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Simulations of turbulent flows are challenging and require tight and varying mesh spac-
ings near the walls that depend on the turbulence models used. Semi-structured meshes
are often used in the turbulent wall boundary layers due to their ability to be strongly
graded and anisotropic. To reduce the discretization errors in the solution, an adaptive
approach becomes essential due to the lack of good a priori error indicators. Properties of
the turbulent boundary layers can be directly calculated from the flow physics and can be
used to guide adaptivity. This paper introduces a new approach for adaptivity of the mesh
boundary layers using flow physics indicators, in combination with classical numerical error
indicators. The effectiveness of the adaptive techniques is analyzed by applying them to
transonic flow problems with shock wave and boundary layer interactions.

Nomenclature

ρ Density, kg/m3

Pt, Tt Stagnation pressure, Pa and stagnation temperature, K
τw Wall shear stress
uτ Friction velocity, m/s
µ Absolute viscosity, kg.m/s
ν Kinematic viscosity, m2/s
y+ Dimensionless distance from the wall (ρuτy/µ)
u+ Dimensionless velocity (u/uτ )
δ99 Velocity boundary layer thickness
Cp Coefficient of pressure
a Speed of sound
b Span of the wing
clocal local cord of the section
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I. Introduction

The accuracy of CFD simulations strongly depends on the mesh resolution and quality. In complex flow
problems, it is difficult to determine the adequate mesh resolution a priori. In such cases, an initial mesh is
used to get a first estimate of the flow solution, and the mesh is adapted using a posteriori error indicators.
In order to expedite the numerical computations, the resolution needs to be applied in a local fashion, which
can be achieved by locally modifying the mesh elements, based on a size field. Traditionally, scalar error
indicators have been used to calculate the size field, leading to isotropic elements. But most flow problems
of interest exhibit highly anisotropic features such as boundary layers, shear layers, shock waves etc. These
features are most efficiently resolved with anisotropic elements, i.e. elements oriented and stretched in a
certain manner.

For viscous flows, boundary layers are a prominent flow feature and need to be resolved accurately.
Moreover, if the boundary layers are turbulent, which is often the case for high Reynolds number flows,
mesh spacings in this region need to be very fine. Using isotropic elements here puts excessive demands
on the computational resources due to extreme increase in the size of the mesh. Using fully unstructured
anisotropic elements creates poorly shaped elements, which may cause problems for the flow solver. To
remedy these problems, layered, orthogonal and graded mesh elements, called mesh boundary layers of a
given thickness are used near the no-slip walls and the rest of the flow region is meshed with unstructured
elements. A common method to construct these meshes is advancing layers method.1,2 During adaptivity,
it is desirable to maintain this advantageous layered structure of elements. Mesh adaptation procedures
have been implemented for mesh boundary layers,3 and recently have been extended to parallel systems.4

However, application of these procedures to highly turbulent and high speed flows is still a topic of research.
Turbulent boundary layers have been studied extensively, both experimentally and computationally, and

the resolution requirements near the walls are well understood for different modeling approaches.5–8 These
resolution requirements are usually defined with a dimensionless distance (y+) and vary according to the
modeling methods (RANS, LES, DNS) and the type of wall treatment (resolved, modeled). Since the mesh
spacing requirements in the boundary layer region largely depend on the flow physics, it is advantageous to
use this insight to drive the adaptivity, locally. Moreover, high speed flows pose a greater challenge in the
regions where shock waves and boundary layers interact. The mesh sizes in these regions need to be carefully
chosen.

This paper focuses on thickness adaptation of mesh boundary layers based on the knowledge of the
turbulence model used for the simulations and the flow physics of the boundary layers. Algorithms are
outlined to set the mesh attributes in the boundary layers based on the physics of attached boundary layers.
Special strategies for detection and adaptivity of regions like separated boundary layers and shock wave -
boundary layer interaction zones are discussed.

The article is organized as follows. Section II describes anisotropic adaptivity techniques and how they
are extended to boundary layer meshes. Section III outlines the new strategies that we have developed to
calculate thickness specifications of the mesh within the boundary layers. Section IV illustrates the capability
of our approach by showcasing results of two transonic flow applications.

II. Anisotropic adaptivity and boundary layers

Boundary layer meshes are widely used in simulations of the turbulent flows. These semi-structured
meshes provide an easy way to achieve elements with anisotropy of 10,000 or more, without creating poorly
shaped elements with extremely large dihedral angles which would severely influence the flow resolution,
at least locally. Fig. 1 shows an example of a boundary layer mesh for a simple pipe geometry.4 For 3-D
meshes, boundary layer meshes are comprised of prisms and pyramids, whereas the unstructured region is
meshed with tetrahedra.

The important parameters of the mesh boundary layers are:

1. First cell height (Distance of the first mesh point from the wall surface) (to)

2. Total height of the mesh boundary layer (T )

3. Total number of layered elements (n)

4. Growth factor(r)
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Figure 1. Mesh boundary layers for a pipe geometry Figure 2. A 2D sketch of the boundary layer mesh

The interdependence of these parameters is given by the following equation:

T = to

i=n∑
i=1

r(i−1) (1)

The growth factor is the multiplication factor by which the height of every succeeding element increases
with respect to the previous element in that layer, away from the wall. Three of the above parameters can
be chosen independently, and the fourth one is determined through eq. 1. Fig. 2 shows the general structure
of a boundary layer mesh viewed in 2D and shows some of the key attributes of these meshes. Out of these,
to and T are physically the most important. As described in section III, we use flow physics information
from the boundary layer to set these parameters. The in-plane resolution of the boundary layers and the
mesh sizes in the unstructured region, are controlled by the numerical error indicators, which are explained
next.

A. Hessian driven adaptivity

Outside the boundary layer, the mesh can also be anisotropic. Since the level of anisotropy required outside
the boundary layer is much less, general unstructured anisotropic meshes are used and the mesh anisotropy
is defined using the well known Hessian based methods.9,10 The anisotropic adaptivity used in this work,
is based on the local modifications of the mesh elements following a mesh metric field.11 The mesh metric
is derived from a Hessian, which is a symmetric matrix constructed from the second derivatives of the flow
solution variables. Traditionally speed and density are chosen as the solution variables, but a combination
of different variables can also be used. It is possible to obtain local estimates of the interpolation error in
different norms, based on the Hessian.12

The Hessian matrix is decomposed as H = RΛRT , where R is the matrix of eigenvectors and Λ is
the diagonal matrix of eigenvalues. The directions associated with the eigenvectors are referred to as the
principal directions and the eigenvalues are equivalent to the second derivatives along these directions. High
eigenvalues are associated with high error in the corresponding direction. Similarly, a low eigenvalue means
lower error in the corresponding direction.13 Mesh sizes (mesh edge lengths in particular directions) can be
calculated as scaled inverses of the eigenvalues at each vertex of the mesh.

The mesh metric field can be thought of as a transformation matrix which defines a mapping of an ellipsoid
in the physical space into a unit sphere in the metric space, as shown in fig. 3. An element of any shape in
the physical space is transformed to an equilateral element in the metric space with this transformation.

The mathematical form of this transformation matrix is given by eq. 2:

T(x,y,z) =

 1/h1 0 0

0 1/h2 0

0 0 1/h3




⇀
e1
⇀
e2
⇀
e3

 (2)
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Transformation

Physical space : X':M:X = 1

Metric space : x'.x = 1

Figure 3. Transformation associated with the mesh metric tensor3

where
⇀
e1,

⇀
e2,

⇀
e3 are the unit vectors in the three principal directions and h1, h2, h3 are the desired mesh edge

lengths (mesh sizes) in the corresponding directions. The goal of the adaptation software is to achieve unit
edge lengths in the metric space. This criteria is usually relaxed to ensure a mesh can be obtained.

1. Extension to boundary layers

The methodology outlined above works well for unstructured elements. When working with boundary layers
we want to preserve their structured nature, and using this technique directly does not guarantee that. To
extend anisotropic adaptivity to boundary layer meshes, following approach is used.

Fig. 4(a) shows a conceptual decomposition of the boundary layer mesh. The boundary layer meshes
can be viewed as a product of a layer surface (2D) and a thickness (1D) mesh. The lines which are roughly
orthogonal to the wall are referred to as the growth curves, and the triangular surfaces parallel to the wall are
referred to as the layer surfaces. Each layer of elements is formed with the help of the layer surfaces above
and below, connected by the growth edges in between. The mesh sizes on the layer surfaces are referred to
as the in-plane sizes and the ones on the growth curves are referred to as the normal spacings. The ellipsoid
in fig. 3 can be decomposed as an ellipse lying on the layer surfaces and a normal component aligned with
the growth curves. This concept is shown in fig. 4(b).

Layer Surface

Wall

First Layer

Second Layer

Growth

Curve

Boundary Layer

     Interface

Interior Tetrahedral

Volume Mesh

Layer Thickness

Total Thickness

Growth Edge

Layer Edge

(a) Decomposition of the boundary layer mesh

Decomposition

of Full Ellipsoid
Normal Component

Elliptic/Planar part

(b) Decomposition of the ellipsoid

Figure 4. Conceptual extension of the Hessian approach to boundary layers3

Adaptivity is carried out in two stages; in-plane adaptation achieves the required mesh sizes on the
layer surfaces and does not affect the thickness, and thickness adaptation changes the normal spacing of the
boundary layers. The in-plane adaptation is driven by the Hessian driven mesh metric field as described
in this section (see Sahni et al.3,13 and Ovcharenko et al.4). The thickness adaptation is driven by the
procedures outlined in the next section.
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III. Thickness Adaptation

Figure 5. Effect of the first cell height on a turbu-
lent boundary layer profile (RANS Spalart Allmaras
(RANS-SA) turbulence model)

To efficiently resolve the boundary layers in tur-
bulent flows, careful control of the distribution of
points normal to the wall is critical. The Hessians
tend to be less accurate near the walls and therefore
they are not a good candidate to drive thickness
adaptation for such a critical flow region. Since,
the mesh spacings in this region are largely dictated
by the flow physics and the turbulence model being
used, it makes more sense to use this information
for thickness adaptation instead.

To demonstrate how critical the point distribu-
tion normal to the wall can be for turbulent flows,
fig. 5 shows boundary layer profiles for a turbulent
pipe flow, varying the first cell height from y+ of 1 to
10. The results start showing wrong boundary layer
profile for y+ > 5, with worst profile obtained with
no boundary layer mesh. These results were ob-
tained with RANS Spalart Allmaras (RANS-SA)14

turbulence model with wall resolved approach. The
behavior would be different for other turbulence models and for the wall modeling approach.

A. Types of boundary layers

At this point it is important to define the different classes of boundary layers, as control of the mesh
parameters is different for each one. The boundary layers are usually classified into laminar boundary layers
and turbulent boundary layers. However, this paper focuses on turbulent boundary layers as they are the
most prevalent type for high Reynolds number flows and are much more complex in nature. Also, the mesh
spacing requirements to resolve the turbulent boundary layers are much tighter than that for the laminar
boundary layers, due to much larger velocity gradients near the wall (fig. 6). Thus our treatment for turbulent
boundary layers is sufficient for resolving laminar boundary layers as well.

(a) Laminar BL (b) Turbulent BL (c) Separated BL

Figure 6. Types of boundary layer profiles

The second classification of the boundary layers relates to if the boundary layer is attached or separated.
In many flows, due to adverse pressure gradients, boundary layers separate from the wall and form a free
shear layer. The treatment of separated boundary layers needs special care as the flow physics in this region
is entirely different than that of the attached boundary layers. Fig. 6 shows the two types of attached
boundary layer profiles and a typical separated boundary layer profile.
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B. Calculation of the wall shear stress

The near wall mesh spacing requirements for turbulent models depend on y+, which needs the knowledge of

the friction velocity uτ , which can be calculated from the wall shear stress τw as uτ =
√

τw
ρ . Many solvers

readily provide wall shear stress as a field after post processing. However, we use alternative methods to
calculate this field in a fast and an efficient manner.

Since most of the boundary layers in high Reynolds number flows are turbulent, one method to calculate
τw is by using the Spalding’s law. It gives y+ as a function of u+, written in a special form given by:15

y+ = f(u+) = u+ +A[e(κu+) − 1 − (κu+)2/2 − (κu+)3/6 − (κu+)4/24] (3)

where A = 0.1108 and κ = 0.4 are dimensionless constants. This law is valid through the entire turbu-
lent boundary layer profile. u+ is the dimensionless velocity at points along an attached boundary layer,
normalized by the friction velocity (u/uτ ).

Using eq. 3, u+ can be calculated at various points along the boundary layer, with following iterative
approach.

1. Calculate the distance of the point on the boundary layer from the wall: ∆y.

2. Retrieve the velocity at this point from the flow solution: u.

3. Guess an initial value of u1
τ and calculate initial u+ = u/u1

τ and y+ = ∆yu1
τ/ν.

4. Use Newton’s method to iteratively solve eq. 3 till convergence and update value of uτ at each iteration.

5. Use the final value of uτ to calculate the final value of u+ (u/uτ ).

This process can be repeated at any number of points along the boundary layer. In the end, a simple
average over the number of points used gives the final friction velocity uτ . We use 3 to 5 points on an
average along the growth curves, to calculate a more globally smooth uτ . The wall shear stress can then be
calculated as τw = u2

τρ.
Another method to calculate a quick and an approximate estimate of the wall shear stress, is using a

finite difference approach near the wall. Using the first vertex from the wall and known u and ∆y values at
that point, τw can be calculated using τw = µdudy = µ u

∆y . Here du equals u because the velocity is zero at
the walls. This alternative method is used for flow regions where the boundary layers are not attached to
the walls and Spalding’s law is not applicable.

C. First cell layer height (to)

As already pointed out, different turbulence modeling approaches have different mesh spacing requirements
close to the walls. Even in the same family of turbulence models like RANS, different approaches require
varying mesh spacings depending on if the boundary layer is integrated to the wall (wall resolved approach)
or if wall functions are used (wall modeling approach). The wall resolved approach makes a low Reynolds
number assumption near the walls and requires that the first cell height is inside the viscous sub layer of the
boundary layer (y+ < 5). The wall modeling approach makes suitable assumptions for near wall behavior
of the boundary layer and requires that the first cell height is beyond the viscous sub layer and into the log
layer (y+ > 30). If these requirements are not met for either of these modeling classes, then large numerical
errors are possible in turbulence calculations predicting erroneous behavior, as seen in fig. 5. However, the
friction velocity, which is required to calculate y+, is not known a priori. This makes adaptive control of the
first cell height very important.

Let us assume that the turbulence model requires first cell height to be equal to y+
k . If we have an initial

coarse mesh with a solution, using the wall shear stress (τw), to can be calculated, by the following algorithm:

1. Get the kinematic viscosity (ν) and desired y+
k according to the turbulence model from the user

(Suggested values are y+
k = 1 for wall resolved RANS-SA, y+

k = 30− 50 for wall modeled k− ε, 0.5 for
wall resolved k − ε etc.)

2. Calculate the friction velocity uτ as discussed in the previous subsection.

3. Calculate the first layer height of the boundary layer by to = νy+
k /uτ .
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D. Total height of the boundary layer (T )

It is desirable to have the total height of the mesh boundary layers equal to or greater than the velocity
boundary layer height given by δ99. δ99 is the distance from the wall at which the velocity becomes 99% of
the free stream velocity, and is an accepted measure of the boundary layer thickness. It is usually tricky to
calculate δ99 directly as it requires knowledge of a reference velocity. For simple problems like a flat plate, the
reference velocity is usually the free stream velocity, but it can have different local values for more complex
problems, where the flow as a whole undergoes acceleration or deceleration. This presents a difficulty in
directly calculating the boundary layer height.

To calculate T , we base our approach on the observation that vorticity outside of an attached boundary
layer is negligible. Since the boundary layers have the largest velocity gradients very close to the wall,
vorticity here is the highest and decreases as one moves farther away from the wall. As boundary layer
growth curves are in most cases perpendicular to the wall, one can walk along these edges starting from
the wall, and determine the point at which the vorticity drops below a threshold value. This threshold
value depends on the local maximum value of vorticity for attached boundary layers, which is most often
encountered at the wall. Through our analysis, we have found that a good value for the threshold is 0.02%
of the wall vorticity magnitude.

E. Growth factor (r) and number of layers (n)

To increase the boundary layer elements’ height away from the wall, a growth factor (also called as the
stretching factor) greater than 1 is used. This is because the tightest mesh spacing is required very close to
the wall, but this requirement is not as strict further away. An ideal scenario would be to achieve height of
the last layer equal to the unstructured sizes of the mesh and get a smooth transition. The mesh adaptation
process provides options like boundary layer gradation factor, which control the transition of boundary layer
into the unstructured part of the mesh, smoothly.16

There are general guidelines for what the ideal growth factor should be, from the perspective of turbulence
modeling. Spalart17,18 states that the growth factor should be close to 1.25 to accurately capture the log
layer. Generally a growth factor beyond the value of 1.4 is deemed too large for accurately capturing the
boundary layers. Many meshing tools are based on setting to, T and n, and the growth factor is automatically
calculated, internally. The accuracy then in turn hinges on the knowledge and prior calculation to make sure
that the growth factor being calculated is acceptable.

The adaptation tool gives the ability to set the growth factor at each wall vertex. We set r in the range
of 1.2-1.25 to be within the acceptable limits. Selecting a growth factor less than 1.2 has the disadvantage
of more elements in the boundary layer than needed. The number of layers are then calculated using eq.1.

F. Handling the separated boundary layers

The techniques described above for calculating the different aspects of the boundary layer meshes work well
for attached boundary layers. However, separated boundary layers need extra care and special detection
strategies due to different flow physics that must be captured.

1. Detection of separated boundary layers

To treat separated boundary layers properly, they must first be detected. As it can be seen from fig. 6,
they have a unique profile characterized by flow reversal. We again make use of the wall normal growth
curves and walk along the growth edges to detect a change in the flow direction. If a change (usually more
than 120o) is detected across the profile, then the vertex on the wall is marked as separated; otherwise the
boundary layer is treated as an attached boundary layer.

This method requires that the total height of the mesh boundary layers in this region at least exceeds
the height at which the flow direction is reversed. This means that typically initial boundary layer meshes
for such regions should be tall enough and mesh very close to the wall wall be fine enough to capture the
flow reversal. Currently we make sure that this criteria is satisfied through initial meshing, but an iterative
adaptive procedure like the one we use eventually leads to suitable meshes which are able to capture this
effect.
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2. Calculation of the wall shear stress

The method of using Spalding’s law to calculate the wall shear stress, is not appropriate for separated
boundary layers, since the typical turbulent profile is absent. In such a case, where separation is detected,
wall shear stress is calculated using the finite difference method explained earlier. The accuracy of such
calculations is not as good as other methods, but it gives a reasonable estimate. Also, for separated boundary
layers, the first cell height of the mesh boundary layer is not as crucial as for the attached boundary layers,
hence such an approximate approach is justifiable.

3. Total height of the boundary layer (T )

For separated boundary layers, the free shear layer might get separated from the wall to a fair distance, in
which case it might not be prudent to increase the boundary layer height. Even though it would be a good
feature to separate the mesh boundary layer from the wall to resolve the free shear layer, this capacity is
still under development with the current adaptive tools that we use.

The techniques explained above for attached boundary layers predict that the boundary layer’s height
should be increased to the height of the complete shear layer. However, this is not always practical for
separated boundary layers as this height might introduce excessive stretching of the elements near the
interface.

In a more practical approach, the boundary layer height is increased beyond the height at which the
flow reversal is detected so that the boundary layer mesh is tall enough to “sense” the change in the flow
direction and the rest of the boundary layer mesh is destroyed and the free shear layer region is meshed with
unstructured elements, with specific care to resolve the free shear layer. This approach is used in this work.
For anisotropic adaptivity, velocity Hessians give good resolution in these layers since the anisotropy of the
top of the shear layer is not very high.

G. Shock wave - boundary layer interactions

In transonic and supersonic flows, the main region of interest is where the shock waves and the boundary
layers interact. Shock waves are sharp discontinuities in the flow and can cause thickening of the boundary
layer and even separation. Due to their complex nature, these regions need greater attention and higher
resolution. Since the in-plane mesh sizes for the shock wave - boundary layer interactions are smaller, care
needs to be taken to trim away the boundary layer elements that develop anisotropy in the wrong direction
as the in-plane resolution becomes finer than the normal direction resolution. One way to control this, is by
limiting the mesh boundary layer height.

When the flow encounters a shock, the solution changes sharply, giving high gradients in this region.
We implemented a shock wave - boundary layer detection algorithm which detects a shock-boundary layer
interaction by looking at the pressure gradients on the wall. If such a region is detected, then the wall
vertices are marked to not increase the boundary layer height beyond a certain limit to avoid poorly shaped
boundary layer elements. The boundary layer height in the shock region is limited by a factor of the upstream
boundary layer height, so that it does not change suddenly with the shock.

IV. Results

In this section we present two transonic flow applications of our adaptive boundary layer meshing tech-
niques.

A. Delery Bump

The first case that we used for analysis is the Delery bump, which is a 2D bump with steady transonic
flow. This case is often used to evaluate the performance of turbulence models. Air enters the nozzle from a
reservoir at pt = 96000 Pa and Tt = 300K, and accelerates over the bump reaching supersonic speeds. The
exit pressure is maintained at 61500Pa. For these inlet and exit pressures, the flow develops a shock on the
leeward side of the bump. The experiments for this case were first carried out by Delery.19

The PHASTA compressible finite element flow solver was used for the simulations. We used RANS
Spalart-Allmaras one equation turbulence model14 in this study. The adaptivity used combined pressure
and velocity Hessians as error indicators.4 The first cell height is requested at y+ = 1. Because the flow
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separates after the shock, separation detection algorithm detects the region and the boundary layer attributes
are set accordingly.

(a) Initial and adapted meshes (b) Zooms of the shock wave - boundary layer interaction zone

Figure 7. initial and adapted meshes for the Delery bump

Fig. 7(a) shows zooms of the initial and the adapted meshes over the bump. The boundary layer thickens
after the shock as expected. Before the shock, boundary layer thickness remains low on both the bottom
and the top walls. In the separated region, the boundary layer height is maintained until the flow reversal is
detected in the boundary layer profile. The LEV1 mesh shows some overshoot in the boundary layer thick-
ness, but latter adapted meshes show converged behavior in terms of the boundary layer height. Adaptive
refinement follows the curved shock such that the direction normal to the shock is refined much more than
along the shock. This behavior is more evident from fig. 7(b), which displays the meshes in the shock wave
- boundary layer interaction region. The adapted LEV2 and LEV3 meshes knock down the boundary layer
height in the vicinity of the shock which is in accordance to the shock detection algorithm. One thing to no-
tice is that the initial mesh is too coarse to detect the flow reversal which occurs immediately after the shock
and the boundary layer height is maintained according to the attached boundary layer algorithm. However,
the adapted LEV1 mesh becomes fine enough to detect the profile change and separation is detected and the
boundary layer is destroyed immediately after the shock and is maintained only until the height at which
flow reversal is detected.

(a) Mach number for a slice along the symmetry plane (b) Mach number contours

Figure 8. Mach number slice and contours for the Delery bump

Fig. 8 shows slices of Mach number and Mach number contours. The contours show progressive sharpness
in the shock region, with adaptivity. The LEV3 mesh gives the sharpest resolution of the contours. A weak
vertical shock is seen in fig. 8(a), originating from the intersection of the curved and the straight section of
the strong shock.

Fig. 9(a) shows pressure slice for the shock region over the bump. The adapted meshes are able to resolve
the shock sharply as compared to the initial mesh; the best resolution is given by the LEV3 mesh. Fig. 9(b)
shows a zoom of the shock wave - boundary layer interaction zone and streamlines in the separation zone
after the shock. The location of the interaction zone is better predicted in the adapted meshes and moves a
bit to the right with respect to the initial mesh. The initial mesh over predicts the size of the the separation
bubble, which gets corrected in the adapted meshes. The LEV2 and LEV3 meshes show similar behavior of
the streamlines, indicating converged behavior of the separation bubble.
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(a) Pressure (b) Streamlines in the separation zone

Figure 9. Pressure slice along the symmetry plane, with a zoom of the shock-BL interaction zone and the
separation bubble

Separation
point (x/h)

Reattachment
point (x/h)

Initial mesh (LEV0) 22.33 26.60

Adapted mesh (LEV1) 22.08 26.66

Adapted mesh (LEV2) 22.15 27.08

Adapted mesh (LEV3) 22.14 27.16

Experiments (Delery19) 21.84 27.04

Table 1. Separation and reattachment locations for the Delery bump, normalized by the bump height

Table 1 lists the separation and reattachment points for different meshes. The distance values are nor-
malized by the height of the bump (h), which is 12mm. The initial mesh predicts delayed separation and
earlier reattachment than the experiment values. The adapted meshes, especially LEV2 and LEV3, give a
better agreement with the experimental results.

Figure 10. Normalized bottom wall pressure for the
Delery bump

The normalized bottom wall pressure is plotted
in fig. 10 and indicates good agreement between the
experimental and the simulation values for initial
and adapted meshes. The flow solver over predicts
the wall pressure after the shock, in the separation
zone. This behavior has been seen before by Emory
et. al20 and Lien et al.21 These differences can be
attributed to the three dimensional nature of the ex-
periment and to the turbulence model’s limitations
in capturing the effect of separation, and so it is not
a concern of this paper.

Boundary layer profiles are plotted in fig. 11
along various stream-wise locations. Figure 11(a)
and 11(b) show boundary layer profiles in the sepa-
ration zone after the shock. The initial mesh is not
able to capture the correct behavior due to its coarse
resolution in this region. The adapted LEV3 mesh
shows much better agreement with the experimental
values in the separation zone. This is particularly
important because in the separation zone, we are
limiting the height of the mesh boundary layers. For the boundary layer profiles after reattachment shown
in fig. 11(c) and 11(d), adapted and initial meshes both give good approximations to the profile.

To make sure grid convergence was reached, we uniformly refined the LEV3 mesh. This means that each
mesh edge was split into two to get a new LEV4 mesh. This LEV4 mesh showed no difference in the solution
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(a) x/h = 23.3 (b) x/h = 25 (c) x/h=26.6 (d) x/h=29.2

Figure 11. Boundary layer profiles at various stream-wise sections for the Delery bump

Figure 12. Initial LEV0, adapted LEV3 and uniformly refined LEV4 meshes and corresponding Mach number
contours for the Delery bump case

when compared to the LEV3 mesh, which makes a strong case for verification of the results. Fig. 12 shows
the LEV4 mesh generated with uniform refinement in comparison to the initial LEV0 and the adapted LEV3
mesh. The mach contours on the right show no significant difference in their behavior, displaying that grid
independence is reached. This means that any further mesh refinement beyond the LEV3 mesh produces
the same result and is redundant.

B. ONERA M6 wing

The ONERA M6 wing is a classic CFD validation case. Air enters the wind tunnel at transonic speed and
is accelerated over the wing to supersonic speeds causing a shock to appear on the upper surface of the
wing. The free stream Mach number is 0.84, and the angle of attack is 3.06o. The free stream pressure
and temperature are 42.89 psi and 255.5 K. The Reynolds number is 11.72 Million based on the mean
aerodynamic chord. This flow marks a strong need for adaptive grids due to its unknown shock location a
priori to the flow solve and complex nature of the lambda shock. The reference experimental data is from
Schmitt and Charpin, 1979.22

We used Spalart Allmaras one equation turbulence model for this case.14 Pressure Hessians were used
as error indicators to resolve the shock on the wing surface. The first cell height was requested at y+ = 1.

Fig. 13 shows the initial and the adapted meshes for the wing and corresponding surface pressure contours,
on the left side. The mesh gets refined in the shock region and the lambda shape of the shock is clearly
replicated in the mesh. The mesh downstream of the shock is coarsened, due to low values of pressure
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Figure 13. Meshes and corresponding surface pressure plots and contours

gradients in this region. The surface pressure contours become sharper and more regular in shape with
adaptivity. On the right hand side of fig. 13, the pictures show the zooms of the shock region on the wing,
displaying the anisotropy developed in the surface elements along the shock as compared to the direction
normal to the shock. One thing to notice is that the elements start aligning themselves with the shock in
adapted LEV1 mesh, but need one more adaptation loop to completely show this behavior in a satisfactory
manner.

Figure 14. Change in the boundary layer height on upper surface of the wing

To illustrate the changing attributes of the mesh boundary layer with adaptivity, fig. 14 shows the
boundary layer on the upper surfaces of the wing for the initial and the adapted meshes. Clearly, the
boundary layer prior to the shock remains relatively low in total height. After the shock the boundary layer
thickens as expected. The zone where shock wave meets the boundary layer can also be seen and the elements
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oriented with finer resolution normal to the shock and longer edges along the shock are clearly visible.

Figure 15. Coefficient of pressure on the wing at various spanwise sections

Fig. 15 shows coefficient of pressure plots for different span-wise sections of the wing. The initial mesh
shows some overshoot near the shock which is expected due to its coarse nature. Adaptivity removes this
problem and gives Cp values which match the experimental data. One particular area of interest is the
shock on section 4 (y/b = 0.8), which is in fact a double shock. PHASTA is able to capture this double
discontinuity and adaptivity improves the agreement with the experiments in this region.

Figure 16. Iso-surface of Mach 1 for initial and adapted meshes

Fig. 16 shows iso-surfaces of Mach number equal to unity on the upper surface of the wing. The anisotropy
developed in the spanwise direction is replicated on the iso-surfaces. In general, the adapted meshes show
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smoother curves indicating higher degree of resolution as compared to the initial mesh.
Overall, for ONERA M6 wing case we see that the adapted meshes were able to capture the shock with

higher accuracy than the initial mesh. The Cp values agree well with the experiments and improve with
adaptivity.

V. Conclusion

In this paper we have presented anisotropic adaptive boundary layer meshes and their application to
transonic turbulent flows. A new way to adaptively calculate the attributes of boundary layer meshes is
described and is combined with the traditional numerical error indicators to drive overall mesh adaptivity.
A clear advantage of such an approach is the use of flow physics to set normal mesh spacings near the walls,
instead of using less effective error indicators.

We demonstrated the ability of this approach to capture the boundary layer physics as well as other flow
regions by applying the adaptive techniques to two transonic flow cases. The first application was the Delery
bump, where adaptivity improved the shock resolution and the boundary layer profiles. The separation zone
was captured with greater accuracy with adaptivity. A uniform refinement of the adapted mesh was used to
verify the adaptivity approach arrived at a grid independent solution. The second application was ONERA
M6 wing, where adaptivity helped to get better results in terms of the surface pressure contours and the
coefficient of pressure on the wing. We also showed that the shock wave-boundary layer interactions are
captured better with adaptive boundary layer meshes.
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