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Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using

various experimental and numerical tools. For computational analysis, a variety of turbulence mod-

els are available and the accuracy of these models in capturing the phenomenon depends largely on

the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured

meshes called mesh boundary layers are widely used in the CFD community in simulations of tur-

bulent flows, because of their graded and orthogonal layered structure. They provide an efficient

way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped

elements. Since usually the required mesh spacings to accurately resolve the flow are not known

a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to

achieve an appropriate mesh.

In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on

boundary layers. We construct a framework to calculate the critical wall normal mesh spacings

inside the boundary layers based on the flow physics and the knowledge of the turbulence model.

This approach is combined with numerical error indicators to adapt the entire flow region. We

illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and

studying their superior performance in capturing the flow structures in detail.

We also demonstrate the capabilities of the current developments in parallel boundary layer

mesh adaptation by applying them to two internal flow problems. We also study the application

of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight

the advantage of using such techniques for superior wake and tip region resolution by showcasing

flow results. We also outline the future direction for the adaptive meshing techniques to be useful

to the large scale flow computations.
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Chapter 1

Introduction

1.1 Background

From the vortices in teacups to the whirlpools in sinks; from the motion of turbines to the

flight of aircrafts; from the winds of hurricanes and tornadoes to the cosmic star formations from

the clouds of dust; fluid flows are ubiquitous and are critical at all levels of our interaction with the

universe. Most of these flows are unsteady, random, chaotic and highly irregular in nature, or simply

put, turbulent. It is said that Leonardo Da Vinci was the first one to study turbulence, sometime in

the 15th century, by observing water motion. Since then, six centuries have passed and turbulence

still remains an unsolved problem in classical physics and a favorite topic of researchers. Different

analytical, experimental and numerical methods have been invented and used to understand the

basic physics behind this complex phenomenon.

In the 18th century, many scientists like Bernoulli, Euler, d’Alembert attempted to describe

the fluid flows using mathematical equations. In 1840s, Navier-Stokes equations were formed with

the addition of viscous effects’ treatment to above attempts, and became the foundation stone

of today’s numerical methods in fluid dynamics. In 1858, Helmholtz established the three laws of

vortex motion, which can still be found in any fluid mechanics textbook. In 1904, Ludwig Prandtl’s

experiments led to the discovery of boundary layers formed near the walls, by action of viscosity,

which was a crucial development in fluid dynamics. In most of the 19th century and in the early

part of the 20th century, the research in fluid dynamics was focussed on experimental and analytical

studies as well as important theoretical developments.
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With the advent of computers in the late 20th century, it became possible to solve the

Navier-Stokes equations numerically, to study the physics of fluid flows. This approach is called

computational fluid dynamics (CFD), which relies on the use of computers to numerically solve

a system of partial differential equations (PDEs). To achieve this, the flow domain is discretized

into smaller pieces. A mesh or a grid is a spatial discretization of the physical domain, comprising

of finite number of mesh elements or grid cells. Different techniques like finite differences, finite

volumes and finite elements were postulated to discretize and solve the PDEs. Structured grids

were at first popular because of their ease of implementation and speed of calculations. But with

their difficulties to adjust to complex geometries, unstructured grids started gaining popularity as

computational power and reach of CFD extended. Distributed systems like supercomputers and

clusters became available and computations could now be performed on many processors instead of

one. This opened new doors for CFD, as much faster calculations than before were now possible.

In the last two decades, the use of computational fluid dynamics has increased tremendously and

has helped in improving designs, and optimizing performance, mainly in automotive, aerospace,

environmental, and energy industries.

One thing to note is that with these computational methods, only approximate solutions can

be obtained. The accuracy depends on various factors such as discretization scheme used, order of

the numerical method etc. To get a realistic solution, it is highly desirable that inherent discretiza-

tion errors due to the spacial approximations are minimized. In most complex flow problems, it is

difficult to determine the adequate mesh resolution a priori to the simulations. In such cases, an

initial mesh is used to get a first estimate of the flow solution, and the mesh is adapted using a

posteriori error indicators.

To improve the spatial discretization, increasing the resolution in a uniform global fashion to

a level required for acceptable accuracy would introduce excessive demands on the computational

resources. In order to expedite the performance of numerical computations, resolution within

the discretization needs to be applied in a local fashion. For this, mesh adaptation is done by

locally modifying the mesh elements according to some size field information, provided by suitable
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error estimators or error indicators. Error estimators provide a measure of the solution error in a

certain norm. For the Navier-Stokes equations, no reliable a priori error estimators exist to predict

the error in the solution. Because of this, a posteriori error indicators are used, which provide

relative error information. In essence, error indicators are qualitative error measures derived from

the flow solution. Traditionally, the size field is based on some scalar error information, that

allows for isotropic adaptivity resulting in equilateral elements. However, real world fluid problems

exhibit highly anisotropic flow features, such as boundary layers near no-slip walls, or shock waves

in transonic and supersonic flows. Such solution features are most efficiently resolved by using

elements which are oriented in a certain manner with significant anisotropy.

This thesis focuses on anisotropic adaptivity of turbulent flows, with a focus on boundary

layers. One goal is to explore new adaptivity indicators derived from the flow physics, to decide

the mesh resolution in the boundary layers, coupling them with numerical error indicators to get

a hybrid strategy. Another goal is to guide the parallel anisotropic adaptivity of boundary layer

meshes. The third goal is to study applications of these procedures to complex turbulent flow

problems.

1.2 State of the Art and Contribution of This Thesis

Boundary layers have been studied extensively both experimentally and computationally and

the near wall resolution requirements are well understood for different modeling approaches used to

simulate turbulent flows [36], [37], [38], [69], [72]. For example, Reynolds-averaged Navier-Stokes

(RANS) simulations have well understood near wall spacing requirements, based on the models

being used (e.g. k-epsilon vs. Spalart Allmaras), and the wall treatment (wall modeled vs. wall

resolved). For large eddy simulation (LES), not only the normal spacing but also the streamwise

and spanwise spacings are well understood. These spacings are usually defined in plus units (y+),

which are a non-dimensional length scale derived from the molecular viscosity (µ) and a velocity

scale (uτ =
√
τ/ρ). Simple flows that include the effects of curvature and streamwise pressure

gradient provide reliable guidance to what each model class requires in terms of these length scales
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for attached boundary layers.

In case of viscous flows, better results can be obtained in regions of the boundary layers,

with the help of a semi-structured mesh near the no-slip walls, called as mesh boundary layers [27].

These meshes are widely used with prior knowledge of boundary layers [19], [30], [35], [39], [42], [49],

[50]. The turbulence modeling requirements are more readily met with a boundary layer structured

grid near the walls, as opposed to an unstructured mesh. Highly anisotropic grids (with anisotropy

of 10,000 or more) can be constructed with the semi-structured mesh, as opposed to unstructured

meshes, without introducing poorly shaped elements with large dihedral angles. This stack of

elements grows up to a specified distance from the wall and rest of the flow region is meshed with

unstructured elements. A common method to construct these meshes is advancing layers method

[58]. Favorable attributes of such meshes are high-aspect ratio, orthogonal and graded elements

near the walls. Since this layered nature of elements is highly desirable, it needs to be preserved

during adaptation. Figure 1.1 shows an example of mesh boundary layers for a pipe geometry. In

3D, a boundary layer mesh consist of prism and pyramid elements, whereas the unstructured region

of the mesh consists of tetrahedral elements.

Figure 1.1: Cut of a typical finite element mesh for a pipe geometry showing a mesh boundary
layer

However, a major drawback of the boundary layer structured meshing techniques is that a
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prior specification of the surface mesh resolution and the point distribution along the wall normals

(e.g. first layer height, total thickness of the layers, growth rate) can require a great deal of user

intervention [60]. This requires expertise and knowledge of the flow solution, which is not available

prior to solving the flow. For example, in transonic and supersonic cases, flow often encounters

shock waves, and their positions are not known a priori to the flow solve. Since these are regions

of discontinuities and large changes in the solution, the mesh required in their vicinity has to be

very fine. Such flows either require very fine initial meshes over large portions of the domain, or

many cycles of meshing to “learn” the location of the solution features and specify mesh sizes a

priori accordingly, or adaptive grids.

Adaptive grid techniques aim at reducing the dependence on the expertise of the user as well

as reducing the manual labour cost of regenerating the mesh to get better results, after visualizing

the solution. Practically, one would have to undergo several cycles of meshing and re-meshing until

they get to a satisfactory mesh. Adaptive grids, however, can avoid this manual repetitive cycle by

automating some of the process.

Baker [8] gives an overview of different adaptation strategies for fluid dynamics. There are

different adaptive methods including h (spatial adaptation), p (order of the polynomial), and r

(mesh movement). Out of these, h adaptive methods are the most suitable and popular adapta-

tion techniques for finite elements in fluid dynamics, especially when shocks or boundary layers

are present. The main goal of these methods is to reduce the discretization errors by increasing

the resolution in the required areas of the mesh. The basic principle behind these methods is

equidistribution of the error, such that the error is equal in every element of the mesh. Babuska

and Rheinboldt [7] showed that finite element meshes produce optimal results when the error is

equidistributed for all elements. Under simplified assumptions, this approach has been shown to

minimize the global error.

The h adaptive methods can again be classified in two broad categories, isotropic and

anisotropic adaptive methods. Isotropic adaptive methods use a scalar error density and result

in equilateral elements in each direction. The choices for the error estimator/indicator can vary
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from the solution residual [68], [75], the adjoint solution [55], [77], the truncation error [11], [12] and

the solution gradients [9]. However, with problems exhibiting high anisotropy, error representation

based on a scalar quantity might not produce an optimal mesh [6]. For this, anisotropic adaptive

methods can be used to further optimize the shape of the elements.

Anisotropic adaptivity of unstructured grids based on a mesh metric field is well understood

and has been applied to real world flow problems [3], [14], [15], [16], [26], [48], [54], [57]. These

methods have been extended to semi-structured grids near the walls by decomposing the mesh

boundary layers in terms of an in-plane and a normal directions [62]. Boundary layer adaptivity with

unstructured grids has also been carried out on a single processor, changing the in-plane spacing

[61], for viscous flows. However, previous studies have been limited to pipe and cardiovascular

flows, with an emphasis only on resolving the flow quantities near the walls, like the wall shear

stress. However, for turbulent flows, the boundary layer meshes are critical not only for resolving

the wall quantities, but for overall behavior of the physical boundary layer and the accuracy of the

turbulence models, and have a big impact on the overall structure of the flow. Therefore, studying

the application of adaptive boundary layer meshes to turbulent flows is required, and is the primary

focus of this thesis.

Since the turbulence models have specific requirements for the near wall mesh spacings, it

is natural to think about using the flow physics information to drive the boundary layer mesh

adaptation. Flow physics can also give information about the local height of the physical boundary

layer. This combined information can be an effective indicator for thickness adaptation of boundary

layers and can be used to automatically adjust the boundary layer meshes. However, this approach

is limited to the boundary layers and needs to be combined with other numerical error indicators

to drive adaptivity of the entire flow domain. In this thesis, we present such a hybrid strategy and

demonstrate it’s effectiveness by applying it to three difference aerodynamic flows.

So far, computational power has increased as per Moore’s law’s prediction since 1950s, dou-

bling nearly every two years. In recent times, this has largely been possible due to the parallel

processing paradigm. Recently, supercomputer systems have been developed with hundreds of
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thousands of cores for computation, clocking petaflops (1015) speeds. As new and more complex

problems are undertaken for computational studies, it is desirable to move the simulations to a

parallel framework, to make the most of these available resources. This has two advantages, one is

handling larger problem sizes than before, and second is achieving the results faster than before.

With efforts going on to achieve exa-scale computation, the way ahead for CFD is undoubtedly

with parallel processing.

For flow simulations, we use a finite element formulation which is described in references [79]

for incompressible flows and [80] for compressible flows. Our implementation of this formulation

already has full capability to run in parallel and has been shown to scale very well on different

systems up to 288k cores for 1.2 billion tetrahedra element mesh [63]. Efforts are being carried

out to test the flow solver on 3 million MPI processes with a 92 billion tetrahedra element mesh

for an aerodynamic rudder geometry. Clearly, if adaptive techniques are to be applied to these

large meshes, it has to be done in parallel. In addition to developing error indictors that drive the

anisotropic size field determination, a secondary goal of this thesis is to guide the development of

parallel boundary layer adaptivity and demonstrate the capabilities as they become fully operational

with additional adaptive features. Our codes are designed such that all aspects can work on parallel

systems. We showcase the advances in parallel boundary layer adaptivity by applying it to two

internal flow problems.

1.3 Outline of the Thesis

The organization of this thesis is as follows. In the second chapter, we introduce Hessian based

anisotropic adaptation methods and size field calculation. We also explain how these methods are

extended to boundary layer meshes. In the third chapter, we introduce different attributes of

the boundary layer meshes and illustrate different strategies for their calculations using the flow

physics. In the fourth chapter, we apply our thickness adaptation techniques from Chapter 3 to

three aerodynamic flow problems, showing their effectiveness and efficiency. In the fifth chapter,

we study the application of serial adaptive boundary layer meshes to complex multi element wings,
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highlighting their superior flow capturing. In the sixth chapter, we showcase two internal flow

applications of the parallel in-plane adaptive boundary layer techniques with results. In the seventh

and the last chapter we provide concluding remarks and discuss the future path for adaptive

techniques.



Chapter 2

Anisotropic Adaptation and Extension to Boundary Layers

The accuracy of the flow simulations depends strongly on the mesh quality and resolution. To

get the best quality results, the resolution of the mesh can be increased globally, in a uniform fash-

ion. However, the available computational resources put a constraint on such a global refinement,

especially for complex problems. A smart way to deal with this is to adapt the mesh only in the

regions which require higher resolution. This can be done by anticipating which regions in the flow

require higher resolution a priori, e.g. corners and blends. However, for more complex problems,

this approach largely depends on the expertise of the user and therefore can be problematic. This

underlines the need for an automated adaptive procedure, which aims at reducing the error in the

solution, and produces high quality meshes.

Turbulent fluid flows posses highly anisotropic flow features such as boundary layers near

the no-slip walls or shock waves in transonic and supersonic flows. Applying mesh adaptation in

an isotropic fashion in such a case would mean wastage of computational resources. To remedy

this, mesh adaptation needs to make use of the anisotropic information embedded in the flow

solution variables, and increase the efficiency of the simulations. As already discussed, a priori

error estimators do not exist for Navier-Stokes equations, so reliable a posteriori error indicators

need to be constructed that provide qualitative measure of the error.

This chapter describes interpolation based error indicators and their combinations with other

numerical error estimators. We then discuss how this formulation can be extended to boundary

layer meshes.
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2.1 Hessian Based Adaptation

The finite element formulation of our flow solver described in the reference [79], makes use

of piecewise linear basis functions. This means that the main interpolation error term is of second

order. Consequently, the second derivatives of the solution variables form the major portion of the

discretization error [18]. The error analysis in [25] and [31] has shown that the rate of convergence

of the total error is same as that of the interpolation estimates in their respective cases, with

simplified assumptions.

In 3D flow problems, directional error indicators can be obtained by using second derivatives

of a solution field in the form of a Hessian:

H =


∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂x∂y

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂x∂z

∂2u
∂y∂z

∂2u
∂z2

 (2.1)

The Hessian is a symmetric matrix and can be computed from any scalar solution field. The

popular choices are speed and density, but some combinations of two or more variables can also be

chosen. It is possible to obtain local estimates of the interpolation error in different norms, based

on the Hessian [5], [24], [43].

The Hessian matrix is decomposed as H = RΛRT , where R is the eigenvector matrix and Λ

is the diagonal matrix of eigenvalues. The directions associated with the eigenvectors are referred

to as the principal directions and the eigenvalues are equivalent to the second derivatives along

the local principal directions. High eigenvalues are associated with high error in the corresponding

principal direction. Similarly, a low eigenvalue means lower error in the corresponding direction

[62]. Mesh sizes (mesh edge lengths required in a particular direction) can be calculated from this

at each vertex of the mesh to drive the mesh adaptation procedures.

Ideally, the Hessian can be constructed using any solution quantity. However, it is only

natural that the nature of the problem should guide this choice. Traditionally, only velocity or

density Hessians have been used for adaptation. But in some fluid flows, like impinging jets, it
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might make sense to use the total pressure or some other combination of velocity and pressure to

compute the Hessian. Also, specific weights can be assigned to each quantity before calculating

the Hessian. In another approach, Hessians of different flow quantities can be constructed and the

resulting mesh metric fields can be intersected to give a final metric. Experience indicates that

the former approach results is a better match to the solution anisotropy that is often lost by the

intersection of different metric fields and thus it is generally preferred.

2.1.1 Concept of a Mesh Metric Field

The Hessian provides qualitative information about where the local interpolation error is

higher and where it is lower. From this information, actual mesh sizes need to be calculated for

mesh adaptation. For finite elements, mesh sizes can be defined in terms of the distances between

two adjacent mesh vertices (edge lengths). Traditionally, the mesh size field has been specified as a

scalar quantity, but for anisotropic adaptation it is defined with a second order tensor. To specify

an anisotropic size distribution, a mesh metric field is defined with the help of the Hessian and is

called a mesh metric tensor. This tensor prescribes the desired anisotropy at a point [13]. It is

defined as a symmetric positive definite matrix M , whose associated quadratic form < X,MX >,

defines a mapping of an ellipsoid in the physical space into a sphere in the metric space, meaning

that any element in the physical space maps to a similar element in the metric space with equilateral

sides. In this sense it can be seen as a transformation matrix. Figure 2.1 shows the idea behind

the transformation.

The goal of the adaptive meshing algorithm is to output a mesh with regular elements in the

metric space, where each mesh edge e must satisfy:

< e,Me >= 1 (2.2)

In practice, this criteria is relaxed by the mesh adaptation software to ensure that a mesh can be

adapted.



12

Transformation

Physical space : X':M:X = 1

Metric space : x'.x = 1

Figure 2.1: Transformation associated with a mesh metric tensor [60]

The mathematical form of this transformation matrix is given by Eq. 2.3:

T(x,y,z) =


1/h1 0 0

0 1/h2 0

0 0 1/h3




⇀
e1

⇀
e2

⇀
e3

 (2.3)

where
⇀
e1,

⇀
e2,

⇀
e3 are the unit vectors in the three principal directions and h1, h2, h3 are the desired

mesh edge lengths (mesh sizes) in the corresponding directions.

2.1.2 Combining the Hessian with Other Error Estimators

Though the Hessian is very useful in extracting the directional information from the flow

solution, it is not always accurate. For example, an extrapolation technique is used near the walls

to project the interior values of the gradients on to the nodes that lie on the domain boundary.

When using the Hessian of speed, it is seen that the near wall resolution requests are often very

tight and can introduce excessive refinement on the walls.

To remedy these problems, some a posteriori error estimators/indicators can be used in

combination with the Hessian to drive the adaptation. Vendetti et al. [78] developed an approach,

wherein the Mach number Hessian sets the anisotropy of mesh elements and the adjoint adaptation

parameter dictates the tightest mesh spacing. For finite elements, calculating the adjoint adaptation
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parameter requires solving another system of PDEs, to complete the dual problem. This is very

expensive in terms of computational resources.

Since we solve Navier-Stokes equations which are PDEs, we can naturally get the PDE

residuals from the solution process for the equations being solved. Root mean squares of the solution

fluctuations can also be readily obtained from the solver. These quantities have been traditionally

used as the scalar error estimators/indicators to drive isotropic adaptivity, which gives equilateral

elements. We have extended the approach such that the Hessians provide the relative scales and the

directional information for adaptation, but the smallest mesh size is calculated from the traditional

isotropic error indicators. These error indicators are assigned relative weights and are combined to

give the final scalar indicator, which drives the smallest mesh size during adaptivity.

The above approach has a distinct advantage in aerodynamic flows. Usually, Hessians of

speed or pressure are not very strong in the wake. With velocity Hessians, most of the adaptivity

is concentrated on the walls and with pressure Hessians, stagnation points get a lot of refinement.

Due to this, the wake region usually remains under resolved when adapted with Hessians. PDE

residuals are usually strong in the wake region and can give a better estimate of the error in this

region. Using a combination of the Hessians and the scalar error indicators ensures that none of

the anisotropy is lost and yet important weaker solution features in aerodynamic flows such as the

wake and the tip region, get their due refinement.

2.1.3 Extension to Boundary Layers

The methodology described above is applicable for unstructured elements. However, bound-

ary layer meshes are structured and graded layers of elements near the no slip walls. During

adaptation, it is highly desirable to maintain this advantageous structure. If the anisotropic adap-

tation procedure described above is applied naively, it can destroy the structure of the boundary

layer mesh. Sahni et al. [61] extend the anisotropic adaptation technique to boundary layers,

which combines the strengths of both pre-defined boundary layer meshing and fully unstructured

adaptation.
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In reference [61], the boundary layer mesh definition is decomposed into a layer surface (2D)

and a thickness (1D) shown in Figure 2.2. The triangular surfaces at top of each boundary layer

stack are called as layer surfaces, while the lines which are roughly orthogonal to the wall are

referred to as the growth curves. The mesh sizes on the layer surfaces are referred to as the in-plane

sizes and the ones on the growth curves are referred to as the normal spacings. Several layered

elements form a boundary layer stack and the top of the boundary layer stack interfaces with the

unstructured part of the mesh.

Layer Surface

Wall

First Layer

Second Layer

Growth

Curve

Boundary Layer

     Interface

Interior Tetrahedral

Volume Mesh

Layer Thickness

Total Thickness

Growth Edge

Layer Edge

Figure 2.2: Conceptual decomposition of a boundary layer mesh [61]

Following this decomposition, the ellipsoid in Figure 2.1 is also decomposed as an ellipse that

lies on the layer surfaces and a normal component aligned with the thickness of boundary layers as

seen in Figure 2.3.

To preserve the layered structure of the boundary layer elements, mesh modifications are

divided in two steps, in-plane adaptation and thickness adjustment. At any point in the boundary

layer, the mesh metric ellipsoid is viewed as a combination of an ellipse residing on the layer

surface and a normal component aligned with the growth curves. In-plane adaptation affects the

mesh resolution on the layer surfaces and thickness adjustment takes care of the resolution in the

normal direction.



15
Decomposition

of Full Ellipsoid
Normal Component

Elliptic/Planar part

Figure 2.3: Conceptual decomposition of the ellipsoid associated with the mesh metric tensor [61]

2.2 Size Field Smoothing

Many times, coarse solutions develop non-smooth size field requests, especially in the bound-

ary layer. A potentially unstable situation can occur if the mesh adaptation accurately adapts to

such requests, since many high fidelity solvers produce oscillatory results in such cases. This issue,

already challenging for isotropic size fields, can be even more problematic for anisotropic size fields

owing to the tensor representation of the field which may oscillate not only in value but also in

direction.. The common solution of smoothing the size field must be accomplished with greater

care for anisotropic size fields. If applied naively, the desired anisotropy can be easily destroyed, or

reduced much more than desired.

The mesh sizes calculated near the walls from the Hessians are usually a magnitude lower

than that in the unstructured region of the mesh. As a result, the boundary layer stack is refined

much more than the adjacent unstructured mesh, leading to so called “spider elements” and poorly

shaped elements, locally. To remedy this, we apply separate smoothing techniques to eigenvalues

(which provide the mesh spacings), and the eigenvectors (three principal directions) of the mesh

metric.

There are two challenges in smoothing the principal directions; the orthogonality between

the vectors needs to be maintained, and the direction with smallest mesh size for the wall vertices

needs to be perpendicular to the wall. Applying the general smoothing directly to each compo-
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nent of the directions do not guarantee these criteria automatically. Algorithm 1 describes an

alternate smoothing strategy for the mesh size field developed in this work that better maintains

perpendicular wall vectors.

Algorithm 1: Algorithm for smoothing the mesh size field

1. Decompose the mesh size field in mesh sizes and corresponding principal directions.
2. For each owned vertex on each part of the mesh, collect mesh sizes from the neighboring
vertices to form a sum for each mesh size (3 mesh sizes in total).
3. Communicate between parts to combine the sums on the part boundaries to form a complete
sum for each vertex on the part boundaries.
4. Form an average by dividing the sum by number of vertices contributing to the average to get
the final smoothed mesh sizes.
5. Smooth each component of the principal directions to form an average using neighboring
vertices with communications on part boundaries similar to the mesh sizes.
6. For all the wall nodes, check if the direction for the smallest size is perpendicular to the wall,
if not, orient the vector in wall normal direction.
7. Check if all the vectors are orthogonal to each other, if not, fix the vector for the smallest size
as base and orient the other two to be orthogonal to it and to each other.
8. Normalize the vectors to get unit vectors for the final smoothed principal directions.
9. Combine the mesh sizes and the principal directions to form the mesh size field.

Figure 2.4: Effect of smoothing on mesh sizes of a manifold case
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Figure 2.5: Effect of smoothing on principal directions of adaptivity

Figure 2.4 shows mesh sizes for a heat transfer manifold case (case details in Chapter 6). The

smoothing of the mesh sizes can be easily seen from the pictures. The mesh adaptation software has

lesser difficulty in adapting to smoothed size fields than non-smooth fields and this results in better

meshes in terms of smooth transitions between elements. Smoothing of the principal directions can

be seen in Figure 2.5. Before smoothing, the directions are not oriented in a well defined manner.

The changes in the directions for adjacent elements is considerable and can produce elements with

abruptly changing mesh sizes (“patchy adaptivity”). After smoothing, the eigenvectors become

more regularly oriented in similar directions, which is simpler for the adaptation procedures to

handle and gets rid of the “patchiness”.



Chapter 3

Boundary Layer Thickness Adaptation

This chapter discusses a new hybrid strategy to control the important attributes of the bound-

ary layer meshes, in the thickness direction. The new hybrid strategy uses physical information to

guide the calculations of normal spacings of the boundary layer whereas the Hessian bases error

indicators drive the in-plane adaptivity [17].

3.1 Types of Boundary Layers

In 1904, Prandtl showed that the flow past a body can be divided into two regions: a very

thin layer close to the body where viscosity is important, and the remaining region outside this

layer where viscosity’s effects are negligible [64]. This effect of viscosity inside the boundary layer

accounts for much of the friction drag on the body and, if the flow separates, that separation

location can strongly influence the form drag as well. The edge of the velocity boundary layer is

defined by the point where the velocity is 99% of the free-stream velocity (δ99) [64].

At this point it is important to note that the control of boundary layer mesh must be different

for laminar and turbulent boundary layers. This thesis focuses on turbulent boundary layers as

they are the most prevalent type for high Reynolds number flows and are more complex in nature.

Also, the mesh spacing requirements to resolve the turbulent boundary layers are much tighter

than that for the laminar boundary layers, due to much larger velocity gradients near the wall

(Figure 3.1). Thus our treatment for turbulent boundary layers is sufficient for resolving laminar

boundary layers, although it may not be optimal for this case.
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(a) Laminar BL (b) Turbulent BL (c) Separated BL

Figure 3.1: Types of boundary layer profiles

The adaptive control of boundary layers must also differentiate between attached and sepa-

rated boundary layers. In many flows, due to adverse pressure gradients and/or sharp turns and

corners, boundary layers separate from the wall and form a free shear layer. The treatment of these

boundary layers needs special care as the flow physics in this region is entirely different than that of

the attached boundary layers. Figure 3.1 shows the two types of attached boundary layer profiles

and a typical separated boundary layer profile.

3.2 Turbulent Boundary Layers

Figure 3.2 shows a typical turbulence boundary layer profile plotted as u+ = u/uτ vs. y+ =

yuτ/ν on a semi-log scale, where uτ is the friction velocity. The turbulent boundary layer profile

consists of 2 distinct regions; a viscous sub layer very close to the wall, where u+ roughly equal

y+ and extends till about y+ = 5 and a log region, away from the wall typically beyond y+ > 30,

where u+ follows a log law. The region in between is called buffer region, which blends the two

profiles smoothly.

Turbulent flows are usually simulated using one of the popular turbulence models for high

Reynolds numbers and the mesh resolution requirements to resolve the turbulent boundary layers

are well known for each of these turbulence modeling approaches. The Reynolds averaged Navier-
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Figure 3.2: A typical turbulent boundary layer profile

Stokes (RANS) models are very popular and are widely used in industry and academia. Different

turbulence models associated with RANS were developed in last three decades; like the Spalart

Allmaras (SA) one equation model [71] and SST Menter two equation model [51]. Other popular

modeling approaches include large eddy simulation (LES) [32], [67], [76] and detached eddy sim-

ulation (DES) [72], [73]. Recently, with advances in parallel computing and petaflop computing

power, direct numerical simulation (DNS) [52] is being more regularly applied, however, it is still

constrained to lower Reynolds number flows compared to other modeling approaches.

For turbulent boundary layers, the mesh resolution near the no-slip walls is crucial for cor-

rectly capturing the boundary layer profile. Different modeling approaches mentioned above have

varying requirements for this spacing. These spacings are defined with a non-dimensional parame-

ter called y+, e.g., RANS-SA model with wall resolved treatment requires that the first cell height

in the boundary layer should lie between y+ of 1 to 5. If wall models are used with the turbulence
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Figure 3.3: Effect of the first cell height on turbulent boundary layer profile (RANS-SA turbulence
model)

model, y+ can be increased to 30-50. If these requirements are not satisfied, then large numerical

errors are introduced in the solution.

Figure 3.3 shows the variation in the turbulent boundary layer profile of a turbulent pipe flow

with changing first cell height of the mesh boundary layer, for RANS-SA wall resolved approach.

For all the first cell heights below y+ of 5, the boundary layer profiles are well predicted and

agree with each other. As y+ is increased beyond a value of 5, the boundary layer profile starts

diverging from other results, showing a wrong behavior, with the worst profile being obtained with

no boundary layer at all. This signifies the need for the adaptive control of boundary layers in the

thickness direction to avoid getting bad results by controlling the attributes of the mesh boundary

layers.
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3.3 Important Attributes of the Mesh Boundary Layers

The geometric description of the mesh within a boundary layer can be defined by following

parameters:

1. First cell height of the mesh boundary layer (to)

2. Total height of the mesh boundary layer (T )

3. Total number of layered elements in the boundary layer (n)

4. Growth factor (r)

The interdependence of these parameters is given by following equation:

T = to

i=n∑
i=1

r(i−1) (3.1)

which indicates that the height of each succeeding layer in the boundary layer mesh, away from

the wall, increases by the growth factor times the height of the preceding layer.

Figure 3.4: Attributes of the mesh boundary layers

It follows that three of these parameters can be chosen independently, and fourth one is set

by Eq. 3.1. The total height of the boundary layer (T ) and the first cell height (to) are typically
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viewed as the most important parameters in terms of the flow physics and are usually controlled

by the user. The third independent parameter usually should be the growth factor (r), but keeping

in mind the total number of elements (n) these choices would create.

Usually, these parameters are chosen on an ad hoc basis, by the user, or with some knowledge

of the initial/free-stream conditions and the Reynolds number. The mesh is generated and a

solution is obtained and analyzed. If the flow solution is not satisfactory, then mesh is regenerated

using a different set of values. This obviously is very cumbersome and time consuming. Moreover,

the values of boundary layer parameters are usually chosen as constants throughout the domain.

However, the flow solution is not constant, and the variables which dictate these parameter values

(like wall shear stress), vary throughout the domain. Therefore, an automated procedure for

selection of these parameters and adapting the mesh boundary layer throughout the domain, based

on the flow solution, is highly desirable.

Next, we will describe the calculations of key physical quantities such as wall shear stress

which is used to determine the thickness attributes of the boundary layers.

3.4 Calculation of the Wall Shear Stress

The near wall mesh spacing requirements for turbulence models depend on y+ and needs

the knowledge of the friction velocity uτ , which can be calculated from the wall shear stress τw as

uτ =
√

τw
ρ . Many solvers readily provide wall shear stress as a field after post processing. However,

we use alternative methods to calculate this field in a fast and an efficient manner.

Since most of the boundary layers in high Reynolds number flows are turbulent, one method

to calculate τw for attached boundary layers is by using Spalding’s law [74] which gives y+ as a

function of u+, written in a special form given by:

y+ = f(u+) = u+ +A[e(κu+) − 1 − (κu+)2/2 − (κu+)3/6 − (κu+)4/24] (3.2)

where A = 0.1108 and κ = 0.4 are dimensionless constants. This law is valid through the entire

turbulent boundary layer profile when it is attached and in equilibrium. u+ is the dimensionless
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velocity at points along the boundary layer, normalized by the friction velocity (u/uτ ).

Using Eq. 3.2, u+ can be calculated at various points along the boundary layer, with following

iterative approach.

(1) Calculate the distance of the point on the boundary layer from the wall: ∆y.

(2) Retrieve the velocity at this point from the flow solution: u.

(3) Guess an initial value of u1
τ and calculate initial u+ = u/u1

τ and y+ = ∆yu1
τ .

(4) Use Newton’s method to iteratively solve Eq. 3.2 till convergence and update value of uτ

at each iteration.

(5) Use the final value of uτ to calculate final value of u+ (u/uτ ).

This process can be repeated at any number of points along the boundary layer. In the end,

a simple average over the number of points used gives the final friction velocity uτ that is less prone

to solution error, particularly on the initial, coarse grids where the a priori guessed resolution is far

from correct. Note that Eq. 3.2 is often used as a “wall model” and thus, in addition to smoothing

out the shear stress, we are effectively using a wall model to determine the resolved wall resolution.

We use 3 to 5 points on an average along the growth curves to calculate uτ . The wall shear stress

can then be calculated as τw = u2
τρ.

Another method to calculate an approximate estimate of the wall shear stress, is using a

finite difference approach near the wall. Using the first vertex from the wall and known u and ∆y

values at that point, τw can be calculated using τw = µdudy = µ u
∆y . Here du equals u because the

velocity is zero at the walls. This alternative method could be used everywhere but we have found

it less robust than Spalding’s law based procedure and we therefore use it only for flow regions

where the boundary layer is not attached to the wall, where Spalding’s law is not valid.

Figure 3.5 shows the wall shear stress calculation using the method described above for a

flat plate turbulent boundary layer. The calculations give similar behavior to the analytical results

obtained with 1/7th law. The percentage error between the analytical and the computed results is
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Figure 3.5: Wall shear stress calculations for a flat plate using Spalding’s law

less in terms of the first cell height estimates given by both these methods. Note that when using

the wall shear stress to calculate the first cell height, we have a margin of y+ of 1 to 5 for RANS-SA

wall resolved approach and similar margins for other turbulence modeling approaches.

3.5 Thickness Adaptation

The boundary layer adaptation procedure used in this thesis uses the decomposed Hessian-

based method for the in-plane adaptation and the method given in this section for the thickness

adaptation. Since the flow physics plays a vital role in determining thickness attributes of the

boundary layer, we base our approach on the physical information that can be derived from the

flow solution which is described next. All these attributes are defined on the wall vertices which

are used by the adaptation software to adjust the thickness of the mesh boundary layers growing
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from the wall vertices.

3.5.1 First Cell Height (to)

As already pointed out, different turbulence modeling approaches have different mesh spacing

requirements close to the walls. Even in the same family of turbulence models such as RANS,

different approaches require varying mesh spacings depending on if the boundary layer is integrated

to the wall (wall resolved approach) or if wall functions are used (wall modeling approach). The

wall resolved approach makes a low Reynolds number assumption near the walls and requires the

first cell height inside the viscous sub layer of the boundary layer (y+ < 5). The wall modeling

approach makes suitable assumptions for near wall behavior of the boundary layer and requires

that the first cell height is beyond the viscous sub layer and into the log layer (y+ > 30). If

these requirements are not met for either of these modeling classes, then large numerical errors are

possible in turbulence calculations predicting erroneous behavior, as seen in Figure 3.3. However,

the friction velocity, which is required to calculate y+, is not known a priori. This makes adaptive

control of the first cell height, based on the flow solution, critical.

Let us assume that the turbulence model requires the first cell height to be equal to y+
1 . If we

have an initial coarse mesh with a solution, using the wall shear stress (τw), to can be calculated,

by the following algorithm:

(1) Get the kinematic viscosity (ν) and desired y+
1 according to the turbulence model being

used. (Suggested values are y+
1 = 1 for wall resolved RANS-SA, y+

1 = 30 − 50 for wall

modeled k − ε, 0.5 for wall resolved k − ε etc.)

(2) Calculate the friction velocity uτ as discussed in the previous section.

(3) Calculate the first layer height of the boundary layer by to = νy+
1 /uτ .

Figure 3.6 shows calculations of the first cell height of the mesh boundary layer, for a turbulent

flat plate. The first cell height is requested at y+ = 1. The analytical approach is based on the wall
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Figure 3.6: Estimates of the first cell height of the mesh boundary layer for a flat plate turbulent
boundary layer

shear stress from Figure 3.5. The calculated values for initial and adapted meshes show similar

behavior as the analytical values. The maximum difference between the two is 5e-6 m, which is

less than a 5% difference and is well within the permissible limits of our margin of y+ = 1 − 5.

3.5.2 Total Height of the Boundary Layer (T )

It is desirable to have the total height of the mesh boundary layers equal to or greater than

the velocity boundary layer height given by δ99. δ99 is the distance from the wall at which the

velocity becomes 99% of the free stream velocity, and is an accepted measure of the boundary layer

thickness. It is usually tricky to calculate δ99 directly as it requires knowledge of a reference velocity.

For simple problems like a flat plate, the reference velocity is usually the free stream velocity, but

it can have different local values for more complex problems, where the flow as a whole undergoes
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acceleration or deceleration. This presents a difficulty in directly calculating the boundary layer

height.

To calculate T , we base our approach on the observation that vorticity outside of an attached

boundary layer is negligible. Since the boundary layers have the largest velocity gradients very

close to the wall, vorticity here is the highest and decreases as one moves farther away from the

wall. As boundary layer growth curves are essentially perpendicular to the wall, one can walk along

these edges starting from the wall, and determine the point at which the vorticity drops below a

threshold value. This threshold value depends on the local maximum value of vorticity for attached

boundary layers, which is most often encountered at the wall. Through our analysis, we have found

that a good value for the threshold is 0.02% of the wall vorticity magnitude.

Figure 3.7: Total Height of the velocity boundary layer for a turbulent flat plate

Figure 3.7 shows calculations of the boundary layer height using vorticity method for a

turbulent flat plate. The values calculated for the initial and the adapted meshes are close to those

predicted by the analytical law which states that δ99 varies as x4/5. The adapted mesh predicts a
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closer agreement with analytical values, indicating that it might take a couple of adaptation loops

to get to the right behavior.

Figure 3.8: Vorticity magnitude, initial and adapted meshes for a flat plate

Figure 3.8 shows the vorticity magnitude, the initial mesh and the adapted mesh for a turbu-

lent flat plate. Thickness adaptation of the mesh can be clearly seen as the total height of the mesh

boundary layers increases in the streamwise direction, closely following the vorticity magnitude.

To show the importance of adaptivity with our technique, Figure 3.9 shows the boundary

layer profiles for a coarse initial mesh (with first cell height at y+ = 20), an adapted mesh (with

first cell height at y+ = 1) and experimental data by Andersen [4] . The figure illustrates that

we are able to adapt mesh boundary layer thickness of coarse meshes to get better boundary layer

profiles that agree well with experiments, which is one of the aims of this thesis.

3.5.3 Growth Factor (r) and Total Number of Layers (n)

To increase the boundary layer elements’ height away from the wall, a growth factor (also

called as the stretching factor) greater than 1 is used. This is because the tightest mesh spacing
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Figure 3.9: Turbulent flat plate boundary layer profile at Rex of 1 million

is required very close to the wall, but this requirement is not as strict farther away from the

wall. An ideal scenario would be to achieve height of the last layer equal to the unstructured

sizes of the mesh and get a smooth transition. The mesh adaptation process that we use provides

options like boundary layer gradation factor, which control the transition of boundary layer into

the unstructured part of the mesh, smoothly [47].

There are general guidelines for what the ideal growth factor should be, from the perspective

of turbulence modeling. Spalart [69, 70] states that the growth factor should be close to 1.25 to

accurately capture the log layer. Generally a growth factor beyond the value of 1.4 is deemed too

large for accurately capturing the boundary layers. Many meshing tools are based on setting to,

T and n, and the growth factor is automatically calculated, internally. The accuracy then in turn

hinges on the knowledge and prior calculations to make sure that the growth factor being calculated

is acceptable.
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The adaptation tool gives the ability to set the growth factor at each wall vertex. We set r

in the range of 1.2 - 1.25 to be within the acceptable limits. Selecting a growth factor less than 1.2

has the disadvantage of creating more elements in the boundary layer than needed. The number

of layers are then calculated using Eq. 3.1.

3.6 Adaptive Control for Separated Boundary Layers

The techniques described above for calculating the different aspects of the boundary layer

meshes work well for attached boundary layers. However, separated boundary layers need extra

care and special detection strategies due to different flow physics that must be captured.

3.6.1 Detection of Separated Boundary Layers

To treat separated boundary layers properly, they must first be detected. As it can be seen

from Figure 3.1, they have a unique profile characterized by flow reversal. We again make use of

the wall normal growth curves and walk along the growth edges to detect a change in the flow

direction. If a change (usually more than 120o) is detected across the profile, then the vertex on

the wall in that layer is marked as separated; otherwise the boundary layer is treated as an attached

boundary layer.

This method requires that the total height of the mesh boundary layers in this region at

least exceeds the height at which the flow direction is reversed. This means that typically initial

boundary layer meshes for such regions should be tall enough and the mesh close to the wall be fine

enough to capture the flow reversal. Currently, we make sure that this criteria is satisfied through

initial meshing, but an iterative adaptive procedure like the one we use eventually leads to suitable

meshes which are able to capture this effect.

3.6.2 Calculation of the Wall Shear Stress

The method of using Spalding’s law to calculate the wall shear stress is not appropriate for

separated boundary layers, since the typical turbulent boundary layer profile is absent. In locations
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where separation is detected the wall shear stress is calculated using the finite difference method

explained earlier. The accuracy of such calculations is not as good as other methods (Spalding’s

law), but it gives a reasonable estimate. Also, for separated boundary layers, the first cell height

of the mesh boundary layer is not as crucial as for the attached boundary layers, hence such an

approximate approach is justifiable.

3.6.3 Total Height of the Boundary Layer (T )

For separated boundary layers, the free shear layer might be separated from the wall to a fair

distance, in which case it might not be prudent to increase the boundary layer height. For example,

for an airfoil beyond stall, the flow separates near the leading edge on the suction side and forms

a large recirculation region. It would be impractical to increase the mesh boundary layer height

beyond this region as it would create poorly shaped elements near the interface. Even though it

would be a good feature to separate the mesh boundary layer from the wall to resolve the free shear

layer, this capacity is still under development with the current adaptive tools that we use.

The techniques explained above for attached boundary layers predict that the boundary

layer’s height should be increased to the height of the complete shear layer. However, this is not

always practical for separated boundary layers as this height might introduce excessive stretching

of the elements near the interface.

In a more practical approach, the boundary layer height is increased beyond the height at

which the flow reversal is detected so that the boundary layer mesh is tall enough to “sense” the

change in the flow direction and the rest of the boundary layer mesh is destroyed and the free

shear layer region is meshed with unstructured elements, with specific care to resolve the free shear

layer. This approach is used in this work. For anisotropic adaptivity, velocity Hessians give good

resolution in these layers since the anisotropy of the top of the shear layer is not very high.
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3.7 Shock Wave - Boundary Layer Interactions

In transonic and supersonic flows, the main region of interest is where the shock waves and the

boundary layers interact. Shock waves are sharp discontinuities in the flow and can cause thickening

of the boundary layer and even separation. Due to their complex nature, these regions require

higher resolution. Since the in-plane mesh sizes for the shock wave - boundary layer interactions

are smaller, care needs to be taken to trim away the boundary layer elements that develop anisotropy

in the wrong direction as the in-plane resolution becomes finer than the normal direction resolution.

One way to control this is by limiting the mesh boundary layer height.

When the flow encounters a shock, the solution changes sharply, giving high gradients in

this region. We implemented a shock wave - boundary layer detection algorithm which detects a

shock-boundary layer interaction by looking at the pressure gradients on the wall. If such a region

is detected, then the wall vertices are marked to not increase the boundary layer height beyond a

certain limit to avoid poorly shaped boundary layer elements. The boundary layer height in the

shock region is limited by a factor of the upstream boundary layer height, so that it does not change

abruptly with the shock. Such an abrupt increase in the boundary layer height can cause problems

for the mesh adaptation procedures.

3.8 Smoothing of the Wall Fields

The quantities like wall shear stress which form the basis of our physics based adaptivity

strategy, can be non-smooth. If the mesh adaptation is done for these non-smooth fields then

undesirable output meshes can be obtained. To avoid this we have extended the smoothing strategy

explained in Chapter 2 to wall quantities, such that only the vertices which lie on the walls,

contribute to the average. This smoothing technique is applied to the wall shear stress (which

controls the first cell height) and the total height of the boundary layer, which are the main

parameters being controlled through thickness adaptivity. Algorithm 2 gives a brief outline of the

procedure followed for the smoothing.
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Algorithm 2: Algorithm for smoothing the wall fields

1. For each owned wall vertex on a part, gather the wall fields from the neighboring vertices that
lie on the walls to create a sum.
3. Communicate between parts to combine the sums on the part boundaries to form a complete
sum for each vertex on the part boundaries.
4. Form an average by dividing the sum by number of vertices contributing to the average to get
the final smoothed wall field.

3.9 Roadmap for the Next Chapters

In the next chapters, we present and discuss results of adaptivity. The adaptivity is carried

in two stages, one is in-plane adaptation in which the resolution on the layer surfaces is changed

and other is thickness adaptation which changes the normal distribution of points of the boundary

layers. The main contribution of this thesis is not the development of mesh adaptation procedures

but the novel error indicators in boundary layers and their application to turbulent flows. Ideally,

what we want is fully parallel adaptivity of mesh boundary layers in all directions (thickness and

in-plane). However, this is currently limited by the available mesh adaptation software. Due to

this, we group the results in different chapters according to the nature of adaptivity being carried

out in each case.

In Chapter 4, we display the application results of the developments described in this chapter

for thickness adjustment of the mesh boundary layers, along with in-plane adaptivity. These results

were obtained on a single processor. Though the geometries in these studies are relatively simpler,

the flow is still complex. In Chapter 5, we present serial in-plane only adaptivity (no thickness

adaptation) results for very complex geometries like multi element wings. Even though our thickness

calculation procedures work with these complex geometries, the adaptation softwares have not been

able to handle these geometries. For the geometries like multi element wings, in-plane boundary

layer adaptivity itself is fairly complex and has not been carried out previously, so these results are

state of the art. For both of these chapters, the results were obtained in serial with the software

provided by Simmetrix Inc. [34], which is a proprietary mesh adaptation software.

However, one thing to note is that the extent of boundary layer adaptivity that can be
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carried out in serial is limited. As we start to create meshes with hundreds of million elements, for

adaptivity, we want to work in parallel. In Chapter 6, we show results for parallel in-plane only

adaptivity of boundary layers (no thickness adaptation) using an open source mesh adaptation

software based on mesh adaptation procedures described in [21], [53], [61] developed at Rensselaer

Polytechnic Institute in the Scientific Computation Research Center (SCOREC). Parallel thickness

adaptation is still under development and will not be discussed in this thesis.

For all the application results in every chapter, the initial meshes were generated using the

meshing software made available by Simmetrix Inc. [34].



Chapter 4

Application Results: Serial Thickness Adaptation

In previous chapters, we have outlined our overall strategies of mesh adaptation for boundary

layer meshes. In this chapter we present application results of our newly developed physics based

indicators discussed in Chapter 3 to drive thickness adaptation and their combination with other

numerical error indicators. The mesh boundary layers are adapted in the in-plane direction as well

as in the thickness direction, in serial. One incompressible and two transonic cases are studied and

presented.

4.1 NACA 0012

The first application is a NACA 0012 airfoil, which is a 2D airfoil geometry. Reynolds

number based on the chord is 6 million. The Mach number is 0.15 and the flow is modeled with

an incompressible flow solver. Three different angle of attacks were studied and the initial mesh

was adapted in each case with two adaptation loops. The thickness of the boundary layers was

calculated with the methodology given in Chapter 3. A combined strategy of Hessians and scalar

error indicators was used to drive adaptivity which is explained in Chapter 2. This choice was used

because of the need to refine the wake of the flow which is characterized by high PDE residuals.

4.1.1 Angle of Attack: 0◦

Figure 4.1 shows the comparison of our calculations for the boundary layer height with

experiments conducted by Becker [10]. Our calculations show good agreement with the experiments
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Figure 4.1: Comparison of boundary layer height calculations with experiments for NACA 0012 0◦

angle of attack

Figure 4.2: Cuts of the initial LEV0 and adapted LEV2 meshes, showing anisotropic adaptivity
and speed distributions with pressure contours (black lines) for 0◦ angle of attack on NACA 0012
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except at the start of the airfoil where the boundary layer is laminar. The calculations over predict

the boundary layer height in the laminar region, which is not a bad thing because usually it is

desirable to have the mesh boundary layer height greater than the physical boundary layer height.

Figure 4.2 shows the initial and the adapted meshes for the 0◦ angle of attack for NACA

0012. The pictures also show the speed distribution giving some indication of the height of the

boundary layer and the pressure contours (black lines). The pressure contours become smoother

with adaptivity. The adapted heights of the boundary layers on the upper and the lower surfaces

of the wing are equal, as it should be for 0◦ angle of attack. The stagnation point and the wake

receive more refinement than other areas. Anisotropic elements oriented with longer edges in the

streamwise direction can be seen easily.

Figure 4.3: Coefficient of pressure plots for 0◦ angle of attack on NACA 0012

Figure 4.3 shows the coefficients of pressure on the airfoil. All meshes give good agreement

with the experiments.
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4.1.2 Angle of Attack: 5◦

Figure 4.4: Cuts of the initial LEV0 and adapted LEV2 meshes, showing anisotropic adaptivity
and speed distributions with pressure contours (black lines) for 5◦ angle of attack on NACA 0012

As the angle of attack is increased, the physical boundary layer on the suction surface has to

face an adverse pressure gradient and starts getting thicker than the pressure surface. This behavior

is correctly captured by our thickness adaptation strategies and the mesh boundary layer on the

suction surface is adapted to be greater in height. The boundary layer on the pressure surface is

comparatively smaller. This can be seen in Figure 4.4. The adapted mesh develops anisotropy and

captures the contours better than the initial mesh.

4.1.3 Angle of Attack: 10◦

As the angle of attack is further increased, the boundary layer on the suction surface thickens

much more than the one on the pressure surface. This behavior is captured accordingly by our tools

and is shown in Figure 4.5. The speed and pressure distribution is also enhanced with adaptivity.

Coefficients of pressure on the suction and pressure surfaces of the airfoil are plotted in

Figure 4.6. The pressure data on the upper surface is taken from [29] and that on the lower surface

is from [45]. The suction pressure peak near the leading edge on the upper surface is better captured
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s

Figure 4.5: Cuts of the initial LEV0 and adapted LEV2 meshes, showing anisotropic adaptivity
and speed distributions with pressure contours (black lines) for 10◦ angle of attack on NACA 0012

Figure 4.6: Coefficient of pressure plots for 10◦ angle of attack on NACA 0012
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with the adapted meshes. The adapted meshes predict lesser separation than the initial mesh which

is also evident from Figure 4.5 near the trailing edge, and is in accordance with experimental results.

Figure 4.7: Coefficient of lift for NACA 0012 for different meshes in comparison to the experiment

The coefficient of lift curve is plotted in Figure 4.7. The experimental data is from Ladson

[44]. At 0◦ angle of attack, all meshes show good agreement with the experiments. The initial

mesh shows deteriorating CL values at higher angle of attacks and adapted meshes show closer

results to the experiments. The initial mesh fails to predict the correct CL at 10◦ angle of attack

but the adapted mesh shows reasonable agreement. This wrong behavior of the initial mesh can be

attributed to the false separation predicted on the suction surface, near the trailing edge. As the

boundary layer thickness is adjusted in the adapted mesh, this behavior is eliminated. The curves

for the adapted LEV1 and LEV2 meshes lie on top of each other, indicating grid convergence.
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4.2 Delery Bump

The second case that we used for thickness adaptation analysis is the Delery bump, which

is a 2D bump with steady transonic flow. This case is often used to evaluate the performance of

turbulence models. Air enters the nozzle from a reservoir at pt = 96000 Pa and Tt = 300 K, and

accelerates over the bump reaching supersonic speeds. The outflow is maintained at 61500 Pa.

Since the flow can not adjust to the back pressure, a shock appears on the leeward surface of the

bump. The experiments for this case were first carried out by Delery [22].

The finite element formulation described in reference [80] was used for the compressible

simulations. We used RANS Spalart-Allmaras one equation turbulence model [71] in this study.

The adaptivity used combined pressure and velocity Hessians as error indicators [53]. The first cell

height is requested at y+ = 1. Because the flow separates after the shock, the separation detection

algorithm detects this region and the boundary layer attributes are set accordingly.

(a) Initial and adapted meshes (b) Zooms of the shock wave - boundary layer interac-
tion zone

Figure 4.8: Initial and adapted meshes for Delery bump

Figure 4.8(a) shows zooms of the initial and the adapted meshes over the bump. Note that

the initial mesh is very coarse and is not a practical choice as a stand alone mesh to resolve the

shock. Here we want to show the effectiveness of our adaptation approach by showing that even

by starting with such a poor mesh, we are able to adaptively reach a good mesh which can resolve

the important structures like shocks to a satisfactory degree.

As seen from the figure, the boundary layer thickens after the shock as expected. Before the



43

shock, the boundary layer thickness remains low on both bottom and top walls. In the separated

region, the boundary layer height is maintained until flow reversal is detected in the boundary layer

profile. The LEV1 mesh shows some overshoot in the boundary layer thickness, but subsequent

adapted meshes show converged behavior in terms of the boundary layer height. Adaptive refine-

ment follows the curved shock such that the direction normal to the shock is refined much more

than along the shock. This behavior is more evident from Figure 4.8(b), which displays the meshes

in the shock wave - boundary layer interaction region. The adapted LEV2 and LEV3 meshes knock

down the boundary layer height in the vicinity of the shock which is in accordance to the shock

detection algorithm. One thing to notice is that the initial mesh has too few points near the wall to

properly detect the flow reversal within the boundary layer profile, which occurs immediately after

the shock and the boundary layer height is maintained according to the attached boundary layer

algorithm. However the adapted LEV1 mesh becomes fine enough to detect this profile change

and separation is detected and the boundary layer is destroyed immediately after the shock and is

maintained only until the height at which flow reversal is detected.

Figure 4.9: Mach number for a slice along the symmetry plane

Figure 4.9 shows slices of Mach number and Figure 4.10 shows Mach number contours for

the initial and the adapted meshes. The contours show progressive sharpness in the shock region,
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Figure 4.10: Mach number contours for initial and adapted meshes

with adaptivity. The LEV3 mesh gives the sharpest resolution of Mach number contours. A weak

vertical shock is seen in Figure 4.9, originating from the intersection of the curved and the straight

section of the strong shock.

Figure 4.11: Pressure slice for initial and adapted meshes

Figure 4.11 shows pressure slice for the shock region over the bump. The adapted meshes

are able to resolve the shock sharply as compared to the initial mesh, the best resolution is given
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Figure 4.12: Streamlines in the separation zone

by the LEV3 mesh.

Figure 4.12 shows a zoom of the shock wave - boundary layer interaction zone and streamlines

in the separation zone after the shock. The location of the interaction zone is better predicted in

the adapted meshes and moves a bit to the right with respect to the initial mesh. The initial mesh

over predicts the size of the the separation bubble, which gets corrected in the adapted meshes. The

LEV2 and LEV3 meshes show similar behavior of the streamlines, indicating converged behavior

for the separation bubble.

Separation
point (x/h)

Reattachment
point (x/h)

Initial mesh (LEV0) 22.33 26.60

Adapted mesh (LEV1) 22.08 26.66

Adapted mesh (LEV2) 22.15 27.08

Adapted mesh (LEV3) 22.14 27.16

Experiments (Delery
[22])

21.84 27.04

Table 4.1: Separation and reattachment locations for Delery bump, normalized by the bump height

Table 4.1 lists the separation and reattachment points for different meshes. The distance
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values are normalized by the height of the bump (h), which is 12mm. Initial mesh predicts delayed

separation and earlier reattachment than the experimental values. The adapted meshes, especially

LEV2 and LEV3, give a significantly better agreement with the experiments.

Figure 4.13: Normalized bottom wall pressure for Delery bump

The normalized bottom wall pressure is plotted in Figure 4.13 and indicates reasonable agree-

ment between the experimental and the simulation values for the initial and the adapted meshes.

The flow solver over predicts the wall pressure after the shock, in the separation zone. This be-

havior has been seen before by Emory et al. [23] and Lien et al. [46]. These differences can be

attributed to the turbulence model’s limitations in capturing the effect of separation, and so it is

not a concern of this paper.

Boundary layer profiles are plotted in Figure 4.14 along various streamwise locations. Fig-

ure 4.14(a) and 4.14(b) show boundary layer profiles in the separation zone after the shock. The

initial mesh is not able to capture the correct behavior due to its coarse resolution in this re-

gion. The adapted LEV3 mesh shows much better agreement with the experimental values in the

separation zone. This is particularly important because in the separation zone, we are limiting

the height of mesh boundary layers. For the boundary layer profiles after reattachment shown in
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(a) x/h = 23.3 (b) x/h = 25

(c) x/h=26.6 (d) x/h=29.2

Figure 4.14: Boundary layer profiles at various streamwise sections

Figure 4.14(c) and 4.14(d), the adapted and the initial meshes both give good approximations.

To make sure grid convergence was reached, we uniformly refined the LEV3 mesh. This

means that each mesh edge was split into two to get a new LEV4 mesh. This LEV4 mesh showed

no significant difference in the solution when compared to the LEV3 mesh, which makes a strong
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Figure 4.15: Initial LEV0, adapted LEV3 and uniformly refined LEV4 meshes and corresponding
Mach number contours for the Delery bump case

case for verification of the results. Figure 4.15 shows the LEV4 mesh generated with uniform

refinement in comparison to the initial LEV0 and the adapted LEV3 mesh. The mach contours

on the right show no significant difference in their behavior between LEV3 and LEV4, displaying

that grid independence is reached. This means that any further mesh refinement beyond the LEV3

mesh produces very similar results and is unnecessary. It further suggests that the remaining

disagreements with the experiment can be attributed to limitations in the turbulence model and/or

differences between the experiment and the problem defined here (e.g., 3D side walls). This strongly

suggests that our adaptive procedure is verified.

4.2.1 Comparison with Nested Refinement Approach

To display the effectiveness of adaptive refinement approach, we compared it with nested

refinement of the Delery bump case. In nested refinement, each mesh edge is split in two. The

mesh boundary layers are not refined in the direction of the growth curves, meaning that the normal

spacing is kept constant. The first two refinement passes are done with this approach. However,

sometimes there is also a need to change the normal spacing of the boundary layers to check if that

has any effect on the flow solution. With the adaptive tools that we use, this can be achieved by

converting the prisms and pyramids in the boundary layers to tetrahedra. In the next refinement

pass, the normal spacing is also changed using tetrahedra elements in the boundary layers.
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The coarse mesh that we used in the adaptive approach is not a practical mesh which can be

used in any real analysis and is inadequate to correctly capture the shock. While it was useful in

showing that we could start with such a bad mesh and still arrive at a good mesh using adaptivity,

for the nested refinement approach it makes sense to use a more practical mesh. For this, the area

near the leeward side of the bump is refined preemptively using box refinement.

The comparison of the adapted LEV3 mesh and the refined LEV3 mesh is given in Table 4.2.

The refined LEV3 mesh has 85.16M elements which is far greater than the 1.78M elements of the

adapted LEV3 mesh.

Mesh # elements # vertices

Refined mesh: LEV3 85.16M 16.72M

Adapted mesh: LEV3 1.78M 330k

Table 4.2: Computational comparison of meshes

(a) Refined: LEV3

(b) Adapted: LEV3

Figure 4.16: Refined LEV3 and adapted LEV3 meshes for the Delery bump

Figure 4.16 shows the refined LEV3 and the adapted LEV3 meshes over the bump. Note that

the mesh boundary layers in the refined LEV3 mesh are converted to all tetrahedra elements to

refine the wall normal direction. Though the adapted LEV3 mesh shows prism boundary layers, for
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(a) Refined: LEV3

(b) Adapted: LEV3

Figure 4.17: Speed and pressure contours for the refined LEV3 and adapted LEV3 meshes for the
Delery bump

fair comparison, that mesh was also converted to all tetrahedra and those statistics have been used

in Table 4.2. From the mesh pictures it is clear that the reason of efficiency given by the adapted

mesh is due to the selective refinement of the shock region and the anisotropy which develops as

a result. The other flow regions remain comparatively coarse for the adapted LEV3 mesh, which

contribute to the computational savings, whereas for the nested refinement all regions are uniformly

refined.

Figure 4.17 shows the speed contours (in color) and pressure contours (black lines) for the

refined LEV3 and the adapted LEV3 meshes. The location and the shape of the shock is same

for both the meshes, at this level of visualization. The sizes of the separation bubble predicted by

both meshes match with each other. This indicates that both these LEV3 meshes give very similar

results. However, computationally these two meshes are vastly different and using the adapted

mesh leads to significant savings in terms of the computational resources. This underlines the

efficiency and the effectiveness of the adaptive technology.
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4.3 ONERA M6 Wing

The ONERA M6 wing is a classic CFD validation case. Air enters the wind tunnel at

transonic speed and is accelerated over the wing to supersonic speeds causing a shock to appear

on the upper surface of the wing. The free stream Mach number is 0.84, and the angle of attack

is 3.06o. The free stream pressure and temperature are 42.89 psi and 255.5 K. The Reynolds

number is 11.72 million based on the mean aerodynamic chord the. This flow marks a strong need

for adaptive grids due to its unknown shock location a priori to the flow solve and complex nature

of the lambda shock. The reference experimental data is from Schmitt and Charpin in 1979 [65].

We used Spalart Allmaras one equation turbulence model for this case [71]. Pressure Hessians

were used as error indicators to resolve the shock on the wing surface. The first cell height was

requested at y+ = 1.

Figure 4.18: Meshes and corresponding pressure plot and contour
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Figure 4.18 shows the initial and the adapted meshes for the wing and corresponding pressure

contours, on the left side. The mesh gets refined in the shock region and the lambda shape of the

shock is clearly replicated in the mesh. The mesh after the shock is coarsened, due to low values of

pressure gradients in this region. The pressure contours become sharper and more regular in shape

with adaptivity. On the right hand side of Figure 4.18, the pictures show the zooms of the shock

region on the wing, displaying the anisotropy developed in the surface elements along the shock

as compared to the direction normal to the shock. One thing to notice is that the elements start

aligning themselves with the shock in the adapted LEV1 mesh, but need one more adaptation loop

to completely show this behavior in a satisfactory manner.

Figure 4.19: Change in the boundary layer height on upper surface of the wing

To illustrate the changing attributes of the mesh boundary layer with adaptivity, Figure 4.3

shows the boundary layer on the upper surfaces of the wing for initial and adapted meshes. Clearly,

the boundary layer prior to the shock remains relatively low in total height. After the shock the

boundary layer thickens as expected. The zone where shock wave meets the boundary layer can

also be seen and the elements oriented with finer resolution normal to the shock and longer mesh

along the shock are clearly visible.

Figure 4.20 shows coefficient of pressure plots for different spanwise sections of the wing, taken

at different Y sections where b is the total span of the wing. The initial mesh shows some overshoots

near the shock which is expected due to its coarse nature. Adaptivity removes this problem and
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(a) y/b = 0.2 (b) y/b = 0.44

(c) y/b = 0.65 (d) y/b = 0.8

Figure 4.20: Coefficient of pressure on the wing

gives Cp values which match the experimental data. The initial mesh also over predicts the suction

pressure peak for y/b = 0.2 section which gets eliminated with adaptivity. The plots for the LEV1

and LEV2 meshes almost lie on top of each other except near the shocks where some differences

can be seen.

One particular area of interest is the shock on section 4 (y/b = 0.8), which is in fact a

double shock. Our flow solver based on a finite element formulation as mentioned before is able to

capture this double discontinuity and adaptivity improves the agreement with the experiments in

this region.
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Figure 4.21: Iso-surface of Mach 1 for initial and adapted meshes

Figure 4.21 shows iso-surfaces of Mach number equal to unity on the upper surface of the wing.

The anisotropy developed in the spanwise direction is replicated on the iso-surfaces. In general,

the adapted meshes show smoother curves indicating higher degree of resolution as compared to

the initial mesh.

Overall, for ONERA M6 wing case we see that the adapted meshes were able to capture the

shock with higher accuracy than the initial mesh. The Cp values agree well with the experiments

and improve with adaptivity.

In this chapter, we have successfully showcased thickness adaptation of mesh boundary layers

and displayed advantages of adaptivity by comparing the results with experiments and in some

cases, uniform refinement. The results in this chapter reinforce the idea of adaptive techniques

being effective and efficient to get better flow results.



Chapter 5

Application Results: Serial In-plane Only Adaptation for Multi Element Wings

We present application of our in-plane boundary layer adaptive methods to complex aerody-

namic wings. We have chosen popular multi element wings for this study which were used in the

1st and 2nd high lift prediction workshops organized by NASA [1, 2]. Boundary layer adaptivity

for these cases is challenging due to their complex geometric shape and the complex flow field with

interacting and intersecting boundary layers. Previous adaptive studies for these cases with un-

structured grids have been limited to frozen boundary layers, i.e. only adapting the mesh outside

the viscous region near the walls [41], [56]. So even though we display only in-plane adaptivity

results in serial, the boundary layer adaptivity carried out in this chapter is state of the art. These

cases were adapted in serial using the mesh adapt software made available by Simmetrix Inc. [34].

5.1 NASA Trap Wing

The first case for the multi element wing in-plane adaptation is a trapezoidal wing geometry.

This multi-element wing has slats and flaps with the main wing, and was used as the analysis case

in the 1st high lift prediction workshop organized by NASA in 2010 [1]. The configuration used

is a landing configuration with the slat at 30◦ and the flap at 25◦ angle with respect to the chord

of the main wing. The experiments for NASA trap wing were performed at NASA Langley in a

14x22-foot wind tunnel [40].

Figure 5.1 shows geometry of NASA trap wing. The element preceding the main wing is the

slat and the one beyond its trailing edge is the flap. There are no slat and flap brackets for this
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Figure 5.1: Geometry of NASA trap wing showing side view and a cut view of the section

geometry. A coarse mesh was generated with mixed element boundary layers and was used to get

an initial solution. Two adaptivity loops were carried out and a combined approach of Hessians

and scalar error indicators was used to drive adaptivity as explained in Chapter 2. This results in

better wake refinement than just using the Hessians since momentum equation residuals are usually

high in the wake.

The flow was modeled as an incompressible turbulent flow with Spalart Allmaras turbulence

model [71]. Other relevant case setup information is given in Table 5.1.

Mach number
Mean aerodynamic

chord (MAC)
ReMAC Angle of attack

0.2 1.0 m 4.3 million 13◦

Table 5.1: Problem definition for NASA trap wing

The initial mesh for NASA trap wing has 3.3M elements, the adapted LEV1 mesh has 7.8M

elements and the adapted LEV2 mesh has 12.3M elements. The seemingly small increase in the

number of elements per adapt cycle can be attributed to the creation of anisotropic elements.

Figure 5.2 shows cuts of the initial LEV0 and the adapted LEV2 meshes and corresponding speed

distribution (colored) and pressure contours (black lines). Superior capturing of the wake with

adaptivity is evident from the anisotropic mesh in this region and the speed pictures. The pressure

contours which are a bit jagged for the initial mesh, become more regular and smooth in the adapted
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Figure 5.2: Cuts of the initial LEV0 and adapted LEV2 meshes, showing anisotropic adaptivity
and speed distribution with pressure contours

mesh. The zooms on the right show the adapted mesh near the leading edges of the main wing

and the flap element showing the refinement in these regions, also displaying refinement near the

trailing edges of the slat and the main wing.

(a) Initial mesh: LEV0 (b) Adapted mesh: LEV2

Figure 5.3: Cut view of the initial and the adapted meshes near the leading edge of the main wing,
showing anisotropic elements

Figure 5.3 displays the mesh near the leading edge of the main wing for the initial LEV0 and



58

the adapted LEV2 meshes to illustrate the anisotropy developed in the spanwise direction. The

leading edge is refined such that the elements have smaller edge lengths in the streamwise direction

as compared to the spanwise direction. This behavior is expected because the flow changes in

the streamwise direction are very large near the leading edge of the main wing. This figure also

shows the in-plane boundary layer adaptivity as the stacks of boundary layers get split in the layer

direction.

(a) Initial mesh: LEV0

(b) Adapted mesh: LEV1

(c) Adapted mesh: LEV2

Figure 5.4: Iso-surfaces of Q criterion for NASA trap wing showing the tip vortex

Figure 5.4 shows the iso-surfaces of the Q criterion which captures the elongated tip vortex. Q
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criterion is calculated as 0.5(ΩijΩij−SijSij) where Ω is the asymmetric part and S is the symmetric

part of the velocity gradient tensor. Since vorticity usually captures high normal gradients in

boundary layer flows, the vortical structures get overshadowed. The Q criterion eliminates this

problem by signifying the regions where rotation dominates the shear and strain, which is often the

case for the tip vortex for positive Q values.

The iso-surfaces indicate that the tip vortex dissipates quickly for the initial mesh due to its

coarseness. However, its real structure is captured much better in the adapted meshes. This is

important because with our error indicators we get refinement in the tip area and the wake and so

the flow structures are captured much better in this region than the coarse initial mesh. The effect

of anisotropic elements in the wake can also be seen on the structure of the tip vortex.

Some other results of adaptivity are shown in Figure 5.5 which displays the streamlines near

the tip on the left hand side and vorticity magnitude contours on the right hand side for different

meshes. The initial coarse mesh gives a lot of separation and a complete free shear layer near the

tip, but the adapted meshes predict more turbulent activity in this region. The streamlines inside

the flap slot of the main wing are not clearly seen in the initial mesh but can be seen in the adapted

meshes. The vorticity magnitude contours of the initial mesh indicate that the tip vortex gets

dissipated quickly due to the coarseness of the mesh. The initial mesh is not able to completely

resolve the side-of-body vortices as well, which are resolved much better in both of the adapted

meshes. Overall, adaptivity captures the tip and side-of-body vortical features much better due to

increased refinement.

The coefficients of pressure for the slat, the main wing and the flap elements are plotted in

Figure 5.6 and Figure 5.7. Note that the Y axis is plotted for −Cp. For the slat element, the

agreement with experiments is good for all the meshes especially for the 17% and 50% sections,

however, the adapted meshes show less scatter of the Cp values for the 17% section. Near the tip

(Figure 5.7(a)), the adapted meshes show overall slightly better agreement with the experiments

compared to the initial mesh.

For the main wing, the agreement is good for all the three meshes with the experimental
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(a) Initial mesh: LEV0 (b) Initial mesh: LEV0

(c) Adapted mesh: LEV1 (d) Adapted mesh: LEV1

(e) Adapted mesh: LEV2 (f) Adapted mesh: LEV2

Figure 5.5: On left: streamlines near the tip, on right: contours of vortex magnitude on various
slices with normals in X direction

data for 17% ad 50% sections. Some minute differences are seen near the trailing edge. The initial
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(a) Slat element: 17% span (b) Slat element: 50% span

(c) Main wing: 17% span (d) Main wing: 50% span

(e) Flap element: 17% span (f) Flap element: 50% span

Figure 5.6: Coefficient of pressure for 17% and 50% span
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(a) Slat element: 98% span (b) Main wing: 98% span

(c) Flap element: 98% span

Figure 5.7: Coefficient of pressure for 98% span

mesh does not have enough resolution on the pressure side near the trailing edge and thus fails to

capture the effect of reduction in the thickness of the wing in that region, which is captured by the

adapted meshes.

Again near the tip (Figure 5.7(b)), the initial mesh under predicts separation which leads to a

flatter Cp curve for the suction side of the wing, far off from the experimental values, with the worst

behavior seen near the trailing edge. With adaptivity, this region receives enough refinement and

is captured with a greater accuracy. The Cp values for the adapted meshes are in good agreement

with the experiments near the tip of the main wing for both adapted meshes. For the pressure side

also, the adapted meshes perform better where the thickness of the wing drops down.
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For the flap element, the Cp values on 17% ad 50% sections show good agreement with the

experimental values. This indicates that the initial mesh is adequate to accurately predict the flow

phenomenon away from the tip. This is not surprising since flow is attached near the in-board and

the mid-board sections. However, near the tip (Figure 5.7(c)) for the 98% span section, the initial

mesh under predicts the suction peak. Interestingly, the adapted LEV1 mesh shows an overshoot

in the suction pressure peak near the nose of the flap, but the adapted LEV2 mesh shows good

agreement with the experiments. This indicates that usually at least a couple of adaptivity passes

could be required to arrive at a good mesh. For the rest of the section, the adapted meshes show

better agreement with the experimental data, also capturing the wavy nature near the mid-section

area. The initial mesh under predicts the separation near the trailing edge which is again predicted

better by the adapted meshes.

5.1.1 Comparison with Nested Refinement Approach

To display the effectiveness of adaptive refinement approach, we compare it with nested

refinement of NASA trap wing. In the first high lift prediction workshop [1], participants were

required to create a coarse, a medium and a fine mesh and their results were compared. The mesh

sizes (mesh edge lengths) in each subsequent grids were 1.5 times smaller than the previous ones.

We use a similar approach but instead we perform a nested refinement operation to reach the next

level of the mesh. We then compare results from these meshes with our adapted mesh results.

In nested refinement (also called uniform refinement), each mesh edge is split in two. This

means that each tetrahedron element in the mesh gets refined into 8 new tetrahedra elements. The

mixed element mesh boundary layers are not refined in the direction of the growth curves, meaning

that the normal spacing is kept constant. This results in refinement of each prism element into 3

new prism elements and each pyramid element is refined into 2 new pyramid elements.

Figure 5.8 shows the cut views of the meshes at each refinement level created with nested

refinement. The refinement of prisms and tetrahedra as explained before can be easily seen in the

pictures.
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(a) Initial Mesh: LEV0

(b) Uniformly refined mesh: LEV1

(c) Uniformly refined mesh: LEV2

Figure 5.8: Cut views of the initial and the uniformly refined meshes for NASA trap wing

Table 5.2 shows the computational comparison of the uniformly refined meshes with the ini-
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Mesh # elements # vertices

Initial mesh: LEV0 3.39M 1.13M

Refined mesh: LEV1 20.65M 6.65M

Refined mesh: LEV2 139.33M 37.18M

Adapted mesh: LEV2 12.85M 3.46M

Table 5.2: Computational comparison of meshes

tial and the adapted LEV2 mesh. Between the LEV0 to the refined LEV2 meshes, the number of

elements roughly increases by 6-7 times at each level, whereas the adapted LEV2 mesh has only in-

creased by 3 times after 2 adaptivity passes. This indicates significant savings in the computational

resources if the results of these meshes are similar, which we will investigate next.

Since the Cp values predicted by the initial mesh agree well with the experiments for 17% and

50% spanwise sections, we only plot the Cp values for the 98% span section in Figure 5.9 for the

meshes created with nested refinement. As the mesh is uniformly refined, The Cp values gradually

start showing better agreement with the experiments with the refined LEV2 mesh showing the best

results. The adapted LEV2 and the refined LEV2 mesh both give comparable Cp values and are

in reasonable agreement with the experiments for all the three elements.

Figure 5.10 shows iso-surfaces for the Q criterion for the refined LEV2 and the adapted

LEV2 meshes. The shape of the tip vortex is similar for both of the meshes. The size of the vortex

given by the refined LEV2 mesh is smaller than that of the adapted LEV2 mesh, indicating that

the adaptation gives a little bit better resolution in this area over the refined mesh and one more

refinement cycle might be required to arrive at the same result.

From the vorticity contours plotted in Figure 5.11, it can be seen that both of the adapted

and the refined LEV2 meshes give similar resolution in the tip area. The off body vortices are

captured to a satisfactory degree by both of the meshes.

Overall, above results show that the adaptive boundary layer meshing technique provides an

easy and an efficient way to generate satisfactory meshes for capturing the required flow features for

complex geometries which would otherwise require careful selection of mesh generation parameters.

The savings in computational resources are significant in terms of the number of elements in the
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(a) Slat element: 98% span (b) Main wing: 98% span

(c) Flap element: 98% span

Figure 5.9: Coefficient of pressure for 98% span

mesh when compared with the nested refinement approach to get similar results. We saw that the

adapted LEV2 mesh with 12M elements gave similar results to the refined LEV2 mesh with 140M.

This reduction in the number of elements by a factor of more than 10 can be attributed to the

anisotropy in the adapted mesh due to stretching of the elements in particular directions and to

selective refinement based on error indicators. This is a good marker that adaptive approach is

better in getting a good mesh capable of generating better results efficiently.
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(a) Initial mesh: LEV0

(b) Adapted mesh: LEV2

Figure 5.10: Iso-surfaces of Q criterion for NASA trap wing showing the tip vortex

(a) Refined mesh: LEV2 (b) Adapted mesh: LEV2

Figure 5.11: Iso-surfaces of Q criterion for NASA trap wing showing the tip vortex

5.2 EUROLIFT DLR-F11 High Lift Configuration

The second test case for in-plane adaptivity of multi element wings is the DLR-F11 wing,

which is used for analysis in the 2nd high lift prediction workshop [2]. The wing is a multi element
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wing similar to NASA trap wing, but more complex and realistic in nature. This geometry has two

configurations, one with flap fairings and slat tracks (config 4) and other without them (config 2).

The experimental results can be found in reference [59].

(a) Config 2 (b) Config 4

Figure 5.12: Geometry of the DLR-F11 wing

Figure 5.12 displays the geometries for the config 2 and config 4 of the DLR-F11 wing,

clearly showing the fuselage, slat, flap, and flap fairings for config 4. The problem definition is

given in Table 5.3. We use the incompressible flow solver since the Mach number is fairly low.

RANS Spalart-Allmaras [71] turbulence model is used similar to other test cases in this thesis. The

simulations were run on BG/Q (Mira) supercomputer at Argonne and on Janus supercomputer at

UCB, with as many processors as 64k.

Mach number
Mean aerodynamic

chord (MAC)
ReMAC Angle of attack

0.175 0.347 m 15.1 million 7◦

Table 5.3: Problem definition for DLR-F11 wing

Mesh # of elements # of vertices
First cell height

(m)

Coarse mesh 32.28M 13.55M 5.5e-7

Medium mesh 91.55M 37.34M 3.7e-7

Fine mesh 287.89M 112.96M 2.4e-7

Adapted mesh 40.69M 14.11 5.5e-7

Table 5.4: Computational comparison of meshes

We ran in-plane adaptivity on an extra coarse mesh for the config 2 geometry. The adapt
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strategy was the combined approach similar to the one used for NASA trap wing. Another set of

meshes were created, namely coarse, medium and fine to match the resolutions required by the 2nd

high lift prediction workshop [2].

Table 5.4 shows the comparison of the different meshes used for analysis. The number of

elements increase roughly by 3 times from coarse to medium to fine meshes. The first cell height is

also reduced in each subsequent mesh. The number of elements and vertices in the adapted mesh

are on the same order as of the coarse mesh.

(a) Coarse (b) Medium

(c) Fine (d) Adapted

Figure 5.13: Cut views of different meshes for the DLR-F11 wing

Figure 5.13 and Figure 5.14 show cut view pictures of the meshes at mid-span section and

their corresponding speed contours (in color) and pressure contours (black lines). The coarse mesh

over predicts the separation over the flap but the medium, adapted and fine meshes show similar

behavior. The pressure contours are also jagged and irregular for the coarse mesh, but become

smoother for other meshes.

Figure 5.15 shows cut views of the meshes near the nose of the main wing and the trailing

edge of the slat. Increasing curvature refinement and refinement in the trailing edge region can be
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(a) Coarse (b) Medium

(c) Fine (d) Adapted

Figure 5.14: Speed contours (colored) and pressure contours (black lines) for different meshes of
the DLR-F11 wing

(a) Coarse (b) Medium

(c) Fine (d) Adapted

Figure 5.15: Cut views of the region near slat trailing edge and the nose of the main wing for
different meshes of the DLR-F11 wing



71

(a) Coarse (b) Medium

(c) Fine (d) Adapted

Figure 5.16: Cut views of the region near flap trailing edge and the nose of the flap wing for different
meshes of the DLR-F11 wing

clearly seen from the coarse to the medium to the fine mesh. The anisotropy in the elements can

be seen for the adapted mesh. Figure 5.16 shows cut views of the meshes near the trailing edge

of the main wing and the nose of the flap to display progressive refinement in the boundary layer

region. The adapted mesh shows anisotropy in the streamwise and the spanwise direction getting

developed.

Figure 5.17 plots the coefficient of pressure at the 29% and 68% spanwise sections on the slat,

the main wing and the flap. Note that −Cp is plotted on the Y axis. For the slat, the adapted mesh

over predicts the suction pressure relative to other meshes but gives a better agreement than the

coarse mesh on the pressure side. For 29%, all curves lie pretty much on top of each other except

for the adapted results. For 68%, the coarse mesh under predicts the pressure on the suction side

and the adapted mesh over predicts it. The medium and the fine mesh are in a good agreement

with the experiments. However, the adapted mesh gives better agreement than the coarse mesh on

the pressure surface.
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(a) Slat element: 29% span (b) Slat element: 68% span

(c) Main wing: 29% span (d) Main wing: 68% span

(e) Flap element: 29% span (f) Flap element: 68% span

Figure 5.17: Coefficient of pressure for 29% and 68% span for the DLR-F11 wing for 7◦ angle of
attack
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For the main wing, all meshes give good agreement with the experimental results for the 29%

and 68% sections. The adapted mesh over predicts the suction peak by a small amount. A good

thing to note is that all the meshes are able to capture the effect of separation on the pressure,

near the trailing edge.

All meshes give deviating results from the experiments for the flap 29% section, but agree

well with each other. This indicates that we have mesh convergence but the turbulence model is

unable to capture the effect of separation near the root of the wing, leading to the conclusion that

we have verified results for this particular turbulence model. For the 68% section of the flap, the

fine mesh overshoots the pressure peak on the suction side as compared to other meshes, but other

meshes agree with each other. Near the trailing edge, the coarse mesh predicts more separation

compared to the experiments and other meshes.

The outboard coefficients of pressure at 89% span section are plotted in Figure 5.18. The

coarse mesh shows degrading performance and does not give matching values to the experiments

for all the three elements. For the slat, it under predicts the pressure on the suction surface for all

of the section. Interestingly, the fine mesh gives a good agreement with the experimental data but

the medium and the adapted mesh both over predict the pressure on the suction side by a small

amount. On the pressure surface of the slat as well, adapted mesh performs better than the coarse

mesh.

For the main wing section (Figure 5.18(b)), the coarse mesh gives continuous increasing

pressure (sustained adverse pressure gradient) on the suction side near the trailing edge indicating

attached behavior which does not agree with the experiments. The medium, fine and the adapted

mesh all are in good agreement with the experiments and capture the effect of separation near the

trailing edge to a good degree. For the flap section, the coarse mesh does a poor job at capturing

the suction pressure peak and gives a flatter curve which does not match the experiments. The

medium and the adapted meshes give values that lie on top of each other and agree well with the

experimental values. The fine mesh, however, overshoots the pressure peak slightly, indicating that

these meshes bound the experimental values. Near the trailing edge, except for the coarse mesh,
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(a) Slat element: 89% span (b) Main wing: 89% span

(c) Flap element: 89% span

Figure 5.18: Coefficient of pressure for 89% span

other meshes show attached behavior like the experiments.

The vorticity contours on planes with X normals are plotted in Figure 5.19 for the coarse,

medium and the adapted meshes. The adapted mesh undoubtedly gives better vorticity contours

in the tip region compared to others. Adaptive refinement in this region is high and the increased

resolution helps in capturing the flow features. The coarse mesh is unable to resolve the off body

vortices, but they can be seen in the medium and the adapted mesh.

Overall, above results show that the adapted mesh which has comparable mesh size (in terms

of number of elements) to the coarse mesh performs better in almost all aspects. It also performs
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(a) Coarse mesh (b) Medium mesh

(c) Adapted mesh

Figure 5.19: Vorticity contours on planes with normals in X direction for the DRL-F11 wing

as good as the medium mesh or even better in some aspects. The medium mesh is around 3 times

larger than the adapted mesh, so this shows significant savings in computational resources. This

also underlines the effectiveness and efficiency of the adaptivity approach to reach a desired mesh

for complex geometries. Some results indicate that to arrive at completely verified results, another

adaptivity pass needs to be performed.

In this chapter, through adaptivity results of NASA trap wing and DLR-F11 wing, we have

showcased the efficiency of our adaptivity approach. This is a significant development for boundary

layer adaptivity in terms of handling complex geometrical domains as well as working with complex

turbulent flows, which are both true in the cases of these multi element wings.



Chapter 6

Application Results: In-plane Only Adaptation in Parallel

As a part of this thesis, in-plane adaptivity of complex turbulent flow problems was carried

out in parallel. The work helped in extending the adaptivity approach to parallel systems and

scaling studies were also undertaken. This chapter illustrates two internal flow application results

of in-plane adaptivity for turbulent flows using parallel processing. The boundary layers are not

adapted in the thickness direction, as parallelization of the thickness adaptation procedures is still

under development.

All the parallel in-plane adaptations in this chapter were performed with an open source

software based on the mesh adaptation procedures outlined in [21], [53], [61] developed at Rensselaer

Polytechnic Institute in the Scientific Computation Research Center (SCOREC) [66].

6.1 Heat Transfer Manifold

The heat transfer manifold test case consists of a large diameter cylindrical pipe as the inlet, a

relatively thin and flat manifold section, and twenty small outlet pipes. The water flow through this

geometry was modeled as steady, incompressible with RANS Spalart-Allmaras turbulence model

[71]. A turbulent velocity profile was used at the inflow, with Reynolds number of 1 million, based

on the inflow diameter. No-slip boundary conditions were assumed at walls and weakly applied zero

pressure at all outlets. The solution parameter used in the Hessian calculation is the static pressure

combined with scaled dynamic pressure, defined as P + 0.5αρu2, where the scaling factor α = 0.2

was chosen to achieve an appropriate balance of the static and dynamic pressure in terms of adaptive
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refinement. Eigenvalues were computed from the Hessian matrix and were scaled appropriately to

get the mesh sizes along with the three orthogonal directions.

The adaptive loop which consists of a flow solve and a mesh adaptation within each cycle

was carried out twice, and at each cycle, the flow solve was started from previous loop’s solution.

This speeds up the convergence and eliminates the need to start from zeroth time step. Each

cycle was divided into 1000 time steps with a constant time step size of 0.1s. The computations

use a pre-defined boundary layer mesh, with layers of constant thickness and isotropic elements in

interior volume, consisting of 472k elements in total. The adapted boundary layer mesh consists of

16.3M elements. The mesh adaptation procedure was applied one time for each of the two analysis

cycles.

Figure 6.1: Initial and adapted meshes for the heat transfer manifold

Figure 6.1 shows the initial LEV0 and the adapted LEV1 and LEV2 meshes for the heat

transfer manifold. Figure 6.2 shows the view of the meshes from the bottom and corresponding

pressure distributions. The adaptive refinement in the stagnation region of the inlet pipe and the

manifold can be seen, clearly. The pressure distributions show improvement in the solution because
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Figure 6.2: Meshes and pressure distribution (view from bottom) for the heat transfer manifold

of refinement.

Figure 6.3 shows cut views of the meshes and corresponding pressure slices near the inter-

section of the inlet pipe and the manifold. Similarly, Figure 6.4 shows the cut views of the meshes

and corresponding pressure slices near the intersection of one of the outlet pipes and the manifold.

The initial mesh is too coarse and these figures demonstrate its inability to accurately capture the

flow phenomena. Critical flow regions including stagnation point and turns around the fillets of the
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Figure 6.3: Cut view of the inlet pipe and the manifold

Figure 6.4: Cut view of one of the the outlet pipe and the manifold
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pipes get significantly refined and that is reflected by smoother and more accurate solution results.

The walls of the manifold, especially the wall closest to the inflow pipe, gets refined to a higher

degree. The fillets of outflow pipes also get more refinement. The central part of the manifold rela-

tively gets lesser refinement because of relatively lesser gradation in solution fields. Moreover, away

from flow regions with stagnation and turns, flow anisotropy in the streamwise direction is present

that is accounted with highly anisotropic mesh elements, which results in significant computational

savings.

6.1.1 Comparisons with a priori Mesh Generation

Figure 6.5: a priori fine mesh generated with some knowledge of adaptive refinement

To display the effectiveness of anisotropic adaptivity, a fine mesh was generated by antici-

pating where the mesh would need more resolution (like stagnation points and fillets). Refinement

zones were created in the regions where adaptive strategy showed refinement, to get the required

fine mesh sizes, and this mesh is called a priori fine mesh. Figure 6.5 shows the side view and the

view from the bottom for this mesh, showing the preemptive refinement of the stagnation region
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and the outflow pipes along with corners and blends.

The flow computations were performed with similar settings as for the adapted and the initial

cases. Mesh convergence analysis was performed by plotting the pressure drop between the inflow

and the outflow faces of the pipes.

Figure 6.6: Pressure drop across inlet and outlet pipes for bottom outlet pipes with +X normals

Figure 6.6 and Figure 6.7 show the pressure drops for bottom and top outlet pipes with

respect to the inflow, respectively. The initial mesh predicts completely wrong values but with

adaptivity the values seem to converge to similar values. The adapted meshes predict close values

to the a priori mesh’s prediction. The maximum percentage difference between the values given by

the adapted LEV2 and the a priori mesh is less than 2%.

Table 6.1 gives a computational comparison of the various meshes used. It can be clearly

seen that with adaptivity, momentum equation’s residual decreases, which points towards better

convergence. The number of elements in the adapted LEV2 mesh is nearly half that of the a priori

fine mesh, but both give comparable residuals. This difference in the mesh size can be attributed
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Figure 6.7: Pressure drop across inlet and outlet pipes for top outlet pipes with -X normals

# elements
#

processors
Momentum

equation residual
Time for 100
time steps (s)

Initial mesh:
LEV0

472k 16 1e-5 4032

Adapted mesh:
LEV1

2.8M 128 3e-6 9242

Adapted mesh:
LEV2

16.3M 256 9e-7 15130

a priori fine mesh 33M 256 8e-7 17620

Table 6.1: Computational comparison of meshes

to the anisotropic adaptation which results in significant savings in computational resources, due

to orienting and stretching the elements in particular directions.

6.1.2 Scaling Studies

To evaluate the parallel performance of the boundary layer mesh adaptivity, a strong scaling

study was conducted, where mesh adaptation in the second cycle of adaptive loop was executed on a
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range of processors: 256 to 4,096 cores. The scaling is based on the execution time on 256 processors

and is defined as (nproc−base ∗ timebase)/(nproc−test ∗ timetest), where nproc−base is the number of

base processors, timebase is the execution time on the base number of processors, nproc−test is the

number of test processors and timetest is the execution time on that many number of processors.

All available cores per node were requested during the adaptation runs. Table 6.2 gives the scaling

of second cycle mesh adaptation run times with the initial mesh of 16M elements, and the adapted

one consisting of 81M elements.

# procs 256 512 1024 2048

Time (s) 1194.34 785.44 514.45 421.09

Scaling 1 0.76 0.58 0.36

Table 6.2: Strong scaling study for the heat transfer manifold conducted on NERSC Hopper [20]
and Blue Gene/P [33]

As indicated in Table 6.2, the mesh adaptation times decrease with the increased number of

cores. As the given mesh is distributed to more processors, there is little computation performed

during mesh modification operations relative to the substantial increase in communications, the

scaling decreases on high core counts (note that a strong scaling study is performed and therefore,

the problem size is fixed). However, the analysis has been shown to scale strongly with the similar

amount of workload. The actual time required for mesh adaptation is not even 1% of the flow solver

time. This difference increases further for unsteady simulations. Because of this, even though the

strong scaling of mesh adaptation software is not good, the ability to adapt at higher number of

processes is very desirable. This is also because at such massively parallel scales, it is impossible to

bring the mesh back on a serial processor just for adaptation. So the ability to adapt on parallel

systems is more important than its scaling, to aid the flow simulations.

# procs 256 1536 9216

# elements / proc 62.5k 62k 65k

Time (s) 1194.34 1381.55 1716.23

Scaling 1 0.97 0.86

Table 6.3: Weak scaling study for the heat transfer manifold conducted on NERSC Hopper [20]
and Blue Gene/P [33]



84

Another important scaling study is that of the weak scaling. Most of the time during adap-

tation, mesh is refined far more than it is coarsened, resulting in an increase in the size of the

mesh. This mesh is further partitioned to higher number of processors to run further simulations

and adaptivity. Since we are increasing the problem size at each adaptation loop, weak scaling is

actually more important than the strong scaling. Table 6.3 shows the results of the weak scaling,

where number of elements per processor are kept nearly constant. A scaling of 0.86 is seen at 9216

processors which is considered very good.

6.2 3D Shallow Cavity

The second case study for parallel in-plane adaptation was carried out for a 3D shallow cavity

flow. The flow is modeled as an unsteady incompressible air flow. Air enters through the long inlet

pipe and enters the shallow cavity which has a length to depth ratio of 6. This causes the boundary

layer from the inlet pipe to form a free shear layer in the cavity which shows vortex shedding as

the shear layer starts wobbling. The flow exits through a long outlet pipe.

Figure 6.8: 3D shallow cavity geometry setup

To resolve the unsteady turbulent scales, DDES (delayed detached eddy simulation) [72]
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turbulence model was used. This model is a hybrid of RANS and LES which behaves like RANS

in the regions near the walls and in regions with insufficient resolution and behaves like LES

elsewhere where the mesh resolution is fine enough. As mesh is refined in different areas, LES turns

on automatically in these regions and the scales are captured much more effectively than RANS.

Figure 6.9: LEV0 (left), LEV1(middle) and LEV2(right) meshes and a slice showing corresponding
stream wise vorticity

For adaptivity, Hessians of time averaged velocity were used to calculate the anisotropic
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sizes because the main region of interest is the free shear layer, where velocity gradients are high.

Since this is an unsteady flow, the number of time steps required to give a good time average for

adaptivity was carefully chosen. Even though the real aim of adaptivity is to capture the unsteady

scales more effectively, the averaging must be done in such a manner that the mesh should not

really reflect the unsteady structures. We chose a time interval of 5 times the time required for the

flow to traverse the length of the cavity for averaging, however, different time intervals may give

similar or better results. The main point to note is to not have this interval very small which might

reflect in bad adaptivity and an unsteady mesh.

Figure 6.9 shows the cut views of the initial and the adapted meshes in the cavity zone and

corresponding vorticity in the streamwise direction. Note that the vorticity is for a particular time

step and not time averaged. The refinement is mainly seen in the region of the free shear layer.

The smallest edge lengths are encountered very close to the start of the cavity from where the

boundary layer separates. The mesh is also refined near the end of the cavity and spans a larger

portion of the cavity since the free shear layer has evolved into vortical structures interacting with

the wall. The shear layer does roll over till roughly half length of the cavity and this region is also

refined. The cavity away from the free shear layer near the start of the cavity does not get a lot of

refinement.

The initial mesh does not show a lot of activity of Z vorticity (Z is the streamwise direction),

indicating that the initial mesh is inadequate to resolve the shear layer instability and instead

provides an artificially steady flow. We do not see a lot of unsteady activity and most of the flow

regions are resolved as RANS due to lack of resolution. The error indicators do however recognize

that the unsteady features are missed and, with adaptivity, the LEV1 mesh starts showing some

signs of unsteady flow and the region near the end of the cavity starts getting resolved by LES.

With one more adaptivity pass, we reach good enough resolution such that most of the cavity is

modeled with LES (except for the boundary layers) and vortical structures start becoming more

prominent in the flow. The breaking of shear layer in vortices can be clearly seen in the adapted

LEV2 mesh. Thus, with adaptivity we are able to refine the mesh such that the unsteady structures
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in the flow are resolved.

Figure 6.10: Cut view of LEV0 (left), LEV1(middle) and LEV2(right) near the outflow of the
shallow cavity

Figure 6.10 shows cut views of the initial and the adapted meshes near the cavity outlet and

some portion of the outlet pipe. The in-plane boundary layer adaptation can be clearly seen with

anisotropy getting developed in the streamwise direction in the outlet pipe.

Figure 6.11 and Figure 6.12 show the power spectral density plots for pressure and velocity

near the end of the cavity. The computations were performed by gathering the time accurate

signal at the same point in the domain for several time steps and then applying a pwelch window

in MATLAB. The spectra show that the power density remains fairly low for the initial mesh.

Since the power spectra is calculated by removing the mean signal from each time step, this means

that the fluctuations remain fairly low, indicating that the instability is substantially suppressed

but not completely eliminated. With adaptivity, the power density increases by over a magnitude.

The power spectra for the adapted LEV1 and LEV2 meshes are pretty much coincident indicating
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Figure 6.11: Pressure spectra near the cavity exit for the shallow cavity

Figure 6.12: Velocity spectra near the cavity exit for the shallow cavity
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good mesh convergence. The LEV2 mesh also shows the highest peak in the pressure spectra at a

frequency of 680Hz which is fairly close the the experimental value of 640Hz [28].



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have extended and applied the adaptive boundary layer techniques to

turbulent flows. We developed new techniques to calculate the thickness specifications for the

mesh boundary layers, based on the flow solution and combined this approach with the numerical

error indicators to drive adaptivity in the entire flow domain. The work has shown promise in

correctly calculating the first cell height and the total height of the attached boundary layers.

Special considerations were made for separated boundary layers and shock wave - boundary layer

interactions where calculating the mesh sizes is complicated. The three applications to aerodynamic

flows have shown that this combined strategy can be very effective in capturing the flow physics

accurately for both incompressible and compressible flows. The case of NACA 0012 airfoil, was a

good example of how well the boundary layer height is calculated with our tools. The ONERA M6

wing and the Delery bump cases proved that these methods can be effectively applied to complex

transonic flows where separation takes place.

We also demonstrated the ability to adapt the boundary layers in parallel for two internal

turbulent flow applications. Superior flow feature resolution was displayed through the results and

efficient performance of anisotropic meshes was underlined in comparison with an a priori generated

mesh for the heat transfer manifold application. The use of these techniques for unsteady flow

calculations was demonstrated in the case of 3D shallow cavity, where adaptation of the free shear

layer led to capturing of more unsteady vortical scales with each successive adaptation.
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In this work we showed that the boundary layer adaptivity techniques can be applied to real

world complex turbulent flow problems like multi element wings which are usually very hard to

mesh with satisfactory resolution in required areas. The adaptive boundary layer techniques showed

that superior wake and tip region resolution can be easily achieved with the help of numerical error

indicators. The strategy that we developed to combine Hessians and scalar error indicators created

desired meshes which achieved better agreement with the experiments than the initial mesh. The

results showed that our adaptive techniques are a promising way to mesh such complex geometries

in an efficient manner.

7.2 Future Work

• Undoubtedly, the future of mesh adaptation lies with the parallel paradigm. As flow sim-

ulations are now done at extreme computational scales, mesh adaptation needs to keep up

with these advantages to support these simulations. One bottleneck here is the scaling of

mesh adaptation procedures. The strong scaling deteriorates very quickly as the number

of elements per process is reduced. The flow solver can scale to as few as 5k - 15k elements

per MPI process (depending on the architecture) [63]. However, the ideal range for mesh

adaptation is somewhere 50k - 80k elements per process [53]. Hence the performance of the

mesh adaptation procedures at this level is not satisfactory and this gap in the behavior of

mesh adaptation and flow solver needs to be addressed. Efforts need to be undertaken to

increase the scaling of the mesh adaptation procedures.

• Though thickness adaptation is a strong tool, its use in this thesis has been limited to

relatively simpler geometries (even though complex flows). In the future, attempts need to

be made to adapt complex geometries like the multi element wings with working thickness

adaptation. This requires some effort on the mesh adaptation procedures’ side to provide a

more robust tool, as well as on our side to regulate our mesh size requests so that adaptation

is easier. Currently, we use simple smoothing strategies to ensure that we pass smooth fields
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to the mesh adaptation software, but for complex geometries with complex intersections of

boundary layers, more development is needed.

• Current implementation of calculations for boundary layer height and detection of separated

flow make use of the initial mesh boundary layer for its convenient data structures. However,

situations might arise where initial boundary layer height is too low to capture these effects

correctly and reaching the required height iteratively might take a few adaptation loops. To

remedy this, growth edges can be extended by using virtual lines to enter the unstructured

region of the mesh. These virtual lines can then be used to gather the required vorticity

values and velocity profiles from inside the unstructured region, normal to the wall and

would improve current calculations. This approach would be much more expensive than

using the standard mesh boundary layer data structures, but would help immensely for

poorly constructed initial meshes.

• In this work, we have mainly used RANS based models for turbulence modeling. The

behavior of the strategies we have developed should ideally be universal, but needs to be

studied in detail. For example, if the turbulence model used is k − ε, the first cell height

is not as low as for RANS wall resolved methods. Due to this, after adaptation, if first

cell height is increased accordingly for the k− ε model, the separation detection algorithm

may encounter problems due to lack of resolution near the wall. Issues like this for other

turbulent models where the boundary layer is not integrated to the wall need to be identified

and resolved.

• For superior resolution of the separated boundary layers, a feature to detach the mesh

boundary layers from the wall to follow the free shear layers would be ideal. This requires

some efforts on the mesh adaptation side.
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