacles such as forest dislocations, solute
atoms, precipitates, grain and twin boundaries. At low tempera-
tures and in materials with strong bonding, the dominant contri-
bution comes from the Peierls stress required to move an
isolated dislocation in the perfect lattice.

Silicon has a diamond cubic lattice with strong bonding and
undergoes a brittle-to-ductile transition at approximately 873 �K
[1]. In this material, dislocations are strongly pinned by the Peierls
barriers. The magnitude of the critical stress has been studied
extensively experimentally [2,3], theoretically [4–6] and using
atomistic simulations [7,8]. The main slip system is {111} h110i.
There are two types of glide planes denoted by shuffle and glide,
with the shuffle planes having an interplanar distance of 2.35 Å,
and the glide planes being spaced 0.78 Å apart. A simple geometric
model suggests that the density of bonds crossing the shuffle plane
is smaller than that for the glide plane. It is currently accepted that
the activity in the shuffle plane dominates at low temperatures and
high resolved shear stresses, while at high temperatures motion in
the glide system controls plasticity. As confirmed by ab initio and
atomistic models, glide dislocations are dissociated in partials,
while shuffle dislocations are not. This helps identifying the nature
of slip in electron microscopy, as the simple observation of a
compact, undissociated core indicates that the respective disloca-
tion resides in the shuffle plane.

The interplanar potential is usually characterized by the c-sur-
face. The standard c-surface is computed by separating the crystal
in two parts across a glide plane and evaluating the variation of the
energy per unit area associated with the relative shift of the two
blocks in the selected plane. Hence, the c-surface has minima at
shifts equal to the lattice periodicity. Additional minima appear
for certain configurations which correspond to stacking faults. In
Si, no minimum is observed in the shuffle plane, while the glide
plane c-surface has a minimum at a relative shift of 1/6 h112i,
which corresponds to the Burgers vector of a partial dislocation.
The minimum energy paths on the c-surface linking these minima
indicate the preferred glide mode of the crystal and define the
structure and evolution of the core of dislocations moving over
the Peierls barriers. The c-surface in Si was computed for both
planes using ab initio [9] and atomistic [10] simulations.

The Peierls stress can be computed directly from atomistic sim-
ulations, by effectively forcing a dislocation to move under an ap-
plied far-field. The Peierls stress is usually computed in situations
in which dislocations remain straight during motion, despite the
fact that in lattices with high resistance dislocations move by the
kink mechanism [11]. The critical stress is also estimated using
the Peierls–Nabarro model (PN). In this semi-analytical formula-
tion the core is represented as a continuous distribution of infini-
tesimal dislocations on the glide plane. The core structure is
described by a distribution of infinitesimal dislocation density (slip
magnitude). The solution results by requiring that the distribution
is in equilibrium under the action of the mutual repulsion of the
infinitesimal dislocations and the lattice rebound forces. An
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additional term appears when a resolved shear stress is applied.
Under the action of this perturbation, the core distorts. The Peierls
stress is evaluated as the applied stress for which no solution can
be found.

In the initial literature on the subject, the rebound force was
computed from the interplanar potential which was assumed to
be sinusoidal [12]. An analytic solution can be obtained in this case.
In later refinements, the rebound force was computed as the deriv-
ative of the c-surface [6].

Let us return now to the central problem discussed in this arti-
cle and consider an isolated, straight dislocation in an infinite crys-
tal. When the Peierls stress is evaluated in atomistic simulations, a
shear strain is applied in the direction of the Burgers vector until
instability is reached and the dislocation core shifts forward by
at least one inter-atomic distance. At the instability, the surround-
ing lattice is elastically distorted and hence the local bonding is dif-
ferent from that in the unloaded lattice. Nevertheless, when the
Peierls stress is evaluated using the PN model and the atomisti-
cally-determined c-surface, the interplanar potential is computed
by shifting the two blocks of atoms relative to each other as rigid
entities. Hence, this c-surface includes only the contribution from
the distortion of bonds in the glide plane. It is therefore more nat-
ural to consider a c-surface in which the two blocks are allowed to
deform elastically in response to the applied stress, with the rela-
tive shift being applied simultaneously. This generalized c-surface
(GGS) was used recently in the context of dislocation nucleation
[13].

One may question the need to use the PN model when predict-
ing the Peierls stress in situations in which atomistic simulations
are feasible. However, atomistic models provide simply a number:
the value of the critical stress. The PN model, although an approx-
imation, provides more insight into the physics that determines
the lattice resistance to dislocation motion. Specifically, one iden-
tifies the contribution of the bonds across the glide plane (when
the classical c-surface is used), that of the bond distortion else-
where in the model (when the GGS is used), and the effect of the
non-linearity of the elastic material behavior.

The present study outlines these contributions to the Peierls
stress. Three strains are considered: two shear strains acting in
the glide plane, one along and one perpendicular to the Burgers
vector, and a normal strain acting in the direction of the glide plane
normal. The model and procedures used are described in Section 2,
the results are discussed in Section 3 and conclusions are pre-
sented in closure.
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Fig. 1. Schematic representation of the load
2. Model and simulation procedures

Silicon is represented with the three-body Stillinger–Weber
(SW) potential which has been used extensively in atomistic sim-
ulations [14]. A large number of potentials have been developed
for Si, the most broadly used being SW, Tersoff [15,16] and EDIP
[17]. Each of these potentials has strengths and weaknesses. Godet
et al. [18] compared the three potentials against ab initio data
(density functional theory-local density approximation, DFT–
LDA) specifically with respect to their performance with respect
to large shear strains applied in the shuffle and glide {111} planes.
They conclude that the SW potential better reproduces the ab initio
results with respect to the smoothness and the amplitude of the
energy variation, and the localization of shear in the shuffle set.
The SW potential provides the best approximation of the maxi-
mum restoring force for the h110i direction in the shuffle plane
and the h112i direction in the glide plane, and for the theoretical
shear strength and the strain associated with this critical stress
in both planes. The un-relaxed unstable stacking fault energy for
traces in the Burgers vector direction is best predicted for the
h110i direction in the shuffle plane by the SW potential, and for
the h112i direction of the glide plane by the EDIP potential. The
values of the relaxed unstable stacking fault energy are best pre-
dicted by the Tersoff potential in both these crystal directions.
Based on these findings, we conclude that the SW potential is best
suited to represent the phenomena discussed in this article.

Atomistic models are used to determine the c-surface under
specific applied strain states. The three far fields considered in this
work are shown schematically in Fig. 1. Vector s defines the inter-
planar shift in the glide plane and is always taken in the direction
of the Burgers vector: s k b, jsj=jbj 2 ½0;1�. The far field strain, e,
loads the entire model, except the two atomic planes defining
the glide plane, where the relative shift is entirely defined by s. If
e = 0, one recovers the configuration customarily used to evaluate
the c-surface (Fig. 1a); this situation is denoted as Case 1. Three
other cases are considered: m ¼ e � n k s k b (Fig. 1b, Case 2), where
the strain has exclusively a shear component in the glide plane and
in the direction of the Burgers vector (n is the normal to the glide
plane), m ¼ e � n ? b (Fig. 1c, Case 3), where the strain has a shear
component in the glide plane and in the direction perpendicular
to the Burgers vector, and m ¼ e � n k n (Fig. 1d, Case 4), where the
strain has only a component perpendicular to the glide plane.
These are the three elementary distortion modes that can be ap-
plied relative to the glide plane and b.
v
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ing conditions considered in this work.
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The 3D simulation box has dimensions of 66 � 61 � 75 Å3, and
contains 15,360 atoms. The crystal orientation is indicated in Fig. 1,
with the relative shift being applied across a {111} plane. Periodic
boundary conditions are used in x1 and x2 directions. The desired
shift and far fields are imposed by affinely displacing all atoms.

We compute the traces of the c-surface for all these loading
cases and use them to evaluate the rebound force in the PN model.
For completeness, it is useful to review the basic ideas of the PN
model.

The core of the dislocation is represented by a distribution of
infinitesimal dislocations whose density q defines the ‘‘shape’’ of
the actual core and can be related to Du, the displacement jump
across the glide plane, by q ¼ @DuðxÞ=@x. The equilibrium condi-
tion of the distribution of infinitesimal dislocations requires the
balance of the external stress field, the stress field produced by
the infinitesimal dislocations, as well as the restoring stress due
to lattice mismatch. Note that only the shear stress, s, resolved in
the glide plane and in the direction of b enters the equilibrium
equation, which reads:

sþ G
2pð1� vÞ

Z 1

�1

qðfÞdf
x� f

� @cðDu; sÞ
@Du

����
x

¼ 0 ð1Þ

The second term represents the stress field produced in the
glide plane by the distribution of infinitesimal dislocations, with
G being the corresponding shear modulus, and the third term is
the restoring stress computed from the c-surface. If the c-surface
is independent of the applied stress, one recovers Case 1. When
the GGS is used instead (Cases 2 and 3), c changes with s. To cal-
culate the Peierls stress, the applied stress is increased gradually
while seeking a numerical solution for Eq. (1) at each step. The va-
lue of s at which no solution can be found is considered the Peierls
stress. When the GGS is used, multiple c-surfaces, corresponding
to various s values are employed and the third term in Eq. (1) is
evaluated by interpolation between these, as s increases.

The value of the shear modulus, G, used in Eq. (1) deserves a
comment. Fig. 2 shows the Si lattice in the {110} projection. Due
to the different bonding across the glide and shuffle planes, the lo-
cal, effective shear modulus as well as the local shear strains in the
two planes are different. If deformation is linear elastic, one has
s ¼ Gc, s ¼ Gscs and s ¼ Ggcg , where the two indices indicate the
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Fig. 2. Schematic representation of the crystal in the {110} projection showing the
glide and shuffle planes.
shuffle and glide planes respectively. The moduli are related
through the relation: dsþdg

G ¼ ds
Gs
þ dg

Gg
. From simulations we obtain a

large difference between Gs and Gd. In both the direction of the full
dislocation, h110i, and in the partial Burgers vector direction,
h112i, one has Gs = 36.2 GPa, Gd = 117 GPa and G = 43.6 GPa.

When shuffle and glide dislocations are treated separately, one
may wonder which value of G should be used in the PN model (Eq.
(1)). It can be shown that the global G should be used for this pur-
pose in both planes. The modulus appears in the PN model via the
interaction term (second term in Eq. (1)) representing the elastic
repulsion between the fictitious infinitesimal dislocations of the
model. More specifically, this is the modulus appearing in the
expression of the stress produced by an edge dislocation in its
own glide plane. It can be shown (e.g. using an atomistic model)
that this stress is identical whether the dislocation core resides
in the glide or the shuffle plane. This is due to the fact that the
far field, which results from the solution of the displacement-im-
posed boundary value problem of the Volterra dislocation, is writ-
ten in terms of the global modulus, G.
3. Results and discussion

We consider two shuffle dislocations – a perfect screw and a 60�
dislocation. Dislocations located on the shuffle plane are not disso-
ciated and are known to control plasticity at low temperatures.
Since the study presented here is athermal, the shuffle dislocations
are more relevant for the present discussion. For completeness, we
also discuss two partial dislocations, of 90� and 30� type, residing
in the glide set of planes.

Let us focus first on the GGS corresponding to the four cases
presented in Fig. 1. The traces of these surfaces in the direction
of the Burgers vector are presented in Fig. 3. The reference curve
is that for Case 1 in Fig. 1, in both shuffle and glide cases. The
unstable stacking fault energy (USFE) for the h110i shuffle trace
is 1.38 J/m2, while that for the h112i glide trace is 4.79 J/m2, in
excellent agreement with those reported in Ref. [19]. These values
should be compared with the USFE resulting from ab initio simula-
tions [20] which are 1.84 J/m2 and 2.51 J/m2, respectively.

The GGS corresponding to Case 2 is different from the reference
Case 1 for both shuffle and glide planes. The value of the USFE is
not significantly different, but the position of the maximum shifts
when a resolved shear strain of type 2 is applied. For the shuffle
plane, the USFE is 1.38 J/m2 for 1% and 3% strains, identical to the
reference value. The USFE for the glide plane is 4.79 and 4.77 J/
m2 at 1% and 3% strain, respectively. The shift of the peak position
indicates that the effective modulus changes as e increases in Case
2. As the peak shifts, the curvature of the c-surface at small relative
displacements across the glide plane (small strains) changes. The
curvature is proportional to the shear modulus. From the atomistic
model, at 3% strain the effective shear modulus of the shuffle plane
Gs decreases from 36.2 GPa to 35.3 GPa. Likewise, the correspond-
ing modulus for the glide plane, Gg, decreases from 117 GPa to
103 GPa. The effective modulus G decreases by 4.5% (to 41.6 GPa)
at 3% strain and by 10.7% (to 39 GPa) at 5% strain. The bonding
across the glide plane depends only on s and is essentially unaf-
fected by the far field, while the modulus reduction is due primar-
ily to the contribution of second-nearest neighbors interaction
across the glide plane. This observation is central in understanding
the mechanics controlling the Peierls stress.

When a shear stress with a non-zero component in the direc-
tion perpendicular to the Burgers vector is applied (Case 3), the
c-surface is essentially identical to that of the reference case. This
is in agreement with the well-established result that only the
stress resolved in the direction of the Burgers vector matters for
dislocation motion.



Fig. 3. c-Surface traces in the h110i direction for the shuffle plane (a) and the h112i direction for the glide plane (b). A zoom-in of the glide set c-surface trace close to the
peak is shown in (c). The four curves correspond to Cases 1–4 shown in Fig. 1 and the combination of Cases 2 and 4. The dashed vertical lines indicate the position jsj=jbj ¼ 0:5.
For Cases 2 and 3, |v| = 0.03; for Case 4, |v| = �0.03.
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Applying a compressive strain normal to the glide plane (Case
4) leads to different responses in the shuffle and glide planes.
The USFE of the shuffle plane decreases significantly relative to
the reference (1.3 and 1.13 J/m2 at 1% and 3% compressive strain,
e33, respectively), while that for the glide plane increases slightly
(4.84 and 4.95 J/m2 at 1% and 3% compressive strain, respectively).
The maximum is located at jsj=jbj ¼ 0:5 for all strains of type 4. This
significant reduction of the USFE under compressive stress was
also observed by Pizzagalli et al. [10] and appears to be a peculiar-
ity associated with bonding in diamond cubic Si.

The superposition of the strains corresponding to Cases 2 and 4
does not lead to synergetic effects. The GGS changes as if the two
effects add-up. For example, under a compressive normal strain
of 3% combined with a shear strain of 3%, the USFE of the shuffle
plane is 1.13 J/m2 and is reached at jsj=jbj ¼ 0:53. These values
are equal to the USFE under pure compression with a 3% strain,
and the value of the shift of the GGS maximum due to a 3% resolved
shear strain in the direction of b. This superposition holds up to
10% strain in both shear and compression.

With these c�surfaces one may evaluate the Peierls stress using
the PN model. The results are shown in Fig. 4a and b for the shuffle
and glide planes, respectively. The filled symbols correspond to
Cases 1 (data points at zero normal strain) and 4 (other data
Fig. 4. Variation of the Peierls stress, sPN, with the absolute value of the compressive norm
symbols, and 2 and 2 + 4, open symbols) and for the shuffle (a) and glide (b) plane
experimental data from Refs. [2,22] are also included for reference.
points). The open symbols represent combinations of Cases 2 and
4. The Peierls stress decreases with increasing normal strain for
the shuffle plane. This effect is due to the reduction of the USFE
with the normal strain seen in Fig. 3a, Case 4. When the GGS is
used (Case 2), the Peierls stress drops even more. This decrease is
related to the reduction of the modulus, G. At strains corresponding
to the Peierls stress (6–9 GPa range), the modulus, G, decreases by
approximately 15–20% relative to the value of 43.6 GPa reported
above. As observed in Fig. 4a, the Peierls stress for the screw dislo-
cation is 20% smaller when the GGS is used, while the Peierls stress
for the 60� dislocation is 13% smaller, both reductions being eval-
uated relative to Case 1. This clarifies the separate contributions
of these two mechanisms to defining the value of the Peierls stress.

In other covalently bonded crystals with diamond cubic struc-
ture (diamond, SiC) one observes both increasing and decreasing
trends for the Peierls stress with pressure [10].

These values should be compared with numerical data and
experimental estimates available in the literature. Most of these
are obtained for systems with zero normal strain (pressure). The
Peierls stress computed directly from atomistic simulations using
the same potential are indicated by the two arrows. The values
are 5.8 GPa for the screw dislocation and 5.1 GPa for the 60� dislo-
cation [4]. These are both below the PN estimates for Case 1 (8.8
al strain, e33 < 0, (Case 4) for different in-plane shear values (Cases 1 and 1 + 4, filled
s. The arrows in (a) indicate results from direct atomistic simulations. Available
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and 5.8 GPa, respectively) and hence the reduction introduced by
the use of the GGS in Case 2 (to 6.9 GPa and 5 GPa, respectively)
improves the agreement with the direct simulation data. Pizzagalli
and Beauchamp [7] provide an estimate of 4.16 GPa for the Peierls
stress of the shuffle screw dislocation based on first principle sim-
ulations. Furthermore, Wang [21] and Joos and Duesbery [5] use
the formula estimating the Peierls stress in terms of the length of
the Burgers vector and the interplanar separation,
sPN ¼ G

1�v ð�4pd=jbjÞ, and obtain 5.77 and 4.6 GPa for the shuffle
screw and 60� perfect dislocations, respectively.

Experimental estimates of the critical stress are inherently indi-
rect. These are obtained starting with the yield stress values mea-
sured at finite temperature, which are then extrapolated to 0 �K.
Suzuki and Kojima [22] report 6.4 GPa for an unspecified disloca-
tion type. A value for the Peierls stress for Si subjected to a pressure
of 5 GPa is provided by Rabier et al. [2]. This pressure corresponds
to a normal strain of 3.2% and the reported critical stress extrapo-
lated to 0 �K is 1.5 GPa. This is in good agreement with the numer-
ical data obtained here (Fig. 4a).

For completeness, the Peierls stresses for the two glide-set par-
tials, 90� and 30�, are shown in Fig. 4b. The conclusions are similar
to those discussed for the shuffle plane. The Peierls stress increases
slightly with increasing compressive stress due to the slight in-
crease of the USFE observed in Fig. 3b. Upon using the GGS, the
estimate of the Peierls stress decreases substantially. This data
supports the Peierls stress-controlling mechanisms discussed in
conjunction with the shuffle plane.

4. Conclusions

Two ideas are discussed in this article. The first refers to the
physical mechanisms controlling the Peierls stress. The critical
stress is controlled mainly by the bonding across the glide plane,
however, as the resolved applied shear stress increases, non-linear
elasticity of the surrounding material lowers the instability thresh-
old. The resolved shear stress does not modify the nature of bond-
ing across the glide plane, leaving the USFE unchanged. The second
advance is related to the use of the GGS in conjunction with the PN
model for predicting the Peierls stress. We suggest that, from a
physical point of view, this is more meaningful than the use of
the regular c-surface (Case 1).
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