
VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013

J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds)

METHODS AND TOOLS FOR PARALLEL ANISOTROPIC MESH
ADAPTATION AND ANALYSIS

MARK S. SHEPHARD*, E. SEEGYOUNG SEOL*, CAMERON W. SMITH*,
MISBAH MUBARAK*, ALEKSANDR OVCHARENKO* AND ONKAR SAHNI*

*Scientific Computation Research Center
Rensselaer Polytechnic Institute

Troy, New York 12180
e-mail: shephard@rpi.edu, smithc11@rpi.edu, seols@rpi.edu, mubarm@rpi.edu,

shurik.asa@gmail.com, sahni@rpi.edu

Key words: Mesh adaptation, boundary layer, parallel adaptation, dynamic load balancing.

Summary. It is well known that adaptive methods provide the most effective means to obtain
reliable solutions and control the amount of computation required. However, for many classes
of problems the best adaptive method still requires a level of computation that demands
massively parallel computing. This paper presents a set of technologies for parallel adaptive
simulation that includes a parallel mesh infrastructure, dynamic load balancing procedures
and parallel anisotropic mesh adaptation. Examples of anisotropically adapted meshes for
real-world fluid flow problems, including boundary layer meshes, are given.

1 INTRODUCTION

Adaptive anisotropic unstructured mesh technologies support the effective analysis of
complex physical behaviours modelled by partial differential equations over general three-
dimensional domains. Although adaptively defined anisotropic meshes can have two to three
orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy,
there are many cases where the desired size of the adapted meshes are so large that they can
only be solved on parallel computers. The execution of a simulation on a parallel computer
requires the mesh to be distributed over the nodes and cores of the parallel computer.

The design of an infrastructure supporting adaptive unstructured meshes on massively
parallel computers must consider the management of mesh information, the modification
operations to be carried out on the meshes, and the scalability of the algorithms. The most
basic functionality of the mesh infrastructure is to support the distribution of the mesh over
the cores of the parallel computer. In adaptive simulations additional functionality is needed
to adapt the mesh in parallel as the simulation process proceeds. A key requirement of
effective parallel simulation is maintaining equal distribution, or load balance, of the
computations, especially for the typically dominant analysis-related computations. Since
mesh adaptation locally increases and/or decreases the mesh density, methods are needed to
redistribute the mesh in order to regain load balance for the subsequent analysis step.

This paper presents a set of three components that are needed to support geometry-based
parallel adaptive simulations. The first component is a parallel mesh infrastructure designed to
support evolving meshes of any size on massively parallel computers. The second component

Mark S. Shephard, et al.

 2

supports dynamic load balancing procedures that are capable of regaining the load balance of
meshes as they adaptively evolve. The third component is a generalized mesh modification
procedure that can execute anisotropic mesh adaptation, including boundary layer meshes, in
parallel on distributed meshes.

2 PARALLEL MESH INFRASTRUCTURE
It is clear that simulations on meshes with millions and billions of elements require the mesh
to be distributed over the compute cores of the massively parallel computers that execute the
simulation. The most common form of mesh decomposition over distributed memory
compute cores is to partition into a set of parts where the individual parts are groups of mesh
entities. Between neighboring parts, the number of mesh entities on the common boundary is
kept as small as possible in order to minimize communications. In addition to the mesh
maintaining parallel distribution information, it must also maintain information relating it to
the high-level problem domain definition to effectively support general mesh adaptation.
This information allows mesh adaptation processes to account for the actual shape of the
problem domain as the mesh is adapted and not be restricted to the geometric approximation
defined by the initial mesh [12]. Rebalancing the workload as the mesh is adapted requires
effective methods to migrate mesh entities between parts and update the inter-part
communication links. The Parallel Unstructured Mesh Infrastructure (PUMI) is being
developed to support the needs of adaptively evolving meshes on massively parallel
computers [22], [23].

The geometric model is the high-level (mesh independent) definition of the domain that
consists of a set of topological entities with adjacencies and associated shape information. A
general non-manifold boundary representation [26] is needed to support the full range of
requirements that often include multiple material domains and reduced dimension entities as
elements in the mesh. PUMI interacts with the geometric model through a functional
interface that supports the ability to interrogate the geometric model for the adjacencies of the
model entities and geometric information about the shape of the entities [2], [24]. The use of
such a representation allows the mesh adaptation procedures to interact with the geometric
domain through simple topologically driven geometric interrogations to ensure that the mesh
modifications are consistent with the actual geometric domain [12]. Other interactions with
the geometric domain definition support the proper transformation of the input boundary
condition fields onto the mesh and using geometric interrogations to the original geometry to
support element integrations for mesh entities bounded by curved domain boundaries [7].
Effective execution of mesh adaptation and field transformation procedure requires a
complete mesh representation in which the complexity of any mesh adjacency interrogation is
O(1) (i.e., not a function of mesh size [3], [22]). Meeting this requirement does not require the
explicit storage of every one of the four levels/orders of mesh entities (vertex, edge, face and
region) or all of the 12 possible adjacencies. However, it is critical to use a complete mesh
representation [20], [22] so that information on any mesh entity or mesh entity adjacency can
be obtained in O(1) time.

Mark S. Shephard, et al.

 3

2.1 Partition Model
When a mesh is distributed to N parts, each

part is assigned to a process or processing core. A
part is a subset of topological mesh entities of the
entire mesh denoted by Pi, 0 ≤ i < N. Figure 1
depicts a 2-D mesh that is distributed to three
parts. Each part is treated as a serial mesh with the
addition of part boundaries to describe groups of
mesh entities that form the links between parts.
Mesh entities on part boundaries, called part
boundary entities, are duplicated on all parts for
which they bound other higher order mesh
entities. Mesh entities that are not on any part
boundaries exist on a single part and are called
interior mesh entities (with respect to the part). The boundary between the parts in different
processes is an inter-process part boundary and the boundary between the parts on the same
process is an intra-process part boundary.

For each mesh entity, the residence part set [22], [23] is a set of part ID(s) where a mesh
entity exists based on adjacency information: If mesh entity Mi

d is not adjacent to any higher
dimension entities, the residence part set of Mi

d is the ID of the single part where Mi
d exists.

Otherwise, the residence part set of Mi
d is the set of part IDs of the higher order mesh entities

that are adjacent to Mi
d. Note that part boundary entities share the same residence part if their

locations with respect to the part boundaries are the same.
In the 2-D mesh illustrated in Figure 1, the part boundary entities are the vertices and edges

that are adjacent to mesh faces on multiple parts. The residence part set of vertex Mi
0 and edge

Mj
1 are {P0, P1, P2} and {P0, P1}, respectively.
For the purpose of representation of a partitioned mesh and efficient parallel operations, a

partition model is developed.
• Partition (model) entity: A topological entity, Pi

d, which represents a group of mesh
entities of dimension d or less, which have the same residence part set. One part among
all parts in residence part set is designated as the owning part.

• Partition classification: Unique association of mesh entities to a partition model entity.
Figure 2 depicts the partition model of the distributed

mesh. The mesh vertex Mi
0, depicted in Figure 1, duplicated

on three parts, is classified on the partition vertex P0
0 such

that P0
0 represents mesh vertex duplicated on part {P0, P1,

P2}, P0
1, P1

1, and P2
1 represent mesh edges and vertices

duplicated on part {P0, P1}, {P0, P2}, and {P1, P2},
respectively. At the mesh entity level, the proper partition
classification is needed to maintaining up-to-date residence
part set and owning part information which is key to effective
support of an evolving distributed mesh. As illustrated in
Figure 3, the partition model can be viewed as a part of
hierarchical domain decomposition.

 Figure 1: A distributed 2-D mesh.

Figure 2: A partition model of

the mesh in Figure 1.

Mark S. Shephard, et al.

 4

 (a) Geometric Domain (b) Partition Model (c) Partitioned Mesh

Figure 3: Domain representation hierarchy: (a) geometric model, (b) partition model and (c) partitioned mesh.

2.2 Migration
Mesh migration is a procedure that moves mesh entities from one part to another.

Migration supports: (i) partitioning, (ii) dynamic load balancing, and (iii) obtaining mesh
entities needed for mesh modification operations. In the mesh migration procedure, a partition
object is the basic unit to assign a destination part id. It can be either a mesh entity not on the
boundary of any higher dimension mesh entities or a group of mesh entities contained in a
single part called p-set [27]. Figure 4 presents the pseudo code of migration algorithm while
figure 5 shows the steps involved.

INPUT: a list of partition objects and destination parts. See Figure 5(a).
OUTPUT: a mesh with new partitioning

Step 1. Collect all mesh entities that will be effected by migration.
Step 2. For entities collected in step 1, determine residence part set and

update partition classification based on new partitioning. See Figure 5(b).
Step 3: Among entities collected in step 1, collect entities to remove

based on residence part set.
Step 4. Exchange p-set and entities along with partition classification.

See Figure 5(c).
Step 5. For entities collected in step 1, and newly created entities on

destination parts, update part boundary links.
Step 6: Delete entities collected in step 3. See Figure 5(d).

Figure 4: Pseudo code of migration algorithm.

2.3 Ghosting
A class of operations on mesh entities near a part boundary such as error estimation and

element shape optimization often require data from adjacent mesh entities that are internal to
neighboring parts. This information could be obtained by the repeated communication
requests between parts. However, such communications adversely affect scalability and
performance. Thus it is desirable to minimize them and localize the data for part boundary
computations. In cases where this needed data is static for the entire operation, such as
solution fields used in error estimation, or change slowly, such as coordinates in element
shape optimization, an alternative is to provide all the needed information through local

Mark S. Shephard, et al.

 5

copies of the remote data. The common approach creates one or more layers of ghost copy of
the needed un-owned mesh and field data near part boundaries [8], [25].

Figure 5: Migration steps demonstrated on a 2-D mesh.

To support a full range of ghost requirements for unstructured meshes, a generalized N-
layer ghosting parallel ghosting algorithm has been developed and implemented [15] in
PUMI. The algorithm supports the creation of layers of copied mesh entities of desired order
and their bounding entities based on specification of a bridge dimension using mesh
adjacencies. The key components of the ghost creation process are:
• Ghost dimension: Permissible options in a topological mesh representation can be

regions, faces or edges. As ghost entities are specified through a bridge dimension, the
lowest possible dimension of a ghost entity can be an edge since the minimum bridge is
a vertex. Vertices are ghosted if they are part of higher dimension ghost entities. For
example, in a 1-D mesh, the only possible ghost dimension is an edge and the vertices
that are on the boundary of ghost edges can be ghosted to create the ghost edges.

• Bridge dimension: Ghost entities are specified similar to second order adjacencies
using a bridge entity. The bridge entity must be of lower topological order than the
ghost and can be a face, edge or a vertex. Two common examples of ghosted entities
are: (i) the mesh regions that are bounded by faces classified on a partition model face,
and (ii) the mesh regions that are bounded by vertices classified on partition model
vertices, edges or faces. A less common, but supported case would be the mesh edges
that are bounded by vertices classified on partition model vertices, edges or faces.

• Number of layers: Number of layers of ghost entities. Layers are measured from the
part boundary.

Mark S. Shephard, et al.

 6

For example, to get two ghost layers of regions, bridged by bounding vertices, the ghost
dimension is set to region, the bridge dimension set to vertices and number of layers is 2.
When multiple ghost layers are requested by an application, the ghosting process starts with
the first (innermost) layer of ghosts adjacent to part boundary. Figure 6 shows zero, one and
two layers of ghosted mesh regions based on a vertex bridge.

 (a) partition with no ghosting (b) one layer (c) two layers

Figure 6: Application of region ghosting based on a vertex-based bridge.

Figure 7 illustrates the ghosting procedure with ghost dimension 2, bridge dimension 1 and
the number of layers 1: (a) initial mesh (b) collect mesh faces to ghost which are bounded by
partition model edges (c) for mesh faces and their downward adjacent entities collected in
step b, determine the destination part id(s) to migrate to based on residence part set (d)
exchange entities (e) at the original copy, update ghost copy information.

Figure 7: 2-D Ghosting steps.

A ghost entity stores information about its owner entity and the part where the owner entity
exists. At a minimum, a ghost entity’s owner must also store information about its ghost
copies that exist. This synchronizes the ghost copies synchronized with their owner entities
and eliminates the need for inter-part communication if there are any queries about ghost
entity ownership. The inter-part communication required in the ghost creation process is
optimized by utilizing a general-purpose package that sends messages within a fixed process

Mark S. Shephard, et al.

 7

neighborhood by packing small MPI messages and avoiding unnecessary calls to MPI
collective operations [18].

3 DYNAMIC LOAD BALANCING

Another key component of supporting unstructured mesh simulation workflows is dynamic
load balancing. At a minimum, the mesh needs to be partitioned such that resulting adapted
mesh fits within the memory of each node onto which the mesh is partitioned. PDE analysis
additionally requires consideration of the workload by accounting for the different entity
types defining the computation load of the phases of the analysis. In both cases peak
imbalance determine performance since one heavily loaded processor can force all the others
to sit idle while it completes. Small valleys (with load below average) leave a few processes
idle having a minimum affect of scaling. Therefore, the reduction of peaks for each workflow
step is critical for parallel performance and scaling. A dynamic partitioning algorithm must
also account for the connectivity of the unstructured mesh such that the part boundaries are
optimized to minimize the amount of communications across neighboring parts.

The most powerful partitioning procedures for meshes are the graph and hypergraph-based
methods as they can explicitly account for application defined balance criteria via graph node
weights, and one piece of the mesh connectivity information via the definition of graph edges.
Hypergraph-based methods can further optimize the mesh partition at the cost of increased
run-time over the graph-based methods [4]. Graph based methods balance the weighted values
of the graph nodes while trying to minimize the number of graph edges between parts. When
partitioning an unstructured mesh, the graph nodes are selected to be the appropriate set of
mesh entities, where in most cases the set of graph nodes are all the mesh entities of the
highest order (mesh regions in 3D and mesh faces in 2D). The graph edges are defined by the
mesh adjacencies that happen to be of importance to the simulation step for which the
partition is being constructed. For example in the case of linear finite elements where the
unknowns are at mesh vertices, creating a graph edge between each mesh regions that shares a
vertex is important, while in a face-based finite volume procedure graph edges should be
defined between the pair of mesh regions that share a face.

In addition to the use of standard graph-based procedures, consideration is being given to
drive selected dynamic load balancing operations directly from the adjacencies of the mesh
entities since it is the selected adjacency information that defines the graph edges in standard
graph-based partitioners. Two advantages of a tool that performs parallel Partitioning using
Mesh Adjacencies (ParMA) are: (i) it can more easily account for the balancing of mesh
entities of different dimensions at the same time, and (ii) could potentially be more
computationally and memory efficient since, by working with the existing mesh topological
information, it avoids the need to construct a separate partition graph.

The ability to use ParMA to effectively improve mesh partitions in-turn to improve the
scalability of finite element solvers has been clearly demonstrated [28]-[31], where
consideration was given to the balance of mesh regions, critical for equation formation, as
well as mesh vertices, critical for equation solution of linear finite elements. Recent
extensions to ParMA have generalized these procedures such that mesh entities of all orders,
with assigned priority, can be considered [23]. For example, in the case of quadratic finite
elements, there are unknowns at both the mesh vertices and mesh edges. Thus in that case

Mark S. Shephard, et al.

 8

there is a high priority given to balancing the mesh edges and vertices, since equation solution
is the dominating computational step, while the mesh regions are given a lower priority, since
their balance controls the scaling of the equation formation step.

A second area of application of ParMA currently being investigated is repartitioning before
a mesh adaptation step. Typically the mesh before a mesh adaptation step is well balanced,
however, since the mesh adaptation procedures are going to refine the elements is some areas
and coarsen them in others, the adapted mesh would be dramatically out of balance after
adaptation, to the point that exceeding available memory becomes quite likely. Thus before
the mesh is adapted, the new mesh size information is used to assign weights to the current
mesh entities (>1 in areas where the mesh will get finer, <1 in areas where the mesh will get
coarser) and the mesh in rebalanced. The execution of this process yields a mesh that is very
close to being well balanced after mesh adaptation [29]. A full graph-based predictive
partitioning [29] is used before mesh adaptation to ensure it will execute without problems
and again at the end to refine the balance for the next analysis step. Noting that the only goal
of the current predictive load balancing is to load balance the subsequent analysis after the
mesh is adapted, it is not considering the scaling of the adaptive process itself, and that even
with its current goals, the load balance must be improved between mesh adaptation and the
next analysis step. This indicates that there is potential for improving the process. The
primary idea under current consideration, potentially as the mesh is being adapted, is to merge
neighboring parts in which the number of mesh entities after adaptation will be less than, or
equal to, that of a balanced part, and to split parts that will be heavily refined into a number of
parts such that each has about the average number of mesh entities after adaptation.

4 PARALLEL ANISOTROPIC MESH ADAPTATION

Many physical problems of interest involve directional solution features. To address such
cases adaptive mesh control methods are designed to match an anisotropic mesh size field
defined through the application of a posteriori correction indicators [1], [5], [9], [19]. In the
case of viscous flow problems is it is important to supplement the general anisotropic mesh
adaptation procedures with ones that can maintain a semi-structured boundary layer mesh on
selected boundaries [5], [10], [11], [17], [21]. The two approaches to creating the adaptive
anisotropic meshes given an adaptively defined anisotropic mesh size field, including adapted
boundary layers, are complete domain re-meshing methods, and methods that use local mesh
modification. Adaptive re-meshing accounts well for curved domains and mesh resolution.
However, this is at the cost of re-meshing the entire domain. A more serious concern of the
use of global re-meshing, especially for problems where accurate transfer of the solution
fields to the new mesh is required, is both the cost and accuracy of general mesh-to-mesh
solution transfers. Conversely, mesh adaptation based on local mesh modification can be a
faster method that when coupled with local solution transfer methods, can provide more
accurate solution transfer. However, the set of local mesh modification operators must be rich
enough to be able to produce the desired anisotropic mesh configurations, while accounting
for the curved domain geometry (e.g., as defined by the CAD). A local mesh modification-
based procedure that meets these requirements builds off a complete set of mesh modification
operations that include compound operators [13] and that maintains semi-structured boundary
layers (if any) [17], [21], while local operations also ensure that the adapted mesh conforms to

Mark S. Shephard, et al.

 9

the curved domain geometry [12], [13].
The parallel implementation of the general mesh modification operators work directly with

the partitioned mesh by querying the PUMI provided partition model to coordinate operations
during mesh refinement. Mesh coarsening and swapping operations are supported by PUMI
mesh migration functions to move required mesh entities between parts [6]. The parallel
migration procedures have been extended to include mesh sets that require stacks of semi-
structured mesh entities to be migrated together thus supporting the parallel execution of
semi-structured boundary layer adaptation [17].

Figure 8 shows a simple example of parallel mesh adaptation including a boundary layer.
Figure 8(a) shows an initial coarse mesh that includes a boundary layer while Figure 8(b)
shows an adapted mesh on the same simple geometry. In more general cases, the adaptation of
the boundary layer can locally reduce the anisotropy to the point where it is desirable to
convert the top portions of the boundary layer to be a regular unstructured mesh such that
more general unstructured mesh modification operations can be applied. To support this
functionality the mesh adaptation procedures need additional extensions to deal with the
pyramid elements that are introduced by local trimming of the boundary layer mesh (Figure 9)
[17].

 (a) Initial Mesh (b) Adapted Mesh

Figure 8: 2-D Boundary layer adaptation.

Figure 9: An example requiring the introduction of pyramid elements to allow the trimming boundary layers.

Tetrahedra

Prisms

Pyramids

Mark S. Shephard, et al.

 10

5 PARALLEL ADAPTIVE EXAMPLES
The first example is a viscous flow simulation of a NASA CIAM scramjet case run with a

free stream Mach number of 6.2, and a free stream reference temperature of 203.5 Kelvin.
The initial boundary layer mesh has 2.9M regions with a mid-section cut-away view of the
boundary layer mesh, including close-up of the inlet, is shown in the top two images in Figure
10. The adapted boundary layer mesh has 43M regions and is shown in the bottom two
images in Figure 10.

Figure 10: Initial and anisotropic adapted meshes for a scramjet engine.

The second example is a multiphase flow in which a fluid in being injected into air. In this
example the interfaces between the fluid and air is modeled using a level set method [16]. The
mesh adaptation procedure is keyed to perform anisotropic mesh adaptation at the zero level
set that represents the dynamic two-fluid interface. Figure 11 shows the anisotropically
adapted mesh at three different time steps in the simulation.

6 CLOSING REMARKS

This paper provides an overview of a set of procedures to perform parallel anisotropic
mesh adaptation of unstructured meshes that can include semi-structured boundary layer
meshes. The parallel mesh infrastructure, PUMI, parallel partitioning using mesh adjacencies,
ParMA and mesh adaptation procedures, MeshAdapt, have been implemented using a
component-based approach in which all interactions are controlled through functional
interfaces. This approach allows these tools to be efficiently coupled with various
unstructured mesh analysis codes and other mesh related components such as mesh
generators, dynamic load balancers, etc. See http://www.scorec.rpi.edu/software.php for

Mark S. Shephard, et al.

 11

information on, and access to, these components.

Figure 11: Anisotropic adapted meshes for a two-phase flow problem.

REFERENCES

[1] Alauzet, F., Li, X., Seol, E.S. and Shephard, M.S., “Parallel anisotropic 3D mesh
adaptation by mesh modification”, Engineering with Computers, 21 (2006) 247–258.

[2] Beall, M.W., Walsh, J. and Shephard, M.S., “A comparison of techniques for geometry
access related to mesh generation,” Engineering with Computers, 20(3):210-221, 2004.

[3] Beall, M.W. and Shephard, M.S., “A general topology-based mesh data structure,” Int. J.
Numerical Methods in Engineering, 40(9):1573–1596, 1997.

[4] Boman, E.G., Devine, K.D., Fisk, L.A., Heaphy, R., Hendrickson, B., Leung, V.,
Vaughan, C., Catalyurek, U., Bozdag, D. and Mitchell, W., “Zoltan home page,”
September 2011, http://www.cs.sandia.gov/Zoltan.

[5] Botasso, C.L., “Anisotropic mesh adaption by metric-driven optimization”, Int. J. Numer.
Meth. Engng., 60 (2004) 597–639.

[6] de Cougny, H.L. and Shephard, M.S., “Parallel Refinement and Coarsening of
Tetrahedral Meshes”, Int. J. Numer. Meth. Engng., 46:1101-1125, 1999.

[7] Dey, S., Shephard M.S. and Flaherty, J.E., “Geometry Representation Issues Associated
with p-Version Finite Element Computations”, Comp. Meth. App. Mech. and Eng.,
150(1-4):29-55, 1997.

[8] Dreher, J. and R. Grauer, R., “Racoon: A parallel mesh-adaptive framework for
hyperbolic conservation laws”, Parallel Computing, 31(8-9):913–932, 2005.

[9] Frey, P.L. and Alauzet, F., “Anisotropic mesh adaptation for CFD computations”,
Computer Meth. Applied Mechanics and Engineering, 194:5068–5082, 2005.

[10] Kallinderis Y. and Kavouklis, C., “A dynamic adaptation scheme for general 3-D hybrid
meshes”, Comput. Methods Appl. Mech. Engrg. 194:5019–5050, 2005.

[11] Khawaja, A., Minyard, T. and Kallinderis, Y., “Adaptive hybrid grid methods”, Comput.
Methods Appl. Mech. Engrg., 189:1231–1245, 2000.

[12] Li, X., Shephard, M.S. and Beall, M.W., “Accounting for curved domains in mesh
adaptation,” Int. J. Numerical Methods in Engineering, vol. 58, no. 2, pp. 247–276, 2003.

[13] Li, X., Shephard, M.S. and Beall, M.W., “3-D Anisotropic Mesh Adaptation by Mesh
Modifications”, Comp. Meth. Appl. Mech. Engng., 194(48-49):4915-4950, 2005.

[14] Lu, Q., Shephard, M.S., Tendulkar, S. and M.W. Beall, M.W., “Parallel Curved Mesh
Adaptation for Large Scale High-Order Finite Element Simulations”, Proc. 21st
International Meshing Roundtable, Springer, NY, pp. 419-436, 2012.

Mark S. Shephard, et al.

 12

[15] Mubarak, M., “A parallel ghosting algorithm for the flexible distributed mesh database
(FMDB), Scientific Computation Research Center, RPI, Troy, NY, 2011,
http://www.scorec.rpi.edu/reports/view_report.php?id=548.

[16] Nagrath, S., Jansen, K.E., and Lahey, R.T., Jr., “Computation of incompressible bubble
dynamics with a stabilized finite element level set method”, Computer Methods in
Applied Mechanics and Engineering, 194:4565-4587, 2005.

[17] Ovcharenko, A., Chitale, K., Sahni, O., Jansen, K.E., Shephard, M.S., Tendulkar, S. and
Beall, M.W., “Parallel Adaptive Boundary Layer Meshing for CFD Analysis”, Proc. 21st
International Meshing Roundtable, Springer, NY, pp. 437-455, 2012.

[18] Ovcharenko, A., Ibanez, D., Delalondre, F., Sahni, O., Jansen, K.E., Carothers, C.D. and
Shephard, MS. “Neighborhood Communication Paradigm to Increase Scalability in
Large-Scale Scientific Applications” Parallel Computing, 38(3):140-156, 2012.

[19] Park, M.A., “Parallel Anisotropic Tetrahedral Adaptation”, 46th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA 208-917, 2008.

[20] Remacle, J.F., and Shephard, M.S., “An algorithm oriented mesh database,” Int. J. Num.
Methods in Engineering, 58(2):349–374, Sep. 2003.

[21] Sahni, O., Jansen, K.E., Shephard, M.S., Taylor, C.A. and Beall, M.W., “Adaptive
boundary layer meshing for viscous flow simulations”, Engineering with Computers,
24:267–285, 2008.

[22] Seol, E.S. and Shephard, M.S., “Efficient distributed mesh datastructure for parallel
automated adaptive analysis,” Eng. with Computers, 22(3-4):197–213, Nov. 2006.

[23] Seol, S., Smith, C.W., Ibanez, D.A. and Shephard, M.S., “A Parallel Unstructured Mesh
Infrastructure”, http://www.scorec.rpi.edu/reports/view_report.php?id=591, 2012.

[24] Shephard, M.S., “Meshing environment for geometry-based analysis”, Int. J. Numerical
Methods in Engineering, 47(1-3):169-190, 2000.

[25] Stewart, J.R. and H.C. Edwards, H.C, “A framework approach for developing parallel
adaptive multiphysics applications”, Finite Elements Analysis and Design, 40(12):1599–
1617, 2004.

[26] Weiler, K.J., “The radial-edge structure: a topological representation for non-manifold
geometric boundary representations,” Geometric Modeling CAD Appl., pp. 3–36, 1988.

[27] Xie, X, Seol, S., Shephard. M.S., “Generic Components for Petascale Adaptive
Unstructured Mesh Simulations”, Eng. with Computers, DOI 10.1007/s00366-012-0288-
4, Accepted Sep. 2012.

[28] Zhou, M., Sahni, O., Xie, T., Shephard, M.S. and Jansen, K.E., “Unstructured Mesh
Partition Improvement for Implicit Finite Element at Extreme Scale”, Journal of
Supercomputing, 59(3): 1218-1228, 2012.

[29] Zhou, M., Xie, T., Seol, S., Shephard, M.S. Sahni, O. and Jansen, K.E. “Tools to Support
Mesh Adaptation on Massively Parallel Computers”, Engineering with Computers,
28(3):287-301, 2012

[30] Zhou, M., Sahni, O., Shephard, M.S., Devine, K.E. and Jansen, K.E., “Controlling
unstructured mesh partitions for massively parallel simulations”, SIAM J. Sci. Comp.,
32(6):3201-3227, 2010.

[31] Zhou, M., Sahni, O., Shephard, M.S., Carothers,C.D. and K.E. Jansen, J.E., “Adjacency
based reordering algorithm for acceleration of finite element computations”, Scientific
Programming, 18(2):107-123, 2010.

