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Abstract Simulation results from finite element models
using two types of 3D polycrystal geometric representa-
tions, one with a voxel representation and stair-stepped grain
boundaries and the other with smooth grain boundaries, are
compared. Both models start with a periodic grain structure
representation, which is in the form of a regular, rectangular
3D array of points, where each point is assigned an orien-
tation. The voxel representation is obtained by simply sam-
pling the array of grid points on a coarser regular grid with
a prescribed resolution and forming a voxel centered at each
grid point, which is assigned the grain orientation from the
sampled grid point. The voxel representation may be meshed
directly by decomposing each voxel into finite elements. In
the second case, a method is presented that extracts geomet-
ric topology information for a grain structure with smooth,
flat grain boundaries from the discrete grain structure repre-
sentation. From the geometric topology information, a finite
element mesh is created. The two representations are then
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subjected to large strain deformations, and the simulation
results and efficiencies are compared. The macroscopic
behavior, overall texture evolution, and statistical distribu-
tion of stress and slip are found to be nearly identical for both
models. However, noticeable differences are observed in the
misorientation distribution within grains and the smoothness
of the stress field. The voxel representation is found to be
more efficient because of the uniform finite element mesh.

Keywords Crystal plasticity - Finite element method -
Polycrystal - Topology

1 Introduction

The macroscopic, mechanical behavior of polycrystalline
metals is dictated by underlying smaller scale phenomena
occurring over a range of scales. One of the most informa-
tive scales, in this multiscale perspective, is the grain scale.
At the grain scale, important characteristics of the micro-
structure, such as grain size, shape and orientation distribu-
tion, are evident. These characteristics are strongly related
to the macroscale behavior, both during processing of the
metal and in-service. For example, the initial microstructure,
before thermal-mechanical processing, has a strong impact
on the final microstructure and also influences the deforma-
tion behavior. In-service, the grain structure characteristics
affect the anisotropy, strength, and ductility. It should also be
mentioned that the grain scale is not the only important scale,
and that for a grain scale constitutive model to be accurate, it
should be based on smaller scale phenomena, in particular,
dislocation phenomena.

Because of the importance of the grain scale in devel-
oping predictive models of the behavior of metallic mate-
rials, numerous researchers have developed approaches for
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modeling polycrystals. That work can be divided into two
categories: (a) models that assume a homogeneous deforma-
tion and stress within each grain and take the macroscopic
deformation and stress to be the average over all the grains,
which allow the grains to be modeled without an explicit rep-
resentation, and (b) models that explicitly represent the grain
structure in order to capture the heterogeneous deformation
and stress fields that occur within grains due to interac-
tions with neighboring grains. Examples of the first category
include: the Taylor model [ 1-3], where each grain is assumed
to undergo the macroscopic deformation; the relaxed con-
straint model for distorted, elongated grains [4,5], where the
macroscopic deformation is prescribed along some direc-
tions and the macroscopic stress is prescribed along other
directions in the flat part of the grains; and self-consistent
approaches [6], where each grain is treated as embedded in
a homogeneous equivalent medium. While these approaches
provide useful predictions regarding texture evolution and
macroscopic stress—strain response, they do not capture the
intra-grain heterogeneities, which are important contribu-
tors to certain physical processes and considered in the sec-
ond category of polycrystal models. For example, grain size
effects are attributed to gradients in deformation fields that
arise in grains due to interactions with neighboring grains, see
for example Fleck and Hutchinson [7], Beaudoin et al. [8],
and Janssen et al. [9]. The formation of nucleation sites for
recrystallization results from portions of a single grain rotat-
ing into different orientations due to constraints imposed by
surrounding grains leading to low angle grain boundaries,
see for example Beaudoin et al. [10] and Sarma et al. [11].
Fatigue crack initiation may occur at grain boundaries or con-
stituent particles and is related to the local grain orientations
[12]. For a more comprehensive review of crystal plasticity
modeling, Roters et al. [13] provides an excellent overview
of constitutive models and multiscale methods for modeling
crystalline materials.

In order to capture the heterogeneous fields arising within
the grains of a polycrystal, many researchers explicitly model
the grain structure, most commonly using finite element dis-
cretizations of polycrystals. Of the explicit polycrystal mod-
els, a number of different geometric representations of the
polycrystals have been considered. The simplest approach
uses uniform brick elements, where each brick may consti-
tute a single grain [14,15], or where groups of brick ele-
ments are defined as grains [11,16-18]. The former case is
not sufficiently refined to capture local variations that occur
within grains. The latter case results in stair-stepped grain
boundaries if irregular grain shapes are modeled. The natu-
ral question that arises with regard to the latter approach is
whether such a topological representation, where the grain
boundaries are stair-stepped, might lead to inaccurate results,
especially near the grain boundaries, which may be a region
of key importance. A regular mesh may also be used to model

@ Springer

irregular grain structures, where the orientations are defined
at the integration points instead of the grain boundaries,
which eliminates the stair-stepped nature but does not create
smooth grain boundaries [19]. An alternate approach that al-
lows for multiple finite elements within a grain to capture
intragranular field variations without stair-stepped bound-
aries is to model regular arrays of uniformly shaped grains.
In Beaudoin et al. [8], groups of brick elements in a uni-
form grid are distorted to form Wigner—Seitz cells. Ritz and
Dawson [20] compare the stress distributions resulting from
four different regular grain representations, where groups of
tetrahedral elements were used to form grains of cubic, rhom-
bic, dodecahedral, and truncated octahedral shapes. In that
work, similar trends were observed in the stress distributions
across the geometric representations, but with differences in
the level of intra- and inter-granular variability because of
differences in levels of geometric constraint. These meth-
ods provide a smooth, more accurate representation, but the
grains are still uniform and regular, and thus, the natural
variability of the grain structure is not captured. In recent
years, researchers have used Voronoi tesselations to define
the grain structure and then meshed with tetrahedral elements
[21-24]. However, the grain representations produced by
straight Voronoi tesselations are not as accurate as those
defined using methods described in the next paragraph, which
generate typically a regular, rectangular grid of points, where
each point is assigned an orientation.

There are many methods to generate grain structures
based on the approach of simulating the phenomenon of
grain growth. The popular ones are the Monte Carlo (Potts)
[25,26], phase field [27], and cellular automaton [28] meth-
ods. Each of these methods treat microstructures as thermo-
dynamically unstable, and evolve the microstructure with the
goal of minimizing total free energy. The microstructure rep-
resentations that result from these models are typically a reg-
ular grid of points in 3D space, with each point assigned an
orientation, and where groups of neighboring points with the
same orientation constitute a grain. An alternative approach
to these methods, which is not based on grain growth, but
rather seeks to directly represent the grain structure, also as a
regular grid of points in 3D space, with a statistically similar
representation is described by Saylor et al. [29]. A similar
approach is used in St-Pierre et al. [30], where the represen-
tative volume is filled with non-overlapping ellipsoids with
the size and aspect ratio distributions found from experimen-
tal observations, and then the space is filled by grid points,
where each grid point is assigned to a grain based on what
ellipsoid it lies in or is closest to. Finally, it should also be
mentioned that 3D grain structure representations of actual
grain structures may be obtained experimentally using elec-
tron backscatter diffraction (EBSD) to image a series of 2D
slices, where a focused ion beam (FIB) is used to remove
material between successive 2D slices [23,24,31] or through
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3D X-Ray diffraction [32]. This also typically generates a
3D regular grid representation of the grain structure.

The present work compares the results of explicit poly-
crystal simulations for two different topological represen-
tations, one with a voxel representation with stair-stepped
grain boundaries, which we will refer to as voxel topology
(VT) and one where the polycrystals have smooth, flat grain
boundaries, which we will refer to as smooth topology (ST).
A similar comparison was presented in Kanit et al. [21] for
a two-phase, linear, elastic material, where each phase was
isotropic, and they found that in small models the average
results for stress and strain matched, and field fluctuations
differed slightly. In this work, we consider large strains in
anisotropic, elasto-viscoplastic polycrystals. We also pres-
ent a procedure for creating the smooth grain boundary rep-
resentation from the regular grid data that allows for finite
element meshing. For both implementations, we start with a
modified Monte Carlo (Potts) model, based on that presented
in Radhakrishnan and Zacharia [26], for generating the sim-
ulated grain structure represented by a regular array of grid
points, where each point is assigned an orientation. Here, the
model is modified to generate a periodic microstructure. Cur-
rently, this work is limited to relatively equi-axed grains of a
single phase material, which this procedure generates. Next,
we apply a procedure for removing small features based on
prescribed criteria. The VT model can be created directly by
sampling the grid points on a grid of the same or coarser res-
olution, creating a voxel centered at each sampled grid point,
and sub-dividing each voxel into finite elements. After
this, we present an approach for extracting topology informa-
tion, specifically vertices, edges, patches, and regions, which
is used to define the ST geometric model of the grain struc-
ture. A standard 3D finite element mesher can be used given
the topology information. The VT and ST models are gen-
erated so that the number of elements in the resulting finite
element meshes for each topological representation are com-
parable allowing for direct local comparisons to be made.
Both models are then deformed to a large strain (20 % plane
strain compression), and the resulting orientation, misorien-
tation, stress, and slip fields are compared between the mod-
els, and conclusions are drawn. The relative computational
efficiency of each model is also compared.

2 Generating polycrystal models

In order to compare the results of simulations with voxel and
smooth topologies, it is first necessary to define compara-
ble models. A data set of orientations assigned to a regular
array of grid points representing a polycrystal is required first.
Here, a modified Monte Carlo approach, described next, is
used to define the initial data set defining the model poly-
crystal, however, any approach that creates a regular grid

array polycrystal representation may be used as a starting
point. After that, the VT and ST representations and asso-
ciated finite element meshes are created. The approach for
each is described below.

2.1 Modified Monte Carlo simulation

The first step in generating the polycrystal representations
involves creating a 3D polycrystal unit cell using a modified
Monte Carlo grain growth algorithm based on that presented
in Radhakrishnan and Zacharia [26], which is summarized
here. First, a 3D structured grid point domain of N x N x N
is chosen, with each grid point in the domain given a unique
orientation number. Then, in each step of the simulation, one
grid point is chosen randomly, and its orientation switched
to that of a nearest neighbor randomly selected. The energy
change of the local cluster associated with this switching
is then calculated. If the local cluster energy is lowered, the
new orientation is kept; otherwise, the orientation is switched
back to its previous value. The local cluster energy is calcu-
lated using

n
E=—J|> 8 (1)
j=1

where J is a constant being proportional to the grain bound-
ary energy, d;; is the Kronecker § function, S is the orien-
tation number of the grid point whose orientation change is
being attempted, S; is the orientation number of a nearest
neighbor, and 7 is the number of nearest neighbors, 26 in our
case. The goal of the microstructure evolution is to reduce
grain boundary energy. Intuitively, we can imagine that the
generated grain structures will be of convex shape with flat
facets and straight edges since that is the most efficient way of
constructing grains. Furthermore, since this energy function
is isotropic, the grains will be on average equi-axed.

The evolution is counted by the Monte Carlo Steps (MCS),
where each Monte Carlo Step is N x N x N orientation
switching attempts. The grain growth continues until the
number of remaining grains reaches a specific value. In order
to link to the macro-scale, these polycrystals are designed to
have periodic boundaries by assuming opposite faces of the
polycrystal are linked and neighboring each other. In this
work, a generated microstructure with 107 grains and 180
regions, comprised of 200 x 200 x 200 grid points is created.
There are more geometric regions than grains due to period-
icity, i.e., the grains wrap around to the opposite side of the
geometric model splitting the grain into multiple regions.

2.2 Small feature elimination

Before extracting the two topological representations con-
sidered here, for simulation efficiency, small features in the
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Fig. 1 2D sketch showing three types of small features

model should be eliminated or reduced as much as possible.
The small features may include small grains generated by the
Monte Carlo grain growth simulation (if the modeler decides
these are not important), and small volume and high aspect
ratio portions generated by periodic unit cell boundaries cut-
ting through grains on the boundary (Fig. 1). The positions
of the periodic unit cell boundaries are adjusted so that the
least number of small features are created. Since the poly-
crystal example described here is made up of 200 x 200 x 200
grid points, there are 200 possible locations for the periodic
boundaries in each of the three dimensions. All 200 possi-
ble positions are tested in each dimension and the optimal
positions chosen.

2.3 Geometric model representations

Two different geometric representations of the polycrystal
model are considered and meshed for finite element simula-
tion. The VT and ST models are meshed with similar numbers
of quadratic, tetrahedral elements for comparison, and three
meshes are created for each model in order to test for mesh
convergence as well as to investigate simulation efficiency.
The meshes are designed to have roughly 1,000; 1,300 and
1,800 elements per grain. First, the simpler voxel topology
model is described briefly, and then a method is presented to
generate the smooth topology model.

2.3.1 Voxel topology model

The voxel topology (VT) model is relatively straightforward
to create and mesh once the discrete model is generated. In
this work, in order to create finite element models with a
comparable number of elements to compare to the smooth
models, we sample the grid points generated from the Monte
Carlo procedure, with 200 grid points along each direction,
onto coarser grids to define the VT model. In order to ob-
tain the desired number of elements per grain, as mentioned
above, we choose three grid sizes, with 26, 29, and 32 grid
points along each direction. The center of each sampled grid
point is taken as a voxel center, and the voxel boundaries
are centered between sampled grid points. Each voxel is as-
signed the grain orientation identity of the grid point at its
center. Meshing this topology involves simply meshing each
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voxel. Here, each voxel is divided into 6 congruent, qua-
dratic, tetrahedral finite elements, resulting in meshes with
105,456 elements, 146,334 elements, and 196,608 elements.
This method also naturally aligns the nodal points on oppos-
ing faces allowing for these nodes to be constrained if peri-
odic boundary conditions are used. The three VT models
created are shown in Fig. 2.

2.3.2 Smooth topology model

A procedure for extracting a smooth topological represen-
tation from the discrete 3D regular, rectangular grid repre-
sentation was developed and used in this work. The approach
taken here is based on the well-known Marching Cubes algo-
rithm [33] used widely in the field of visualization. Construct-
ing geometric topology from 3D scalar fields is sometimes
referred to as “3D surface reconstruction” or “polygoniz-
ing 3D scalar fields” [34]. In visualization applications, it
is not critical to avoid overlap or penetration, which may
occur with the Marching Cubes algorithm, but overlap or
penetration is a problem for constructing a finite element
model. Numerous methods have been developed to overcome
this problem, including the modified Marching Cubes [35],
Marching Tetra-cubes [36] and Marching Intersections [37]
methods. In Wiederkehr et al. [38], the modified Marching
Cubes method is used, following the procedure developed
in [35,39] to generate a consistent topology of a microstruc-
tural representation, which is subsequently meshed for finite
element analysis. Here, a fairly simple approach is devised
that focuses on the voxels lying at the grain boundaries. The
first step is to sift out the boundary cubes, where each cube
is defined by eight grid points that make up the corners of
the cube, each with an assigned orientation from the Monte
Carlo procedure. Boundary cubes are the cubes that lie on the
boundary between grains, having grid points of different ori-
entation values. It is these boundary cubes that collectively
represent the interfaces between different grains, and pro-
vide the basis for geometric model construction. There are
two important properties associated to each boundary cube:
the x, y, and z coordinates of the weighted center of the eight
grid points of this cube (that will be used as the location of the
geometric entity), and the orientations of the grid points at
the corners of the cube (which provides connections between
boundary cubes). The weighted center of a boundary cube is
found by partitioning the eight grid points of the cube by their
orientations, finding the center of each group with acommon
orientation, defining the weight for each group as the fraction
of the eight grid points that has that common orientation, and
then adding the center of each group multiplied by its weight.

The boundary cubes are organized into geometric entities
(vertices, edges, patches, regions) by considering the number
of different orientations associated with the grid points defin-
ing each boundary cube. Interfaces (grain boundaries) are
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(a)
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Fig. 2 Three VT model representations with a 26 voxels, b 29 voxels, and ¢ 32 voxels, along each edge

at locations where two regions (i.e., two grain orientations)
meet, edges at locations where three regions meet, and verti-
ces at locations where four or more regions meet. Since the
polycrystal models are generated with the goal of reducing
interfacial regions, the above simple rules are well followed.
Technically, it is possible to have an edge where four regions
meet, but those cases are energetically unfavorable (in the
sense of creating unnecessary grain boundary regions), and
rarely occur. In fact, such a case has not been observed in our
models and is typically not seen in real microstructures of
single phase materials, where grains are normally observed
to meet at triple points in 2D sections (which corresponds to
three grains meeting to form an edge) and not at quadruple
points (which would correspond to four grains meeting at an
edge), see, for example, Cahn [40].

First, the vertices are identified followed by the edges
that connect them. The weighted center point of these vertex
cubes is regarded as the vertex location. Edge cubes con-
taining the same three orientations are on the edge where
grains with those three orientations meet. Since these three
orientations are also associated with the vertices on the two
ends of the edge, the two end vertices can be found and an
edge is created by connecting these two vertices (Fig. 3). To
test the accuracy of using this straight line to represent the
real edge made up of edge cubes, the distance from each of
the edge cubes associated with this edge to the created edge
is calculated and the maximum distance is defined as the
“error” of this edge (Fig. 4). Here, we choose 1.0 (the dis-
tance between neighboring grid points) as the critical “error”
value, where a typical edge is made up of more than ten edge
cubes. If the error of an edge is smaller than 1.0, we regard it
as straight and keep the edge created by connecting the two
vertices, otherwise, we split the edge into two straight edges
by inserting a new vertex at the location of the edge cube
having the maximum error. Typically, only about 10 % of the
edges created have an “error” larger than 1.0, meaning that
most of the edges are straight, and that the previous assump-
tion (that all interfaces are of 3D polygon shape) is valid. The

Vertex E

cube 1

= Edge cubes

% Vertex cube 2

Fig. 3 2D sketch showing edge creation based on corresponding edge
cubes and vertex cubes. Shaded cubes are vertex cubes, others are edge
cubes

Edge cubes — R /|.'-Jf |
New vertex — 3 1T . -/

-

Error befo% <
splitting

7 e Error after splitting

Fig. 4 2D sketch showing edge-split operation used to increase the
accuracy of the constructed edge. Shaded cubes are vertex cubes, other
cubes are edge cubes

splitting procedure was only applied once to avoid creating
short edges.

Similarly, interface cubes with the same two orientation
values collectively form an interface, and the two orienta-
tion values are also associated with the edges enclosing the
interface. Edges associated with this interface are found in
order to form an edge loop. If all the edges are lying on the
same plane, this interface is a patch; otherwise this inter-
face is triangulated by either introducing a vertex around
the center of the interface, or just connecting the existing
vertices (Fig. 5). All possible splitting choices are tested,
and the one which maximizes the minimum angle of all
the angles of the triangulation is used. It should be noted
that this procedure assumes flat interfaces, taking advan-
tage of the fact that flat interfaces are energetically favor-
able. If the interfaces between the grains are not flat, error is
introduced.

@ Springer
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(a) (b)

Fig. 5 Two ways of triangulation: a by introducing a new vertex; b by
connecting existing vertices

After all patches are constructed, the region-patch connec-
tion is established by tracing the common orientation values
between regions and patches. The complete geometric struc-
ture is constructed and no further polishing is needed.

A 3D mesh is then generated using Abaqus FEA software
[41]. Because of the periodicity of the grain structure, while
there are twelve edges on the polycrystal model, there are
only three unique edge discretizations. For example, all of
the edges parallel to the x axis cut through the same grains
and have the same discretization. Thus, each of the three
independent edges is meshed first with 1D meshes that are
then copied to remaining edges. Next, three sides sharing one
corner of the unit cell are each given a surface mesh, where
the mesh is seeded by the discretization already done on the
edges. The surface mesh is then copied to the three remaining
opposite sides so that periodic boundary conditions may be
easily applied by constraining matching nodes on opposite
faces. Finally the interior volume is fully meshed, insuring
periodicity. Three meshes were created with varying levels
of refinement: 104,165; 146,918; and 194,297 elements. Fig-
ure 6 shows the resulting meshed grain structure, comparing
the meshed VT model described in the preceding Sect. (2.3.1)
and the ST model described here with the finest meshes used
in this work, that is with 196,608 and 194,297 elements,
respectively.

3 Material model

The grain-scale constitutive model used in the finite element
implementation is presented in this section. In this work, alu-
minum alloy 7075-T651 is modeled, which is a face-centered
cubic (fcc) metal with twelve primary {111}(110) slip sys-
tems. The derivation of the constitutive model along with
the calibration of material parameters is given in [42], and a
summary is presented here. The tensor notation used herein
follows that in Gurtin [43]. First, a multiplicative decompo-
sition of the deformation gradient into its elastic and plastic
parts [44] is assumed
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F = F°FP 2)

where F7 is the plastic deformation gradient and F¢ is the
elastic deformation gradient. The Green-Lagrange elastic
strain tensor is then E* = %(FETFE —1I).

A hyperelastic potential is used for the elastic response.
Specifically, the following simple quadratic form is used

A ae lae ~ se
W(E") = SE° LIE] A3)

where L is the fourth order elasticity tensor, which is defined
in terms of the three independent elasticity parameters for
crystals with cubic symmetry, Ci1, C12, and Ca4, and the

" indicates the relaxed, elastically unloaded configuration.

The second Piola-Kirchoff stress, S is then

AW
S§S=—_ =L[E"] )
oE
and the Cauchy stress, o, on the deformed configuration is
1 A
=——F°SFT . 5
’ det (F°) )

For the viscoplastic response, the rate of shearing, y“, is
taken to be related to the resolved shear stress, 7%, on the «
slip system through a power law

o 1/m—1

. . ¥
ye = Vog—a g_"‘
where yy is the reference shearing rate, m is the strain rate
sensitivity, and g% is the slip resistance. The resolved shear
stress on a slip system is related to the second Piola-Kirchhoff

stress through

T

(6)

¥ = (F”FES‘) PY P = (3 @ m®) )

where P is the Schmid tensor defined in terms of the slip
direction and slip plane normal, §* and m®, respectively, for
slip system «. The relationship between the plastic defor-
mation gradient and the rate of shearing on the slip systems
is

Ny

L' =F'(Fr)t ="y p" 8)

a=1

where L” is the plastic velocity gradient. The resistance
to plastic slip, g%, which describes the hardening behavior,
evolves according to

o\ s
% = Gy (gs 8 ) ZHotﬂ|)}ﬁ| 9)
p=1

&8s — 8o

where g is the initial slip resistance on all the slip systems,
Gy is the hardening rate coefficient, g; is the saturation hard-
ness, and HP is the slip interaction matrix which describes
the relative strength of latent and self hardening on the slip
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(a)

Fig. 6 Meshed 107 grain structure: a voxel topology and b smooth topology

systems. In this work, we model aluminum alloy 7075-T651,
which is a dispersion strengthened alloy, where hardening is
associated with dislocations bowing out and forming loops
around precipitates. Hardening is caused by incompatibili-
ties between the plastic strain field due to slip and the elastic
precipitates. The resulting form of the hardening matrix is

HY = ‘M“-fc[(j)—z) [Mﬁ]]‘ (10)

where M” is the symmetric part of the Schmid tensor, P R ji
is the average Eshelby tensor associated with the precipitates
(approximated as elliptical), and Z is the fourth order identity
tensor. For details of the model derivation and calibration of
material parameters, see Bozek et al. [42]. The model param-
eters for AA7075-T651 are given here in Tables 1 and 2 for
completeness.

4 Finite element implementation

The model is implemented in parallel into a 3D finite ele-
ment framework using an integration algorithm described
in [45] and a finite element formulation with a consis-
tent tangent similar to that described in [46]. A mixed
displacement/pressure finite element formulation is used
with P2/P1 tetrahedral elements, specifically quadratic dis-
placement interpolation and linear, discontinuous pressure
interpolation. The pressure is eliminated at the element
level so that the nonlinear finite element procedure only
solves for the displacement degrees of freedom. Periodic
boundary conditions are implemented where the formu-
lation is defined in terms of the displacement fluctuation
field with the fluctuations constrained to match on opposite

faces [47], effectively treating the modeled unit cell as rep-
licated on each side. For information regarding specific
details of the integration algorithm, finite element imple-
mentation, or derivation of the consistant tangent, see [48].
The open source software toolkit PETSc is used for par-
allel solution of the resulting equations using the conju-
gate gradient method with a block Jacobi pre-conditioner
[49].

5 Simulation results

In order to compare the VT and ST representations, we model
plane strain compression to a 20 % reduction over 20 seconds
in the 107 grain structure. The deformation is defined such
that the material is compressed along ND, lengthened along
RD, and TD is the zero strain direction, as typical for rolling.
The grain structure was assigned a set of random orienta-
tions. The VT and ST models are shown in Fig. 7 without
meshes, where the colors indicate the grain orientations using
the inverse pole figure color map shown.

5.1 Mesh convergence and efficiency

As mentioned before, the VT and ST models were meshed
with similar numbers of quadratic, tetrahedral elements for
comparison, and three meshes were created for each model
in order to test mesh convergence as well as to investigate
simulation efficiency. Table 3 lists the number of elements
and degrees of freedom for each model.

For checking mesh convergence, we only look at the dif-
ference in results between the different meshes for each
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Table 1 Material parameters

for AA7075-T651 mn ¥ g (MPa)  Go(MPa) g (MPa)  Cy;(GPa)  C12(GPa)  Cyy (GPa)
0.005 1.0 220 120 250 107.3 60.9 28.3

Table 2 Hardening interaction 3

matrix (H*8) and slip system Slip System ID 1 2 3 4 5 6 7 8 9 10 11 12

beri N

nimbering (111) [170] 1 1.0 050 050 050 059 0088 0.088 0.50 0.59 0.18 0.088 0.088
(111) [101] 2 050 1.0 050 059 050 0.088 0.18 0.088 0.088 0.088 0.59 0.50
(111) [011] 3 050 050 1.0 0.088 0.088 0.18 0.088 0.59 0.50 0.088 0.50 0.59
(111) [101] 4 050 0.59 0.088 1.0 050 0.50 059 0.50 0.088 0.088 0.18 0.088
(111 [110] 5 059 0.50 0.088 0.50 1.0 0.50 0.088 0.088 0.18 0.59 0.088 0.50
(I11) [011] 6 0.088 0.088 0.18 050 050 1.0 050 059 0.088 0.50 0.088 0.59
(111 [101] 7 0.088 0.18 0.088 0.59 0.088 0.50 1.0 050 0.50 0.50 0.59 0.088
(111 [011] & 050 0.088 0.59 0.50 0.088 0.59 0.50 1.0 050 0.088 0.088 0.18
(111 [110] 9 059 0.088 0.50 0.088 0.18 0.088 0.50 0.50 1.0 059 050 0.088
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Fig. 7 107 grain models used in the simulations for comparison where the grain orientations are depicted with an inverse pole figure color map
with respect to the ND sample direction: a VT model, b ST model, and ¢ inverse pole figure color map legend

model representation type (VT and ST), and in the next
section we will compare the VT and ST results with each
other in more detail. First, we consider the difference in the
grain sizes between the different representations. The ST
models all have exactly the same grain sizes because they
are based on the same geometric model. The differences in
grain sizes between the VT and ST models relative to the
average grain size are 1.58, 1.34, and 0.97 % on average, for
the coarsest to finest VT models, with maximum differences
of 6.89, 6.24, and 4.30 %.

The variability in the stress is an important quantity that
we study here, and so we will first look at the average and
standard deviation in the stress for the different meshes. The
resulting volume average and standard deviation in the von
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Mises effective stress for each mesh is given in Table 3 at 15
and 20 % compression. The von Mises effective stress is first
computed in each element and then the volume average and
standard deviation in the von Mises stress are evaluated for
the polycrystal. The results for individual stress components
are similar, with the difference in average and standard devia-
tion in the stress between the finest and the intermediate mesh
less than 1.5 and 2.2 MPa, respectively, and between the fin-
est and coarsest mesh less than 2.5 and 3 MPa, respectively,
for any stress component. It should be noted that no values
are given in Table 3 for 20 % compression for the coarsest
ST mesh because the simulation failed at 18 % compression
due to element distortion, which is explained in more detail
below.
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Table 3 Mesh convergence study data at 15 and 20 % compression
(dof number of degrees of freedom)

No. elements dof 15% 20 %

5 (MPa) ¥, (MPa) & (MPa) I, (MPa)

Voxel
105,456 446,631 670.5 101.2 683.4 103.1
146,334 616,137 669.3 100.7 682.7 102.3
196,608 823,875 668.3 100.5 681.5 102.4
Smooth
104,165 434,274 666.3 99.0
146,918 605,187 665.0 98.7 677.3 100.6
194,297 794,664 664.4 98.3 677.0 100.2

Comparison of average (o) and standard deviation (X, ) in the von
Mises effective stress

The total slip on the slip systems is also an interesting local
metric, which will be high in regions of localized deforma-
tion. The total slip ¥ T is computed locally as

A
»T =Z/|y“| dt (11)

a=1 0

where 77 is the time at the end of the simulation. First, we
look at the distribution of slip over the polycrystal at the end
of the deformation (20 % compression), where the total slip
in each element is weighted by the element volume. Figure 8
compares the distributions for the middle and finest meshes
for the (a) VT models and the (b) ST models. We see that
the distributions are not significantly different between the
two meshes. In fact, the mean and standard deviations for
the middle and fine meshes are identical in each case, and
the peak values are also close, changing by less than 5%
between the meshes. We also look locally at the total slip
yT on a 2D slice cut on an ND-RD plane near the center of
the grain structure, where the total slip is interpolated onto
a regular 2D grid with 106 points along RD and 68 points
along ND, considering only interior points. Results for the
middle and finest meshes considered are shown in Fig. 9. The
general pattern of the total slip is very similar between the
middle and fine meshes (Fig. 9a, b for the VT model, Fig. 9c,
d for the ST model), and the difference in the slip between
the meshes is fairly small except near some grain boundaries
(Fig. 9e, f). The median difference between meshes in total
slip is 9.3 % for the VT model and 4.5 % for the ST model
relative to the average slip. This indicates that a finer mesh is
needed for the VT model to achieve the same level of accu-
racy as the ST model, which is not surprising. Some of the
error between meshes is due to the interpolation onto a reg-
ular grid, especially near grain boundaries where the error is
highest because the regular grid point may fall in different
grains in the different meshes.

In addition to considering the difference in simulation
results between the two model representations, it is also
important to consider simulation costs. Because the VT mod-
els have initially uniform meshes and the element shapes are
guaranteed to be optimal, the simulations with the VT model
are easier to set-up, run more efficiently, and are more robust
than ST models. The graph in Fig. 10 compares the efficiency
between the two representations using the set of meshes
described above. The simulations were run on an IBM Blue
Gene L using 512 processors. From the graph, we see that the
VT model is significantly more efficient for a similar number
of degrees of freedom. The slow down in the simulations as
the deformation progresses is due to the element distortion.
Quadratic tetrahedral elements are used here for interpolat-
ing the displacement field, which, due to the mid-side nodes
on the element edges, can exhibit substantial local volume
change at large strains when the elements have a high aspect
ratio, even though the overall volume of the elements does
not change substantially. It should be noted that elastic com-
pressibility only is allowed, while the plastic deformation,
which is the majority of the deformation, is assumed incom-
pressible. When a relatively large volume change occurs at
an integration point, the integration algorithm may not con-
verge because it is designed for large, nearly incompressible
deformations, causing the step size to be cut leading to the
slow down in the simulations as the deformation progresses.
Ultimately, if the step size becomes too small, the simulation
is ended, which is the case for the coarsest ST model that
failed at about 18 % compression. Periodic remeshing may
improve performance, but may also introduce error due to
variable remapping and the re-equilibration process. Lower
order, e.g. linear elements in displacement and constant pres-
sure, would be more robust, but would require greater mesh
refinement for accuracy. A low-order stabilized method may
be a better approach, where robust and accurate P1/P1 (linear
displacement and pressure) elements are used [50].

5.2 Voxel and smooth model result comparison

A number of different metrics are used to compare the re-
sults for the two geometric representations of the same grain
structure. Here, we only compare the results between the VT
and ST models obtained with the finest meshes considered
(196,608 elements for the VT model and 194,297 elements
for the ST model).

First, we compare the overall texture evolution in each
case. The initial and final (111) equal-area pole figures are
shown in Fig. 11. The pole figures are generated by weight-
ing the orientation in each finite element by the size of the
element and computing the orientation intensities in each 5°
bin used to generate the pole figures. Not surprisingly, the ini-
tial pole figures are nearly identical, with small differences
due to the slight difference in volumes of the initial grains
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Fig. 8 Histograms showing distribution of total slip over entire polycrystal: a comparing the results for the VT models with 146,334 (middle mesh)
and 196,608 (fine mesh) elements, and b comparing the results for the ST models with 146,918 (middle mesh) and 194,297 (fine mesh) elements
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Fig. 9 Total accumulated slip interpolated onto a regular grid on a 2D 196,608 elements, ¢ ST model, 146,918 elements, d ST model, 194,297,
slice, horizontal is RD, vertical is ND for different meshes and the dif- e difference between results shown in (a) and (b) for VT models,
ference between meshes: a VT model, 146,334 elements, b VT model, f difference between results shown in (¢) and (d) for ST models
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Fig. 10 Efficiency comparison for the VT (open symbols) and ST
(solid symbols) representations with different mesh sizes (dof number
of degrees of freedom)

due to the different geometric representations. Because of the
small number of grains, although random orientations were
assigned to the grains, there is some initial texture evident.
The final pole figures are also nearly identical with the typi-
cal rolling texture starting to become apparent. The texture is
slightly sharper for the VT model with the maximum texture

max= 4158
3.279
2.586
2.039
1,608
1.268
1.000
0.789
min=0.142

component intensity being 1.7 % higher in the VT model than
in the ST model. Thus, the overall texture evolution does not
appear to be affected by the grain structure topological rep-
resentations considered here.

The macroscopic stress—strain behavior is also compared
for the two models. The von Mises effective stress and strain
are plotted in Fig. 12 for each model. The von Mises effective
stress is computed from the Cauchy stress volume averaged
over the polycrystal, and the von Mises effective strain is
computed from the applied, macroscopic logarithmic strain.
The macroscopic stress—strain curves for the two models
are nearly indistinguishable, as can be seen in Fig. 12, with
the maximum difference in stress between the curves being
8.5 MPa. Similar results are seen on a component basis too.
Thus, the macroscopic stress—strain behavior is also not af-
fected significantly by the topological representation of the
grain structure for the two cases considered here. While it is
not surprising that the overall texture evolution and stress—
strain response are not affected by the details of the topolog-
ical representation of the grain structure, one might expect
that the local behavior within the grains may be affected,
which is considered next.

The deformed grain structures are shown in Fig. 13. The
periodicity of the deformed grain structures is evident as
opposing boundaries have the same shape. We can see that

max= 4154
3z
2584
2038
1.608
1.268
1.000
0.789
min= 0143

max= 4384
34727
2678
2.084
1.637
1.2719
1.000
0.782

min=0103

Fig. 11 Texture comparison: a VT initial pole figure, b ST initial pole figure, ¢ VT final pole figure, and d ST final pole figure
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Fig. 12 The von Mises effective stress vs. strain for the two model
representations

some of the grains are starting to break up with multiple
orientations within the grains, shown by the color varia-
tions in the figure. The figures look quite similar as far as
the overall shape of the deformed structure and the color
variations appearing within the grains. The primary visi-
ble difference is the “stair-steps” on the grain boundaries
in the VT model. Qualitatively, the color variations in the
ST model appear to change more smoothly than in the VT
model.

The primary purpose of modeling discretized grain
structures is in order to capture the local fluctuation in the
deformation from that of a uniform deformation. One way
to quantify the non-uniformity of the deformation is to com-
pute the average fluctuation in the displacement field from
that of a uniform deformation. The average fluctuation in the
displacement field between the two models is found to differ

by less than 1% here indicating that that average level of
local fluctuations in both models is not substantially differ-
ent.

To examine the spatial difference in the predictions of
how the grains break up in each of the models more quan-
titatively, we look at the intragranular misorientations that
develop within the grains. First, we look at the misorienta-
tions on a 2D slice cut on an ND-RD plane, similar to the
slice considered in Sect. 5.1 but at a slightly different loca-
tion in the TD direction and zoomed in more to the interior
of the polycrystal. The orientations are interpolated onto a
regular grid on the 2D slice. The kernel average misorienta-
tion is then computed for each grid point using OIM Analysis
Software [51], where the kernel average misorientation is the
average misorientation between that grid point and its neigh-
bors excluding points with misorientations greater than 10°
so as not to include grain boundaries. It should be noted that
we chose 10° instead of 15° here in order to better visualize
the misorientations in the central parts of grains. The mis-
orientation is strongly dependent on the grid spacing. Here,
the second nearest neighbor was used in computing the mis-
orientations in order to avoid using grid points that may lie
within a single finite element.

The results are shown in Fig. 14 where the same color
scale is used. Some differences in the grain structures are a
direct result of the differences between the VT and ST repre-
sentations. Additional differences, however, result from the
influence of the stair-stepped grain boundaries on texture evo-
lution. Note, the small stair-steps appearing in the image for
the ST model result from the regular grid used by the OIM
software and do not represent the actual finite element mesh
used. For the ST model, the maximum misorientations appear
at grain boundaries, which is not surprising as the grains
may need to rotate differently near the grain boundaries from
the interior in order to satisfy compatibility and equilibrium

(b)

Fig. 13 Deformed 107 grain models used in the simulations for comparison where the grain orientations are depicted with the same ND inverse

pole figure color map as in Fig. 7: a VT model and b ST model
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Fig. 14 Misorientation distribution on a 2D slice: a VT model and
b ST model. Horizontal is along RD and vertical is along ND. Small
stair-steps appearing in the ST model result from the regular grid used in
the OIM imaging software and do not represent the actual finite element
model used

across the grain boundary. However, in the VT model, the
highest misorientations do not seem to be as concentrated
near grain boundaries. This may be due to the stair-steps at

(a)

the boundary locking the boundaries resulting in stronger
kinematic constraints on the grain rotations than might natu-
rally occur. The average and maximum misorientations on the
plane for the VT model are 1.11° and 6.43°, respectively, and
for the ST model, they are 1.19° and 7.68°. Thus, the average
and maximum misorientations predicted on the plane for the
ST model are 7 and 19 % higher, respectively, than for the VT
model. Looking at the individual grains labeled A and B, we
can see some differences in the misorientation fields. First,
looking at grain A, both models show a maximum misori-
entation occurring at a similar location in the grain interior,
where the maximum is 3.7° in the ST model and 4.6° in the
VT model. Thus, the maximum misorientation in grain A,
which occurs at an interior region of the grain, is predicted
to be higher in the VT model than the ST model for the given
plane. On the other hand, for grain B, the ST model predicts
relatively high misorientations at the upper grain boundary
with a maximum of 7.5°, whereas in the VT model high mis-
orientations are not predicted near the grain boundary and
the maximum misorientation in the grain is only 2.6°.
Other local metrics that may be of interest because
they may be associated with localized failure or damage
are the stress state and the level of plastic deformation.
Figure 15a,b show the deviatoric Cauchy stress in the ND
direction (compressive) on the VT and ST deformed grain
structures, respectively (refer back to Fig. 13 to see the grain
structure and orientations). While the level and distribution of
stress appears similar, the stress state in the ST model is much
smoother than that in the VT model, where the stress distri-
bution appears to exhibit some of the stair-stepped features
at the grain boundaries. For a more quantitative analysis, a
histogram of the deviatoric stress in the ND direction for the
entire polycrystal is shown in Fig. 16. The distributions of
the stress for both representations is very similar. Other stress
components also have distributions that are similar for the ST
and VT representations. It should be noted that the deviatoric
stress is shown because the prescribed deformation is volume

200

100 |

—-100

—200

(b)

Fig. 15 Deviatoric Cauchy stress along the ND, compression direction for the a VT model and b ST model, both using the same color bar scale
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Fig. 16 Histogram showing the distribution of the deviatoric stress in
the ND direction over entire polycrystal

Table 4 Average and standard deviation (SD) for the total (0;;) and
deviatoric (al.’j) Cauchy stress components, x = RD, y = TD, z = ND,
in units of MPa

ST ST VT VT

average SD average SD
Oxx 329 178 330 174
Oyy 48 196 51 195
022 —339 170 —344 165
oy 317 92 318 94
oy, 36 120 38 122
o, —352 72 356 74
Oxy —15 87 —15 85
Oxz 29 116 29 115
Oyz 7 85 7 86

preserving without any stress boundary conditions, and thus,
the computation of the hydrostatic stress will be less reliable
for the nearly incompressible behavior. However, since a sta-
ble, mixed finite element formulation is used, the full stress
components have a similar smoothness and exhibit similar
trends. The average and standard deviations for all the devi-
atoric and total stress components are given in Table 4.
Finally, the total slip, computed as described in Sect. 5.1
(Eq. 11), is compared. The distribution of total slip for each
model representation is compared in Fig. 17. The distribu-
tions for the ST and VT models are very similar. The average
total slip for the ST model is 0.54 and for the VT, it is 0.55,
and the standard deviation in the total slip for both models is
0.21. Thus, key statistical metrics in the stress and total slip
are very close for both representations. If we look again at
the total slip on the 2D slices shown in Fig. 9b, d), we see a
similar pattern with regions of high localized slip occurring
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Fig. 17 Histogram showing the distribution of the total slip over entire
polycrystal

mostly at grain boundaries, but also some regions within the
interior of grains. The mean difference in slip on the 2D slices
between the VT and ST models is 14.9 % and the median dif-
ference is 10.5 %.

6 Conclusions

Two geometric representations of a polycrystal grain struc-
ture, one with the grains represented as a collection of voxels
(VT)resulting in stair-stepped grain boundaries, and one with
smooth grain boundaries (ST), are modeled and the predicted
fields and efficiencies are compared. Both models gave very
similar results with regard to the following:

— overall texture evolution,

— macroscopic stress—strain behavior,

— average level of local fluctuation in the displacement field,
— statistical distribution of stress, and

— statistical distribution of total slip on the slip systems.

The most significant difference in the simulation results
appeared in the misorientation distributions. The ST model
predicted higher misorientations near grain boundaries that
were not observed in the VT model, and a higher maximum
misorientation on a typical plane was predicted by the ST
model. It was also observed that the stress field within the
grains is smoother in the ST model than in the VT model,
where the stress distribution exhibited some of the stair-
stepped features of the grain boundaries. The local distribu-
tion of slip was also found to exhibit some difference between
the models. The VT model was more robust and efficient be-
cause the initial finite element mesh consisted of uniform
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elements, and thus had a better mesh quality with the ele-
ments less likely to exhibit problems under severe distortion,
especially here where quadratic, tetrahedral elements were
used. Lower order elements would be more robust at large
strains.

Based on these results, if an accurate misorientation dis-
tribution is important to the analyst, for example to predict
the breaking up of the grains into sub-grains and the forma-
tion of low angle boundaries, the ST model should be used.
Otherwise, a VT model may provide adequate accuracy with
better efficiency and ease of model creation. Efficiency in the
ST model could be improved, and may surpass the VT model,
if graded meshes were used, for example with initially finer
meshing near grain boundaries and coarser meshing on the
grain interiors, and if lower order elements in a stabilized
finite element framework were used. Finally, this study did
not specifically investigate the number of voxels per grain
required to model a polycrystal with the same accuracy as an
ST model, which would be interesting for a future study.
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