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ABSTRACT

The goal of this work was to develop, introduce, and test a promising computational

paradigm for the development of turbulence models for incompressible magnetohy-

drodynamics (MHD). MHD governs the behavior of an electrically conducting fluid

in the presence of an external electromagnetic (EM) field. The incompressible MHD

model is used in many engineering and scientific disciplines from the development

of nuclear fusion as a sustainable energy source to the study of space weather and

solar physics. Many interesting MHD systems exhibit the phenomenon of turbu-

lence which remains an elusive problem from all scientific perspectives. This work

focuses on the computational perspective and proposes techniques that enable the

study of systems involving MHD turbulence.

Direct numerical simulation (DNS) is not a feasible approach for studying

MHD turbulence. In this work, turbulence models for incompressible MHD were

developed from the variational multiscale (VMS) formulation wherein the solution

fields were decomposed into resolved and unresolved components. The unresolved

components were modeled with a term that is proportional to the residual of the

resolved scales. Two additional MHD models were developed based off of the VMS

formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that

partners the VMS formulation with the RBEV model. These models are endowed

with several special numerical and physics features. Included in the numerical fea-

tures is the internal numerical consistency of each of the models. Physically, the

new models are able to capture desirable MHD physics such as the inverse cascade

of magnetic energy and the subgrid dynamo effect.

The models were tested with a Fourier-spectral numerical method and the fi-

nite element method (FEM). The primary test problem was the Taylor-Green vortex.

Results comparing the performance of the new models to DNS were obtained. The

performance of the new models was compared to classic and cutting-edge dynamic

Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform

the classical models.
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CHAPTER 1

Introduction and Scope of Work

The field of magnetohydrodynamics (hereafter MHD) is a fascinatingly rich field of

physics and applied mathematics that considers the behavior of an electrically con-

ducting fluid in the presence of an external electromagnetic (EM) field. Although

inspiring in its own right, MHD also has numerous engineering and science appli-

cations. These range from the pursuit of reliable energy sources such as nuclear

fusion (Strauss 1976; Sovinec et al. 2003; Tang 2008; Dobran 2012) to understand-

ing near-earth plasmas such as the solar wind (Podesta and Borovsky 2010) and

more exotic astrophysical objects such as stars (Fox, Theobald, and Sofia 1991; Fox,

Sofia, and Chan 1991; Brun, Miesch, and Toomre 2004), black holes (Takahashi et al.

1990), and the interstellar medium (Zweibel 1999). Virtually all of these areas expe-

rience the phenomenon of turbulence and the role turbulence places in engineering

and science applications is certainly critical. This work focuses on a subsection of

MHD called incompressible MHD and seeks to develop novel turbulence models for

computational studies of various phenomena governed by the incompressible MHD

model. The following sections include, in turn, reviews of MHD, fluid and MHD

turbulence, and computational techniques. The chapter concludes by highlighting

the primary contributions of this thesis and summarizing the organization of the

remaining chapters.

1.1 Review of Magnetohydrodynamics

The field of MHD can be said to have started with Faraday although his re-

searches may be more aptly considered the prehistory of MHD. For a nice account

of his studies of electrically conducting fluids as well as his contributions to elec-

trodynamics see (Davidson 2001, chap. 2). The birth of modern MHD came about

with the discoveries of Hans Alfvén (Alfvén 1942, 1950). The present discussion

will focus on the qualitative aspects of MHD. A more mathematical account will be

presented in Chapter 2. For full accounts of MHD the reader can refer to a number

1



2

of sources, (Branover 1978; Davidson 2001; Biskamp 2003; Goedbloed and Poedts

2006; Goedbloed, Keppens, and Poedts 2010; Moreau 1990) and references therein.

To initiate the discussion, the essential aspects of MHD are presented in Figure 1.1.
 

u1 
j1 

u2 
j2 

Figure 1.1: A fluid element carrying current j1, moving in an EM field

to the right with velocity u1 feels a force that pushes it to

a new location and modifies its current and velocity. This

in turn creates an induced magnetic field that modifies the

background EM field.

As previously mentioned, MHD is concerned with the behavior of fluids in

the presence of an EM field. Of course, if the fluid does not conduct electricity,

then it will not influence, nor will it be influenced by, the EM field. Although

Faraday initiated the field of MHD, the mathematical formulation came later only

after the discovery of Maxwell’s equations. The dynamics of a fluid with density ρ

are encapsulated by the momentum equation

ρ
Du

Dt
= ∇ · T +

∑

i

fi. (1.1)

In this work, we will frequently refer to (1.1) as the Navier-Stokes equations although

this is not quite accurate in a strict sense. Strictly speaking (1.1) reduces to the

Navier-Stokes equations upon specifying a linear relationship between the stress

tensor T and the fluid pressure and rate of strain. For more details on this, refer to
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Appendix A.

For a very interesting account on the history of these equations see (Darrigol

2002). In (1.1) D/Dt = ∂/∂t+u ·∇ represents the total derivative of a field. In this

case, the field of interest is the velocity field u. This acceleration is influenced by the

forces on the right hand side of (1.1) in the form of the stress tensor T and possible

body forces fi. There are many possible body forces examples of which include

gravity and the Coriolis force. We will concern ourselves with only one body force

for the time-being. Because the fluid can conduct electricity, this body force, f , is an

electromagnetic force called the Laplace force which is the fluid-element counterpart

to the Lorentz force. In the literature, the term Lorentz force is typically used in

place of the Laplace force. An illustration of the effect of the Lorentz force on a

fluid element is presented in Figure 1.1. The essential idea is that the fluid consists

of current-carrying fluid elements. As the current flows in the external EM field the

Lorentz force is generated which acts on the fluid elements. Interestingly, the fluid

does not need to be in motion for the Lorentz force to be generated. Simply passing

an electric current through a stationary fluid can generate the Lorentz force.

1.2 Review of Turbulence

This section provides an overview of the phenomenon of fluid turbulence, a

scope of what the turbulence “problem” actually is, and finally discusses aspects of

fluid and MHD turbulence. The phenomenon of fluid turbulence is fundamental to

our natural world, yet it remains an exceptionally difficult problem. Presently, the

turbulence problem is still intractable from the point of view of all three pillars of

science: theory, computation, and experiments. Before proceeding with a qualitative

description of the turbulence phenomenon, it is instructive to specify just what is

meant by the turbulence “problem.” The explanation of the turbulence problem here

is not a universally accepted explanation, but is useful in explaining the fundamental

difficulties. The turbulence problem is a two-headed beast: the basic tenets of the

phenomenon remain unexplained and the methods for controlling and exploiting

turbulence are still in their infancy.

The pillars of science each struggle with turbulence in their own way. The
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theoretical pillar comes up against extreme mathematical difficulties associated with

the fundamental fluid equations. Additionally, turbulence has turned out to not be

amenable to physical intuition. The computational branch is unable to adequately

represent all of the necessary details of a turbulent flow field and will continue

to have difficulties for the foreseeable future. Experimentally, measurements of

turbulent quantities to describe the flow field can only reach a certain resolution

before the limits of measurement techniques are reached. Finally, all three pillars

run up against the enormity of data involved in a turbulent flow field. The amount

of information required to understand a given flow field is staggering.

To illustrate the concept of turbulence, one can conjure up a thought experi-

ment. The main points of the thought experiment are illustrated in Figure 1.2.
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Figure 1.2: The anatomy of a turbulent flow field.

Suppose there exists a channel with a fluid flowing inside of it. Next, a probe is

placed at a specific point within the channel and is able to measure the velocity field

at the spatial point at each point in time. Initially, the flow field is laminar, meaning

that it is devoid of velocity fluctuations and is smooth. However, once inside the

channel, an external force (i.e. a pressure gradient) causes the fluid to experience

an acceleration. What happens next is truly remarkable and not intuitive. For a

time, the fluid continues its acceleration and remains smooth. Interestingly, after

a finite time, small fluctuations in the flow field begin to occur. These fluctuations

become larger until the flow becomes completely unstable and loses its smooth
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character. The average velocity of the flow field at the point drops drastically and

after a while a fascinating behavior occurs. The flow field is not smooth; indeed it

is completely covered with fluctuations from one time-step to the next. However,

the flow has reached a kind of equilibrium in which the applied external force and

the forces within the fluid balance each other out. Additionally, a chaotic pattern

emerges where the fluctuations are about a slowly varying periodic solution. Put

another way, the flow field has a stationary equilibrium but not a simple periodic

time dependence. Figure 1.2 presents the anatomy of this flow field. Next, more

details on hydrodynamic (HD) and MHD turbulence are presented.

1.2.1 Hydrodynamic Turbulence

Humanity’s first recorded acknowledgment of turbulence comes about in the

15th century ACE (after common era) with the great Leonardo da Vinci’s observa-

tions and drawings. For a brief historical perspective see (Ecke 2005). However,

it was roughly another four centuries before Osborne Reynolds first attempted to

quantitatively study this phenomenon, first through experimental means (Reynolds

1883) and then through more mathematical considerations (Reynolds 1895). This

was in the days when science had only two pillars (rather than the three today) in the

form of theory and experiments. Reynolds was both an experimentalist and a the-

oretician. Indeed, his mathematical approach to turbulence theory dominated the

field through the 20th century; first through theoretical pursuits and then adapted to

tackle computational aspects of the problem. Two lasting contributions of Reynolds

are acknowledged through the dimensionless Reynolds number and the Reynolds de-

composition. The Reynolds number is an important number that characterizes the

ratio of inertial to viscous forces. For a flow field with characteristic velocity U ,

characteristic length L, and kinematic viscosity ν the Reynolds number (Re) is,

Re =
inertial forces

viscous forces
=
UL

ν
. (1.2)

In his famous channel flow experiments, Reynolds determined a critical value for

the Reynolds number at which the flow becomes turbulent.

Another approach that bears Reynolds’s name is the Reynolds decomposition.
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This approach centers around the idea that a turbulent flow field can be character-

ized by fluctuations about its average value. Thus, given a field quantity f that has

an average 〈f〉 the Reynolds decomposition is

f = 〈f〉+ f ′ (1.3)

where f ′ represents fluctuations about the mean value. The central premise is that

practical applications are really only concerned with the average effects of the flow

field. The Reynolds Averaged Navier-Stokes (RANS) equations take this philosophy

to heart. By solving the averaged momentum equation for the average field, one is

able to determine the average flow field. Of course, the effects of the fluctuations

do not disappear and are felt through the nonlinearities of the problem. This led

to the well-known closure problem which remains unresolved to this day: What are

the effects of the fluctuations on the average field? In fact, the closure problem is

deeper than this. In actuality, one is concerned with the effects of the turbulent

fluctuations on the large scale field.

A key observation of turbulence was that it increases the dissipation of a

flow field. This led to the idea that turbulence might be characterized in part by a

turbulent viscosity (see Schmitt 2007, for some history on this). That is, in the same

way that momentum transfer between molecules gives rise to molecular viscosity,

momentum transfer between turbulent eddies (the building blocks of a turbulent flow

field) gives rise to a turbulent, or eddy, viscosity. This analogy was the first attempt

at resolving the turbulence closure problem. However, it was still unknown just what

the turbulent viscosity was. Prandtl (Prandtl 1925b; Tietjens 1934) introduced the

idea of a turbulent mixing length which essentially characterized the length scale at

which the turbulent eddies interact. Although useful, these analogies only went so

far in explaining the turbulence phenomena.

The Richardson energy cascade represented another useful concept in turbu-

lence (Richardson 2007). The idea is that the energy contained in the largest scales

cascades to smaller and smaller scales until the scales containing the energy are at

the dissipation length scale at which point the eddies are destroyed by viscosity. In

this picture, energy is injected at the largest scales and reaches an equilibrium at
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scales that are in between the large scales and the dissipation scales. Thus, energy

does not accumulate in these scales; the eddies pass on exactly as much energy as is

passed to them. This concept paved the way for Kolmogorov’s 1941 theory of turbu-

lence (K41) (Kolmogorov 1941a, 1941b, 1941c). . The basic idea of the Richardson

cascade is depicted in Figure 1.3.

Figure 1.3: The Richardson energy cascade concept.

The K41 theory has served as a cornerstone of turbulence theory since its

inception. There have been several modifications to this theory to account for

phenomena such as local backscatter, intermittency, and inhomogeneous flows (see

Waleffe 1997; Pope 2000; Biskamp 2003). However, in a real sense, the K41 theory

represents the beginning of our understanding of turbulence. A more mathematical

and deep treatment of this theory will be presented in Chapter 5. At this point,

there are a few simple concepts that need to be introduced before explaining the

basic idea. First of all, the kinetic energy in wavenumber space is called the energy

spectrum and is denoted E (k) where k is the wavenumber and has units of inverse

length. The second concept concerns the wavenumber; by working in wavenumber

space the scales of the problem are discretized. That is, the total energy of all

structures that have a size of 1/k is contained in E (k). The total energy of the
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system is therefore obtained by summing up the energies in each wavenumber bin.

A third concept is that of an inertial range. The inertial range is thought of as

containing the scales that are in an energy equilibrium. That is, they are far enough

away from the energy injection scales and from the energy dissipation scales that no

net energy is added or taken away from them. They simply pass all of the energy

that they receive on to the next scales of the flow.

The crux of the K41 theory is that in the inertial range the energy spectrum

has a very particular form regardless of the type of flow field that is being considered.

This is due to one of the hypotheses (to be introduced in Chapter 5) in the K41

phenomenology that postulates that the small scales of the flow field are universal

in nature. Regardless of the situation in which turbulence arises, the small scales

exhibit the same character. It is as if they forget where they come from and do not

know where they are going. With this key assumption, the energy spectrum follows

a power law behavior,

E (k) ∼ k−5/3. (1.4)

This is illustrated in Figure 1.4 where E (k) is plotted on a log− log scale.

K41 Phenomenology

E (k) ∼ k−5/3
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Figure 1.4: The Kolmogorov picture of turbulence.

Much of the history on the development of turbulence theory is encapsulated

in famous books on the subject (Tennekes and Lumley 1972; Batchelor 1982; Frisch
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1996; Pope 2000).

1.2.2 MHD Turbulence

The story of MHD turbulence is far shorter than that of pure HD turbulence.

The topic of MHD turbulence is covered in detail in (Biskamp 2003). It can be said

to have begun with (Iroshnikov 1963) and (R. H. Kraichnan 1965) wherein power

law spectra for the total energy spectrum were determined to be E (k) ∼ k−3/2

in the presence of a strong background magnetic field. At the present time, there

is still considerable debate as to the appropriate form of the energy spectrum for

MHD turbulence (see Boldyrev 2006; Mininni 2010; Lee et al. 2010; Perez et al.

2012). Indeed, this concept is closely tied to the concept of the universality of

turbulence in MHD (see Aluie and Eyink 2010; Pouquet 2012). Recall that the K41

phenomenology for HD turbulence rests on an assumption that the small scales of

the flow field are universal regardless of the flow field. Because of the effects of the

magnetic field (for example, it introduces an anisotropy into the flow field that is

not present in HD flows) it is not clear whether or not a universal character exists in

the inertial range for an MHD flow field. In the weak turbulence limit it was shown

in (Galtier et al. 2000) that the total energy spectrum is E (k) ∼ k−2
⊥ where k⊥ is

the wavenumber perpendicular to the background magnetic field. Observations of

turbulence in the solar wind indicate a K41 energy spectrum for the total energy as

described in (Podesta, Roberts, and Goldstein 2007).

The debate on the universality of MHD turbulence is far from the only in-

teresting aspect of MHD turbulence. A plethora of interesting phenomena exist

ranging from fundamental physical studies to pure applications and everything in

between. A strong magnetic field can have the effect of making the turbulence nearly

two-dimensional. The effect of the inverse energy cascade is much more prominent

in MHD turbulence than in HD turbulence. A topic of study in this area that has

garnered much interest is the inverse cascade of magnetic helicity. The generation

of the Earth’s magnetic field is a fascinating topic in geophysics (Glatzmaier 2002).

Geodynamo theory rests on the assumption (tentatively supported by experimental

and numerical evidence (Kono and Roberts 2002)) that the liquid metal core of the
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Earth is in a turbulent state. The turbulent velocity fluctuations pass energy to

the large scale magnetic field thereby amplifying it and making life as we know it

possible!

Before proceeding, we introduce some important dimensionless parameters in

MHD. In addition to the fluid Reynolds number Re, these are the magnetic Reynolds

number Rm, the interaction parameter S, magnetic Prandtl number Prm, and the

Hartmann number Ha. The magnetic Reynolds number plays the same role as the

HD Reynolds number. It measures the ratio of the advection of the magnetic field

to the diffusion of the magnetic field. In introducing these parameters we consider

a fluid with viscosity ν, density ρ, electrical conductivity σ, electrical resistivity

η = 1/σ, and magnetic permeability µ0. Furthermore, the magnetic diffusivity

is defined as λ = η/µ0. The flow field has characteristic length L, characteristic

velocity U , and characteristic magnetic field B0. Then,

Rm = µ0σUL. (1.5)

When Rm � 1 then the magnetic field is said to be “frozen” to the velocity field.

The magnetic field lines are simply swept along by the velocity field. This situation

is very common in astrophysical problems that have, quite literally, astronomical

length scales. The interaction parameter measures the ratio of EM forces to inertial

forces,

S =
EM forces

Inertial forces
=
σB2

0L

ρU
. (1.6)

This parameter plays a role in the momentum equation and indicates the role of the

Lorentz force. The magnetic Prandtl number is defined as the ratio of fluid viscosity

to magnetic diffusivity,

Prm =
ν

λ
=

Rm

Re
. (1.7)

Flows that have very large or very small Prm are difficult to dissect because the

velocity and magnetic fields act on very different scales. Finally, the Hartmann
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number measures the ratio of EM forces to viscous forces,

Ha =
EM forces

Viscous forces
= B0L

√
σ

ρν
. (1.8)

This parameter plays an important role in boundary layer MHD flows. Near the

wall, viscous forces are strong. However, in MHD, the Lorentz force may also be

quite strong in this region. A boundary layer that forms due to the Lorentz force is

known as the Hartmann layer. We note that Ha can be written in terms of S and

Re, Ha =
√

SRe

1.3 Review of Numerical Methods

This section provides an overview and motivation of numerical methods in

fluid mechanics. It begins with a brief description of different numerical techniques.

These include finite difference methods (Section 1.3.1), the finite element method

(Section 1.3.2), and spectral methods (Section 1.3.3). As with almost all numerical

methods, the goal is to reduce an ordinary differential equation (ODE) to a sys-

tem of algebraic equations or a partial differential equation (PDE) to a system of

ODEs. Following this introduction to numerical methods, a discussion on the state

of numerical methods in fluid mechanics is provided in Section 1.3.4 with particular

emphasis on the turbulence problem and a discussion of multiscale problems in gen-

eral. This section also discusses the LES technique and introduces the variational

multiscale (VMS) formulation.

1.3.1 The Finite Difference Method

The finite difference method (FDM) was the first numerical method. In fact,

the concept of approximating differential equations with difference equations pre-

dates the advent of the modern digital computer. Indeed, Leonard Euler introduced

finite difference techniques for approximating first order, linear ordinary differential

equations. The basic idea behind finite difference techniques can be illustrated with

a simple, one-dimensional example. Consider the following differential equation,
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which is to be solved for y (x),

dy

dx
+ y = 0. (1.9)

On a computer, it is not feasible to solve for y at every value of x in the continuum.

Thus, the concept of a numerical grid is introduced wherein one must solve for y at

discrete values of x denoted by xi where i is the ith grid point. In one dimension, a

simple numerical grid may look like the one depicted in Figure 1.5.

i− 1 i i+ 1

Figure 1.5: A simple numerical grid.

The finite difference method approximates the derivative with a difference. A

simple example is

yi+1 − yi
xi+1 − xi

+ yi = 0 (1.10)

from which the solution at node i+ 1 is

yi+1 = (1− (xi+1 − xi)) yi. (1.11)

This approach has been studied extremely extensively through the years (Thomas

1995). It can of course be applied to complicated, nonlinear PDEs like the Navier-

Stokes equations. Error estimates have been obtained, convergence studies have

been performed, and a plethora of various finite difference techniques have been

proposed. Higher order techniques often provide better convergence and error prop-

erties but at the expense of more computational cost. In the example above, only

the solution at the previous grid point must be stored. Higher order methods would

expand this to include a wider stencil that could require the storage of other grid

points such as the one at i− 2. It is also possible to define implicit finite difference

schemes that require a matrix solve for subsequent grid points. Although implicit

methods are considerably more expensive, they also have the potential to be un-
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conditionally stable. We will not consider the finite difference method in any more

depth.

1.3.2 The Finite Element Method

The finite element method (FEM) is a powerful numerical technique that found

its first successes in the aerospace industry (Oden 1990; Meek 1996). Underlying

this method is a beautiful mathematical theory. See (Hughes 2000) for an excellent

introduction to the finite element method. Presently, we outline the classical finite

element method in a quasi-qualitative way. There are two essential ideas underlying

the numerical method: 1.) The concept of a finite element and 2.) Expansion of

the numerical solution in a particular basis over the finite element. Together these

ideas result in the finite element philosophy: Approximate the solution over each

finite element, assemble the element solutions into the global solution, and the result

is an approximation of the desired solution. Figure 1.6 illustrates the anatomy of a

typical one-dimensional finite element mesh where ei denotes the ith element and A

is a global node number.

e1 e2 e3 e4
A A+ 1A− 1

Figure 1.6: A representative, one-dimensional finite element mesh.

The solution is given as a linear combination of shape functions NA which act

as a set of basis functions for the numerical solution. Thus

y (x) ≈
∑

A=1

yANA (1.12)

where yA represents the solution at node A. A defining characteristic of the finite

element method is the definition of the finite element basis functions as piecewise

polynomials. Figure 1.7 presents the finite element mesh inclusive of piecewise linear

basis functions. Critically, the basis functions are endowed with local support. This

has important implications for computational cost. The basis functions could also be

piecewise quadratic, cubic, etc. The numerical technique provides better solutions
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as the order of the basis functions are increased. However, this comes with the price

of increased computational cost.

e1 e2 e3 e4
A A+ 1A− 1

Figure 1.7: A finite element mesh with linear shape functions.

The FEM also differs from the FDM in that it uses as its starting point a

variational statement and is part of the theory of the method of weighted residuals

(MWR). To illustrate this, we consider the simple toy ODE (1.9). The MWR

considers an integral equation over the problem domain [x1, x2],

∫ x2

x1

w

(
dy

dx
+ y

)
dx = 0. (1.13)

Thus, it enforces (1.9) in a weighted sense. The particular choice of weighting,

w, results in different weighted-residual techniques. Intriguingly, the integral for-

mulation resulting from the MWR is also a variational statement, although the

absence of such a statement in physics does not preclude numerical methods built

from the MWR. Thus, although no variational principle is known to exist for the

incompressible MHD equations, it is still possible to build numerical methods out

of the MWR. As a final note, we mention that working with an integral formulation

of the problem also often permits a reduction of order of higher-order derivatives

through integration by parts. This is extremely convenient because it relaxes conti-

nuity requirements on the finite element basis functions. Because of this property,

the variational statement is frequently referred to as the weak form of the problem,

weak referring to differentiability requirements on the basis functions and not to the

ability of the statement itself. In subsequent sections, the finite element formulation

of the incompressible MHD problem will be described in detail.

1.3.3 Spectral Methods

Spectral methods include some of the most celebrated techniques for analyz-

ing ODEs and PDEs. One of the great strengths of these methods is that their
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physical interpretation is intuitive. A spectral method decomposes a function into

its constituent elements called its modes. From an analytical perspective, a suit-

ably behaved function can be transformed into wavenumber space via the Fourier

transform,

f̂ (k) =
1√
2π

∫ ∞

−∞
f (x) e−ikx dx (1.14)

A significant limitation of the Fourier-transform approach is that it works best for

periodic functions. Therefore, if one wishes to solve a problem on a domain with a

boundary for a non-periodic function, the Fourier-transform approach is not natural.

The numerical counterpart to the Fourier-transform is the Fourier-series. A

Fourier-spectral numerical method expands the solution in terms for trigonometric

basis functions as

f (x) ≈
k∑

−k

f̂ (k) eikx. (1.15)

Difficulties arise when analyzing nonlinear problems, as the Fourier transform does

not offer any benefit in analyzing the nonlinear terms. Unfortunately, this results

in additional computational cost for numerical methods. However, the fast Fourier

transform (FFT) makes Fourier-spectral methods feasible and often the method of

choice for their speed and ease of implementation. Despite these advantages over

other numerical techniques, these methods suffer from a couple of disadvantages as

well. In addition to the previously mentioned difficulties with non-periodic, bounded

domains, spectral methods are also global and therefore require considerable inter-

processor communication when implemented in a massively parallel framework.

As a final observation on these techniques, we wish to note that the Fourier-

spectral method also falls under the purview of the MWR. Indeed, in subsequent

sections, when deriving the incompressible MHD equations in wavenumber space,

we begin from the same variational statement as used in the finite element method

and simply change the basis functions from piecewise polynomials to trigonometric

functions.
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1.3.4 Numerics, Turbulence, and Multiscale Problems

Each numerical method described above has its own advantages and disad-

vantages. All numerical methods suffer the same fundamental difficulty when it

comes to capturing the nature of the turbulence phenomenon: for the vast majority

of problems, it is simply not possible to represent all of the scales involved in tur-

bulence. A direct numerical simulation (DNS) is one in which the computational

resolution is such that all the relevant scales of a problem are fully represented. Such

a simulation would, in principle, be in good agreement with theory and experiment,

limited only by the validity of the mathematical model being employed. Sadly, DNS

is out a reach and will remain so for the foreseeable future.

To illustrate this, it is instructive to consider the relationship between the cost

of performing a numerical simulation and the physics being considered. The cost

of a DNS simulation is thought of in terms of how much resolution is required to

resolve all of the scales. For example, a simulation that requires 100 timesteps and

106 spatial grid points is more expensive than a simulation that requires 50 timesteps

and 100 grid points. Depending on the computational infrastructure available (i.e.

computing power, memory, etc) this simulation cost has an actual financial cost.

In the simplest case of HD turbulence it turns out that the computational cost is

related to the Reynolds number as

Cost ∼ 160Re3. (1.16)

The argument leading to this estimate is found in (Pope 2000, chap. 9). Most

applications involving turbulence have very large values of Re. For example, around

the fuselage of a Boeing 777 Re ∼ 108! Such a simulation would require 5 years of

dedicated, uninterrupted simulation time on a machine that has exaflop capabilities!

Such a simulation is quite unimaginable. The situation is even more dire for MHD

applications where the Reynolds numbers be even greater and an additional vector

field comes into play.

It is not possible to refine the mesh enough so that all of the significant scales

are captured by the numerical method when dealing with phenomena such as fluid

turbulence. Such difficulties are characteristic of so-called multiscale problems. The
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essential quality of a multiscale problem is that a range of scales interact with each

other and that interactions among different scales are not negligible. Such problems

are ubiquitous in nature. In fact, in order to develop more sophisticated models

of the natural world, multiscale problems must be devised. Ultimately, we live in

a multiscale world. Examples of this are everywhere, from chemical and biological

processes, to economic laws, and of course within physics. As far as turbulence goes,

the concept of an eddy is once again useful in illustrating the multiscale concept.

The function of the smaller eddies is to accept energy from the larger eddies and

to pass that energy on to ever smaller eddies. If a numerical simulation is able

to represent eddies no smaller than a certain size, then the energy cascade cannot

proceed to completion. Once the energy reaches eddies of a certain size, the energy

can only accumulate because there is no physical mechanism by which the energy

can be dissipated (aside from numerical dissipation which is not considered here).

Such observations led to the development of LES models in the turbulence

community (Galperin 1993). LES models are the subject of this thesis and so will

not be discussed in detail presently. The LES philosophy rests on the central tenet

that the smallest scales of a flow field are universal and act in such a way that

they dissipate energy. Thus, one needs only to capture the anisotropic dynamics

of the large scales of the flow field which contain the most energy anyway. With

this philosophy, it is therefore no longer necessary to numerically capture every

detail of the flow field. A model that adds in extra dissipation is introduced into

the numerical method. Ideally, this model provides the missing dissipation from

the small scales that the numerical method is unable to capture. Considerable

computational expense can be saved by performing an under-resolved simulation

equipped with a model that seeks to capture the effect of the missing scales.

An important computational paradigm was introduced in (Hughes 1995; Hughes

et al. 1998) and called the VMS formulation. This approach assumes scale separa-

tion and decomposes the solution field into resolved and unresolved scales,

f = fh + f ′. (1.17)

Considerable detail will be provided on this technique in Chapter 2, Section 2.7.2
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and Chapter 4. Indeed, it is the starting point for the development of the new

turbulence models for MHD presented in this work. To illustrate the effect of this

decomposition, consider the following quadratic nonlinearity,

N = fg. (1.18)

The VMS decomposition results in

N = fhgh + fhg′ + f ′gh + f ′g′. (1.19)

Thus we see that the nonlinear term has three primary contributions,

1. Purely resolved scales, fhgh

2. Cross correlations between resolved and unresolved scales, fhg′ and f ′gh

3. Correlations between purely unresolved scales, f ′g′

Therefore, the VMS decomposition induces a model through subgrid correlations

without invoking any ad hoc eddy viscosity principles.

Another important aspect of the VMS method is the development of suitable

approximations for the subgrid solutions. Most of the turbulence modeling effort

is confined to these approximations. Indeed, more sophisticated subgrid approxi-

mations lead to better VMS performance. A challenge in turbulence modeling is

adequately representing the purely subgrid correlations as these are higher order

subgrid correlations.

1.4 Primary Contributions

The content of the previous sections serve as motivation for the development

of turbulence models in MHD. The current state of MHD turbulence modeling is

reviewed in Section 1.4.1. Section 1.4.2 describes the primary contributions of this

thesis.
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1.4.1 Current State of MHD Turbulence Modeling

Turbulence modeling in MHD is still in its infancy. The extreme variation in

physics and engineering applications makes the development of robust turbulence

models particularly difficult. There is still no general consensus in the MHD turbu-

lence community on the proper approach to take in developing turbulence models.

One approach is to attempt to develop robust turbulence models that can be used

in most, if not all, physics and engineering applications. In reality, of course, it is

known that this goal will be exceptionally difficult to achieve. Indeed, even within

the hydrodynamic turbulence modeling community, many variations of turbulence

models exist for different applications. However, a unified approach could be very

valuable even with tweaks to existing models for very specific applications being

required. At the other end of the spectrum is the viewpoint that each application

needs its own turbulence model. In MHD, this viewpoint is natural because of the

wide range of physics that MHD encompasses. Solar physics differs from the physics

of the solar wind which is in turn different than geodynamo physics which is vastly

different from fusion physics. Could it really be the case the MHD phenomena are

so vast that different models for each application must be developed?

Eddy viscosity (EV) models have been proposed for MHD by generalizing

those for the hydrodynamic case (Theobald, Fox, and Sofia 1994). These models

are a good starting point, but do not account for significant portions of the subgrid

physics. For example, they do not allow for the possibility of backscatter or a subgrid

dynamo effect wherein turbulent velocity fluctuations transfer energy to the resolved

magnetic induction. Furthermore, it has been shown that the dynamic Smagorin-

sky EV (DSEV) model excessively damps out the effects of the dynamo effect in

MHD (Haugen and Brandenburg 2006). Closures for the mean-field equations of

MHD have been systematically worked out (Yoshizawa 1990) but these models are

difficult to implement numerically. Newer models account for the coupled nature of

the equations, permit the possibility of backscatter (Müller and Carati 2002), and

are relatively straightforward to implement. These models depend on parameters

that generally depend upon the flow field. Such parameters are determined on the

fly during the computation with a dynamic procedure (Germano et al. 1991). The
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dynamic procedure for determining the model coefficients can be cumbersome to im-

plement, especially for flows with complicated geometries. In recent years, new eddy

viscosity models have been proposed (Vreman 2004; John and Kindl 2008) that aim

to eliminate the need for a dynamic procedure in the context of hydrodynamic turbu-

lence. In MHD, work has been done for flows in which Rm is small compared to Re.

One approach performs a DNS of the induction equation while using a subgrid LES

model to represent the velocity field components that are smaller than the magnetic

diffusion length (Ponty, Politano, and Pinton 2004). In yet another approach, the

quasi-static approximation is used wherein the nonlinear terms in the magnetic in-

duction equation are neglected (Knaepen and Moin 2004). Two point closure models

in spectral space such as the eddy damped quasi normal Markovian approximation

(EDQNM) (Orszag 1977; Biskamp 2003) have been generalized (Baerenzung et al.

2008b) and applied to MHD (Baerenzung et al. 2008a). Another popular closure

model, the Lagrangian-averaged α model, introduces closure not through the diffu-

sion terms but via the nonlinear terms (D Holm 1999; Montgomery and Pouquet

2002; Holm et al. 2005). This technique has also been applied to the MHD equa-

tions (D.D Holm 2002). Previous studies have been performed which apply stabilized

finite elements to incompressible magnetohydrodynamics (Codina 2002; J. Shadid

et al. 2010). Although useful in overcoming spurious oscillations in the solution and

circumventing the Ladyženskaja-Babuška-Brezzi (LBB) condition (Hughes, Franca,

and Hulbert 1989), stabilized finite elements only represent incomplete turbulence

models.

Other numerical approaches for MHD involve using a hyperdiffusion operator

(∇2α) in place of the usual Laplacian operator on the diffusion terms (Müller and

Biskamp 2000; Biskamp 2003, see) and (Pope 2000, pg. 352). The hyperdiffusion ap-

proach is motivated mainly by numerical considerations; the goal is simply to smooth

out the fields so that numerical computations become more feasible. Alternative ap-

proaches involve implicit LES models (ILES) in which no explicit turbulence model

is included and numerical dissipation is used as a turbulence model that is inherent

in the numerical method. For MHD see (Smolarkiewicz and Charbonneau 2013).

The length scales involved in many MHD turbulence problems are staggering.
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MHD effects in the sun can range in scales from several thousand kilometers down

to the molecular scale (Nelson et al. 2011, 2013). Furthermore, MHD effects often

involve important anisotropic effects at the smallest scales. Inverse cascades of en-

ergy due to the interplay between the velocity and magnetic fields play an important

role in many realms of MHD physics, see, for example (Zweibel and Yamada 2009).

Classical Smagorinsky models are typically exclusively dissipative, which precludes

such critical effects. Moreover, the velocity and magnetic scales can be vastly dif-

ferent (Ponty et al. 2005). Because of this, the inertial range of the velocity and

magnetic fields may be at entirely different scales. How might a model be developed

that saves computational time when the numerical simulation is only able to reach

the inertial range of one of the fields?

Most of the numerical studies in MHD turbulence that we mentioned above

were developed for astrophysical applications. We take some time now to review

recent studies that have involved wall-bounded MHD flows. Specifically, we provide

an overview of turbulent channel and duct flows. These types of flows are discussed

in the texts by (Branover 1978; Moreau 1990; Müller and Bühler 2001). Such flow

fields typically involve very small values for Prm. These flow fields are challenging

to understand from both a numerical and experimental point of view. The config-

uration of a typical channel flow problem is such that a fluid is flowing within an

imposed background magnetic field. This motion through the field generates the

Lorentz force which affects the topology and dynamics of the velocity field. The

situation for numerical methods is particularly dire. No DNS of these flow fields

exists. A very small time step would be required in order to perform a meaningful

simulation of such flows. Instead of a DNS of the full MHD equations, researchers

implement the quasi-static MHD approximation (Branover 1978). This approach is

valid for very small values of Rm and assumes that the magnetic field induced by

the flow field is negligible compared to the applied background magnetic field. It is

essentially a zero-th order approximation to the magnetic induction equation. The

resulting system of equations to be solved is the momentum equation and a Poisson

equation for the electric potential. The electric potential plays an important role in

the Lorentz force of the momentum equation and only the applied magnetic field,
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not the induced magnetic field, contributes to the Lorentz force.

The literature on DNS of the turbulent MHD channel or duct flow using the

quasi-static approximation is rather extensive. In (Krasnov et al. 2004) the authors

study the instability of the Hartmann layer in a channel flow. Later, in (Boeck, Kras-

nov, and Zienicke 2007), a study of turbulent MHD channel flow was performed for

several values of Re and Ha. A follow up to this paper (Krasnov, Zikanov, and Boeck

2012) performed a systematic study of turbulent MHD duct flow. Another channel

flow study in (S. Satake et al. 2006) used DNS of the quasi-static MHD equations

to understand large scale turbulence structures at high Re. In (Chaudhary, Vanka,

and Thomas 2010) another turbulent MHD duct flow was studied under the quasi-

static assumption. All of these papers present useful benchmark results of turbulent

statistics. They also demonstrate the various effects of the applied magnetic field

on the velocity field. Each of the previously mentioned studies considers channels

and ducts with perfectly electrically insulating walls. A slightly different simulation

was performed in (S.i Satake et al. 2006) where the channel walls were electrically

conducting. It was found that, compared to the perfectly insulating wall, a perfectly

conducting wall leads to drag reduction near the wall.

LES of turbulent MHD channel and duct flow are not as common as the DNS.

An early study was performed by (Shimomura 1991) where results were compared

with experimental data. The new model proposed in that paper involved adding a

magnetic damping factor to the classical turbulent eddy viscosity in the momentum

equation. For a fluid that does not conduct electricity, the proposed model reduces

to the standard HD eddy viscosity model. It was found that the new model performs

better than the traditional DSEV model. A more recent study by (Kobayashi 2006)

tested variants of the dynamic Smagorinsky model. Both of these studies used the

quasi-static approximation.

We mention one study that has been performed for an MHD channel flow

with Prm = 1 for which the quasi-static approximation does not apply, (Hamba and

Tsuchiya 2010). In this study the dynamic Smagorinsky model for MHD was used

to study the cross-helicity dynamo effect in which the magnetic field is amplified

through an inverse cascade of energy that takes place due to the cross helicity
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mechanism. The authors were not able to perform a full DNS but did perform

a substantial LES computation. They also note that the collection of turbulence

statistics for the MHD flow takes considerably longer than for the pure HD case.

1.4.2 Contributions of this Thesis

The contribution of this work is to develop and introduce a promising compu-

tational paradigm into MHD turbulence modeling. Three new models are developed

for the incompressible, resistive MHD equations (Sondak and Oberai 2012):

1. The pure variational multiscale formulation in which velocity, magnetic, and

pressure fields are split into two scales: the resolved scales and the unresolved

scales. The unresolved scales are assumed to be proportional to the residual of

the unresolved scales. Such residual based models are desirable as they endow

the numerical method with an inherent consistency. As the numerical grid

is refined, the numerical solution approaches the exact solution. When this

happens, the residual of the grid scales becomes smaller thereby forcing the

contribution from the unresolved scales to be smaller. This makes physical

and numerical sense since, when the numerical solution improves, it is able to

capture more of the physics of the problem, thereby leaving fewer unresolved

scales to be resolved. In this sense then, the turbulence model automatically

vanishes when it is no longer needed.

2. A VMS inspired eddy viscosity model. This EV model, like most EV models,

is proportional to a length scale times a velocity scale. The essential difference

is that the velocity scale is the subgrid solution. The subgrid solution is ap-

proximated with the VMS representation for the subgrid scales. This new EV

model is therefore termed the residual-based eddy viscosity (RBEV) model.

Because of its dependence on the residual, it too is inherently dynamic. We

postulate that the constant of proportionality in this model really is a true

universal constant which circumvents the need for a dynamic procedure. The

MHD version of this model has the momentum and induction EVs equivalent

and proportional to the ratio of kinetic energy to total MHD energy. Such a

formulation is described in detail in Chapter 4.



24

3. A mixed model (MM) combining the VMS formulation and the VMS inspired

eddy viscosity model. This mixed model takes advantage of the strengths of

the VMS and RBEV models. The resulting mixed model is a fully residual-

based turbulence model that does not require any dynamic procedure in im-

plementation.

These models bridge the gap between a purely computational turbulence modeling

approach and a physics-based turbulence modeling approach. They are endowed

with special properties that allow them to account for important MHD physics such

as the inverse energy cascade while, at the same time, being easy to implement

and possessing desirable computational properties such as their inherent dynamic

nature. Although promising, these models do not attempt to address all of the

current issues found in MHD turbulence modeling. Their flexibility does provide

many opportunities to include essential MHD physics that has not been included in

this first version of the models. In particular, taking into account the coupling of the

momentum and induction equations in the models themselves may prove fruitful.

We have obtained preliminary, promising results on this as discussed in Chapter 3.

Furthermore, incorporating a dependence on Prm into the models may help address

the severe scale discrepancies between the velocity and magnetic field in certain

MHD problems.

The layout of the remainder of the dissertation will now be outlined. The stage

for this work is set in Chapter 2 wherein notational conventions are introduced, the

basic equations are derived and accompanying boundary conditions are introduced,

and mathematical preliminaries are discussed. Furthermore, this chapter introduces

in detail the numerical methods that are used to develop and test the new LES mod-

els. Chapter 3 is devoted to the stabilization parameter which is the central object

in the theory of stabilized FEMs. It also plays a significant role in the development

of the turbulence models presented in this work. Its origins and history are discussed

and new contributions to its form for MHD are developed. Chapter 4 presents the

bulk of the mathematical contribution of this thesis. Traditional turbulence models

are introduced to put the new models into context. Following this, the new models

are developed in detail and specialized to the finite element and Fourier spectral
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methods. The performance of these new models is assessed in Chapter 5 through

test problems on homogeneous, isotropic turbulence and turbulent MHD channel

flow. Finally, Chapter 6 draws conclusions and speculates on extensions and future

prospects for this work.



CHAPTER 2

Setting the Stage

In the following sections we put into mathematical language the discussion from

Chapter 1. In Section 2.1 notational conventions are introduced. This is followed

in Section 2.2 with a derivation of the incompressible magnetohydrodynamics equa-

tions. Appropriate boundary conditions are discussed in Section 2.4. Section 2.3

introduces the strong and weak formulations. The chapter concludes with Sec-

tions 2.6 and 2.7 which give an overview of the numerical techniques employed in

this project and an introduction to the turbulence modeling approach that is taken,

respectively.

2.1 Notational Considerations

2.1.1 Mathematical Conventions

Throughout this thesis scalars are denoted by a lowercase Roman letter such as

f . Vectors are distinguished with a boldface, Roman letter such as v or V. Tensors

and matrices are denoted with boldface capital serif letters such as T.

We briefly introduce notation for common operators from vector calculus that

are used in this work. We suppose that we have a scalar f ∈ C, vectors v, w ∈ Cn

and tensors S, T ∈ Cn×m. We frequently employ index notation for which an

overview is provided in Appendix C. Table 2.1 summarizes these operators in both

tensor and index notation as they appear in this dissertation. Appendix C provides

an overview of index notation. From time to time we will have cause to refer to the

fact that a matrix can be decomposed into its symmetric and antisymmetric parts.

In tensor notation this is

T = S + A (2.1)

26
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where

S =
1

2

(
T + TT

)
(2.2)

A =
1

2

(
T− TT

)
(2.3)

and TT denotes the transpose of a matrix. In index notation we write

Tij = T(ij) + T[ij] (2.4)

where

T(ij) =
1

2
(Tij + Tji) (2.5)

T[ij] =
1

2
(Tij − Tji) . (2.6)

We also introduce two modifications to the gradient operator called the symmetric

and antisymmetric gradient operators. In tensor notation these are

∇sv =
1

2

(
∇v + (∇v)T

)
−→ Symmetric gradient (2.7)

∇av =
1

2

(
∇v − (∇v)T

)
−→ Antisymmetric gradient. (2.8)

In index notation we have

v(i,j) =
1

2
(vi,j + vj,i) −→ Symmetric gradient (2.9)

v[i,j] =
1

2
(vi,j − vj,i) −→ Antisymmetric gradient. (2.10)

The magnitude of a vector v with components v1, v2, v3 is given by

|v| =
√
v2

1 + v2
2 + v2

3 . (2.11)
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Table 2.1: A summary of the operators from vector calculus and their
notation.

Operator Tensor Notation Index Notation

Divergence
∇ · v vj,j
∇ · T Tij,j

Gradient
∇f f,j
∇v vi,j

Curl ∇× v εijkvj,k

Dot Product v ·w vjwj

Tensor Inner Product S : T SijTij

Outer Product (Diadic) v ⊗w viwj

2.1.2 Physical Notational Conventions

The problem domain under consideration is given by Ω ⊂ Rnsd where nsd

denotes the number of spatial dimensions. In the present work we usually take

nsd = 3 although nsd = 2 for some of the test problems in Chapter 3. The boundary

of this domain is given by Γ. This concept is illustrated in Figure 2.1. The spatial

Ω

Γ

1

Figure 2.1: Illustration of a problem domain.
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domain with its boundaries is denoted by

Ω = Ω ∪ Γ. (2.12)

and the boundary of the domain is split into sections corresponding to essential and

natural boundary conditions. Quantities involving essential boundary conditions are

denoted by a subscript g while quantities related to natural boundary conditions

are denoted by a subscript h. Thus,

Γ = Γg ∪ Γh (2.13)

where the essential and natural boundaries do not overlap, i.e.,

Γg ∩ Γh = ∅. (2.14)

For an account that is both intuitive and comprehensive see (Hughes 2000). The

space-time domain is denoted by Q and is given as

Q = Ω× ] 0, T [ (2.15)

where T is the final time in the temporal domain. Furthermore, the space-time

boundary is

P = Γ× ] 0, T [ . (2.16)

The space-time domain with its space-time boundaries is denoted by

Q = Q ∪ P. (2.17)

Moreover,

P = Pg ∪ Ph (2.18)
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where

Pg = Γg × ] 0, T [ (2.19)

and

Ph = Γh × ] 0, T [ . (2.20)

The goal is to determine the configuration of the flow field on Q.

The coordinates under consideration are denoted x where x ∈ Ω and

x =




x

y

z


 =




x1

x2

x3


 . (2.21)

A typical domain for each of the coordinate directions is

x ∈ [x0, xf ] = Ωx (2.22)

x ∈ [y0, yf ] = Ωy (2.23)

x ∈ [z0, zf ] = Ωz (2.24)

where a subscript 0 denotes the initial coordinate and a subscript f denotes the final

coordinate.

2.1.3 Notation for Integral Forms

Our new models will be developed with the variational statement and will be

written using the abstract mathematical notation of “forms.” In particular, we will

be working with integral forms. An example of an integral form is, given functions

f and g,

A (f, g) =

∫

Ω

fg dΩ (2.25)
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where

∫

Ω

fg dΩ =

∫

Ωz

∫

Ωy

∫

Ωx

f (x, y, z) g (x, y, z) dx dy dz. (2.26)

We will often use the notation (·, ·) to denote a single integral form and the notation

A (·, ·) to represent some combination of integral forms. For example,

A (u, v) =

∫

Ω

fg dΩ +

∫

Ω

f 2∇2g dΩ

= (f, g) +
(
f 2,∇2g

)
. (2.27)

If it is not clear from the context of the problem, we will denote the domain of the

problem as a subscript after the parentheses. That is,

(f, g)Ω =

∫

Ω

fg dΩ. (2.28)

Some properties of forms such as linearity, bilinearity, and symmetry are discussed

in Appendix D. For a nice introduction to integral forms see (Hughes 2000).

2.2 Equations for Incompressible Magnetohydrodynamics

2.2.1 Comments on MHD Units

It is instructive to discuss MHD units before introducing the full MHD equa-

tions and the new turbulence models. In the engineering and fluid mechanics com-

munity, it is generally understood that the International System of Units (SI units)

is used. Therefore, length scales are in meters (m), time is in seconds (s), and mass

is in kilograms (kg). The force is a derived unit and is measured in Newtons (N).

However, within the electromagnetics community, there is a large range of conven-

tions for units. Certain fields prefer different conventions because the equations take

on convenient forms when using different units. For a great summary of units in

electromagnetism see (Jackson 1999, Appendix on Units and Dimensions). In the

present work, we will work almost exclusively in SI units. All derivations, unless

specifically stated otherwise, are performed in SI units. Therefore, the primary EM
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quantities have the following dimensions,

Current: −→Units: Ampère −→ Charge

[s]
−→ [A] (2.29)

Current density: −→Units: −→ [A]

[m]2
(2.30)

Magnetic induction: −→Units: Tesla −→ [N ]

[A] · [m]
(2.31)

Magnetic permeability: −→Units: −→ [N ]

[A]2
. (2.32)

One important exception in this work arises when the magnetic field is scaled to be

in Alfvén velocity units. Thus B is replaced by
√
µ0ρBA. It is readily seen that BA

has the units of velocity. In this work, when the magnetic field is rescaled in this

way, the subscript A will be left off but it will be made clear that the magnetic field

actually has Alfvén velocity units.

2.2.2 A Derivation of the Incompressible MHD Equations

This section will present a formal derivation of the equations of incompress-

ible MHD. Supplementary details on the present derivation can be found in (David-

son 2001; Biskamp 2003; Goedbloed and Poedts 2006). We adopt the continuum

viewpoint here so that our starting point is the fluid equations augmented with

an electromagnetic body force. A more rigorous derivation would begin from the

Boltzmann kinetic equation which describes the evolution of distribution functions

of particle species such as ions and electrons. By taking moments of the Boltzmann

equation, and making appropriate simplifying assumptions, the incompressible MHD

equations can be recovered. Details on this approach are given in (Goedbloed and

Poedts 2006). The classic paper on this approach for MHD is (Braginskii 1965).

Magnetohydrodynamics is concerned with the behavior of an electrically con-

ducting fluid in the presence of an EM field. The essential idea is understood by

considering a fluid element immersed in a background EM field and which has the

potential to carry an electric current. The electric forces on the charges in the fluid
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element are given by

Fqi = qi (E + vqi ×B) . (2.33)

The ith particle has charge qi and is traveling with a velocity vqi . The electromag-

netic field consists of the electric field E and the magnetic field B. This force is

commonly referred to as the Lorentz force. We are interested in the net effect of

the forces on these individual charges. Therefore, summing over each charge in the

fluid element gives

∑
Fqi =

∑
qiE +

∑
qivqi ×B (2.34)

= QE + J×B (2.35)

where Q is the total charge in the fluid element (and therefore the charge of the

fluid element) and J is the current carried within the fluid element. We shall be

interested in the volumetric version of this force f . Dividing by the volume of the

fluid element gives

fEM = ρeE + j×B. (2.36)

In (2.36) ρe is the charge density and j represents the current density. However,

charge neutrality in a fluid implies that the net charge is negligible. Therefore, the

version of the volumetric, electromagnetic force that a fluid element experiences is

fEM = j×B. (2.37)

To recap: an electrically conducting fluid element moving in a magnetic field ex-

periences an external electromagnetic force. This force is given by (2.37). We now

proceed to introduce the one-fluid, resistive MHD equations. Let us first consider

the momentum equation from classical fluid dynamics.

ρ
∂u

∂t
+ ρu · ∇u = ∇ · T + f . (2.38)
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In (2.38) the velocity of the fluid element with density ρ is represented by u. The

stress tensor, T, contains information about the normal and shearing stresses that

the fluid element experiences. Finally, the possibility of an external, volumetric body

force, denoted by f , is included. For incompressible fluids this equation reduces to

(see Appendix A)

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) = −∇p+ µ∇2u + f (2.39)

where p is the fluid pressure and µ is the fluid’s dynamic viscosity. As already

discussed, when considering electrically conducting fluids, the external body force

is an electromagnetic one. Therefore, the momentum equation for incompressible

MHD becomes

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) = −∇p+ µ∇2u + j×B. (2.40)

In order to determine the solution to (2.40) we must know the current density

and the magnetic induction. The magnetic induction is determined from Maxwell’s

equations.

∇× E = −∂B

∂t
(2.41)

∇×B = µ0

(
j + ε0

∂E

∂t

)
(2.42)

∇ ·B = 0 (2.43)

∇ · E =
ρe
ε0

(2.44)

where the only quantities that have not yet been introduced are the electrical per-

mittivity ε0 and the magnetic permeability µ0 . A closure relation is required to

specify the current density. The generalized Ohm’s law suffices for this task,

j = σ (E + u×B) (2.45)

where σ is the electrical conductivity of the fluid. It is sufficient in MHD to neglect
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the displacement current in Ampère’s law (2.42). Thus,

∇×B = µ0j. (2.46)

We wish to arrive at an equation only for the magnetic induction. To this end we

seek to eliminate the curl of the electric field. From the generalized Ohm’s law and

after introducing the reciprocal of the electrical conductivity, the resistivity η, we

have

E =
1

σ
j− u×B

⇒ ∇× E = ∇× (ηj)−∇× (u×B)

⇒ ∇× E = ∇×
(
η

µ0

∇×B

)
−∇× (u×B) .

Using this in the induction equation from Maxwell’s equations (2.41) we arrive at

an induction equation that is independent of the electric field.

∂B

∂t
−∇× (u×B) = −∇×

(
η

µ0

∇×B

)
. (2.47)

We will work with a different form of this equation. For a derivation of the new

form of the equation please refer to Appendix E.1.

∂B

∂t
+∇ · (−u⊗B + B⊗ u) = ∇ ·

[
η

µ0

(
∇B− (∇B)T

)]
. (2.48)

If the material properties are constant then the induction equation becomes

∂B

∂t
+∇ · (−u⊗B + B⊗ u) =

η

µ0

∇2B. (2.49)

Finally, we call λ = η/µ0 the magnetic diffusivity.

Equipped with Maxwell’s equations, and, more specifically, Ampère’s law, we

may now eliminate the current density from the electromagnetic force term in the
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momentum equation. We find (see Appendix E.3.1) that

j×B =
1

µ0

∇ · (B⊗B)− 1

µ0

∇
(

1

2
B ·B

)
. (2.50)

Thus, the momentum equation becomes

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) = −∇p+ µ∇2u +

1

µ0

∇ · (B⊗B)− 1

µ0

∇
(

1

2
B ·B

)
. (2.51)

This is written as

∂u

∂t
+∇ ·

(
u⊗ u− 1

µ0ρ
B⊗B

)
= −∇P + ν∇2u. (2.52)

In the above equation the pressure has been rewritten to include the magnetic

pressure. The total MHD pressure is

P =
1

ρ
p+

1

2µ0ρ
B ·B. (2.53)

The incompressible MHD equations are therefore,

∂u

∂t
+∇ ·

(
u⊗ u− 1

µ0ρ
B⊗B

)
= −∇P + ν∇2u (2.54)

∇ · u = 0 (2.55)

∂B

∂t
+∇ · (−u⊗B + B⊗ u) = λ∇2B (2.56)

∇ ·B = 0 (2.57)

The final form of the MHD equations is written as

∂u

∂t
+∇ ·NV (u,B) = −∇P + ν∇2u + fV

∇ · u = 0

∂B

∂t
+∇ ·N I (u,B) = λ∇2B + f I

∇ ·B = 0

(2.58)
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where the nonlinear terms are given by

NV (u,B) = u⊗ u− 1

µ0ρ
B⊗B (2.59)

N I (u,B) = −u⊗B−B⊗ u. (2.60)

Remarks:

• The following shorthand notation for the nonlinear terms will be used through-

out

NV = NV (u,B) (2.61)

N I = N I (u,B) . (2.62)

• In this work, an artificial magnetic pressure, r, will be included in the induction

equation so that the induction equation becomes

∂B

∂t
+∇ ·NV = −∇r + λ∇2B + f I. (2.63)

See (Codina and Hernández-Silva 2006) for an introduction to this approach.

This pressure is not physical but plays a role in numerical methods. Its purpose

is to act as a Lagrange multiplier for the induction equation so the solenoidal

constraint on the magnetic induction is satisfied. This is the same role that

the fluid pressure plays in the incompressible momentum equation. Boundary

conditions will be selected so that the artificial magnetic pressure is zero if the

divergence-free constraint on the magnetic induction is satisfied.

• The potential for external momentum and induction forcing functions (fV and

f I, respectively) has been included.

2.2.3 MHD Conservation Laws

At this point, it is useful to consider some properties of interest in MHD.

Three of these properties are the total energy, cross helicity, and magnetic helicity.

In the absence of dissipation and any sources (including those at the boundary)
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these three quantities are conserved. In the following derivations, homogeneous,

essential boundary conditions are assumed. The starting point is the ideal MHD

equations,

∂u

∂t
+∇ ·NV +∇P = 0 (2.64)

∂B

∂t
+∇ ·N I +∇r = 0. (2.65)

Before proceeding with the actual derivations a few useful relationships are intro-

duced. For solenoidal vector fields v and w with homogeneous essential boundary

conditions,

∫

Ω

v · (∇ · (v ⊗ v)) dΩ = 0 (2.66)

and

∫

Ω

v · (∇ · (v ⊗w)) dΩ = 0. (2.67)

For a scalar field f ,

∫

Ω

v · ∇f dΩ = 0. (2.68)

These identities are proved in Appendix E.2.

2.2.4 Conservation of Total MHD Energy

The total energy is defined as

KT = KV +KI. (2.69)

The kinetic energy per unit mass is

KV =

∫

Ω

1

2
u · u dΩ (2.70)
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and the magnetic energy is

KI =
1

µ0ρ

∫

Ω

1

2
B ·B dΩ. (2.71)

Taking the vector dot product of u with the momentum equation and integrating

over the domain results in,

∫

Ω

∂

∂t

(
1

2
u · u

)
dΩ

︸ ︷︷ ︸
IV
1

+

∫

Ω

u · (∇ · (u⊗ u)) dΩ

︸ ︷︷ ︸
IV
2

− 1

µ0ρ

∫

Ω

u · (∇ · (B⊗B)) dΩ

︸ ︷︷ ︸
IV
3

+

∫

Ω

u · ∇p dΩ

︸ ︷︷ ︸
IV
4

= 0. (2.72)

The first integral is written as

IV
1 =

d

dt

∫

Ω

1

2
u · u dΩ

=
dKV

dt
. (2.73)

The second integral is zero by (2.66). The third integral becomes

∫

Ω

u · (∇ · (B⊗B)) dΩ =

∫

Γ

u · (B⊗B) · n dΓ−
∫

Ω

B · (∇ · (u⊗B)) dΩ

= −
∫

Ω

B · (∇ · (u⊗B)) dΩ. (2.74)

The fourth integral vanishes by (2.68). Thus,

dKV

dt
=

1

µ0ρ

∫

Ω

B · (∇ · (u⊗B)) dΩ. (2.75)
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The magnetic energy equation is obtained by taking the vector dot product of B

with the ideal induction equation multiplied by 1/ (µ0ρ). This gives

1

µ0ρ

∫

Ω

∂

∂t

(
1

2
B ·B

)
dΩ

︸ ︷︷ ︸
II
1

− 1

µ0ρ

∫

Ω

B · (∇ · (u⊗B)) dΩ

︸ ︷︷ ︸
II
2

+
1

µ0ρ

∫

Ω

B · (∇ · (B⊗ u)) dΩ

︸ ︷︷ ︸
II
3

+
1

µ0ρ

∫

Ω

B · ∇r dΩ

︸ ︷︷ ︸
II
4

= 0. (2.76)

The first integral gives the rate of change of magnetic energy,

1

µ0ρ
I I

1 =
dKI

dt
(2.77)

and the third and fourth integrals vanish by (2.67) and (2.68), respectively. The

second integral is not changed. Now, adding the two energy equations together gives

dKV

dt
+

dKI

dt
=

− 1

µ0ρ

∫

Ω

B · (∇ · (u⊗B)) dΩ +
1

µ0ρ

∫

Ω

B · (∇ · (u⊗B)) dΩ. (2.78)

The right hand side is zero and the final result is conservation of total energy

dKT

dt
= 0. (2.79)

2.2.5 Conservation of Cross Helicity

The cross helicity is defined as

HC =

∫

Ω

1√
µ0ρ

u ·B dΩ. (2.80)

To obtain the conservation law for the cross-helicity the vector dot-product of the

magnetic induction with the ideal momentum equation is taken and the vector dot

product of the velocity with the ideal induction equation is taken. Performing this
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operation on the momentum equation and integrating over the domain yields

∫

Ω

B · ∂u

∂t
dΩ

︸ ︷︷ ︸
IV
1

+

∫

Ω

B · (∇ · (u⊗ u)) dΩ

︸ ︷︷ ︸
IV
2

− 1

µ0ρ

∫

Ω

B · (∇ · (B⊗B)) dΩ

︸ ︷︷ ︸
IV
3

+

∫

Ω

B · ∇P dΩ

︸ ︷︷ ︸
IV
4

= 0. (2.81)

Integrals IV
3 and IV

4 are zero by (2.66) and (2.68), respectively. Integral IV
2 is rewrit-

ten,

∫

Ω

B · (∇ · (u⊗ u)) dΩ =

∫

Γ

B · (u⊗ u) · n dΓ−
∫

Ω

u · (∇ · (B⊗ u)) dΩ

= −
∫

Ω

u · (∇ · (B⊗ u)) dΩ. (2.82)

Thus, the momentum equation becomes,

∫

Ω

B · ∂u

∂t
dΩ =

∫

Ω

u · (∇ · (B⊗ u)) dΩ. (2.83)

Turning now to the induction equation yields

∫

Ω

u · ∂B

∂t
dΩ

︸ ︷︷ ︸
II
1

−
∫

Ω

u · (∇ · (u⊗B)) dΩ

︸ ︷︷ ︸
II
2

(2.84)

+

∫

Ω

u · (∇ · (B⊗ u)) dΩ

︸ ︷︷ ︸
II
3

+

∫

Ω

u · ∇r dΩ

︸ ︷︷ ︸
II
4

= 0. (2.85)

Integrals I I
2 and I I

4 are zero by (2.67) and (2.68), respectively. The induction equation

is therefore

∫

Ω

u · ∂B

∂t
dΩ = −

∫

Ω

u · (∇ · (B⊗ u)) dΩ. (2.86)
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Multiplying the resulting induction equation by 1/(
√
µ0ρ ) and adding the resulting

momentum and induction equations results in

∫

Ω

B · ∂u

∂t
dΩ +

1√
µ0ρ

∫

Ω

u · ∂B

∂t
dΩ = 0 (2.87)

⇒ 1√
µ0ρ

∫

Ω

∂ (u ·B)

∂t
dΩ = 0 (2.88)

⇒ d

dt

∫

Ω

1√
µ0ρ

u ·B dΩ. (2.89)

Therefore,

dHC

dt
= 0. (2.90)

2.2.6 Conservation of Magnetic Helicity

The magnetic helicity is

H I =

∫

Ω

A ·B dΩ (2.91)

where the magnetic vector potential A is

B = ∇×A. (2.92)

To derive this final conservation law, the momentum equation no longer plays a

role. The two equations of interest are the magnetic induction equation (in curl

form) and the evolution equation for the magnetic vector potential. The reason the

curl form of the induction equation is used is that the magnetic vector potential is

related to the magnetic induction through the curl operator. The curl form of the

ideal magnetic induction equation is

∂B

∂t
+∇× (u×B) = 0. (2.93)
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To arrive at the equation for the magnetic vector potential, the curl form of the

magnetic induction equation is “uncurled”. Thus,

∂A

∂t
+ u×B = ∇φ (2.94)

where φ is a scalar potential. Presently, the scalar potential is just a mathematical

artifact as it will not contribute to the conservation law. Next, the vector dot

product of (2.94) and B is taken and the result is integrated over the domain.

∫

Ω

B · ∂A

∂t
dΩ

︸ ︷︷ ︸
IA1

+

∫

Ω

B · (u×B) dΩ

︸ ︷︷ ︸
IA2

=

∫

Ω

B · ∇φ dΩ

︸ ︷︷ ︸
IA3

. (2.95)

Integral IA3 vanishes as a consequence of (2.68). The second integral becomes

∫

Ω

B · (u×B) dΩ =

∫

Ω

(∇×A) · (u×B) dΩ

=

∫

Γ

(u×B) · (n×A) dΓ−
∫

Ω

A · ∇ × (u×B) dΩ

= −
∫

Ω

A · ∇ × (u×B) dΩ. (2.96)

Refer to Appendix E.2.1 for more details on the origin of (2.96). Taking the vector

dot product of the induction equation and A gives

∫

Ω

A · ∂B

∂t
dΩ +

∫

Ω

A · ∇ × (u×B) dΩ = 0. (2.97)

Adding together (2.96) and (2.97) gives

∫

Ω

B · ∂A

∂t
dΩ +

∫

Ω

A · ∂B

∂t
dΩ = 0

⇒
∫

Ω

∂ (A ·B)

∂t
dΩ = 0

⇒ d

dt

∫

Ω

A ·B dΩ = 0. (2.98)
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Therefore,

dH I

dt
= 0. (2.99)

The conservation laws are summarized as

dKT

dt
= 0

dHC

dt
= 0

dH I

dt
= 0.

(2.100)

(2.101)

(2.102)

2.2.7 Dynamic Alignment

There is a tendency for the velocity and magnetic fields to align in MHD.

To demonstrate this, the behavior of the total energy and the cross helicity are

considered. In MHD, in the absence of sources, it is typical that the total energy

decreases whereas the cross helicity remains approximately constant. This leads to

the variational problem: Minimize the functional J where

J = KT + γHC . (2.103)

The total energy and cross helicity are given by the functionals,

KT =
1

2

∫

Ω

(
u · u +

1

µ0ρ
B ·B

)
dΩ (2.104)

HC =

∫

Ω

1√
µ0ρ

u ·B dΩ. (2.105)

To minimize the functional J , we consider the variational derivative,

dJ

dε

∣∣∣∣
ε=0

= 0. (2.106)



45

To find the minima consider arbitrary small variations about this minima and set

the corresponding variations in J to zero.

dJ

dε

∣∣∣∣
ε=0

=
d

dε

{
1

2

∫

Ω

[
(u + εδu) · (u + εδu) +

1

µ0ρ
(B + εδB) · (B + εδB)

]
dΩ

+ γ

∫

Ω

(u + εδu) · 1√
µ0ρ

(B + εδB) dΩ

}∣∣∣∣
ε=0

=

∫

Ω

(
u · δu +

1

µ0ρ
B · δB + γ

1√
µ0ρ

u · δB + γ
1√
µ0ρ

B · δu
)

dΩ = 0

(2.107)

⇒
∫

Ω

(
u + γ

1√
µ0ρ

B

)
· δu dΩ = −

∫

Ω

(
1

µ0ρ
B + γ

1√
µ0ρ

u

)
· δB dΩ.

(2.108)

Because of the arbitrariness of the variations, the resulting system of equations is

u + γ
1√
µ0ρ

B = 0 (2.109)

1

µ0ρ
B + γ

1√
µ0ρ

u = 0 (2.110)

from which

1

µ0ρ

(
1− γ2

)
B = 0 (2.111)

⇒ γ = ±1. (2.112)

The interpretation is therefore that the velocity and magnetic fields align,

u = ± 1√
µ0ρ

B. (2.113)

This observation is even more remarkable in Alfvén velocity units,

u = ±BA (2.114)
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2.3 Strong and Weak Formulations

Precise statements of the strong and weak forms of the problem are presented

next. The strong form of the problem is: Given body forces fV : Q → Rnsd and

f I : Q→ Rnsd, find u : Q→ Rnsd, B : Q→ Rnsd, r : Q→ Rnsd, P : Q→ R such that

∂u

∂t
+∇ ·NV +∇P − ν∇2u = fV on Q (2.115)

∇ · u = 0 on Q (2.116)

∂B

∂t
+∇ ·N I +∇r − λ∇2B = f I on Q (2.117)

∇ ·B = 0 on Q (2.118)

with boundary conditions

u = gV on Pg Du = hV on Ph (2.119)

B = gI on Pg DB = hI on Ph (2.120)
∫

Ω

P dΩ = 0 (2.121)

r = 0 on P. (2.122)

In (2.119) and (2.120) the Neumann boundary conditions involve the differential

operator D which will be specified in Section 2.4 when the particular boundary

conditions for the problems consider in this work are presented. The system of

partial differential equations (2.115) - (2.118) can be written very concisely as

LU = F. (2.123)
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In (2.123), the goal is to solve for the vector of solutions U. In essence this means

inverting the differential operator L. For incompressible MHD we have,

U =




u

p

B

r



, F =




fV

0

f I

0



. (2.124)

Thus, at least formally, the solution is given by

U = L−1F. (2.125)

Next, the variational form of the incompressible MHD equations is introduced.

To this end, it is entirely acceptable algebraically to multiply both sides of the equa-

tion by a weighting function W followed by integrating both sides of the equation

over the domain of interest. That is,

∫

Ω

W ·LU dΩ =

∫

Ω

W · F dΩ. (2.126)

This is the MWR for a vector system of equations where the residual is,

R (U) = LU− F. (2.127)

Recall from Chapter 1 that the MWR forces the residual of the PDE to be zero in

a weighted sense. The choice of weighting functions W specifies the way that the

residual is forced to zero. For instance, one might select W to be Dirac-delta func-

tions whereby the residual will become zero at specific points. For incompressible

MHD the vector of weighting functions is given as

W =




w

q

c

s




(2.128)



48

where w is the vector of weighting functions for the momentum equation, q is the

weighting function for the velocity field incompressibility constraint, c is the vector

of weighting functions for the induction equation, and s is the weighting function

for the solenoidal magnetic field equation.

From an analytical standpoint, this integration is only permissible if the func-

tions are suitably behaved over the problem domain. The concept of functions spaces

is now briefly introduced to define “suitably behaved.” A function space refers to

a collection of functions that have certain traits in common. The basic function

spaces considered in this work are

H1 (Ω) =

{
v

∣∣∣∣
∫

Ω

(v · v +∇v : ∇v) dΩ <∞
}

(2.129)

H1
0 (Ω) =

{
v

∣∣∣∣
∫

Ω

(v · v +∇v : ∇v) dΩ <∞ and v = 0 on Γg

}
(2.130)

L2 (Ω) =

{
v

∣∣∣∣
∫

Ω

(v · v) dΩ <∞
}
. (2.131)

The particular function spaces used in the present work are built from these basic

function spaces. For example, a function space V is defined as

V =
{
v
∣∣v ∈ H1

0 (Ω)
}
. (2.132)

An example of another function space is

S =
{
v
∣∣v ∈ H1 (Ω) , v = g on Γg

}
. (2.133)

Remarks:

The particular definition of the function space depends on the boundary conditions

of the problem being considered. The specific definitions of the function spaces will

be introduced with the problems that are considered. MHD boundary conditions

are introduced in Section 2.4.

With these function spaces, the variational statement becomes: Find U ∈ S such
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that ∀ W ∈ V

∫

Ω

W ·LU dΩ =

∫

Ω

W · F dΩ. (2.134)

For incompressible MHD, the variational formulation is written as: Find U ∈ S
such that ∀ W ∈ V

AT (W,U) = AV
T (W,U) +AI

T (W,U) =
(
w, fV

)
+
(
c, f I

)
. (2.135)

In (2.135)

AV
T (W,U) =

(
w,

∂u

∂t

)
−
(
∇w,NV

)
+
(
w,NV · n

)
Γ

− (∇ ·w, P ) + (w, Pn)Γ + (∇sw, 2ν∇su)

− (∇sw, 2ν∇su · n)Γ − (∇q,u) + (q,u · n)Γ (2.136)

and

AI
T (W,U) =

(
c,
∂B

∂t

)
−
(
∇c,N I

)
+
(
c,N I · n

)
Γ

− (∇ · c, r) + (c, rn)Γ + (∇ac, 2λ∇aB)

− (c, 2λ∇aB · n)Γ − (∇s,B) + (s,B · n)Γ (2.137)

where n is the unit outward normal to the boundary Γ. These forms comprise terms

in the domain and on the boundary. They could be decomposed as

AV,I
T (W,U) = AV,I (W,U) +AV,I

B (W,U) (2.138)

where AV,I (W,U) contains terms that are in the domain and AV,I
B (W,U) con-

tains terms that are only on the boundary. This decomposition will be used in

Section 2.4 when appropriate boundary conditions are introduced. The symmetric

gradient operator (∇s) and antisymmetric gradient operator (∇a) are the result of

the incompressibility of the fields and some algebraic manipulations. For an incom-
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pressible vector field v and weighting function w,

(
w,∇2v

)
=
(
w,∇ ·

(
∇v + (∇v)T

))
−→ Since ∇ ·

(
(∇u)T

)
= 0

= −
(
∇w,

(
∇v + (∇v)T

))
+
(
w,
(
∇v + (∇v)T

)
· n
)

Γ

= −2

(
∇w,

1

2

(
∇v + (∇v)T

))
+ 2

(
w,

1

2

(
∇v + (∇v)T

)
· n
)

Γ

= −2 (∇sw,∇su) + (w,∇su · n)Γ (2.139)

where the final step is the result of the fact that the inner product of a symmetric

and antisymmetric tensor is zero. Note also that incompressibility ensures that

(
w,∇2v

)
=
(
w,∇ ·

(
∇v − (∇v)T

))
(2.140)

which is useful in establishing the analogous result for the induction equation.

2.4 Boundary Conditions for Incompressible MHD

This section describes the boundary conditions that are used for the problems

that were used to test the new turbulence models. The first boundary conditions de-

scribed are periodic boundary conditions. The second type of boundary conditions

that are described are those that apply to a channel of finite thickness and finite elec-

trical conductivity. In this work, we consider problems that use periodic boundary

conditions and problems that have perfectly electrically conducting, no-slip walls.

The weighting functions W are selected so that they vanish on boundaries that

have essential boundary conditions. Because of this, only Neumann boundary terms

contribute to the variational statement. The variational statement is therefore: Find

U ∈ V such that ∀W ∈ V

AV (W,U) +AI (W,U) =
(
w, fV

)
+
(
c, f I

)
−AV

Γh
(W,U)−AI

Γh
(W,U) .

(2.141)

Note that U, W ∈ V . This is because the space V is such that the solution U = 0

on boundaries with essential boundary conditions. This implies that U will be
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solved for only within the domain and it’s values at the essential boundaries will

be reconstructed from given boundary data. A more precise notational convention

would have differentiated between U ∈ S and U ∈ V . However, this distinction

was not deemed necessary as everywhere in this dissertation U is understood to be

the solution on the domain Q.

We will see that with both sets of boundary conditions (periodic and perfectly

electrically conducting walls) the variational statement reduces to:Find U ∈ V such

that ∀W ∈ V

AV (W,U) +AI (W,U) =
(
w, fV

)
+
(
c, f I

)
. (2.142)

2.4.1 Periodic Boundary Conditions

The function spaces with periodic boundary conditions are

S = V =
{

W
∣∣∣ W = [w, q, c, s]T s.t.

w, c ∈ H1 (Ω) , q, s ∈ L2 (Ω) ,

W (y, t) = W (x, t) [W ]T
}
. (2.143)

The periodic domain is Ω = [−π, π]3 and

y = x + 2πej (2.144)

where ej is the unit vector in the j direction; i.e. it has the value of one in the jth

slot and zeros elsewhere. Furthermore, x is understood to be on one of the three

faces of the cube denoted Γj (−π) where j = 1, 2, 3. As an example, consider the

face Γ3 (−π). On this face, x = [x1, x2, −π]T . Then




y1

y2

y3


 =




x1

x2

−π


+ 2π




0

0

1


 =




x1

x2

π


 . (2.145)
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This example is illustrated in Figure 2.2. The boundary terms for these boundary

conditions are considered next. The boundary terms for the momentum equation

are

(
w,NV · n

)
Γ

+ (w, Pn)Γ − (w, 2ν∇su · n)Γ + (q,u · n)Γ . (2.146)

The explicit dependence on each surface of the boundary terms is encapsulated with

the expression,

3∑

i=1

[
2∑

j=1

(−1)j
((

w,NV · ei
)

Γi
+ (w, Pei)Γi

− (w, 2ν∇su · ei)Γi
+ (q,u · ei)Γi

)]
.

(2.147)

For algebraic simplicity, the pressure term will be considered,

3∑

i=1

2∑

j=1

(−1)j (w, Pei)Γi
=− (w, Pe1)Γ1

+ (w, Pe1)Γ1

− (w, Pe2)Γ2
+ (w, Pe2)Γ2

− (w, Pe3)Γ3
+ (w, Pe3)Γ3

= 0. (2.148)

1

2

3

Γ3 (π)

Γ3 (−π)

y

x

1

Figure 2.2: Illustration of periodic boundary conditions for a cubic ge-

ometry.
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Thus, the boundary term for the pressure does not play a role. The other

boundary terms are similar including those in the induction equation. Therefore,

for this geometry and numerical method, the boundary terms do not contribute.

2.4.2 General Duct Boundary Conditions

The configuration considered in this section is a general wall-bounded domain

with finite wall thickness and electrically conducting walls. This domain is referred

to as a duct. The configuration is illustrated in Figure 2.3. The turbulence models

were tested for a special case of the duct geometry, namely a channel flow with

perfectly electrically conducting boundaries. The rest of this section is devoted to

a discussion on the general, MHD boundary conditions for the duct.

To begin, the possible boundary conditions for Maxwell’s equations are pre-

sented. These are (see Jackson 1999)

n · (B1 −B2) = 0 (2.149)

n× (E1 − E2) = 0 (2.150)

where the subscripts refer to the region in which the fields reside. Region 1 rep-

resents the domain in which the problem is being solved and Region 2 represents

the boundary region. We proceed to derive general MHD boundary conditions at

a wall in terms of the magnetic induction. Note that (2.149) is already in terms of

the desired field and simply provides a condition for the normal components of the

magnetic field at the boundary.

1

Figure 2.3: Illustration of a geometrical configuration consisting of a flow

field bounded by electrically conducting walls, with constant,

finite thickness.
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We wish to put (2.150) in terms of the magnetic induction. Using Ohm’s law

E =
1

σ
j− u×B (2.151)

in (2.150) yields

n×
[

1

σ1

j1 − u1 ×B1

]
= n×

[
1

σ2

j2 − u2 ×B2

]
. (2.152)

The term with the velocity in (2.152) is rewritten as (see Appendix E.3.2),

−n× (u1 ×B1) = (−u1 ⊗B1 + B1 ⊗ u1) · n.

With Ampère’s law, the terms with the current density in (2.152) become

n× 1

σµ0

∇×B. (2.153)

Given two vectors v and w (see Appendix E.3.3), we have that

v × (∇×w) = −2
[
∇w − (∇w)T

]
· v.

Therefore, the term with the current density is written as:

1

σ1µ1

[
∇Bb

1 −
(
∇Bb

1

)T
]
· n. (2.154)

The boundary conditions become

[
−u1 ⊗B1 + B1 ⊗ u1 +

1

µ1σ1

(
∇B1 − (∇B1)T

)]
· n =

[
−u2 ⊗B2 + B2 ⊗ u2 +

1

µ2σ2

(
∇B2 − (∇B2)T

)]
· n

which can be written as

F1 · n = F2 · n. (2.155)



55

In words (2.155) states that the electromagnetic flux is continuous across the wall of

the channel. Mathematically it provides boundary conditions for the tangential com-

ponents of the magnetic induction. This boundary condition represents Neumann

boundary conditions for the tangential components of the magnetic induction.

2.4.3 Channel Flow Boundary Conditions

This section considers the channel flow geometry depicted in Figure 2.4. Pe-

riodic boundary conditions are specified in the streamwise and spanwise directions.

Homogeneous, essential boundary conditions for the velocity field are specified at

the walls. Thus, the term AV
Γh

(W,U) in (2.141) does not contribute. We will work

on specializing (2.155) to the walls of the channel. The following discussion focuses

on two limits of (2.155): perfectly electrically insulating walls and perfectly elec-

trically conducting walls. Note that the outward normals at the top and bottom

surfaces are

nt =




0

1

0


 and nb =




0

−1

0


 . (2.156)

x

y

z

1

Figure 2.4: The three-dimensional channel geometry.

We refer to quantities inside of the boundary with a superscript (2) and quan-

tities within the fluid with a superscript (1) in the following discussions.
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2.4.4 Boundary Conditions: Perfectly Insulating Walls

In this case, the expression (2.155) is not particularly useful because the ratio

σ1/σ2 → ∞. We derive boundary conditions for a perfectly insulating wall using

some physical intuition and requiring that the tangential components of the mag-

netic field are continuous at the wall. The bottom surface of the channel is shown

in Figure 2.5 below with outward pointing normal n.

n

Bottom Surface

Insulating Wall
In

su
la
tin

g
W

al
l

x

y

z

Figure 2.5: Bottom surface of the channel.

There is no current in the insulating wall and so

j(2) = 0. (2.157)

Ampére’s law states that

∇×B = µ0j. (2.158)

At the insulating boundary then

∇×B(2) = 0 (2.159)

⇒B(2) = −∇ψ (2.160)

where ψ is a scalar magnetic potential. Of course, we still have the continuity

equation for the magnetic field,

∇ ·B(2) = 0. (2.161)
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Therefore, in the insulating wall we have that

∇ ·B(2) = −∇2ψ = 0. (2.162)

Now, the boundary conditions at the wall interface are

B(1) · n = B(2) · n (2.163)

where n is the outward pointing normal to the wall. Thus we have

B(1) · n = −∇ψ · n (2.164)

at the boundary. At the bottom wall we have n = [0, −1, 0]T . Thus,

∂ψ

∂y

∣∣∣∣
y=yB

= B(1)
y (x, yB, z) (2.165)

The previous procedure results in a PDE for the magnetic potential at the

bottom surface.

∇2ψ = 0, y < yB (2.166)

∂ψ

∂y

∣∣∣∣
y=yB

= B(1)
y (x, yB, z) (2.167)

lim
y→−∞

ψ (x, y, z) <∞, y < yB (2.168)

There is a corresponding problem for the top surface. The only difference is that

for the top surface we have y > 0 and n = [0, 1, 0]T . We will perform the analysis

for the bottom surface here. At the end, the solution for the top surface will also

be presented but its derivation will not be shown because it is straightforward.

Proceeding with the problem for the bottom surface and taking a Fourier transform
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in x and z gives

d

dy
ψ̂ (kx, y, kz)− k2

pψ̂ (kx, y, kz) = 0, y < yB (2.169)

d

dy
ψ̂ (kx, yB, kz) = B̂

(1)
y (kx, yB, kz) (2.170)

where

k2
p = k2

x + k2
z . (2.171)

The solution to (2.169) is

ψ̂ (kx, y, kz) = c1e
kpy + c2e

−kpy, y < yB. (2.172)

Applying (2.168) in Fourier space requires c2 → 0. Thus

ψ̂ (kx, y, kz) = c1e
kpy, y < yB. (2.173)

Using (2.170) yields

c1 =
1

kp
B̂

(1)
y (kx, yB, kz) e

−kpyB . (2.174)

Therefore the solution in wavenumber space is

ψ̂B (kx, y, kz) =
1

kp
B̂

(1)
y (kx, yB, kz) e

kp(y−yB), y ≤ yB (2.175)

ψ̂T (kx, y, kz) =
1

kp
B̂

(1)
y (kx, yT , kz) e

kp(yT−y), y ≥ yT . (2.176)

Of course, we are only interested in the potential at the surfaces. At these surfaces

the magnetic potentials are

ψ̂B (kx, yB, kz) =
1

kp
B̂

(1)
y (kx, yB, kz) (2.177)

ψ̂T (kx, yT , kz) =
1

kp
B̂

(1)
y (kx, yT , kz) (2.178)
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With (2.177) and (2.178) the tangential components of the magnetic field can be

determined in the wall. We have

B̂
(1)
x = B̂

(2)
x = −ıkx

kp
B̂

(1)
y (kx, yB, kz) (2.179)

B̂
(1)
z = B̂

(2)
z = −ıkz

kp
B̂

(1)
y (kx, yB, kz) . (2.180)

We conclude this section with an overview on how these boundary conditions could

be implemented.

1. Start with an initial guess for the boundary conditions.

2. Solve the MHD equations at one time step.

3. Update the wall-normal boundary condition for By with the value of By at

the first grid point from the wall. Call this B
(1)
y .

4. Transform B
(1)
y to wavenumber space.

5. Use (2.179) and (2.180) to determine B̂
(1)
x and B̂

(1)
z .

6. Transform back into physical space to get B
(1)
x and B

(1)
z .

7. Update the tangential boundary conditions with B
(1)
x and B

(1)
z .

8. Move onto the next time-step and solve the MHD equations. Repeat the same

procedure after each time-step.

We note that this implementation of the electrically insulating boundary conditions

interprets the boundary conditions for the magnetic field as essential boundary con-

ditions. Thus, the term AI
Γh

(W,U) in (2.141) does not contribute.

2.4.5 Perfectly Conducting Walls

We begin by considering the boundary condition on the normal components

of the magnetic induction. The electric field inside a perfect conductor vanishes,

i.e. E(2) = 0. This can be reasoned by recognizing that an electric field is the

force field required to move an electric charge. Of course, in a perfect conductor
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no force is required to move the charges and so the electric field is zero. The logic

that follows in determining the normal components of the magnetic induction is

borrowed from (Haus and Melcher 1989). If an unsteady magnetic field exists inside

the perfect conductor then, by Faraday’s law, we have

∇× E(2) 6= 0. (2.181)

But E(2) = 0 inside a perfect conductor. Thus, we cannot have a magnetic field

within the perfect conductor and so the boundary condition for the normal compo-

nent of the magnetic induction becomes

B(1) · n = 0. (2.182)

Next we consider the boundary condition for the tangential components. The as-

sumption of a perfect conductor implies σ1/σ2 → 0. Then (2.155) becomes

[
∇B(1) −

(
∇B(1)

)T] · n = 0. (2.183)

We note that this represents a homogeneous Neumann boundary condition for

the tangential components of the magnetic field. Because of this fact the term

AI
Γh

(W,U) in (2.141) once again does not contribute.

2.5 Final Variational Statement

We now present the variational statement for the incompressible MHD equa-

tions that is used in this work. We note that regardless of the boundary conditions

discussed in Section 2.4 the variational form of the problem is the same and only
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the functions spaces differ. The variational statement is

Find U ∈ V such that ∀W ∈ V

AV (W,U) +AI (W,U) =
(
w, fV

)
+
(
c, f I

)

where

AV (W,U) =
(
w, ∂u

∂t

)
−
(
∇w,NV

)
− (∇ ·w, P ) + (∇sw, 2ν∇su)

AI (W,U) =
(
c, ∂B

∂t

)
−
(
∇c,N I

)
− (∇ · c, r) + (∇ac, 2λ∇aB) .

(2.184)

2.5.1 Function Spaces for Periodic Boundary Conditions

The function spaces for periodic boundary conditions are,

V =
{

W
∣∣∣ W = [w, q, c, s]T s.t.

w, c ∈ H1 (Ω) , q, s ∈ L2 (Ω) ,

W (y, t) = W (x, t) [W ]T
}
. (2.185)

The periodic domain is Ω = [−π, π]3 and

y = x + 2πej (2.186)

where ej is the unit vector in the j direction. Furthermore, x is understood to be

on one of the three faces of the cube denoted Γj (−π) where j = 1, 2, 3.

2.5.2 Function Spaces for Perfectly Conducting Walls

The relevant notation for the boundaries of a channel is similar to that for the

periodic box. Periodic faces are denoted by Γ1 and Γ3 where Γ1 has unit normal

n = e1 and Γ3 has unit normal n = e3. The surface Γ1 (x0
1) denotes the y − z plane

at which the flow enters the channel and the surface Γ1

(
xf1

)
is the y − z plane at

which the flow leaves the channel. The channel domain is Ω =
[
x0

1, x
f
1

]
×
[
x0

2, x
f
2

]
×

[
x0

3, x
f
3

]
. As a final note on notation, we clarify the meaning of the constant csj in
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the definition of the function spaces below. When j = 1 this notation refers to a

factor of π in the streamwise direction. Likewise, when j = 3, the notation refers to

a factor in the spanwise direction. When the results are presented in Chapter 5 the

specific simulation domain will be introduced. The function spaces are,

V =
{

[W ]T

W
∣∣∣ W = [w, q, c, s]T s.t.

w, c ∈ H1 (Ω) , q, s, ∈ L2 (Ω) ,

w
(
Γj
(
x0
j

)
+ csjπej, t

)
= w

(
Γj
(
x0
j

)
, t
)

= 0,

c
(
Γj
(
x0
j

)
+ csjπej, t

)
= c

(
Γj
(
x0
j

)
, t
)

= 0,

w
(
Γ2

(
y0

2

)
, t
)

= w
(

Γ2

(
yf2

)
, t
)

= 0,

c2

(
Γ2

(
x0

2

)
, t
)

= c2

(
Γ2

(
yf2

)
, t
)

= 0

[W ]T
}
. (2.187)

From here on, these boundary conditions will be assumed when writing the

variational statement and therefore the base variational statement is (2.184).

2.6 Numerical Methods

The jumping off point for all numerical methods is to consider a discretized

version of the equations that are to be solved. In the present work, numerical

solution fields are designated with a superscript h where h represents the “mesh

parameter.” The mesh parameter typically denotes the size of an element when

working with finite elements or the grid spacing when working with finite differences.

We wish to call attention to a difference in vernacular between the present

work and many other LES studies. In most of the literature on LES the following

progression occurs:

1. Filter out the high-frequency components of the analytical solution. The fil-
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tered field u is still defined everywhere on the continuum.

u = u+ u′ (2.188)

2. Numerically solve for the filtered quantity

uh ≈ u (2.189)

3. For notational simplicity, the numerical quantity is denoted by uh.

In contract to this, the approach that we take proceeds directly from the analytical

solution to the numerical solution. Thus, we do not introduce the concept of a

filtered, or smoothed, quantity.

The numerical methods considered here are based off of discretizations of the

MWR. One particular class of test problems uses trigonometric basis functions

to represent the numerical solution while the other uses linear polynomial basis

functions to represent the solution. The first class corresponds to Fourier-spectral

method while the second class corresponds to the FEM with linear finite elements.

Via analogy with the finite element method, the spectral method is conceptually

thought of as a FEM that has the entire domain as a single finite element and uses

trigonometric basis functions.

The idea of nested, conforming function spaces is now briefly introduced. As

motivated in Chapter 1, it is not possible to solve the full variational statement

on a computer simply because of a lack of computational resources (i.e. finite

processing time and memory). A numerical method introduces the idea of obtaining

an approximate solution at a finite number of points in the domain. As a result, the

full solution in all of its richness is not available. The functions that are available

are a subset of all functions in a given function space. This subset is denoted Vh.

A conforming subspace has the property,

Vh ⊂ V . (2.190)
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At this point, we also introduce the infinite-dimensional complementary space V ′
.

This space completes Vh,

V = Vh ⊕ V ′
. (2.191)

The discretized version of the variational formulation for incompressible MHD

is: Find Uh ∈ Vh ⊂ V such that ∀ Wh ∈ Vh ⊂ V

A
(
Wh,Uh

)
= AV

(
Wh,Uh

)
+AI

(
Wh,Uh

)
=
(
wh, fV

)
+
(
ch, f I

)
. (2.192)

In (2.192)

AV
(
Wh,Uh

)
=

(
wh,

∂uh

∂t

)
−
(
∇wh,NV

(
uh,Bh

))

−
(
∇ ·wh, P h

)
+
(
∇swh, 2ν∇suh

)

−
(
∇qh,uh

)
(2.193)

and

AI
(
Wh,Uh

)
=

(
ch,

∂Bh

∂t

)
−
(
∇ch,N I

(
uh,Bh

))

−
(
∇ · ch, rh

)
+
(
∇ach, 2λ∇aBh

)

−
(
∇sh,Bh

)
. (2.194)

Remarks:

In subsequent sections we use the following simplified notation for the discretized

nonlinear terms:

NV
h = NV

(
uh,Bh

)
(2.195)

N I
h = N I

(
uh,Bh

)
. (2.196)
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2.6.1 Fourier-Spectral Method

The particular basis functions selected here are trigonometric basis functions

and lead to the so-called Fourier-spectral methods. See (Gottlieb and Orszag 1987)

for details on this approach for hydrodynamics. Our numerical implementation

follows the ideas developed therein. We have,

Wh =
∑

q

Ŵ (q) e−ıq·x (2.197)

and

Uh =
∑

k

Û (k) eık·x (2.198)

where ı =
√
−1 .

Remarks:

• q and k are called the wavevectors of the solution. We also use the term

wavenumber although strictly speaking the wavenumber is the magnitude of

the wavevector.

• Ŵ and Û are the Fourier coefficients.

• The basis functions for the weighting functions are the complex conjugate of

the basis functions for the solution.

• The following simplified notation is adopted for a vector field v̂ (k) in wavenum-

ber space,

v̂ (k) = v̂k. (2.199)

• The wavenumbers have the units of [L−1]

Next, the selected trigonometric basis functions are substituted into the vari-

ational form for the incompressible MHD equations (2.192)-(2.194). Indeed, the
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resulting system of equations are the incompressible MHD equations in wavenum-

ber space. Thus, this choice of basis functions amounts to taking a Fourier transform

of the MHD equations. Numerical techniques applied to this system of equations

are referred to as Fourier-spectral methods. The detailed derivation of the resulting

ODEs is presented in Appendix F. The resulting system is

dûk

dt
+ ıN̂V · k + ıkP̂k + |k|2ûk = f̂V

k (2.200)

ık · ûk = 0 (2.201)

dB̂k

dt
+ ıN̂ I · k + ıkr̂k + |k|2B̂k = f̂ I

k (2.202)

ık · B̂k = 0. (2.203)

In (2.200) and (2.202) the nonlinear terms are

N̂V =
∑

l

(
û (l)⊗ û (k− l)− B̂ (l)⊗ B̂ (k− l)

)
(2.204)

and

N̂ I =
∑

l

(
−û (l)⊗ B̂ (k− l) + B̂ (l)⊗ û (k− l)

)
. (2.205)

Remarks:

• Notationally, the nonlinear terms are understood to be evaluated at wavenum-

ber k. Thus

N̂V = N̂V
k (2.206)

N̂ I = N̂ I
k (2.207)

N̂ = N̂ k. (2.208)

This notational dependency is implied in all subsequent chapters involving the

equations in wavenumber space.

• In practical numerical applications, the nonlinear terms are not actually com-
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puted directly in wavenumber space as suggested by (2.204) and (2.205).

• The nonlinear terms are computed as follows (see Gottlieb and Orszag 1987,

sec. 10),

1. Take an inverse FFT of the solutions

2. Compute the nonlinear terms in physical space by performing the appro-

priate multiplications

3. Take an FFT of the nonlinear terms to transfer them back into wavenum-

ber space

• Because not all of the computations are carried out in wavenumber space,

this method is not a true spectral method and is therefore referred to as a

pseudospectral method.

The momentum and induction equation can be written in the same form using

a dummy pressure P̂k, diffusion coefficient d , and vector field v̂k,

L̂v̂k + ıN̂ · k + ıkP̂k = f̂k (2.209)

where

L̂ =
d

dt
+ d|k|2. (2.210)

Taking the divergence of (2.209), which amounts to multiplying by ık, permits an

explicit formula for the pressure,

P̂k = − 1

|k|2
(
k⊗ k : N̂ + ık · f̂k

)
. (2.211)

Using (2.211) in (2.209) yields,

Lv̂k = −PN̂ + Qf̂k (2.212)



68

where

P = ı

(
δ − k⊗ k

|k2|

)
⊗ k (2.213)

Q = δ − k⊗ k

|k|2 . (2.214)

Remarks:

In index notation the projection operators corresponding to equation j are given as

Pjlm = ı

(
δjl −

kjkl

|k|2
)
km

and

Qjl = δjl −
kjkl

|k|2
.

It can be shown, however, that in the absence of the external body force, the arti-

ficial magnetic pressure r̂k is identically zero in wavenumber space. This is readily

demonstrated using index notation.

r̂k = − 1

|k|2
kikjN̂ I

ij

= − 1

|k|2
kikj

(
−ûiBj + B̂iuj

)

= − 1

|k|2
(
−kikjûiBj + kikjB̂iuj

)

= − 1

|k|2
(
−kikjûiBj + kjkiB̂jui

)

= 0.

Hence,

PN̂ I = N̂ I · k. (2.215)
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The final set of equations is

∂ûk(t)
∂t

+ ν|k|2ûk = Qf̂V
k −PN̂V

∂B̂k(t)
∂t

+ λ|k|2B̂k = Qf̂ I
k − N̂ I · k

. (2.216)

The classic fourth order Runge-Kutta (RK4) numerical integration scheme is

used to update the solution at each time step. For equations of the form

dÛk

dt
= f

(
Ûk, t

)
(2.217)

the Runge-Kutta scheme is given by (see (Zwillinger 2003) for a reference)

Ûn+1 = Ûn +
∆t

6
[K1 + 2K2 + 2K3 + K4] (2.218)

where ∆t is the time-step size and n is the value of the field at the current time

step. In Equation (2.218),

K1 = f
(
Ûn, tn

)
(2.219)

K2 = f

(
Ûn +

∆t

2
K1, t

n +
∆t

2

)
(2.220)

K3 = f

(
Ûn +

∆t

2
K2, t

n +
∆t

2

)
(2.221)

K4 = f
(
Ûn + ∆tK3, t

n+1
)
. (2.222)

It is possible to get (2.212) into the same form as (2.217) by multiplying (2.212) by

ed|k|
2t and introducing a new variable

ŷk = v̂ke
d|k|2t. (2.223)

Thus

dŷk

dt
=
(
Qf̂k −PN̂

)
ed|k|

2t. (2.224)
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Therefore,

v̂n+1
k = v̂nke

−d|k|2∆t +
∆t

6

[
K1e

−d|k|2∆t + 2K2e
−d|k|2 ∆t

2 + 2K3e
−d|k|2 ∆t

2 + K4

]

(2.225)

where Ki, i = 1, 4 have already been defined in (2.219)- (2.222).

2.6.2 Finite Element Method

The element point of view (rather than the global point of view) is taken in

detailing the finite element approach to incompressible MHD. The details of this

approach are presented in (Hughes 2000). Working from the element point of view

rather than a global point of view is especially convenient for practical implementa-

tions of a finite element code. The solutions are expanded over an element domain

with nnp nodal points as

uh =

nnp∑

a=1

Nau
e
a, P h =

nnp∑

a=1

NaP
e
a (2.226)

Bh =

nnp∑

a=1

NaB
e
a, rh =

nnp∑

a=1

Nar
e
a (2.227)

and the weighting functions are expanded as

wh =

nnp∑

b=1

Nbw
e
b , qh =

nnp∑

b=1

NbP
e
b (2.228)

ch =

nnp∑

b=1

NbB
e
b, sh =

nnp∑

b=1

Nbs
e
b (2.229)

where the shape functions are denoted by Na = Na (ξ, η, ζ). The superscript e on the

nodal values implies that the respective quantities belong to element e. The coordi-

nates of the element in the physical domain, (x, y, z), are related to the coordinates
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of the element in the parent domain, (ξ, η, ζ), via the isoparametric mapping,

x (ξ, η, ζ) =

nnp∑

i=1

Na (ξ, η, ζ)xea (2.230)

y (ξ, η, ζ) =

nnp∑

i=1

Na (ξ, η, ζ) yea (2.231)

z (ξ, η, ζ) =

nnp∑

i=1

Na (ξ, η, ζ) zea. (2.232)

The present work uses trilinear, hexahedral finite elements. An example of such an

element along with its node numbering and coordinates is given in Figure 2.6. The

shape functions for these elements are

Na =
1

8
(1 + ξaξ) (1 + ηaη) (1 + ζaζ) (2.233)

where ξa, ηa, and ζa are the values of the coordinates at element node “a”.

Remarks:

The shape functions are piecewise continuous across element boundaries. Therefore

the solution is globally C0 continuous. The variational statement is linearized

before substituting the expressions for the solutions and the weighting functions.

It is then integrated in time to arrive at a system of algebraic equations that need

to be solved at each time step. Once the linearization is complete, and the basis

functions are substituted into the linearized variational statement, a matrix system

for each element is obtained,

Aede = f e. (2.234)

In order to obtain the global solution, the element matrices and degrees of freedom

must be assembled into a global matrix, A and global degree of freedom vector d.

This is done with the finite element assembly operator as detailed in (Hughes 2000).

Once the global system is formed one must solve the linear matrix problem

Ad = f . (2.235)
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ξ

η

ζ

1

Figure 2.6: A trilinear, hexahedral element.

Note that an iterative technique is used to converge to the solution of the non-

linear problem. Typically either Newton’s method or a variant thereof is employed.

A matrix system must be solved at each nonlinear iteration regardless of the non-

linear solution technique that is used. A very popular iterative linear solver is the

generalized minimum residual (GMRES) solver. For details on this approach refer

to (Trefethen and Bau III 1997). Finally, we note that the time-integration scheme

used for the finite element simulations is a 3rd order backward difference formula

(BDF) method. The finite element code that was used to perform the simulations in

this work was developed at Sandia National Labs and is called Drekar. For details

on the numerical method and Drekar refer to (J. Shadid et al. 2010; J. N. Shadid

et al. 2010; Cyr, Shadid, and Tuminaro 2012; Pawlowski, Phipps, and Salinger 2012;

Pawlowski et al. 2012).
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2.7 Turbulence Modeling: Large Eddy Simulation

This section initiates the discussion on LES. The first part reviews classical

LES techniques such as the filtering operation. This part works with the strong

formulation. The second part provides an overview of the VMS formulation and its

role in turbulence modeling and LES.

2.7.1 Classical Approach

The classical approach to large eddy simulation requires the introduction of

a filtering operator denoted by F. The filtered velocity and magnetic induction are

written as

Fu (x, t) =

∫
G (r,x) u (x− r, t) dr (2.236)

FB (x, t) =

∫
G (r,x) B (x− r, t) dr (2.237)

where G (r,x) is a filtering kernel. For more background on the design of an ap-

propriate filter, the reader is referred to (Pope 2000). The goal is now to solve for

the filtered fields rather than the exact field in order to make numerical simulations

possible.

Remarks:

• The filtered fields still have values at all points in space. That is, they are

not discrete. The filtering operation removes the high frequencies from the

solution thereby making numerical computations more feasible.

• In the following description, the filtered field will be written as

u = Fu (x, t) (2.238)

B = FB (x, t) . (2.239)
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Next, the filter is applied to the incompressible MHD equations. For specific details,

refer to Appendix B. The application of the filter to the momentum equation yields

∂u

∂t
+∇ ·

(
NV

F + TV
)

= −∇P + ν∇2u + fV (2.240)

where the nonlinear term of the filtered fields is

NV
F = u⊗ u− 1

µ0ρ
B⊗B (2.241)

and the subgrid stress tensor for the momentum equation is

TV = (u⊗ u)− 1

µ0ρ
(B⊗B)−

(
u⊗ u− 1

µ0ρ
B⊗B

)
. (2.242)

Remarks:

• The filter is assumed to commute with spatial and temporal differentiation.

It is this term, TV, that turbulence modeling efforts have focused on for decades.

To see where the term “subgrid stress tensor” originates, it is instructive to write

the equations as

∂u

∂t
+∇ ·NV

F = ∇P +∇ ·
(
ν∇su− TV

)
+ fV. (2.243)

Therefore, it becomes apparent that the new term is subjected to the divergence

operator in the same way that the viscous stress tensor is. In Chapter 4 this ob-

servation will be used to motivate decades of work on modeling the effects of the

subgrid stress tensor. Similarly, the filtered magnetic induction equation is,

∂B

∂t
+∇ ·

(
N I

F + TI
)

= −∇r + λ∇2B + f I (2.244)

where the filtered nonlinear term is

N I
F = −u⊗B + B⊗ u (2.245)
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and the subgrid stress tensor for the induction equation is

TI = −(u⊗B) + (B⊗ u)−
(
−u⊗B + B⊗ u

)
. (2.246)

An analog to (2.243) exists for the induction equation as well.

∂B

∂t
+∇ ·N I

F = ∇r +∇ ·
(
λ∇aB− TI

)
+ f I. (2.247)

2.7.2 Variational Multiscale Formulation

This section will introduce the variational multiscale formulation in a rela-

tively abstract setting. For details on the development of this approach see (Hughes

1995; Hughes et al. 1998; Bazilevs et al. 2007). A semi-linear weak form will be

assumed, the exact form of which is not known. However, the form is linear in its

first argument and nonlinear in its second argument. The VMS approach will be

taken in Chapter 4 with the goal of developing large eddy simulation models for

incompressible MHD. For now, consider the problem: Find U ∈ V s.t. ∀W ∈ V

A (W,U) = (W,F) ∀W ∈ V . (2.248)

We have already discussed at length the infeasibility of solving (2.248) analytically

and via a naive numerical approach. The VMS approach seeks an optimal solution

in a finite dimensional space Vh. With this in mind, a projection operator Ph is

introduced that restricts a function V to the finite dimensional space.

Vh = PhV, Vh ∈ Vh. (2.249)

Moreover, the projection operator is selected so that when it is applied to the ana-

lytical solution U the resulting finite dimensional solution Uh represents an optimal

finite dimensional solution. The term “optimal” here depends on the person per-

forming the simulation.

Remarks:

• Selection of the projection operator represents a paradigm in computational
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physics. This is because, in principle, the projection operator is selected so as

to define an optimal numerical solution. The user determines what is meant

by optimal. Examples include a projection operator that results in nodally

exact solutions or one that minimizes some type of error.

• Application of the projection operator to the analytical solution results in

discrete resolved scales. This is contrary to the classical LES approach wherein

the filtering operation results in a smooth solution that is defined at every point

in the domain.

Once a projection operator has been selected the function decomposition becomes

unique. Thus, for any function V we have

V = Vh + V
′
. (2.250)

Furthermore,

V
′
= V −Vh

= V − PhV

=
(
I− Ph

)
V

= P′V

where P′
is called the fine scale projector and I is the identity operator. Note that

Uh ∈ Vh, U
′ ∈ V ′

(2.251)

Wh ∈ Vh, W
′ ∈ V ′

. (2.252)

The decomposition (2.250) is used in (2.248). Exploiting the linearity of the

first slot in the variational statement results in the following two problems: Find

Uh ∈ Vh s.t. ∀Wh ∈ Vh

A
(
Wh,Uh + U

′
)

=
(
Wh,F

)
(2.253)
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and: Find U
′ ∈ V ′

s.t. ∀W
′ ∈ V ′

A
(
W

′
,Uh + U

′
)

=
(
W

′
,F
)
. (2.254)

The goal is to solve (2.253) for the resolved scales, Uh. However, it is obvious that the

resolved scales depend on the subgrid solutions. The solution of (2.254) is as difficult

to obtain as the original system of PDEs. It is reasonable to seek an approximation

to the subgrid scales that hinges on their self-similarity and universality. The details

of a particular approximation to the subgrid scales are presented in (Bazilevs et al.

2007). A related, but slightly different approach is described in (Wang and Oberai

2010b). Both approximations seek a first order approximation to the fine scales via

an asymptotic series. However, the approximation in (Bazilevs et al. 2007) is not

consistently first order in that contributions from higher order terms are present.

It turns out that keeping the higher-order terms does not offer any benefit to the

numerical method (Wang and Oberai 2010b). The present exposition follows that

in (Wang and Oberai 2010b). The first step is to subtract A
(
W

′
,Uh

)
from (2.254).

After an integration by parts on the right hand side the result is

A
(
W

′
,Uh + U

′
)
−A

(
W′,Uh

)
= −

(
W

′
,LUh − F

)
. (2.255)

Next, assume an asymptotic expansion for U′ in terms of a small parameter ε =
∥∥LUh − F

∥∥ such that

U
′
=
∞∑

i=0

εiU(i). (2.256)

Note that

LUh − F = ε
LUh − F

‖LUh − F‖ . (2.257)

Following the usual asymptotic series approach, terms of the same order are equated.

i = 0
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A
(
W

′
,Uh + U(0)

)
−A

(
W

′
,Uh

)
= 0. (2.258)

A solution to this problem is U(0) = 0.

i = 1

A
(
W′,Uh

)

+ε

[(
w′,

∂u(1)

∂t

)
−
(
∇ ·w′, P (1)

)
+
(
∇sw′, 2ν∇su(1)

)

−
(
∇w′,u(1) ⊗ uh + uh ⊗ u(1) − 1

µ0ρ

[
B(1) ⊗Bh + Bh ⊗B(1)

])]

+ε2
(
∇w′,−

(
u(1) ⊗ u(1) − 1

µ0ρ

[
B(1) ⊗B(1)

]))

+ε

[(
c′,
∂B(1)

∂t

)
−
(
∇ · c′, r(1)

)
+
(
∇ac′, 2λ∇aB(1)

)

−
(
∇c′,−

[
uh ⊗B(1) + u(1) ⊗B(h)

]
+

1

1
Bh ⊗ u(1) + B(1) ⊗ u(h)

)]

+ε2
(
∇c′,−

(
−u(1) ⊗B(1) + B(1) ⊗ u(1)

))

+ε
[(
q′,∇ · u(1)

)
+
(
s′,∇ ·B(1)

)]

−A
(
W′,Uh

)
= −ε

(
W

′
,

LUh − F

‖LUh − F‖

)
. (2.259)

Matching ε1 terms yields

A1

(
W

′
, εU(1); Uh

)
= −

(
W

′
,LUh − F

)
. (2.260)

It is straightforward to verify that A1

(
·, εU(1); Uh

)
is the linearization of A (·, ·)

about Uh in the direction of U
′
,

A1

(
·, εU(1); Uh

)
=

d

dε
A
(
·,Uh + εU

′
)∣∣∣∣

ε=0

. (2.261)

At this point, (2.254) has been written in terms of the coarse scale residual, the fine

scales have been approximated with an asymptotic series, and only terms up to first

order in the small parameter have been retained. Introducing an inverse differential
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operator (ID) on (2.260) allows the solution for εU(1) to be obtained as

εU(1) = −ID
(
LUh − F

)
. (2.262)

Of course, ID is not known and in practice an algebraic approximation to this inverse

differential operator (denoted by τ ) is employed. Thus,

U
′ ≈ εU(1) ≈ −P′τP′T

(
LUh − F

)
. (2.263)

Note that the fine-scale projection operator P′
has been used to constrain the

subgrid solution to the subgrid space. Historically τ is called the stabilization pa-

rameter. Considerable effort in the literature has been dedicated to finding suitable

definitions for the stabilization parameter (see Shakib, Hughes, and Johan 1991;

Hughes 1995; Codina 2002; Codina et al. 2007; Hughes and Sangalli 2008) and ref-

erences therein). The form of τ used in this work will be presented in subsequent

sections (see Chapter 5, Sections 5.1 and 5.2). Chapter 3 is dedicated to a discus-

sion of the stabilization parameter. The final statement of the first order variational

multiscale formulation is: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

A
(
Wh,Uh

)
+A1

(
Wh, εU(1); Uh

)
=
(
Wh,F

)
(2.264)

with U
′

given by (2.263). If the solution decomposition was not consistently first

order then the VMS statement would be: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

A
(
Wh,Uh + U

′
)

=
(
W

′
,F
)

(2.265)

with the subgrid solution still given by the first order approximation (2.263). This

is the form of the VMS formulation that is studied in (Bazilevs et al. 2007). It

has been shown (see Wang and Oberai 2010b, 2010a) that the second order terms

in (2.265) with (2.263) do not impact the solution. Thus, it is reasonable to use the

consistent first order VMS formulation (2.264).
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Remarks:

• In the VMS formulation there is no need to introduce the concept of the

subgrid stress tensor.

• Modeling efforts are confined to approximations of the subgrid solutions.

• The better the approximation to the subgrid scales, the better the numerical

solution.

• In this work, we will not make a notational distinction between (2.264) and (2.265)

as their performance is the same.

The exact form of the VMS applied to incompressible MHD will be presented

in Chapter 4, Section 4.2.



CHAPTER 3

Stabilization Parameter

The stabilization parameter τ plays a critical role in the development of VMS-based

turbulence models. This chapter provides details on this important parameter and

the role that it plays in MHD turbulence models. We further develop this parameter

for the incompressible MHD. This development includes the derivation of new forms

for τ for MHD. It must be noted, however, that this chapter does not strictly follow

the theme of this dissertation in that it considers an incomplete turbulence model

and does not focus on the development of new turbulence models. Furthermore, the

results derived and presented in this chapter are not used in subsequent chapters

although prospects for their use in the new turbulence models are discussed.

We begin this chapter with a classical stabilized finite element method called

the Galerkin-least squares (GLS) method (see Hughes, Franca, and Hulbert 1989).

This stabilized FEM can be thought of as an incomplete turbulence model. That is,

a complete turbulence model includes all of the terms from the VMS formulation.

Here only one term in addition to the Galerkin terms is considered.

The GLS formulation is: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

A
(
Wh,Uh

)
+
(
LWh, τRUh

)
Ω′ =

(
wh, fV

)
+
(
ch, f I

)
. (3.1)

The notation (u, v)Ω′ represents

(u, v)Ω′ =
∑

e

∫

Ωe

uv dΩe (3.2)

where e represents an element and Ωe an element domain. Stabilized FEMs were

introduced to combat difficulties arising with traditional finite elements such as the

development of spurious oscillations in advection-dominated problems. They also

arose in response to the inf-sup condition which poses a restriction on the finite

element spaces that can be used for the velocity and pressure solutions. Specifically,

the velocity and pressure functions spaces cannot use the same finite element inter-

81
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polations. Using stabilized finite element methods, one is able to circumvent this

issue and use equal order finite elements for the velocity and pressure solutions (see

Hughes, Franca, and Balestra 1986). Figure 3.1 demonstrates the central problem

with advection-dominated flow fields.
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Figure 3.1: A simulation of the Burgers MHD equations without any

stabilization. The numerical solution exhibits severe spurious

oscillations .

These spurious oscillations are overcome by using the GLS stabilization tech-

nique. Figure 3.2 presents the solution to the same problem using the GLS stabi-

lization technique.

A heuristic derivation of the stabilization parameter is presented in Section 3.1

wherein the finite element weighting functions are enhanced through an artificial

diffusivity. The form of this artificial diffusivity is motivated through finite difference

methods. A discussion on the deeper meaning of the stabilization parameter follows

this derivation along with the presentation of more sophisticated results on the

subject. Section 3.2 discusses a general multidimensional version of the stabilization

parameter.

In Section 3.3, a new stabilization parameter is derived for the incompressible



83

MHD equations. The derivation is done in steps: first the purely advective, one-

dimensional case is considered in Section 3.3.1. Encouraging results are presented.

Then in Section 3.3.2, a generalization to multiple dimensions is presented.
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Figure 3.2: A simulation of the Burgers MHD equations with GLS sta-

bilization.

Next, diffusive effects are included and results are presented for a two-dimensional

problem. Finally, in Section 3.3.3, the one-dimensional Burgers MHD equations

(see (3.41)- (3.42) below) are considered and the exact expression for a new sta-

bilization parameter that includes both advective and diffusive effects is presented.

All of the new stabilization parameters are derived with steady versions of the MHD

equations.

3.1 Origins

A heuristic derivation of the stabilization parameter was presented in (Hughes

et al. 1994). This derivation provides the basic idea behind the stabilization parame-



84

ter. To begin, the linear, one-dimensional advection diffusion equation is considered.

au,x − νu,xx = 0. (3.3)

In (3.3) a is the advection coefficient, ν is the diffusion coefficient, and u represents a

field that is advected and diffuses. Classically, discretization schemes such as the fi-

nite difference method considered a modified advection diffusion equation where ν is

replaced by an effective diffusivity ν → ν+νT , νT being an artificial diffusivity. This

is motivated by considerable experience in advection-dominated problems wherein

the numerical solution develops unrealistic solutions such as spurious oscillations.

In the FEM, the artificial diffusivity is introduced by enhancing the weighting func-

tion space with the weighting functions p. Thus, to find the variational form, the

strong form is multiplied by w + p. This leads to stabilized finite element methods.

Indeed, the stabilization parameter gets its name because it was first introduced in

this context.

Remarks:

Note that the enhancing finite element functions p are not the same as the fluid

pressure. The fluid pressure does not make an appearance in this chapter.

The problem statement is: Find uh ∈ Vh s.t. ∀ wh, ph ∈ Vh

−
(
awh,x, u

h
)

+
(
ph,
(
auh,x − νuh,xx

))
+ ν

(
wh,x, u

h
,x

)
= 0. (3.4)

The weighting function ph is selected such that ph ∝ awh,x. Such a choice corre-

sponds to an upwinding scheme. The proportionality of ph to awh,x is through the

stabilization parameter τ .

ph = τawh,x. (3.5)

Simple dimensional arguments indicate that τ should have the units of time. A time-

scale can be obtained by combining the artificial diffusion νT with the advection scale
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|a|. That is

τ =
νT
|a|2 . (3.6)

The present goal is to determine an exact expression for νT which will result in an

expression for the stabilization parameter. To this end, consider a central difference

approximation to (3.3).

a
uA+1 − uA−1

2h
− νT

uA+1 − 2uA + uA−1

h2
= 0 (3.7)

where uA represents the solution at node A and h is the grid spacing. It is not too

difficult to show that the solution is

uA = c1 + c2

(
1 + ah

2νT

1− ah
2νT

)A

. (3.8)

The analytical solution to (3.3) is

u (x) = c3 + c4e
Pe x

L (3.9)

where Pe = ah/ν is the Péclet number. Assuming that the solutions should be equal

at the nodes yields,

1 + ah
2νT

1− ah
2νT

= ePe x
L . (3.10)

This results in,

1
1
α

+ ξ̃
= tanhα

⇒ ξ̃ = cothα− 1

α
(3.11)

with

ξ̃ =
2νT
ah

, α =
ah

2ν
, α̃ =

ah

2νT
. (3.12)
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Thus from (3.11)

νT =
ah

2

(
cothα− 1

α

)
. (3.13)

Therefore, the stabilization parameter is

τ =
h

2a

(
cothα− 1

α

)
. (3.14)

To summarize, an exact form for the stabilization parameter was derived based

on analogies with artificial diffusion approaches in finite differences. Indeed, the

stabilization parameter is reasoned to derive from an enhancement of the finite

element weighting functions. Dimensional arguments led to the observation that

the stabilization parameter is actually a time-scale. A convenient time-scale can

be selected based on diffusion and velocity scales. From experience with artificial

diffusion methods, the diffusion scale in the stabilization parameter is taken to be

the artificial diffusion. An expression for the artificial diffusion was obtained when

considering the artificial diffusion approach on a 2nd order centered finite difference

scheme. This expression was found by equating the exact solution for the advection

diffusion equation to the numerical solution at the nodes.

More sophisticated and revealing expressions for the stabilization parameter

exist. In (Hughes 1995) stabilized finite element methods are connected to the vari-

ational multiscale formulation. In doing so, a profound result concerning the stabi-

lization parameter was discovered. This is namely that the stabilization parameter

is an element-wise average of the fine-scale Green’s function, G
′
. The fine-scale

Green’s function is found by considering the relevant PDE over a single element.

The resulting expression for the stabilization parameter is

τ =
1

meas (Ωe)

∫

Ωy

∫

Ωx

G
′
(x, y) dΩx dΩy. (3.15)

Using this expression for the one-dimensional, linear advection diffusion case, the

analytical “coth” expression for τ (3.14) was recovered.

In (Hughes and Sangalli 2008) a detailed study of the fine-scale Green’s func-
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tion was performed in which it was related to the coarse-scale Green’s function

through projection operators selected for the VMS method. Again, explicit ex-

pressions for the stabilization parameter are derived. In particular, closed form

expressions for τ for linear, quadratic, and cubic elements were presented for the

one-dimensional case.

The stabilization parameter in multiple dimensions does not have an analytical

expression. What is more, in multiple dimensions (or for systems of equations) the

stabilization parameter is a matrix of scalar stabilization parameters. Depending on

the coupling of the equations under consideration, it may be desirable to use a non-

diagonal matrix stabilization parameter. Once again, however, it is exceptionally

difficult, in general, to derive a parameter matrix that is fully populated. Indeed,

in the pure hydrodynamic case, a diagonal stabilization matrix is used,

τ =




τV 0 0 0

0 τV 0 0

0 0 τV 0

0 0 0 τC




(3.16)

= diag
(
τV, τC

)
.

The most widely employed expression for the stabilization parameter in fluid

dynamics stems from asymptotic scaling arguments presented in (Shakib, Hughes,

and Johan 1991) where

τV =
1√(

2Ct

∆t

)2
+ u · Gu + CIν2G : G

(3.17)

τC =
1

8Cttr (G)
(3.18)

and G is the metric tensor which is given by

G = ∇ξ · ∇ξ (3.19)
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where

∇ξ =
∂ξk
∂xi

. (3.20)

In (3.20) ξi represents coordinates in the element space and xi represents coordinates

in physical space. Note also that (3.17) contains some constants which were shown

in (Liu 2012) to greatly influence the outcome of simulations. Thus, they must be

selected carefully. Finally, it is observed that (3.17) includes the effects of time-

scales.

An expression for the diagonal elements of the stabilization matrix for the

steady MHD equations was provided by (Codina and Hernández-Silva 2006) as

τ = diag (τ1, τ1, τ1, τ2, τ3, τ3, τ3, τ4) (3.21)

with

τ1 =

(
c1
|u|
h

+ c2
1

Reh2
+ c3

S|B|
h

)−1

(3.22)

τ2 = c4
h2

τ1

(3.23)

τ3 =
1

S

(
c1
|B|
h

+ c2
1

Rmh2

)−1

(3.24)

τ4 = c4
h2

S2τ3

. (3.25)

3.2 Multi-dimensional, advective-diffusive systems

One dimensional advective diffusive systems permit an analytical expression

for the stabilization parameter if they can be diagonalized. The diagonalized system

results in a system of uncoupled equations for which the stabilization parameter can

be written for each equation. The multidimensional case is similar; if it could be

diagonalized then an expression for the stabilization parameter is known. To begin,

consider a multi-dimensional, advection-diffusion system of the form

− (W,i,AiU) + (LW, τLU) + (W,i,DijU,j) = (W,F) . (3.26)



89

In (3.26) the coefficient matrices Ai and Di are of size nsdneq×neq and nsdneq×nsdneq,

respectively. Thus, in the present derivation, the ith index refers to the ith subma-

trix. Similarly, the ij position in the diffusion matrix refers to the submatrix that

populates the ij position in the diffusion matrix. The goal is to diagonalize (3.26).

To this end, consider the following transformations,

U = L−TV, W = L−TZ, and F = L−T F̂. (3.27)

The transformation matrix L is the Cholesky factorization of the diffusion matrix

Dij,

Dij =
(
LLT

)
ij
. (3.28)

A useful identity that will be exploited later is

L−1DijL
−T = Iij (3.29)

where L−T is the transpose of the inverse of L. We note that (3.29) is true when D is a

diagonal matrix. When D is diagonal we have
(
L−1
)T

=
(
LT
)−1

. Introducing (3.27)

into (3.26) turns the diffusion matrix into the identity matrix.

−
(
L−TZ,i,AiL

−TV
)

+
(
LL−TZ, τ

[
LL−TV − L−T F̂

])

+
(
L−TZ,i,DijL

−TV,j

)
=
(
L−TZ,L−T F̂

)

⇒ −
(
Z,i,L

−1AiL
−TV

)
+
(
LZ,L−1τL−T

[
LV − F̂

])

+
(
Z,i,L

−1DijL
−TV,j

)
=
(
Z,L−1L−T F̂

)

⇒ −
(
Z,i, ÂiV

)
+
(
LZ, τ̂

[
LV − F̂

])
− (Z,i, IijV,j) =

(
Z,L−1L−T F̂

)
. (3.30)

In (3.30) two new matrices play a role,

Âi = L−1AiL
−T (3.31)
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and

τ̂ = L−1τL−T . (3.32)

The system is still non-diagonal because of the advection matrix Âi. However, a

matrix can be diagonalized by its eigenvectors. Hence, the transformations

V = ΥX, Z = ΥY, and F̂ = ΥF̃ (3.33)

are considered where Υ is a matrix of the eigenvectors of Â and which has been

orthonormalized so that

Υ−1 = ΥT . (3.34)

Substituting this into (3.30) yields,

−
(
ΥY,i, ÂiΥX

)
+
(
LΥY, τ̂

[
LΥX−ΥF̃

])

+ (ΥY,i, IijΥX,j) =
(
ΥY,L−1L−TΥF̃

)

⇒ −
(
Y,i,Υ

T ÂiΥX
)

+
(
LY,ΥT τ̂Υ

[
LX− F̃

])

+
(
Y,i,Υ

T IijΥX,j

)
=
(
Y,ΥTL−1L−TΥF̃

)

⇒ − (Y,i,Λ,iX) +
(
LY, τ d

[
LX− F̃

])

+ (Y,i, IijX,j) =
(
Y,ΥTL−1L−TΥF̃

)
. (3.35)

In (3.35) Λi is a diagonal matrix of the eigenvalues of Âi and

τ d = ΥT τ̂Υ

= ΥTL−1τL−TΥ. (3.36)

It follows from (3.36) that

τ = LΥτ dΥTLT . (3.37)
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Finally, τ d designates a diagonal matrix. This form is reasoned by the fact that the

system of equations to be solved for X is fully decoupled. Therefore, each equation

has its own stabilization parameter and is not influenced by the stabilization of the

other equations. These results will be used in Section 3.3 to derive non-diagonal

stabilization matrices for MHD.

3.3 Stabilization for MHD Equations

Determination of the stabilization matrix is not a trivial matter. Much re-

search has gone into this area with expressions for the stabilization parameter be-

ing guided by numerical error analysis and asymptotic arguments. See (Shakib,

Hughes, and Johan 1991; Hughes 1995; Hughes et al. 1998; Codina 2002; Codina

and Hernández-Silva 2006; Codina et al. 2007; Hughes and Sangalli 2008) and ref-

erences therein for the development of the parameter. The essential points of this

operator are as follows

1. It is an algebraic approximation to L−1.

2. It is related to the fine scale Green’s function.

3. Specifically, it is the average value over a finite element of the fine-scale Green’s

function.

4. It is a matrix operator.

In general, the stabilization matrix will be a full matrix of dimension n × n where

n = nsd × neq, v + neq,s and a subscript v denotes a vector equation and a sub-

script s denotes a scalar equation. For incompressible MHD neq,v = 2, nsd = 3,

and neq,s = 2. Hence, the stabilization matrix will have dimension 8 × 8. In the

literature the stabilization matrix is typically assumed to be diagonal for simplic-

ity. Indeed, the present work uses a diagonal implementation of the stabilization

parameter. However, an attempt to develop a non-diagonal stabilization parameter

was undertaken. The new stabilization parameter for MHD did not exhibit any sig-

nificant improvement over conventional diagonal representations of the parameter.
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There is some evidence that suggests that a non-diagonal parameter may be bene-

ficial for some problems; particularly those with radically large and small magnetic

Prandtl numbers. Further work in this area will shed some light on this question.

The non-diagonal stabilization parameter for MHD developed here has the form

τ =




τVV 0 τVI 0

0T τV+
c 0T τ I−

c

τ IV 0 τ II 0

0T τV−
c 0 τ I+

c



. (3.38)

In (3.38) the submatrices τVV, τ II, τVI, and τ IV are diagonal while τ+
c and τ−c

are scalars. The boldface zero indicates the zero vector. In the results shown in

Chapters 4 and 5 the stabilization matrix is diagonal and so

τVI = τ IV = 0 (3.39)

and

τV,I−
c = 0. (3.40)

In the following sections, in addition to the full MHD equations, a one-dimensional

version of the steady MHD equations is considered. This system is known as the

steady Burgers MHD equations and is given by

uu,x −BB,x − νu,xx = 0 (3.41)

−Bu,x + uB,x − λB,xx = 0. (3.42)

The new stabilization parameter will first be developed in stages:

1. Stage 1: Development based on the Burgers MHD system without viscous or

magnetic diffusion

2. Stage 2: Generalization of the analysis from Stage 1 to the multi-dimensional
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MHD system

3. Stage 3: Development based on the full Burgers MHD equations accounting

for diffusion of the fields

3.3.1 Case 1: Pure Advection

In the absence of fluid and magnetic diffusion and external forcing the Burgers

MHD equations reduce to

uu,x −BB,x = 0 (3.43)

−Bu,x + uB,x = 0. (3.44)

In matrix form this is

AU,x = 0 (3.45)

with

A =


 u −B
−B u


 . (3.46)

The eigenvalues of A are

r1 = u−B, r2 = u+B. (3.47)

These are recognized as the Elsässer variables z+ = r2, z− = r1. The corresponding

eigenvector matrix (after orthonormalization) is

Υ =
1√
2


1 1

1 −1


 . (3.48)

The diagonalized system is therefore,

ΛV,x = 0 (3.49)
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where

Λ =


z
− 0

0 z+


 (3.50)

and

V =


z

+

z−


 . (3.51)

The GLS method applied to this system is

− (Z,ΛV) +
(
LZ,ΥTτΥLV

)
= 0. (3.52)

As in Section 3.2, the stabilization parameter for the diagonalized system is required

to be a diagonal matrix. In the advection-dominated case it takes the form

τ d = diag (τ1, τ2) (3.53)

with

τ1 =
h

2|z−| , τ2 =
h

2|z+| . (3.54)

Transforming the diagonal stabilization matrix back to the original variables results

in

τ =
1

2


τ1 + τ2 τ1 − τ2,

τ1 − τ2 τ1 + τ2


 . (3.55)

A simulation of the Burgers MHD equations (3.43)- (3.44) was performed for Re→
∞ and Rm → ∞. The boundary conditions were essential boundary conditions

wherein both the velocity and magnetic fields were pinned at the boundaries. A

diagonal and non-diagonal representation of the stabilization parameters were both

used and the results were compared. The results of are shown in Figures 3.3 and 3.4.
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Figure 3.3: The velocity field from Burgers MHD for large Re obtained

using diagonal and non-diagonal stabilization matrices.
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Figure 3.4: The magnetic field from Burgers MHD for large Re obtained

using diagonal and non-diagonal stabilization matrices.
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The non-diagonal stabilization parameter outperforms the diagonal stabiliza-

tion parameter. This behavior can be understood by considering the physics of the

problem. For such high values of Re and Rm the two equations are strongly coupled.

The diagonal version of the stabilization parameter neglects this crucial fact. These

results are promising. Further tests on the new stabilization parameter require a

generalization to multiple dimensions.

An expression for the purely advective multidimensional case can be derived

via an analogous procedure. The orthonormalized transformation matrix from prim-

itive variables to Elsässer variables is

Υ =
1√
2

Ψ (3.56)

where Ψ is the Elsässer transformation matrix,

Ψ =




I 0 I 0

0T 1 0T 1

I 0 −I 0

0T 1 0T −1



. (3.57)

Thus, the expression for the non-diagonal stabilization matrix is

τ =




1
2

(τ1 + τ3) I 0 1
2

(τ1 − τ3) I 0

0T 1
2

(τ2 + τ4) 0T 1
2

(τ2 − τ4)

1
2

(τ1 − τ3) I 0 1
2

(τ1 + τ3) I 0

0T 1
2

(τ2 − τ4) 0T 1
2

(τ2 + τ4)




(3.58)

with

τ1 =
h

2|z−| (3.59)

τ2 = h|z−| (3.60)

τ3 =
h

2|z+| (3.61)

τ4 = h|z+|. (3.62)
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3.3.2 Case 2: Adding in Diffusion

The transformations suggested in the previous section will not, in general,

diagonalize the full MHD system. This significantly complicates matters when deal-

ing with systems that involve both advection and diffusion. Applying the Elsässer

transformation to the full MHD equations results in the following diffusion matrix,

D =




1
2

(ν + λ) I 0 1
2

(ν − λ) I 0

0T 0 0T 0

1
2

(ν − λ) I 0 1
2

(ν + λ) I 0

0T 0 0T 0



. (3.63)

Note that when the magnetic Prandtl number (Prm = ν/λ) is unity the diffusion

matrix is still diagonal. Therefore, (3.58) is still valid but with different definitions

of the diagonal stabilization parameters. Building off of work on the stabilization

parameter for the Navier-Stokes equations (see (3.17) and (Shakib, Hughes, and

Johan 1991)), the diagonal stabilization parameters are

τ1 =
1√

z− · Gz− + CI (λ+ ν)2 G : G
(3.64)

τ2 =
1

8tr (G) τ1

(3.65)

τ3 =
1√

z+ · Gz+ + CI (λ+ ν)2 G : G
(3.66)

τ4 =
1

8tr (G) τ3

. (3.67)

We have tested this version of the non-diagonal stabilization parameter on the

two-dimensional Hartmann flow problem. This problem involves the steady, two

dimensional flow of an electrically conducting fluid in the presence of a uniform,

background magnetic field in the wall-normal direction. The test case involved

no-slip, impermeable boundary conditions with perfectly insulating walls. Thus,

ux = uy = 0 at the top and bottom surfaces and the magnetic induction is Bx = 0
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at the boundaries while By = B0 at the boundaries. The solution to this problem is

ux (y) = u0

(
1− cosh (Hay)

cosh (Ha)

)
(3.68)

Bx (y) =
B0u0

λ

tanh (Ha)

Ha

(
−y +

sinh (Hay)

sinh (Ha)

)
. (3.69)

In (3.68) and (3.69) y is the dimensionless wall-normal coordinate scaled by the

channel half-width h. The results of the simulation are presented in Figures 3.5

and 3.6.
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Figure 3.5: The velocity field in the Hartmann problem. A comparison

between the analytical solution and the simulations using di-

agonal and non-diagonal versions of the stabilization param-

eter.

This simulation was performed at a relatively moderate value of Re which may

be the reason that the stabilization matrices perform similarly. For this problem, it is

also possible to show that for Prm = 1 the non-diagonal and diagonal stabilization

matrices are the same; that is, the non-diagonal entries of the new stabilization

parameter are zero. A simulation of decaying homogeneous, isotropic turbulence

was also performed using a pseudospectral code but once again the results from the
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simulations with different stabilization matrices were very similar indicating that

there is no real advantage to the new non-diagonal stabilization matrix.
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Figure 3.6: The magnetic field in the Hartmann problem. A compari-

son between the analytical solution and the simulations us-

ing diagonal and non-diagonal versions of the stabilization

parameter is made.

With this in mind, it is instructive to consider the behavior of the non-diagonal

stabilization matrix in various parameter limits. The arguments presented here are

somewhat heuristic and should be placed on a firmer mathematical or numerical

foundation. The contributions from the non-diagonal stabilization matrix to the

momentum and induction equations are

τVVRV + τVIRI −→ momentum equation contribution (3.70)

τ IVRV + τ IIRI −→ induction equation contribution. (3.71)

The momentum and induction residuals are most active when the numerical method

is not able to capture all of the scales of the solutions, i.e. when Re→∞ or Rm→∞
or when both Reynolds numbers are very large simultaneously. When both fields ex-

hibit turbulent behavior we can expect both residuals to play a role in the numerical
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formulation. In the absence of the off-diagonal contributions from the stabilization

matrix, only the momentum or induction residual will be active in their correspond-

ing equations. A systematic study that demonstrates this behavior would consider

a high Reynolds number flow field where both Reynolds numbers are large. A good

starting point would be Prm = 1. A quantitative analysis of the magnitude of the

off diagonal terms of the stabilization matrix compared to the diagonal components

would indicate the relative importance of the cross coupling of the residuals in the

momentum and induction equations. We have begun such a study and results are

pending. Also of interest is the effect of Prm 6= 1. Such a situation may cause the

momentum residual to be active in both equations while the induction residual is

very small. Without a non-diagonal formulation the contribution to the induction

equation from the momentum residual would go unnoticed.

3.3.3 Towards a Genuine Stabilization Parameter for MHD

A systematic diagonalization of the Burgers MHD system will be carried out

in this section thereby leading to an expression for the non-diagonal stabilization

parameter that is specific to MHD. The Burgers MHD equations have the advective

diffusive form,


 u −B
−B u




︸ ︷︷ ︸
A


u
B



,x

−


ν 0

0 λ




︸ ︷︷ ︸
D


u
B



,xx

=


0

0


 . (3.72)

The GLS weak-form for this equation is

− (W,x,AU) + (LW, τLU) + (W,x,DU,x) = 0 (3.73)

where

τ =


τ

VV τVI

τ IV τ II


 (3.74)
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and W = [w, c]T is a vector of weighting functions. The Cholesky factorization of

the diffusion matrix is

L =



√
ν 0

0
√
λ


 . (3.75)

Applying to this equation the transformation given in (3.27) results in

−
(
Z,x, ÂV

)
+ (LZ, τ̂LV) + (Z,x,V,x) = 0 (3.76)

where

Â =




u
ν

− B√
νλ

− B√
νλ

u
λ


 . (3.77)

The eigenvalues of Â are

r1 = rf + rb, r2 = rf − rb (3.78)

where

rf =
u

2νλ

(
Pr2

mλ+ ν

Prm

)
, (3.79)

rb =
u

2λPrm

√
Pr2

m − 2

(
1− 2B2

u2

)
Prm + 1 (3.80)

The corresponding eigenvector matrix is

Υ =




u−λr1
B

PrmP
B`√

Prm − (u−λr1)P
`


 (3.81)
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with

P =
2λrb

(u− λr1)2 + Prm

(3.82)

and

` = P 2

[(
Prm

B

)2

+ (u− λr1)2

]
. (3.83)

Finally, the expression for the stabilization matrix is,

τVV =
ντ1

B2
(u− λr1)2 +

ντ2

B2

(
PrmP

`

)2

(3.84)

τVI =

√
νλPrm τ1

B
(u− λr1)−

√
νλPr2

m

B
(u− λr1)

(
P

`

)2

(3.85)

τ IV =

√
νλPrm τ2

B
−
√
νλPr2

m

B
(u− λr1)

(
P

`

)2

(3.86)

τ II = τ1λPrm + τ2λ

(
P (u− λr1)2

`

)
. (3.87)

This version of the stabilization parameter has not yet been implemented

and tested. However, a few observations can be made based on the form of the

components of the stabilization matrix. First of all, the dependence on Prm is a

desirable property as it helps account for situations when one field dominates over

the other. Such a situation arises frequently in MHD systems such as channel flow

simulations of a liquid metal or astrophysical simulations of stars. A drawback of

this model may be that it is somewhat cumbersome to implement. Numerical tests

will help to highlight the feasibility of this expression.



CHAPTER 4

New Contributions to MHD Turbulence Modeling

This chapter presents the major contributions of this work. Section 4.1 seeks to

place the new models in context and to this end provides an overview of the classical

eddy viscosity approach to turbulence modeling. Section 4.2 presents new LES

models derived from the VMS formulation. Following this a new type of EV model

is introduced in Section 4.3. The chapter closes with Section 4.4 by presenting a

mixed model (MM) that seeks to encompass the strengths of both the VMS-derived

models and the new eddy viscosity model.

4.1 Classical Eddy Viscosity Models

This section introduces the eddy viscosity concept. The numerical approxima-

tion to the filtered equations in Section 2.7.1 written in a variational form is

A
(
Wh,Uh

)
−
(
∇wh,TV

)
−
(
∇ch,TI

)
=
(
wh, fV

)
+
(
ch, f I

)
. (4.1)

In practice, this problem is replaced by

A
(
Wh,Uh

)
+M

(
Wh,Uh;h, cP

)
=
(
wh, fV

)
+
(
ch, f I

)
(4.2)

where

M
(
Wh,Uh;h, cP

)
=MV

(
wh,Uh;h, cV

P

)
+MI

(
ch,Uh;h, cI

P

)
(4.3)

is a model that approximates the terms with the subgrid stress tensors and cV,I
P rep-

resent model parameters for the momentum and induction equation, respectively.

The central structures that are modeled are the subgrid stress tensors TV and TI.

Portions of this chapter previously appeared as: D. Sondak and A.A. Oberai. 2012. “Large

Eddy Simulation Models for Incompressible Magnetohydrodynamics Derived from the Variational

Multiscale Formulation.” Physics of Plasmas 19:102308.
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The subgrid stress tensor in the momentum equation has a long and rich history.

Remarks:

(4.1) was stated to be the numerical approximation to the filtered equations. How-

ever, if a projection operator was applied to the MHD equations and a numerical

solution was used to approximate the solution to the projected fields, the notation

would be the same as in (4.1).

Boussinesq was the first to propose a turbulent eddy viscosity as a mechanism

for turbulent transport (see Schmitt 2007, for some history). This concept was made

via analogy with the concept of classical molecular viscosity µ which characterizes

the amount of momentum that is transported between neighboring fluid elements.

The idea of the turbulent eddy viscosity essentially considers a fluid eddy as a ba-

sic fluid structure with momentum transported between eddies in a turbulent flow

field. Although this idea has limited use in developing a phenomenological theory

of turbulence, it has enjoyed immense popularity in the numerical community. In

this section, an overview of the turbulent eddy diffusivity idea applied to MHD is

discussed.

Remarks:

The turbulent viscosity is not a property of the fluid but a property of the flow field.

The goal behind the eddy diffusivity is to relate the subgrid stress tensor to char-

acteristic properties of the flow field such as the velocity field and the magnetic

induction. In the case of numerical simulations, the characteristic properties of

the flow field are the computed numerical quantities. Through analogy with the

traditional stress tensor the subgrid stress tensor is approximated as

TV ≈ −2νT∇suh (4.4)

The induction equation induces a turbulent magnetic diffusivity, λT which results

in a subgrid stress tensor of

TI ≈ −2λT∇aBh. (4.5)
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From an analytical and numerical standpoint modeling the subgrid stress tensor with

a turbulent eddy viscosity model is very convenient. This is because the form of the

equations is essentially unchanged and therefore no new mathematical operators are

introduced into the equations and the numerical implementation is straightforward.

Remarks:

Sophisticated subgrid stress tensor closures were derived by (Yoshizawa 1990) for

the Reynolds averaged MHD equations. However, these models are unwieldy to

implement from a numerical standpoint.

Remarks:

The diffusivities are represented as scalars. In general, the diffusivities are matrices.

However, for an isotropic fluid the diffusivities are scalar quantities.

This is not the whole story, however. In order to close the equations, expressions

for the turbulent diffusivities are still required. One of the first closure models for

fluid dynamics was provided by (Prandtl 1925a). In this model, the turbulent eddy

viscosity is proportional to a characteristic velocity scale via the mixing length, `V.

A modern version of this hypothesis is presented in (Pope 2000):

µT ≈ ρ`2
V

∣∣2∇suh
∣∣ . (4.6)

Similarly, in (Theobald, Fox, and Sofia 1994) the turbulent magnetic diffusivity

satisfies an equation similar to,

λT ≈ `2
I

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣ . (4.7)

Remarks:

• The expression for the turbulent magnetic diffusivity can be found via anal-

ogy with the Drude model for resistivity in electrodynamics. This is done in

Section 4.3.1.
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• In the expression for the turbulent viscosity µT we use the notation

|A| =
√
A : A (4.8)

for the matrix A.

To complete the closure, an expression for the mixing length is needed. The

Smagorinsky mixing length was proposed by (Smagorinsky 1963). It postulates that

the mixing length is proportional to the filter width. Typically, the filter width is

equal to the spacing between the grid points, h. Thus,

`V ≈
√
CV
S h, (4.9)

`I ≈
√
CI
S h. (4.10)

The classical closure models for the incompressible MHD equations are therefore,

TV ≈ −2CV
S h

2
∣∣2∇suh

∣∣∇suh (4.11)

TI ≈ −2CI
Sh

2

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣∇aBh. (4.12)

The coefficients of proportionality are called the Smagorinsky coefficients. Ideally,

they would be constant but experience has shown that this is not at all the case.

There are also instances in which these coefficients are negative. Such cases corre-

spond to the phenomenon of backscatter. Using (4.11) and (4.12) in (4.1) results in

the variational form,

A
(
Wh,Uh

)
+
(
∇wh, 2CV

S h
2
∣∣2∇suh

∣∣∇suh
)

+

(
∇ch, 2CI

Sh
2

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣∇aBh

)
=
(
wh, fV

)
+
(
ch, f I

)
. (4.13)

Note that in (4.13) the model terms are given by,

MV

(
wh,Uh;h, cV

P

)
=
(
∇wh, 2CV

S (h)
∣∣2∇suh

∣∣∇suh
)

(4.14)

MI

(
ch,Uh;h, cI

P

)
=

(
∇ch, 2CI

S (h)

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣∇aBh

)
(4.15)
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where the original Smagorinsky coefficients have been replaced by the mesh-dependent

Smagorinsky coefficients,

CV
S h

2 −→ CV
S (h) (4.16)

CI
Sh

2 −→ CI
S (h) . (4.17)

The only thing left to do is to determine the Smagorinsky coefficients CV
S and CI

S.

In general this is not a trivial task and considerable work over the years has fo-

cused on determining their correct value. Treating the Smagorinsky coefficients as

universal constants would require them be tuned for every simulation that is per-

formed. This is a highly ineffective and undesirable way to operate. An inspired

way of determining the Smagorinsky coefficients during a simulation was introduced

by (Germano et al. 1991) and is referred to as the Germano identity. Using the Ger-

mano identity with Smagorinsky’s mixing length results in the dynamic Smagorinsky

EV (DSEV) model. The variational counterpart to the Germano identity was intro-

duced in (Oberai and Wanderer 2005). In the next section, the variational Germano

identity will be used to determine the Smagorinsky coefficients for MHD.

4.1.1 Variational Germano Identity for MHD

The Germano identity is a relationship between the scales of a problem. This

relationship has a physical basis in turbulence due to the self-similarity of the small

scales (i.e. the scales that are to be modeled). A brief summary of the Germano

identity is now presented.

1. Consider the problem on two grids, h and H, where H > h and the solution

is desired on the h−grid.

2. Assume that the form of the model is the same on each grid. This

assumption is critical and is attributed to the self-similarity of turbulence at

small scales.

3. Project the h−grid problem onto the H−grid.
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4. Subtracting the projected h−grid problem from the original H−grid problem

gives constraints on a model parameter.

The following discussion is a specialization of the more general theory worked out

by (Oberai and Wanderer 2005). To put these points into mathematical language

a hierarchy of nested function spaces is introduced such that VH ⊂ Vh ⊂ V . The

variational statement on the h−grid is: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

A
(
Wh,Uh

)
+M

(
Wh,Uh;h, cP

)
=
(
wh, fV

)
+
(
ch, f I

)
(4.18)

and the corresponding problem on the H− grid is: Find UH ∈ VH s.t. ∀WH ∈ VH

A
(
WH ,UH

)
+M

(
WH ,UH ;H, cP

)
=
(
wH , fV

)
+
(
cH , f I

)
. (4.19)

Due to the fact that the weighting functions are arbitrary, and because of the nested

function spaces, it is permissible to choose Wh = WH . Making this substitution

corresponds to projecting the h−grid equation to the H−grid. At this point, the two

equations are subtracted to arrive at the variational form of the Germano identity.

M
(
WH ,UH ;H, cP

)
−M

(
Wh,Uh;h, cP

)

= −
(
A
(
WH ,UH

)
−A

(
Wh,Uh

))
. (4.20)

If it assumed that the numerical solutions on both scales, h and H, are optimal then

Uh = PhU and UH = PHU. Further assuming that PHPh = PH it is possible to

write UH = PHUh in (4.20). The result is then a set of equations that involve only

the numerical solution Uh, and its projection PH . This can be used to determine

the unknown parameters cP .

This procedure is further specialized to the MHD equations below. It is as-

sumed that the mesh parameters are related via,

H = αh, α ∈ Z, α > 1. (4.21)
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This allows CV,I
S (H) to be written in terms of CV,I

S (h),

CV,I
S (H) = α2CV,I

S (h) . (4.22)

Before proceeding, it is noted that the Smagorinsky coefficients find themselves in

different equations (i.e. CV
S is multiplying wh while CI

S is multiplying ch). With

this in mind, and exploiting the arbitrariness of the weighting functions, the two

Smagorinsky coefficients are determined separately. CV
S is determined first by choos-

ing Wh =
[
wh, qh, 0, 0

]T
which allows the focus to be solely on the momentum

equation. Then,

(
wh,

∂uh

∂t

)
−
(
∇wh,NV

h

)
+ 2CV

S (h)
(
∇swh,

∣∣2∇suh
∣∣∇suh

)

−
(
∇ ·wh, P h

)
+ ν

(
∇swh,∇suh

)
−
(
∇qh,uh

)
= 0. (4.23)

On the H grid,

(
wH ,

∂uH

∂t

)
−
(
∇wH ,NV

H

)
+ 2α2CV

S (h)
(
∇swH ,

∣∣2∇suH
∣∣∇suH

)

−
(
∇ ·wH , PH

)
+ ν

(
∇swH ,∇suH

)
−
(
∇qH ,uH

)
= 0. (4.24)

Choosing Wh = WH and subtracting the h equation from the H equation results

in

−
(
∇wH ,NV

H −NV
h

)
− 2CV

S (h)×
[
−α2

(
∇swH ,

∣∣2∇suH
∣∣∇suH

)
+
(
∇swH ,

∣∣2∇suh
∣∣∇suh

)]
= 0.

Note that the linear terms vanish. This is demonstrated on the pressure term,

−
(
∇ ·wH , PH

)
+
(
∇ ·wH , P h

)
= −

(
∇ ·wH ,

(
PH − P h

))

= −
(
∇ ·wH ,P′HP h

)

= 0
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where P′H is the projection onto the subgrid scales corresponding to the H−grid.

The last line follows because P′H does not live on the H−grid while wH lives only on

the H−grid. Hence, they are orthogonal and therefore their inner product is zero.

The other linear terms are similar.

Remarks:

The nonlinear terms do not cancel due to the multiplications that occur within

them. Because of these multiplications, information from the H−grid can cascade

to scales represented by the h−grid and their difference is not guaranteed to be

solely on the subgrid scales corresponding to the H−grid.

Solving for CV
S (h) gives

CV
S (h) =

1

2

(
∇wH ,NV

H

)
−
(
∇wH ,NV

h

)

α2 (∇swH , |2∇suH | ∇suH)− (∇swH , |2∇suh| ∇suh)
. (4.25)

Now the same analysis is performed by choosing Wh =
[
0, 0, ch, sh

]T
which

allows the determination of CI
S. This leads to

(
ch,

∂Bh

∂t

)
−
(
∇ch,N I

h

)
+ 2CI

S (h)

(
∇ach,

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣∇aBh

)

−
(
∇ · ch, rh

)
+ λ

(
∇ach,∇aBh

)
−
(
∇sh,Bh

)
= 0.

On the H grid,

(
cH ,

∂BH

∂t

)
−
(
∇cH ,N I

H

)
+ 2α2CI

S (H)

(
∇acH ,

∣∣∣∣
√
µ0

ρ
jH
∣∣∣∣∇aBH

)

−
(
∇ · cH , rH

)
+ λ

(
∇acH ,∇aBH

)
−
(
∇sH ,BH

)
= 0.

The equations on different grids are subtracted to give

−
(
∇cH ,N I

H −N I
h

)
+
(
∇cH ,N I

h

)
− 2CI

S (h)×
[
−α2

(
∇acH ,

∣∣∣∣
√
µ0

ρ
jH
∣∣∣∣∇aBH

)
+

(
∇acH ,

∣∣∣∣
√
µ0

ρ
jh
∣∣∣∣∇aBh

)]
.
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Solving for CI
S (h) yields

CI
S (h) =

1

2

(
∇cH ,N I

H

)
−
(
∇cH ,N I

h

)

α2
(
∇acH ,

∣∣∣
√

µ0

ρ
jH
∣∣∣∇aBH

)
−
(
∇acH ,

∣∣∣
√

µ0

ρ
jh
∣∣∣∇aBh

) . (4.26)

4.1.2 Alignment-based Dynamic Smagorinsky Model

This section concludes by introducing a new type of Smagorinsky model that

was developed specifically for MHD in (Müller and Carati 2002). The goal of this

model is to circumvent the issue that classical EV models preclude inverse cascades of

energy. It is especially desirable to have a model that can account for this behavior

since the inverse energy cascade is important in MHD. The model for the eddy

viscosities that was introduced is:

νT = CV
S h

2

√
abs

(
∇suh :

1√
µ0ρ
∇sBh

)
(4.27)

λT = CI
Sh

2sgn
(
jh · ωh

)
√

abs

(√
µ0

ρ
jh · ωh

)
(4.28)

where sgn (·) gives the sign of its argument, abs (·) gives the absolute value of its

argument, and ωh = ∇ × uh is the fluid vorticity. This model was derived by

considering the dissipation in the cross-helicity equation. The dissipation associated

with the terms from the momentum equation is proportional to the tensor inner

product of the symmetric gradients of the velocity and magnetic fields. The cross

helicity dissipation due to the terms in the induction equation is proportional to

the vector dot product of the current density and fluid vorticity fields. We refer

to this model as the alignment-based dynamic Smagorinsky (DSEVA) model. The

reason for this terminology emanates from the magnetic diffusivity in (4.28). The

turbulent magnetic diffusivity is largest when the current density and vorticity are

aligned. This model also has the potential to act as an energy source. The model

has been designed so that when the fields are aligned it acts as an energy sink and

when the fields are anti-aligned it acts as an energy source. This is consistent with

the local MHD physics. The local cross-helicity dissipation dictates the direction of
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energy transfer. The sgn function in (4.28) accounts for the sign of the cross helicity

dissipation due to the induction equation.

4.2 Variational Multiscale Formulation for MHD

The VMS formulation is now specialized to incompressible MHD. The general

idea of the VMS formulation was introduced in Section 2.7.2. For MHD the fields

are decomposed as

u = uh + u′, P = P h + P ′ (4.29)

B = Bh + B′, r = rh + r′ (4.30)

and the weighting functions as

w = wh + w′, q = qh + q′ (4.31)

c = ch + c′, s = sh + s′. (4.32)

Introducing this decomposition into the variational form (2.184) results in

AV
(
Wh,Uh

)
−
(
∇wh,NV

C + NV
R

)
−
(
∇ ·wh, P ′

)

+
(
∇swh, 2ν∇su′

)
−
(
∇qh,u′

)

+AV
(
W′,Uh

)
−
(
∇w′,NV

C + NV
R

)
− (∇ ·w′, P ′)

+ (∇sw′, 2ν∇su′)− (∇q′,u′)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C + N I
R

)
−
(
∇ · ch, r′

)

+
(
∇ach, 2λ∇aB′

)
−
(
∇sh,B′

)

+AI
(
W′,Uh

)
−
(
∇c′,N I

C

)
− (∇ · c′, r′)

+ (∇ac′, 2λ∇aB′)− (∇s′,B′)

=
(
wh, fV

)
+
(
ch, f I

)
+
(
w′, fV

)
+
(
c′, f I

)
. (4.33)
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In (4.33) the cross stresses for the momentum and induction equation are defined

respectively as

NV
C = NV

C

(
Uh,U

′
)

=
(
uh ⊗ u′ + u′ ⊗ uh

)
− 1

µ0ρ

(
Bh ⊗B′ + B′ ⊗Bh

)
(4.34)

N I
C = N I

C

(
Uh,U

′
)

= −
(
uh ⊗B′ + B′ ⊗ uh

)
+
(
Bh ⊗ u′ + u′ ⊗Bh

)
(4.35)

while

NV
R = NV

R

(
Uh,U

′
)

= (u′ ⊗ u′)− 1

µ0ρ
(B′ ⊗B′) (4.36)

N I
R = N I

R

(
Uh,U

′
)

= − (u′ ⊗B′) + (B′ ⊗ u′) (4.37)

define the Reynolds stress contributions to the momentum and induction equations

respectively. The term “Reynolds stresses” is a relic from classical turbulence mod-

eling vernacular. In fact, these terms are not strictly Reynolds stresses because

they are not the result of the Reynolds-averaged approach. We refer to these terms

as Reynolds stresses and subgrid correlations interchangeably in this work. The

form (4.33) actually represents two problems on two different scales. Thus, the two

variational statements are: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

AV
(
Wh,Uh

)
−
(
∇wh,NV

C + NV
R

)
−
(
∇ ·wh, P ′

)

+
(
∇swh, 2ν∇su′

)
−
(
∇qh,u′

)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C + N I
R

)
−
(
∇ · ch, r′

)

+
(
∇ach, 2λ∇aB′

)
−
(
∇sh,B′

)

=
(
wh, fV

)
+
(
ch, f I

)
(4.38)
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and Find U
′ ∈ V ′

s.t. ∀W
′ ∈ V ′

AV
(
W′,Uh

)
−
(
∇w′,NV

C + NV
R

)
− (∇ ·w′, P ′)

+ (∇sw′, 2ν∇su′)− (∇q′,u′)

+AI
(
W′,Uh

)
−
(
∇c′,N I

C + N I
R

)
− (∇ · c′, r′)

+ (∇ac′, 2λ∇aB′)− (∇s′,B′)

=
(
w′, fV

)
+
(
c′, f I

)
. (4.39)

The solution to (4.39) is approximated by (2.263) as




u′

P ′

B′

r′



≈ −P′τP′T




RV
(
Uh
)

∇ · uh

RI
(
Uh
)

∇ ·Bh




(4.40)

where

RV
(
Uh
)

=
∂uh

∂t
+∇ ·NV

(
uh,Bh

)
+∇P h − ν∇2uh − fV (4.41)

RI
(
Uh
)

=
∂Bh

∂t
+∇ ·N I

(
uh,Bh

)
+∇rh − λ∇2Bh − f I. (4.42)

For an extensive discussion on the parameter τ and its design for MHD refer to

Chapter 3. Presently, we take

τ =




τVV 0 0 0

0T τV
c 0T 0

0 0 τ II 0

0T 0 0T τV
c



. (4.43)

τVV = diag
(
τV
)

(4.44)

τ II = diag
(
τ I
)
. (4.45)
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The specific forms of the entries of the diagonal stabilization matrix will be provided

in Sections 4.2.1 and 4.2.2 specialized to the particular Fourier spectral and finite

element methods, respectively. The final VMS statement reads: Find Uh ∈ Vh s.t.

∀Wh ∈ Vh

AV
(
Wh,Uh

)
−
(
∇wh,NV

C + NV
R

)
−
(
∇ ·wh, P ′

)

+
(
∇swh, 2ν∇su′

)
−
(
∇qh,u′

)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C + N I
R

)
−
(
∇ · ch, r′

)

+
(
∇ach, 2λ∇aB′

)
−
(
∇sh,B′

)

=
(
wh, fV

)
+
(
ch, f I

)
(4.46)

with u′, P ′, B′, and r′ given by (4.40) and the stabilization parameter given by

relations (4.43)- (4.45). In the following two subsections, this statement is specialized

to the particular numerical methods that are used to test the models.

4.2.1 Specialization to Fourier-Spectral Method

As previously noted, the Fourier-spectral basis consists of an orthogonal set of

basis functions. Further, the projection operator that is used to split the solution

into resolved and unresolved scales is selected so that the space of unresolved solu-

tions is orthogonal to the space of resolved solutions. Endowed with this property,

all inner products of linear terms between resolved and unresolved quantities vanish.

Thus, the VMS statement for the Fourier-spectral method is: Find Uh ∈ Vh s.t. ∀
Wh ∈ Vh

AV
(
Wh,Uh

)
−
(
∇wh,NV

C + NV
R

)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C + N I
R

)

=
(
wh, fV

)
+
(
ch, f I

)
. (4.47)
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After introducing the Fourier-basis functions, the resulting system of equations is

∂ûk(t)
∂t

+ ν|k|2ûk = Qf̂V
k −P

(
N̂V + N̂V

C + N̂V
R

)

∂B̂k(t)
∂t

+ λ|k|2B̂k = Qf̂ I
k −

(
N̂ I + N̂ I

C + N̂ I
R

)
· k.

(4.48)

Recall that P and Q were defined by (2.213) and (2.214), respectively. The root-

mean-square velocity and magnetic inductions are used in the definition of the sta-

bilization operator for the spectral case.

τV =
1√(

2
h

)2
(

(uhrms)
2 + (Bh

rms)
2
)

+ 3π
(

4ν
h2

)2

(4.49)

τ I =
1√(

2
h
Bh

rms

)2
+ 3π

(
4λ
h2

)2
. (4.50)

Remarks:

• The contributions of the time terms in the stabilization matrix have been

ignored.

• Expressions for the stabilization parameters for the continuity equations are

not provided as these equations are not solved in the spectral case.

4.2.1.1 Subgrid Dynamo

An exciting phenomenon in numerical work in MHD is the subgrid dynamo.

The MHD dynamo phenomenon occurs when the turbulent velocity fluctuations

transfer energy to the large scale magnetic field. The subgrid dynamo is the nu-

merical counterpart to this phenomenon. The question becomes: Are the subgrid

turbulent velocity fluctuations able to transfer energy to the resolved magnetic field?

The VMS decomposition leads to a natural setting for this analysis in part due to the

solution decomposition that is used and in part due to the fact that the formulation

permits local inverse cascades of energy. To begin the analysis the energy equation

for the induction equation in the spectral setting is developed. This permits a more

straightforward analysis of the subgrid dynamo terms since the linear VMS terms
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vanish. It is found that the VMS formulation is indeed able to capture the subgrid

dynamo effect. However, under question are the conditions under which the VMS

formulation is able to do so. These conditions are analyzed for physical fidelity. It is

found that the VMS formulation is able to capture the subgrid dynamo effect under

physically realistic conditions. The magnetic induction is in Alfvén velocity units in

the following discussion.

Setting Wh = [0, 0,Bh, 0]T in (4.47) results in the energy equation for the

magnetic induction.

dKI

dt
=

∫

Ω

Bh · f I dΩ− λ
∫

Ω

|∇Bh|2 dΩ + T K
I + T C

I + T R
I . (4.51)

The energy transfers between the resolved and unresolved scales are given by

T K
I =

∫

Ω

∇Bh :
[
Bh ⊗ uh − uh ⊗Bh

]
dΩ

T C
I = −

∫

Ω

∇Bh :
[
Bh ⊗ u′ + B′ ⊗ uh − uh ⊗B′ − u′ ⊗Bh

]
dΩ

T R
I =

∫

Ω

∇Bh : [B′ ⊗ u′ − u′ ⊗B′] dΩ.

In Equation (4.51) the energy transfer terms on the right hand side are described

as follows:

• T K
I represents the transfer of energy between uh and Bh.

• T C
I represents the transfer of energy between resolved and unresolved scales.

• T R
I represents the transfer of energy due to Reynolds stress terms.

An important observation is that if any of the terms on the right hand side is negative

then the energy of the magnetic induction is decreasing in time. For example, the

dissipation term takes energy away as expected. With this observation, (4.51) is

analyzed with the subgrid dynamo in mind.

The idea behind the subgrid dynamo is that the unresolved velocity field passes

energy to the resolved magnetic field thereby increasing the energy of the resolved

magnetic induction. Another way of thinking about this is that the turbulent fluc-

tuations give energy to the large scale magnetic field. From (4.51) we see that T C
I
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and T R
I include correlations between the unresolved velocity field and the resolved

magnetic field. However, it is well-known that the VMS formulation with the first

order approximation to u′ is not able to represent terms of the form of T R
I with

any effectiveness. With this in mind, the consideration of the Reynolds stress terms

are placed on the shelf for the time-being. It is entirely possible that the Reynolds

stress terms may contribute significantly to the subgrid dynamo effect. It may even

be possible that the subgrid dynamo effect cannot be fully captured without the

contributions from the Reynolds stresses. If this is indeed the case, then a modifi-

cation to the VMS formulation will be required to take these important effects into

account. Either way, at this point it is taken to be sufficient to analyze T C
I with the

goal of determining if it has a role to play in the subgrid dynamo effect.

The subgrid dynamo can come from two terms in T C
I . These are

T (1)
D = −

∫

Ω

∇Bh :
(
Bh ⊗ u′

)
dΩ

and

T (2)
D =

∫

Ω

∇Bh :
(
u′ ⊗Bh

)
dΩ.

However, it can be shown that T (2)
D = 0 so in fact the subgrid dynamo only comes

from T (1)
D .

T (2)
D =

∫

Ω

∇Bh :
(
u′ ⊗Bh

)
dΩ

=

∫

Ω

Bh
i,ju
′
jB

h
i dΩ

= −
∫

Ω

Bh
i

(
u′jB

h
i

)
,j

dΩ

= −
∫

Ω

Bh
uu
′
jB

h
i,j dΩ

= −
∫

Ω

Bj
i,ju
′
jB

h
i dΩ

= −
∫

Ω

∇Bh :
(
u′ ⊗Bh

)
dΩ

= −T (2)
D .
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Thus T (2)
D = −T (2)

D which is only true if T (2)
D = 0. So, the subgrid dynamo (if it

exists) emanates from the term T C
I in the form of

TD = −
∫

Ω

∇Bh :
(
Bh ⊗ u′

)
dΩ. (4.52)

The next step is to determine when TD is positive. As a reminder, the reason it

should be positive is so that T C
I is positive which then ensures that energy is being

pumped back into the resolved magnetic induction. Another way of writing this is

TD > 0⇒ T C
I > 0

T C
I > 0⇒ Positive term on right hand side (RHS) of (4.51)

Positive term on RHS of (4.51)⇒ KI has energy source!

The approximation for the unresolved velocity field is introduced into TD. That is

u′ ≈ −τVVP′ [∇ ·
(
uh ⊗ uh

)
−∇ ·

(
Bh ⊗Bh

)]
.

So

TD = τVV

∫

Ω

[
Bh · ∇Bh

]
· P′ [∇ ·

(
uh ⊗ uh

)
−∇ ·

(
Bh ⊗Bh

)]
dΩ (4.53)

= τVV

∫

Ω

[
∇ ·
(
Bh ⊗Bh

)]
· P′ [

uh ⊗ uh
]

dΩ

− τVV

∫

Ω

[
∇ ·
(
Bh ⊗Bh

)]
· P′ [

uh ⊗ uh
]

dΩ (4.54)

= τVV

∫

Ω

P′ [∇ ·
(
Bh ⊗Bh

)]
· P′ [

uh ⊗ uh
]

dΩ

− τVV

∫

Ω

P′ [∇ ·
(
Bh ⊗Bh

)]
· P′ [

uh ⊗ uh
]

dΩ. (4.55)

The last step is possible because the term ∇ ·
(
Bh ⊗Bh

)
can have resolved and

unresolved components. This is because in spectral methods the trigonometric basis

functions are added in wavenumber space thereby providing some instances when the

wavenumber is, for example, two times larger than the cutoff wavenumber. However,

since the inner products involve a term on the unresolved scales the only way the
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inner product will be nonzero is if the first term in the product is projected to the

fine scales. Another way of thinking about this is that even if the first term was

not projected to the fine scales and the inner product was taken then the resolved

scales part would be zero and one would only be left with a multiplication of the

unresolved scales. This leads to

TD =τVV

∫

Ω

P′ (∇ ·
[
Bh ⊗Bh

])
· P′ (∇ ·

[
uh ⊗ uh

])
dΩ

︸ ︷︷ ︸
≷0

− τVV

∫

Ω

∣∣∣P′ (∇ ·
[
Bh ⊗Bh

])∣∣∣
2

dΩ

︸ ︷︷ ︸
>0

.

In order for TD to be positive, something must be said about the first term in the

above expression. First of all, if this term is less than zero then there is no hope

for TD to be positive. Secondly, even if the first term is positive something more

must happen in order to ensure that TD is positive. Thus, not only should the first

term be positive but it should also be larger than the second term (which is always

positive). Clearly, if the velocity field is aligned with the magnetic induction then

the first term is positive. Recall from Section 2.2.7 that in MHD the fields tend to

align. Hence,

uh = βBh.

Using this relation in the expression for the subgrid energy transfer term yields,

TD = τVV

∫

Ω

β2
∣∣∣P′ (∇ ·

[
Bh ⊗Bh

])∣∣∣
2

dΩ− τVV

∫

Ω

∣∣∣P′ (∇ ·
[
Bh ⊗Bh

])∣∣∣
2

dΩ

= τVV

∫

Ω

(
β2 − 1

) ∣∣∣P′ (∇ ·
[
Bh ⊗Bh

])∣∣∣
2

dΩ.

It is immediately apparent that if |β| > 1 then the first term is positive and greater

than the second term. This condition also means that the velocity field must dom-

inate the magnetic field (i.e. the velocity field is stronger than the magnetic field).

The question now becomes whether or not this is physical or if it is only a mathe-

matical artifact from the VMS formulation.
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The assessment of if the VMS conditions are physical or not is initiated by

considering a paper on the growth of correlations in MHD. In (Pouquet, Meneguzzi,

and Frisch 1986) the growth correlation is defined as

θ =
HC

KT

and is shown to always increase. That is, the velocity field and magnetic induction

try to align themselves. This tendency toward field alignment was demonstrated in

Section 2.2.7. If u = βB then

θ =
2β

(β2 + 1)
.

−10 −5 0 5 10
β

−1.0

−0.5

0.0

0.5

1.0

θ

Figure 4.1: Plot of growth correlation as a function of the alignment pa-

rameter β.

Figure 4.1 shows how the growth correlation changes with β. To gain an

understanding of what is going on, we only consider β > 0. Note that as θ approaches

its maximum value from the left this corresponds to the situation of β < 1 since

max (θ (β = [0,∞])) = 1 when β = 1. When β < 1 the situation is such that the

magnetic induction dominates the velocity field. Thus, in this case, the magnetic

induction transfers energy to the velocity field which precludes the subgrid dynamo.

However, when θ approaches its maximum value from the right the situation is such
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that β > 1. This means that the velocity field dominates the magnetic induction

and that energy is transferred from the velocity field to the magnetic field. This

is exactly what happens with the subgrid dynamo. The same reasoning applies for

β < 0. It is therefore concluded that conditions imposed by the VMS formulation to

capture the subgrid dynamo effect are not simply mathematical artifacts. They are

in fact consistent with the theory. Note, however, that this explanation is contingent

upon the growth correlation always increasing in strength.

4.2.2 Specialization to Finite Element Method

Using a polynomial basis will typically result in the same variational state-

ment as (4.46). However, for simplicity of implementation we neglect gradients of

the subgrid scales. Note that if the fine scale space is orthogonal to the finite el-

ement space then these terms vanish identically (see Codina 2002). The resulting

variational statement is: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

AV
(
Wh,Uh

)
−
(
∇wh,NV

C + NV
R

)
−
(
∇ ·wh, P ′

)
−
(
∇qh,u′

)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C + N I
R

)
−
(
∇ · ch, r′

)
−
(
∇sh,B′

)

=
(
wh, fV

)
+
(
ch, f I

)
. (4.56)

The stabilization matrices in the unresolved scales in (4.56) are given by

τV =
1√(

2CV
t ρ

∆t

)2

+ ρ2u · Gu + Cµµ2 ‖G‖2 + CBρ
µ0
|B|2 ‖G‖

(4.57)

τ I =
1√(

2CI
t

∆t

)2

+ u · Gu + B · GB + Cλλ2 ‖G‖2

(4.58)

τV
c =

1

8CV
t tr (G)

(4.59)

τ I
c =

1

8CI
ttr (G)

(4.60)
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where

‖G‖ =
√
G : G (4.61)

and the components of G are

Gij =
∂ξk
∂xi

∂ξk
∂xj

. (4.62)

Also note that tr(G) denotes the trace of the matrix G,

tr (G) =

nsd∑

i=1

Gii. (4.63)

4.3 Residual-based Eddy Viscosity Model

This section will return to the eddy viscosity concept introduced in Section 4.1.

A new type of eddy viscosity model for MHD based on the VMS formulation is intro-

duced. The model builds upon and generalizes a hydrodynamic analog introduced

in (Oberai et al. n.d.). The new residual-based eddy diffusivities are

µT = Cρh

√
|u′|2 +

1

µ0ρ
|B′ |2 (4.64)

λT = Ch

√
|u′|2 +

1

µ0ρ
|B′ |2 (4.65)

where

C =

(
4

27

)1/2
1

C
3/2
K π

(4.66)

and CK = 2.2 is the Kolmogorov constant for MHD turbulence as suggested in (Beres-

nyak 2011). This results in a numerical value for C of 0.0375. These eddy diffusivities

are motivated by the expressions:

µT = C0ρh |u′| (4.67)

λT = C0h |u′| (4.68)



124

which have analogs in the molecular diffusivity and resistivity, respectively. A uni-

versal constant, C, can be obtained in place of C0 by selecting

C0 =

√
K ′T

K ′V
(4.69)

where K
′T is the total energy of the subgrid scales and K

′V is the kinetic energy of

the subgrid scales. Using (4.64) and (4.65), the RBEV model is

M
(
Wh,Uh;h, cP

)
=MV

(
wh,Uh;h, cV

P

)
+MI

(
ch,Uh;h, cI

P

)

=

(
∇swh, 2Ch

√
|u′|2 +

1

µ0ρ
|B′ |2∇suh

)

+

(
∇ach, 2Ch

√
|u′|2 +

1

µ0ρ
|B′ |2∇aBh

)
. (4.70)

Remarks:

• The eddy viscosity is analogous to the molecular viscosity where the element

size h plays the role of mean free path and the subgrid velocity plays the role

of average velocity between collisions.

• The turbulent magnetic diffusivity has its roots in the Drude model which

provides a classical description of the magnetic resistivity, η. The Drude model

motivation is presented in Section 4.3.1.

• The coefficient C is understood to be a constant rather than a coefficient that

depends on the flow field. This model is said to be inherently dynamic since

it automatically adjusts to the character of the flow field.

• A derivation of the expression for C, (4.66), is postponed until a more math-

ematical discussion on homogeneous, isotropic turbulence is presented in Sec-

tion 5.1.

• The reason for (4.69) is presented in the derivation of C.

The Drude model is introduced next to give credence to the form of the mag-

netic eddy diffusivity. A broader discussion on the character of the new eddy vis-

cosity model is initiated at the end of this section.
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4.3.1 Drude Model

The Drude model begins with an expression for the current density of

j = Nqvf

where N is the number of particles passing through an area, q is the charge of those

particles, and vf is the terminal velocity of the particles. The goal is to relate

the current density to the electric field. To do this, an expression for the terminal

velocity in terms of the electric field is needed. The classical forces acting on the

charged particle are given by Newton’s law,

F = ma. (4.71)

The force that the charged particles experience in an electric field is

FE = qE (4.72)

where q is the charge of a particle and E is the electric field. The force the charged

particles feel from collisions with particles of opposite charge is due to their velocity,

FC = γmv

where γ is a proportionality constant, m is the mass of the particle and v is its

velocity. The force is assumed to act in the direction opposite to the one that the

particle is moving in within the electric field. Thus,

qE− γmv = m
dv

dt
.

Once the terminal velocity is reached, the particles are no longer accelerating. Thus,

⇒ vf =
q

γm
E.
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So the current density becomes,

j = Nqvf

= Nq
q

γm
E

=
Nq2

γm
E

= σE

where σ is called the electrical conductivity.

This derivation provided a relationship between the current density and the

electromotive force (electric field). The induction equation, when written in curl

form, yields a turbulent electromotive force,

ET =
(
u′ ×B

′
)
.

The claim is that this turbulent electromotive force is proportional to the current

density through an effective resistivity, ηT .

ET = ηT j.

Therefore,

ηT =
γm

Nq2
.

In order for the analogy in the RBEV model to make sense, ηT should depend upon

a fluctuating velocity and a mean-free path. This dependence is realized through the

coefficient γ which is classically called the drag coefficient. It is well-known that γ

depends on the mean-free path and the thermal velocities of the particles. In (4.73)

the mean-free path dependence of the drag coefficient corresponds to the mesh size

h while the thermal velocities correspond to the subgrid solutions u′. Finally, note

that the turbulent magnetic diffusivity is proportional to the turbulent resistivity
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through the permeability of the medium,

λT =
ηT
µ0

. (4.73)

With this, the RBEV analogy for the induction equation is complete.

4.3.2 Discussion on the RBEV Model

The RBEV model is appealing for several reasons. First of all, it is an in-

herently dynamic model. The reason for this stems from the fact that the eddy

viscosity in the model is proportional to the subgrid fields which are defined within

the VMS formulation. These subgrid fields are proportional to the residual of the

coarse scales. Hence, whenever and wherever the numerical solution captures all of

the turbulent fluctuations in a flow field, the model automatically vanishes. This

is to be contrasted with the classical eddy viscosity model wherein the model is

always active. This is true even for times and spatial pockets where the flow field

is laminar. The classical eddy viscosity model is made dynamic by introducing the

Germano identity which leads to a dynamic Smagorinsky coefficient. However, this

coefficient, when determined in this manner, is only dynamic in time and therefore

still remains uniform in space. Thus, there could be regions of the flow field that

are laminar in which the dynamic model is still active. Due to the inherent dynamic

nature of the new eddy viscosity model, it is conjectured that the calibration con-

stant in the model is truly constant and need not be tuned during the simulation.

It is important to note that this constant was calibrated using arguments from ho-

mogeneous, isotropic turbulence theory (to be presented in Chapter 5). In other

situations this argument for determination of the constant may not be applicable

and therefore the true value may be different than that presented in this work. In

the context of MHD, the derivation of the value for the constant hinged on the as-

sumption of a Kolmogorov spectrum for the total energy. It must be said that due

to the universality conversation in MHD there is no guarantee that this assumption

is correct. However, using different power law spectra leads to problem-dependent

constants which necessitate the need for a dynamic procedure. In the present work,

the Kolmogorov spectrum is assumed since one of the main benefits of this new
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model is that it circumvents the need for a dynamic procedure. Finally, the RBEV

model is consistent with the VMS approach. Therefore, the new models developed

to this point are all closed with a single theory for the subgrid scales.

4.4 Mixed Model

Despite all the promise of using the VMS formulation for developing LES mod-

els for turbulence, there are still some shortcomings. In (Wang and Oberai 2010b)

it was shown that LES models developed with the VMS formulation represent the

cross stress terms well while the Reynolds stress terms are represented poorly. This

observation led to the proposal of a mixed model for incompressible hydrodynamics

in (Wang and Oberai 2010a). The idea behind this model is that the VMS frame-

work is able to capture the cross stresses while an eddy viscosity model is augmented

to the VMS formulation to capture the Reynolds stress terms. Indeed, EV models

were initially designed to represent the contributions from the Reynolds stresses.

Interestingly, they also contribute to the cross stresses. In (R. Kraichnan 1976)

it was shown that the Reynolds stresses contribute about 1/3 of the total subgrid

energy.

The situation is the same for incompressible MHD turbulence. The essential

limitation of the VMS formulation stems for the approximate solution to U′. Better

approximations for the subgrid solutions may yield VMS methods that are able to

capture higher-order terms. In the present work, the first order approximation to the

subgrid solutions is used and the effects of the higher order terms are modeled with

an eddy viscosity. The problem statement for the mixed model is: Find Uh ∈ Vh

s.t. ∀Wh ∈ Vh

A
(
Wh,Uh + U′

)
+MV

(
wh,Uh;h, cV

P

)

+MI

(
ch,Uh;h, cI

P

)
=
(
wh, fV

)
+
(
ch, f I

)
. (4.74)
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This is expanded to show the individual terms: Find Uh ∈ Vh s.t. ∀Wh ∈ Vh

AV
(
Wh,Uh

)
−
(
∇wh,NV

C

)
−
(
∇ ·wh, P ′

)

−
(
∇qh,u′

)
+

(
∇swh, 2Ch

√
|u′|2 +

1

µ0ρ
|B|2∇suh

)

+AI
(
Wh,Uh

)
−
(
∇ch,N I

C

)
−
(
∇ · ch, r′

)

−
(
∇sh,B′

)
+

(
∇ach, 2Ch

√
|u′|2 +

1

µ0ρ
|B|2∇aBh

)

=
(
wh, fV

)
+
(
ch, f I

)
. (4.75)

In (4.75) terms with gradients of subgrid scales have been dropped. Note also that

the Reynolds stress terms have also been neglected since these are now accounted

for with the eddy viscosity model.

Remarks:

• The mixed model contains both the VMS formulation and the RBEV model.

• The mixed model is a fully residual-based, inherently dynamic model.

• The calibration constants are assumed to be truly constant.

4.5 General Expression for the Models

The final form of the problem inclusive of the new models is: Find Uh ∈ Vh

s.t. ∀Wh ∈ Vh

AV
(
Wh,Uh

)
− bV

VMS

[(
∇wh,NV

C

)
+
(
∇ ·wh, P ′

)]
+ cV

VMS

(
∇qh,u′

)

+ bV
EVM

(
∇swh, 2Ch

√
|u′|2 +

1

µ0ρ
|B′|2∇suh

)

+AI
(
Wh,Uh

)
− bI

VMS

[(
∇ch,N I

C

)
+
(
∇ · ch, r′

)]
+ cI

VMS

(
∇sh,B′

)

+ bI
EVM

(
∇ach, 2Ch

√
|u′|2 +

1

µ0ρ
|B′|2∇aBh

)

=
(
wh, fV

)
+
(
ch, f I

)
(4.76)
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Table 4.1: A summary of the values of the parameters bi and c and cor-
responding models.

Model bV,I
VMS bV,I

EVM cV,I
VMS

VMS 1 0 1 Equal order elements

MM 1 1/3 1 Equal order elements

RBEV 0 1
1 equal order elements
0 any other time

where the subgrid solutions are given by (4.40) and the parameters bi determine

what type of model is being used. The parameter cVMS is a special parameter that

must be on when using equal-order elements in the RBEV model. This term is

required in order for the LBB condition to be circumvented when using equal order

elements. For the VMS and mixed models we have cV,I
VMS = bV,I

VMS. In Table 4.1

specific values of the parameters are provided that result in the particular models

developed.



CHAPTER 5

Assessment of Model Performance

The aim of this chapter is to present results on the the performance of the models

developed in previous chapters. The models are tested on two types of problems: 1.)

a decaying, homogeneous, isotropic turbulent flow field and 2.) a turbulent MHD

channel flow problem.

5.1 Decaying, Homogeneous, Isotropic Turbulence

This section is divided into two parts. The first part, Section 5.1.1 presents an

overview of the theory of homogenous isotropic turbulence (HIT) for hydrodynamics

and MHD. Following this, results from the new models are presented in Section 5.1.3

on the canonical test problem of the decaying Taylor-Green vortex generalized to

MHD. This flow evolves into a homogenous turbulent flow field.

5.1.1 Theory of Homogeneous, Isotropic Turbulence

This section provides more mathematical detail on the theory of turbulence.

We first focus on the Kolmogorov phenomenology of hydrodynamic turbulence (Kol-

mogorov 1941b, 1941a, 1941c). This phenomenology of turbulence asserts that, for

a large enough Reynolds number, the small scales of the turbulence are statistically

isotropic regardless of the behavior of the large, energy containing scales. Following

this we give an overview of HIT in MHD.

The anatomy of turbulence is dissected into three primary regions:

1. the large eddy, energy containing scales

2. the small scales that are small enough so as to be unaware of the energy

production mechanisms but not so small that they are affected by viscosity

Portions of this chapter previously appeared as: D. Sondak and A.A. Oberai. 2012. “Large

Eddy Simulation Models for Incompressible Magnetohydrodynamics Derived from the Variational

Multiscale Formulation.” Physics of Plasmas 19:102308.
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3. the very smallest scales that are not aware of the energy production mecha-

nisms but are affected by viscous dissipation

This anatomy is depicted in Figure 5.1. The first region is termed the energy

containing region, the second region is called the inertial subrange, and the third

region is called the viscous dissipation region.

Energy Injection

Energy Containing Range
Statistics Depend On:

Boundary effects
Energy sources

Viscous effects, ν
Dissipation effects, ε

etc.

Inertial Subrange

Statisitics Depend On:

Energy dissipation rate, ε

Viscous Subrange

Statistics Depend On:

Viscosity, ν
Energy dissipation rate, ε

Energy Dissipated as Heat

Large Scales

Small Scales

Smallest Scales

Universal
Equilibrium

Range

1Figure 5.1: The simplest phenomenology of turbulence. The scales of

turbulence are broken into three distinct regions.

With this terminology we are now able to introduce the Kolmogorov hypothe-

ses. Although a cornerstone of modern turbulence theory, these hypotheses have a

few shortcomings, some of which were acknowledged by Kolmogorov himself (Kol-

mogorov 1962). In the intervening years since his formulation of these hypotheses,

modifications have been made to them to account for phenomena such as intermit-

tency. However, the predictions on the behavior of the turbulence statistics that

result from these hypotheses are still used as a starting point for the validation of

new theories and turbulence models.



133

Kolmogorov Hypothesis 5.1. For a large enough Re the turbulence statis-

tics in regions 2 and 3 depend only on the

viscosity ν and the rate of energy transfer

ε.

Kolmogorov Hypothesis 5.2. For a large enough Re the turbulence statis-

tics in the inertial subrange (region 2) are

independent of the viscosity ν and only de-

pend on the rate of energy transfer ε.

We briefly introduce the Kolmogorov length, velocity, and time scales. These

scales are the characteristic scales of the very smallest eddies in the system. They

can be formed by combining the energy transfer rate ε and the viscosity ν which are

the two parameters that play a role in affecting the smallest scales. Thus

`K =

(
ν3

ε

)1/4

(5.1)

u`K = (εν)1/4 (5.2)

τ`K =
(ν
ε

)1/2

. (5.3)

Prior to discussing some consequences of this phenomenology, we introduce some

useful turbulence statistics. In HIT most of the turbulence analysis is carried out

in spectral space. The most common statistic when discussing HIT is the energy in

wavenumber space,

EV (k, t) =
1

2
û∗ (k, t) · û (k, t) (5.4)

where u∗ is the complex conjugate of u. A particularly convenient representation

of the energy spectrum is in terms of wavenumber bins,

EV (k, t) =

∮
EV (k, t) dk (5.5)

where k = |k| =
√
kiki is the magnitude of wavenumber k. The integral in (5.5)

is a surface integral taken over a spherical shell of radius k. This representation
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removes directional information from the energy spectrum. It can be interpreted as

the energy in a disc around k. In three dimensions this strip is a spherical shell.

The concept is illustrated (with a two-dimensional example) in Figure 5.2.

 

k-k0 /2 
k 

k0 

Figure 5.2: The energy spectrum indicates the amount of energy in the

band of width k0 around wavenumber k.

In order to obtain the total energy in the velocity field an integration over spherical

shells is performed,

KV (t) =

∫ ∞

0

EV (k, t) dk. (5.6)

We are now prepared to introduce one of the triumphs of HIT theory based on the

Kolmogorov phenomenology. The goal is to devise a dimensionless energy spectrum

which we denote EV
s (k`K , t). Invoking Hypothesis 5.1 we note that the turbulence

statistic being considered, namely EV (k, t), is only dependent on the viscosity and

dissipation rate (and k as well because we are in wavenumber space). We can devise

a reference energy based on either ν and ε or from k and ε. We choose the latter as
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it leads to a particularly famous result in HIT theory.

EV
r (k, t) = ε2/3k−5/3. (5.7)

Therefore,

EV (k, t) = ε2/3k−5/3EV
s (k`K , t) . (5.8)

Now invoking Hypothesis 5.2 we assert that EV
s (k`K , t) is independent of the viscos-

ity in the inertial subrange. Therefore, in the inertial subrange the energy spectrum

has the form,

EV (k, t) = CKε
2/3k−5/3. (5.9)

This is the celebrated Kolmogorov energy spectrum and we refer to this result as

the K41 spectrum. CK is a presumably universal turbulence constant now called

the Kolmogorov constant. In hydrodynamics, considerable experimental tests have

determined CK ≈ 1.4 (Praskovsky and Oncley 1994). As a final note, we mention

that the energy spectrum in (5.9) is a power law expression,

EV ∼ k−n. (5.10)

We now turn to a discussion on HIT in MHD. For a detailed discussion, refer

to (Biskamp 2003, chap. 5). The situation in MHD is less clear than in pure hydro-

dynamics. One of the primary difficulties is that it is not clear what the Kolmogorov

length scales should be. Indeed, in addition to the hydrodynamic parameters of the

problem, we now have additional parameters such as the magnetic diffusivity λ and

the energy dissipation rate for the induction equation. Furthermore, the magnetic

induction and velocity field often operate at different time and length scales. Fi-

nally, the fundamental assumption of local isotropy from the Kolmogorov theory

may no longer apply. This is because anisotropy is inherent in MHD dynamics

due to the magnetic field causing a preferred alignment direction, see (Müller and

Biskamp 2003). Nevertheless, researchers have been inspired by the triumph of di-
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mensional analysis in predicting the energy spectrum in the hydrodynamic case. An

early proposition stemmed from dimensional arguments carried out by (Iroshnikov

1963) and (R. H. Kraichnan 1965) wherein a strong background magnetic field set

a natural scale for the magnetic field. These researchers both predicted that the

total energy spectrum in MHD is ET (k) ∼ k−3/2. This spectrum is known as the

Iroshnikov-Kraichnan (IK) spectrum. The debate on the energy spectrum in MHD

does not end here, however. A spectrum of ET (k) ∼ k−2
⊥ was discovered in the

weak turbulence regime by (Galtier et al. 2000) where k⊥ is the wavenumber in the

direction perpendicular to the magnetic field.

Such difficulties have led to the proposition that MHD turbulence is not uni-

versal. That is, different flow fields may exhibit a different character in the inertial

subrange. Interestingly, the predictions of the energy spectrum behavior have the

power law exponent n lying somewhere between the IK prediction and the weak

turbulence prediction, 3/2 < n < 2. Another intriguing observation is that the K41

power law exponent is twice as close to the IK exponent than that of the weak tur-

bulence exponent. For more details on the lack of universality of MHD turbulence

refer to (Lee et al. 2010) and (Aluie and Eyink 2010).

The present work will consider the energy spectrum from the velocity field,

already introduced as EV (k), as well as the energy spectrum from the magnetic

induction EI (k, t) which is derived from EI (k, t) in the same way that EV (k, t) was

derived from EV (k, t). Note that

EI (k, t) =
1

2µoρ
B̂∗ (k, t) · B̂ (k, t) . (5.11)

The total energy spectrum is the sum of the kinetic and magnetic spectra,

ET (k, t) = EV (k, t) + EI (k, t) . (5.12)
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We also have

KI (t) =

∫ ∞

0

EI (k, t) dk (5.13)

KT (t) =

∫ ∞

0

ET (k, t) dk. (5.14)

An alternative representation for the total energy is

KT (t) = KV (t) +KI (t) . (5.15)

We also introduce the energy dissipation,

εV (t) = 2ν 〈∇su : ∇su〉 (5.16)

εI (t) = 2λ 〈∇aB : ∇aB〉 . (5.17)

We could also write

εV (t) =

∫ ∞

0

2νk2EV (k) dk (5.18)

εI (t) =

∫ ∞

0

2λk2EI (k) dk. (5.19)

Finally note that the total MHD dissipation is

εT (t) = εV + εI. (5.20)

With this background on HIT theory, we are now prepared to derive the RBEV

constant C presented in Section 4.3.

5.1.2 The form of C

The derivation of C begins with the turbulent dissipation of the total energy

for MHD in the context of HIT. With the RBEV model the turbulent dissipation is

εT, h = 2
〈
νT∇suh : ∇suh + λT∇aBh : ∇aBh

〉
, (5.21)
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where the contributions from the molecular viscosity and magnetic diffusivity have

been neglected and 〈·〉 denotes an averaging operation. With µ0/ρ = νT = λT =

C0h|u′|,

εT, h = 2C0h
〈
|u′|
(
∇suh : ∇suh +∇aBh : ∇aBh

)〉

≈ 2C0h
〈
|u′|2

〉1/2 〈∇suh : ∇suh +∇aBh : ∇aBh
〉
. (5.22)

To express each term on the right-hand-side of (5.22) in terms of the total energy

spectrum the spectra for u and B are assumed to differ by a multiplicative constant.

Thus, |u′|2 can be replaced with α
(
|u′|2 + 1

µ0ρ
|B′|2

)
where

α =
|u′|2

|u′|2 + 1
µ0ρ
|B′|2 . (5.23)

It is assumed that the numerical method only solves for scales with wavenumber

between 0 and the cutoff wavenumber kh. Thus, discrete quantities such as uh only

contain information up to the cutoff wavenumber. Additionally, the subgrid scales

are assumed to exist between the cutoff wavenumber and some maximum subgrid

wavenumber, βkh. In a pseudo-spectral numerical method β > 1 in order to account

for the effects of aliasing. The magnitude of the fluctuating velocity components are

related to the energy spectrum via

〈
|u′|2

〉
= 2

∫ βkh

kh
EV (k) dk. (5.24)

From (5.18), (5.19), and (5.20) we have

〈
∇suh : ∇suh +∇aBh : ∇aBh

〉
=

∫ kh

0

k2ET (k) dk. (5.25)
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Using these relationships in (5.22) yields,

εh ≈ 2C0h

(
2α

∫ βkh

kh
ET (k) dk

)1/2

×
(∫ kh

0

k2ET (k) dk

)
. (5.26)

A power law for the total energy spectrum is assumed,

ET (k) = CKC
′
εmkn (5.27)

where ε is the exact dissipation rate. The constant C
′

depends on the physics of the

problem. For example, when n = −2, C
′

= 1/vA, where vA is the Alfvén velocity.

Note that in general C
′

is not dimensionless. After some algebra,

εh ≈ C02
√

2 h
√
α
(
CKC

′
)3/2

(
kh
)3(n+1)/2

(n+ 3) (n+ 1)1/2
×

(
βn+1 − 1

)1/2
ε3m/2. (5.28)

Equating the modeled and exact dissipation rate, εh = ε, results in

C0 = Cα−1/2 (5.29)

with

C =
1

2
√

2 h (CKC
′)3/2K (βn+1 − 1)1/2 ε(3m−2)/2

(5.30)

and

K =

(
kh
)3(n+1)/2

(n+ 3) (n+ 1)1/2
. (5.31)

Note that, in general, the calibration constant C will not be problem independent

as it has a dependency on the dissipation rate. However, if a Kolmogorov spectrum
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is assumed (m = 2/3, n = −5/3) then with a cutoff wavenumber of kh = π/h and

β →∞ (to account for all of the subgrid scales)

C =

(
4

27

)1/2
1

C
3/2
K π

. (5.32)

Returning now to the expressions for the eddy viscosity and the magnetic diffusivity

results in

νT = λT = C0h|u′|

= Cα−1/2h|u′|

= Ch

√
|u′|2 +

1

µ0ρ
|B′|2 (5.33)

which is the final result.

5.1.3 Taylor-Green Vortex and Results

The main problem that the new models were tested on was the insulating

Taylor-Green vortex described in (Pouquet et al. 2010). The domain is a periodic

box

Ω = [−π, π]3 (5.34)

and is illustrated in Figure 5.3. The initial conditions were

u0 = u0




sin
(
x
L

)
cos
(
y
L

)
cos
(
z
L

)

− cos
(
x
L

)
sin
(
y
L

)
cos
(
z
L

)

0


 (5.35)

for the velocity field and

B0 = B0




cos
(
x
L

)
sin
(
y
L

)
sin
(
z
L

)

− sin
(
x
L

)
cos
(
y
L

)
sin
(
z
L

)

−2 sin
(
x
L

)
sin
(
y
L

)
cos
(
z
L

)


 (5.36)
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for the magnetic induction.

x

y

z

(−π, π,−π)

(−π,−π,−π)

(−π, π, π) (π, π, π)

(π, π,−π)

(−π,−π, π) (π,−π, π)

(π,−π,−π)

1

Figure 5.3: The simulation domain for the insulating Taylor-Green vor-

tex.

This particular problem solved for the magnetic induction in Alfvén velocity units.

The coefficients u0 and B0 were set so that the initial total energy had a value of

1/4. This flow field has been termed insulating in (Pouquet et al. 2010) because

the current density is everywhere parallel to the artificial walls of the box. This is

readily demonstrated by taking the curl of the initial magnetic field,

j = ∇×B0 = 3




−∂By

∂z

∂Bx

∂z

0


 . (5.37)

Thus, the current density is only ever in the x − y plane. By virtue of the form

of the magnetic induction (5.36) it is easily seen that on surfaces of constant y the

current density only points in the x-direction. Likewise, on surfaces of constant x

the current density only points in the y-direction.

The DNS simulations of this problem were run with 512 Fourier modes in each

direction. To account for aliasing effects in the pseudospectral code on the 2nd order

nonlinearities a 2/3 dealiasing rule was used. Thus, the total number of modes was

M = 3N/2 = 768. The total number of processors used was 384. Note also that
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the code was set up so that modes in the x − y direction were handled with one

processor. Different processors handled different z values. Therefore, the processor

decomposition was done via slabs. See Figure 5.4 for an illustration.

x

z

y

Processor 0

Processor 1

...

Processor nproc

1

Figure 5.4: The processor decomposition for the Fourier-spectral code.

The LES simulations were run with 32, 64, and 128 modes in each direction, using

a 2/3 dealiasing rule for each simulation. The LES code was set up in the same

way as the DNS code. The DNS simulations had 4096 more modes than the LES

simulations performed with 323 modes. This corresponds to the LES simulations

having 99.9% less information than the DNS simulations.

Most of the runs were carried out with Re = 5300 and Prm = 1. The Reynolds

numbers were defined as

Re =
urmsLV

ν
(5.38)

Rm =
urmsLI

λ
(5.39)

where urms is the root mean square value of the velocity field and LV,I are integral

length scales defined as

LV,I = 2π

∫
1
k
EV,I (k) dk∫
EV,I (k) dk

. (5.40)
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The basic dynamics of the flow field are described by Figure 5.5 where the

energies are plotted as a function of a dimensionless time scale, t = ts/ (u0/L) with

L = 1 and ts the simulation time.
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t

0.00

0.05

0.10
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V
,I
,T

KV

KI

KT

Figure 5.5: Energy transfer between velocity and magnetic fields for the

Taylor-Green vortex.

The system is dissipative overall due to viscous and resistive effects and the lack

of energy sources. However, there is an interesting interplay between the velocity

and magnetic induction. In this particular problem, the magnetic induction gains

energy at the expense of the velocity field. A comparison between the VMS, mixed,

and dynamic Smagorinsky LES models and the DNS is made in Figure 5.6 . Note

that all of the models are overly dissipative but that the dynamic Smagorinsky is

the most dissipative of all by far. All of the models have difficulty in achieving the

peak of the magnetic energy at around t = 4.
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Figure 5.6: A comparison between the DNS solution and the VMS, MM,

and dynamic Smagorinsky models.

5.1.3.1 Energy Spectra

Further insight into the nature of the models is gained by exploring plots of

the energy spectra. The following figures present energy spectra plots at t = 8.

Figure 5.7 compares all of the models to each other. Although somewhat crowded,

some key observations can be made from this plot. First of all, the VMS and mixed

models perform quite well especially in the mid-wavenumber range. They both

also provide enough dissipation in the high-wavenumber range to match the DNS

simulation satisfactorily.
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Figure 5.7: Comparison of kinetic, magnetic, and total energy spectra

from each model to DNS. Results were obtained from a sim-

ulation with 32 modes in each direction.

We also note that the dynamic Smagorinsky model does not perform as well

as the VMS and mixed models in the mid-wavenumber range but that it performs

slightly better in the high-wavenumber range. The dynamic Smagorinsky model

is excessively dissipative whereas the VMS and mixed models are slightly under

diffuse. Turning to the RBEV model, we note that this model, by itself, does not

perform particularly well. In the high wavenumber range it does out-perform the

case with no model at all, but it clearly does not provide nearly enough dissipation

to match the accepted DNS results. We will return to the effect of the RBEV on

the mixed model later when considering other spectra plots.
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We mention here a point about the amount of simulation time required for

the above simulations. The goal of LES is to produce high-fidelity results with low

computational cost. Such a simulation would be quick and therefore amenable to

high throughput physics and design studies. It is critical that the LES models de-

veloped do not contribute much computation time. Figure 5.8 quantifies simulation

times for the models presented in Figure 5.7.

VMS DSEV RBEV MM NM0
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Figure 5.8: Duration in minutes of LES simulations as compared to a

simulation of the same resolution with no model.

All of the simulations are completed quite quickly with the mixed model taking

the longest amount of time. The 5123 DNS simulations, on the other hand, took

about 24 hours to complete. Therefore, given the initial performance of the new

models, it is clear that they are promising and should be tested on many other

problems.

We now return to the energy spectra. It is useful to compare fewer models on

a plot in order to gain further insight. Figure 5.9 does this by comparing the VMS

and mixed models to the dynamic Smagorinsky model. The main point that can be

made from observations of this plot, that was not already observed from Figure 5.7

is that the VMS and mixed models perform comparably. The true benefit of the
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mixed model becomes apparent when considering higher values of Re and Rm as

will be seen in later sections.
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Figure 5.9: Comparison of kinetic, magnetic, and total energy spectra

from the VMS and mixed models to the dynamic Smagorin-

sky model and a DNS simulation. Results were obtained from

a simulation with 32 modes in each direction.

It is also instructive to compare the RBEV to the case with no model what-

soever as is done in Figure 5.10. Although the RBEV model does not perform well,

it does provide some dissipation. Interestingly, this observation may be the key to

the performance of the mixed model; the RBEV provides some much needed aid to

the VMS method but not so much as to make the system excessively diffuse.
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Figure 5.10: Comparison of kinetic, magnetic, and total energy spectra

from the RBEV model and the case with no model to the

dynamic Smagorinsky model and a DNS simulation. Results

were obtained from a simulation with 32 modes in each di-

rection.

5.1.3.2 Convergence with Mesh Refinement

In this section, we demonstrate that with mesh refinement the models converge

to the DNS solution. Figure 5.11 shows results from a simulation with 64 modes

in each direction. We note that the solution has improved considerably over the

results from the 323 simulation.
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Figure 5.11: Comparison of kinetic, magnetic, and total energy spectra

from the VMS and mixed models to the dynamic Smagorin-

sky model and a DNS simulation. Results were obtained

from a simulation with 64 modes in each direction.

Figure 5.12 shows convergence over successively finer meshes for the mixed

model.
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Figure 5.12: A convergence study for the mixed model on meshes of 323,

643, and 1283.

5.1.3.3 Comparison to DSEVA Model

The DSEV model was designed to permit inverse cascades of magnetic energy

which are known to occur in MHD. We compare the performance of this model to the

VMS based model in Figure 5.13. This model does not appear to offer any benefit

over the traditional DSEV model and even underperforms in representing certain

regions of the spectra such as the mid-wavenumber range. As a result, the same

conclusions with regard to the performance of the VMS-based models in comparison

to the DSEV model holds.



151

101

k

10−4

10−3

10−2

10−1

E
V

(k
)

DNS:5123

MM: 323

DSEV: 323

DSEVA: 323

(a)

101

k

10−4

10−3

10−2

10−1

E
I
(k

)

DNS:5123

MM: 323

DSEV: 323

DSEVA: 323

(b)

101

k

10−4

10−3

10−2

10−1

E
T

(k
)

DNS:5123

MM: 323

DSEV: 323

DSEVA: 323

(c)

Figure 5.13: Comparison of kinetic, magnetic, and total energy spectra

from the mixed model and the alignment-based dynamic

Smagorinsky model to a DNS simulation. Results were ob-

tained from a simulation with 32 modes in each direction.

5.1.3.4 Eddy Diffusivities

Studying the behavior of the eddy diffusivities (νT and λT ) provides valuable

information about the performance of the models. Figure 5.14 compares the aver-

age eddy viscosities from the mixed and RBEV models to the dynamic Smagorin-

sky model. Also included is the eddy viscosity from the alignment-based dynamic

Smagorinsky model.

A significant observation is that the eddy viscosities from all of the models

are nearly zero until t ∼ 1. At this point, the eddy viscosities begin to take on
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finite values because they are adjusting for the turbulence that has developed in

the flow field. The dynamic Smagorinsky models make this adjustment through the

dynamic determination of the Smagorinksy coefficients. However, the RBEV and

mixed models use a universal constant in the models and yet automatically adjust

as the simulation requires. Hence, the claim that these new VMS-based models are

inherently dynamic is justified.
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Figure 5.14: Plots of average eddy viscosities from the mixed, RBEV, and

two versions of the dynamic Smagorinsky models. Results

are from a 323 simulation.

Notice that the Smagorinsky models are much more variable than the VMS-

based models. This is due to the fundamentally different natures of the models; the

Smagorinsky eddy diffusivities are proportional to the rate of strain whereas the

VMS-based eddy diffusivities are proportional to the subgrid solutions themselves.

The dynamic nature of the Smagorinsky models derives from the variability of the

Smagorinsky coefficient rather than the direct effect of the subgrid scales. One

striking difference is that the Smagorinsky eddy viscosities are largest near t = 4

which corresponds to the peak of dissipation for this flow field. In this sense then,

the Smagorinsky eddy viscosities reflect the dynamics of the flow field as they try to

account for times that have more or less dissipation. We also observe that the eddy
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viscosity for the alignment-based Smagorinsky model takes on negative values when

the simulation is performed with 32 modes. This behavior is no longer present for

N = 64. Figure 5.15 shows the eddy viscosities on a finer mesh and it is observed

that their contribution is smaller. This is expected as the finer mesh represents more

of the velocity field and therefore the modeling efforts required are not as significant.
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Figure 5.15: Plots of average eddy viscosities from the mixed, RBEV, and

two versions of the dynamic Smagorinsky models. Results

are from a 643 simulation.

The same analysis is performed in Figures 5.16 and 5.17 for the magnetic

eddy diffusivities with similar conclusions. One stark difference between the mag-

netic diffusivities and the eddy viscosities is that the magnetic diffusivity for the

alignment-based dynamic Smagorinsky model does not become negative.
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Figure 5.16: Plots of average magnetic diffusivities from the mixed,

RBEV, and two versions of the dynamic Smagorinsky mod-

els. Results are from a 323 simulation.
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Figure 5.17: Plots of average magnetic diffusivities from the mixed,

RBEV, and two versions of the dynamic Smagorinsky mod-

els. Results are from a 643 simulation.
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With mesh refinement, the contribution from the eddy viscosities becomes

noticeably smaller. This can be seen in Figure 5.18 for the eddy viscosities from the

RBEV model.
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Figure 5.18: The average eddy viscosity from the RBEV model. Results

are presented on meshes of 323, 643, and 1283.

5.1.3.5 Performance at High Re and Rm

The Reynolds numbers in the previous simulations were not particularly high.

It was not easy to draw convincing conclusions on the performance of the mixed and

VMS models as they appeared to behave comparably. A simulation at Re = 20000,

again with Prm = 1, was performed in an effort to gain a deeper understanding

of the differences in the mixed and VMS models. At such a high Re the subgrid

stress terms should be more active than in the previous simulation. Figure 5.19

shows the results of a 323 LES simulation compared to a 20483 DNS carried out

by (Pouquet et al. 2010). The plot is of the total energy spectrum compensated

by k2 and averaged around the peak of dissipation at t = 4. The averaging time

was t ∈ [3.5, 5]. The performance of the models on such a coarse grid is striking.

Furthermore, the mixed model outperforms the VMS model in the high-wavenumber

range. This is attributed to the activity of the RBEV model. Although the RBEV
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does not perform well in isolation, it is able to provide just enough dissipation in

addition to that already present in the VMS model to give very good results. We

also note that the dynamic Smagorinsky model yields far too much dissipation.
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DSEV: 323

VMS: 323

MM: 323

Figure 5.19: Compensated energy spectra from the mixed, dynamic

Smagorinsky, and VMS models. Results are from a 323

mesh. DNS data are from (Pouquet et al. 2010).

Another interesting study involves the comparison of results obtained with the

alignment-based DSEV model for this Re. These results are presented in Figure 5.20.

It is apparent that the alignment-based model makes a valiant attempt to reach the

proper dissipation in the high wavenumber range. However, this comes at a steep

price because the compensated spectrum no longer exhibits the correct behavior or

any semblance thereof.
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Figure 5.20: Compensated energy spectra from the mixed, dynamic

Smagorinsky, and alignment-based dynamic Smagorinsky

models. Results are from a 323 mesh. DNS data are

from (Pouquet et al. 2010).

5.1.3.6 Finite Element Simulations of the Taylor-Green Vortex

The new VMS-based models were implemented into the finite element code

Drekar. The VMS formulation with nonorthogonal basis functions, such as linear

finite elements, is different from the spectral formulation in that the linear terms

become active. In this section we present results from the Taylor-Green vortex simu-

lation that has been discussed extensively in this section. The problem setup for the

finite element and spectral simulations are the same. We use linear finite elements

to perform these simulations. Note that one would not expect linear finite elements

to perform as well as spectral basis functions. The following figures demonstrate,

however, that the finite element method performs quite well. This is true even for

a coarse grid of 323 elements. Figure 5.21 shows a comparison of the VMS model

performance from spectral simulations and finite element simulations.
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Figure 5.21: The total energy spectrum at t = 8. Figure 5.21a compares

the finite element performance with 323 linear elements to

the spectral results with 323 modes. Figure 5.21b compares

the finite element performance with 643 linear elements to

spectral results with 323 modes. Figure 5.21c compares the

finite element performance with 643 linear elements to spec-

tral results with 643 modes.

We observe that, as expected, the finite element implementation does not

perform quite as well as the spectral formulation for 323 elements. However, the

results are encouraging and simulations with 643 elements yield very good results.

A convergence test was performed for the finite element simulations to test the

numerical performance of the models. In particular, it is crucial that the models
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converge to the DNS results as the mesh is refined. Figure 5.22 confirms that this

is indeed the case.
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Figure 5.22: Convergence of the total, kinetic, and magnetic energy spec-

tra to corresponding DNS spectra for the finite element im-

plementation of the models.

A final test that tests the performance of the FEM with linear elements and

the convergence properties of the method involves normalizing the spectra to the

DNS spectrum. The results of this analysis are displayed in Figure 5.23.
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Figure 5.23: Semi-log plots of the normalized energy spectra demonstrat-

ing model performance and numerical convergence for the

finite element implementation.

We conclude this section with some remarks. This section presented an overview

of homogenous, isotropic turbulence theory for hydrodynamics and MHD. The new

models from Chapter 4 were tested on the Taylor-Green flow for MHD. Results

were reported primarily in terms of the kinetic, magnetic, and total energy spectra

and compared to a DNS simulation and the standard dynamic Smagorinsky model.

For this flow field, it was found that the mixed model performed the best but that

all models, except for the RBEV, provided very good results. The RBEV model,

when used in isolation, did not provide nearly enough dissipation to give acceptable

comparisons to the DNS energy spectra. The new models were also compared to a
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Smagorinsky model that was designed specifically for MHD which we referred to as

the aligned-based dynamic Smagorinsky (DSEVA) model. This model uses the local

physics of the cross helicity to account for an inverse cascade of magnetic energy.

The VMS models take care of this physics process inherently as was demonstrated

mathematically in Section 4.2.1.1. The DSEVA model did not offer any benefit over

the VMS-based models or the classical DSEV model for this flow field. It is possible,

however, that for other flow fields, such as those with finite global cross helicity, the

DSEVA model would offer advantages over the DSEV model. Further tests on this

must be done. A high Reynolds number simulation was performed to demonstrate

the real strengths of the mixed model. The mixed model performed phenomenally

well on a 323 grid when compared to a DNS simulation performed on a 20483 grid.

The RBEV contribution to the mixed model was just enough to ensure a very good

solution.

Further insight into the physical performance of the models was gained by

analyzing the eddy viscosity contributions. The VMS-based models that employ an

eddy viscosity (the mixed model and the RBEV model) were shown to be inherently

dynamic. The magnitude of the eddy viscosities induced by these models was less

than that from the dynamic Smagorinsky models which explains why the DSEV

models were overly dissipative.

Numerical performance of the models was assessed by performing conver-

gence tests on each of the models. The LES simulations were performed with

N = 32, 64, 128 and with each refinement the models got progressively closer

to the DNS result. This confirms that the models have an internal numerical con-

sistency. The VMS-based models have the additional interpretation that with mesh

refinement the numerical solution improves and the subgrid contributions to the

grid solution becomes smaller. This effect was demonstrated by considering eddy

viscosity contributions from the RBEV model with successively finer grids.

The finite element implementation was also tested on the Taylor-Green vortex

problem. It was found that even with 323 linear elements the finite element solution

was comparable to the 323 spectral simulation. Mesh convergence studies were

performed to demonstrate the essential characteristics of the VMS subgrid models.
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Such encouraging results provide motivation to test the FEM with the VMS-based

models on a wall-bounded flow field as is done in the following section.

5.2 Turbulent MHD Channel Flow

Wall-bounded turbulent flows do not fit within the framework of HIT the-

ory. The robustness of the new models is further tested by considering turbulent

MHD channel flow. In this section we review some of the theory of turbulent hy-

drodynamic channel flows and turbulent MHD channel flows. Following this, results

from performance tests of the new models on a turbulent MHD channel flow with

perfectly electrically conducting walls are presented.

5.2.1 Theory of Channel Flow Turbulence

In this section, we provide a brief review of turbulent hydrodynamic channel

flow and describe some aspects of turbulent MHD channel flow. For a nice treat-

ment of turbulent channel flows in incompressible hydrodynamics see (Pope 2000,

chap. 7). The present discussion focuses on fully developed turbulent channel flow

driven by a streamwise pressure gradient. Such a situation requires that there is

no mean streamwise acceleration. It is further assumed that the velocity statistics

are independent of the spanwise direction. One final requirement is that the flow

in the wall-normal direction be negligible compared to the streamwise component

of velocity. Because of these assumptions and requirements on the flow field, we

consider a force balance of the average quantities in the streamwise direction of the

channel. An average quantity is denoted by angular brackets 〈·〉. The force balance

in the streamwise direction is

〈
F b
x

〉
= 2 〈Fw

x 〉 (5.41)

where
〈
F b
x

〉
is the average force in the channel driving the flow in the positive

streamwise direction and 〈Fw
x 〉 is the average surface force on one of the channel
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walls. Introducing volumetric f bx and surface fwx forces gives

LxLyLzf
b
x = 2LxLzf

w
x . (5.42)

We call the average surface force the wall shear stress τw. Thus

f bx =
2

Ly
τw. (5.43)

The body force in the streamwise direction is the pressure gradient −d 〈p〉 /dx.

Therefore, in a fully developed channel flow, the average pressure gradient is bal-

anced by the wall shear stress,

−d 〈p〉
dx

=
2

Ly
τw. (5.44)

A velocity and length scale can be defined in terms of the wall shear stress. These

are called the friction velocity uτ and the viscous length scale δν . They are defined

as:

uτ =

√
uτ
ρ

(5.45)

δν =
ν

uτ
. (5.46)

Finally, two important dimensionless numbers based on these scales are the friction

Reynolds number Reτ and the wall unit y+. These are given as:

Reτ =
uτh

ν
(5.47)

y+ =
uτy

ν
. (5.48)

We close the discussion on hydrodynamic channel flow with a quick overview of the

anatomy of the velocity profile. There are two main regions in a channel flow, aptly

referred to as the inner layer and the outer layer. The inner layer corresponds to

y/h < 0.1 where h is the half-channel width, and is the region in which viscosity

plays an important role. LES of turbulent channel flow, in its basic form, seeks to
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resolve turbulent motions within the channel. However, for large Re a boundary

layer near the wall develops. Many LES models are not designed to capture the

effects of this boundary layer. As a result of this, and because boundary layer

meshes are easily generated, most numerical simulations employ mesh refinement

near the boundaries of the channel in order to capture this boundary layer. The

amount of refinement that is necessary near the wall depends on Reτ and is guided

by the the theory of channel flow turbulence near the wall. This theory breaks the

inner layer into three regions: 1.) the viscous sublayer, 2.) the buffer layer, and 3.)

the log-law region. We will not delve into the details of each of these regions here.

The important point in resolving the boundary layer near the wall is to be within

the viscous sublayer. This is ensured by choosing a mesh refinement near the wall

so that the first grid point away from the wall occurs at y+ . 5 (see Pope 2000).

Much of the anatomy for the turbulent MHD channel flow is the same as that

for the pure hydrodynamic case. See (Branover 1978, chap. 7), (Moreau 1990; Müller

and Bühler 2001) for an introduction to turbulent MHD channel flow. The proto-

typical MHD channel flow problem is the Hartmann flow problem. This problem

is an excellent way of introducing MHD channel flow effects. The problem involves

a two-dimensional channel in which the velocity flows in the streamwise direction

and a wall normal magnetic field of strength B0 is applied uniformly throughout

the channel. For such a flow field it is possible to show that the total average

Lorentz force in the channel vanishes. With this result the same force balance for

the momentum equation applies. Thus, the streamwise momentum is balanced by

the pressure gradient and the wall shear stress. The Hartmann flow problem is char-

acterized by the role of the Hartmann number Ha. For very large Ha the velocity

profile becomes flat at the core of the channel and thin boundary layers develop

along the channel walls. These boundary layers are also named after Hartmann and

are called Hartmann layers. The Hartmann layer thickness is

δHa =
h

Ha
. (5.49)

Thus, in MHD channel flows, there are two boundary layer considerations. The

usual fluid boundary layer and the Hartmann layer. When creating the mesh it is
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therefore necessary to make sure that the first mesh point is such that the smallest

boundary layer will be resolved. We consider the ratio of distance from the wall to

the Hartmann layer thickness,

y

δHa

=
Ha

Reτ
y+ (5.50)

⇒y =
Ha

Reτ
δHay

+.

From hydrodynamic turbulence theory we require the first mesh point y1 to be such

that y+ < 5 so that y1 is in the viscous sublayer. This gives us an idea of when it is

important to consider the Hartmann layer thickness over the fluid boundary layer

when creating the mesh.

y1 <
5Ha

Reτ
δHa. (5.51)

This expression says that for 5Ha < Re the fluid boundary layer is smaller than the

Hartmann layer thickness. In fluid turbulence this is typically the case and therefore

the fluid boundary layer is smaller than the Hartmann layer thickness.

5.2.2 Turbulent MHD Channel

The new models were tested on a turbulent MHD channel flow. The simulation

domain is Ωx × Ωy × Ωz with

Ωx = [0, 2π] (5.52)

Ωy = [−1, 1] (5.53)

Ωz = [0, 3π/2] . (5.54)

The problem configuration is illustrated in Figure 5.24. The mesh that was used for

the simulation is presented in Figure 5.25.
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Figure 5.24: Configuration of the channel flow problem.

Figure 5.25: The finite element mesh for the turbulent MHD channel

flow problem.

This mesh has 32 linear finite elements in each direction. In the streamwise and

spanwise directions the elements are of uniform size, hx = Lx/nel,x and hz = Lz/nel,z.

The mesh in the wall-normal direction is nonuniform and is prescribed by

yj = cos

(
π

(
j

nel,y

+ 1

))
, 0 < j ≤ nel,y. (5.55)

The boundary conditions are no slip velocity conditions at the walls and no fluid flow

through the walls. The walls are perfect conductors of electricity. In the streamwise
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and spanwise directions the flow is periodic. The finite element function spaces

for this configuration were presented in Section 2.5.2. Initial conditions for the

momentum equation were taken from a simulation of fully developed hydrodynamic

turbulent channel flow. A random seed magnetic field with zero mean was used

as the initial condition for the induction equation. The initial conditions for this

simulation are shown in Figure 5.26. The flow parameters are Reτ = Rmτ = 395.

There is initially no scale for the magnetic field and as a result Ha and S do not

have clearly identifiable values.

(a) Initial condition of the velocity field.

(b) Initial condition of the magnetic field.

Figure 5.26: Initial conditions for the turbulent MHD channel flow.

It is expected that, due to the velocity fluctuations and the cross-helicity

effect, the magnetic field will be amplified. A mean magnetic field will develop and
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after considerable time both fields will reach a fully developed turbulent state. The

evolution of the fields is monitored with the volume average of the fields at each

time,

〈u〉V (t) =
1

Ly

∫ 1

−1

〈u〉xz (y, t) dy (5.56)

where

〈u〉xz (y, t) =
1

Lz

1

Lx

∫ 3π/2

0

∫ 2π

0

u (x, y, z, t) dxdz (5.57)

is the planar average in the x-z plane. In addition to these quantities, other tur-

bulence statistics are of interest. In particular, root mean square values of a field

and Reynolds stresses are often studied. We consider x-z planar averages of each

of these quantities averaged over time. Such a quantity is denoted by 〈·〉xzt. This

operation is:

〈u〉xzt =

∫ T

0

[
1

LxLz

∫ 2π

0

∫ 3π/2

0

u (x, y, z, t) dzdx

]
dt. (5.58)

The rms values are computed with:

urms =
〈
u′2
〉

=
1

T

∫ T

0

[
1

LxLz

∫ 2π

0

∫ 3π/2

0

(
uh −

〈
uh
〉
xzt

)2
dzdx

]
dt. (5.59)

The Reynolds stresses are computed similarly:

〈uv〉 =
1

T

∫ T

0

[∫ 2π

0

∫ 3π/2

0

(
uh −

〈
uh
〉
xzt

) (
vh −

〈
vh
〉
xzt

)
dzdx

]
dt. (5.60)

We make a final note on implementation of such calculations. Given an averaging

operation 〈·〉, the most efficient way to implement computations of second order
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statistics is to rearrange the terms. This is demonstrated presently.

〈
u′2
〉

=
〈(
uh −

〈
uh
〉)2
〉

=
〈
uhuh − 2uh

〈
uh
〉

+
〈
uh
〉 〈
uh
〉〉

=
〈
uhuh

〉
− 2

〈
uh
〉 〈
uh
〉

+
〈
uh
〉 〈
uh
〉

=
〈
uhuh

〉
−
〈
uh
〉 〈
uh
〉
.

Existing Sandia post-processing tools were modified and extended to be able to

perform such computations.

The finite element code, Drekar, did not have full VMS capabilities and before

testing the new models Drekar was given these new features. The models were

implemented in a flexible and general way so that HD and MHD problems can be

run easily. Thus, the models were implemented so that they know the difference

between a HD run and an MHD run. Moreover, the unresolved fields are now

explicitly computed in the code so that the readability of the implementation of the

models is seamless.

Before performing the full MHD simulation, the new models were tested on

a HD channel flow problem and compared to DNS data from (Moser, Kim, and

Mansour 1999) and LES data from (Liu 2012). The HD simulation was also per-

formed with Reτ = 395 and the fluids part of the problem configuration described

in Figure 5.24 was identical. Figures 5.27- 5.28 present results from the Drekar

finite element simulation. Figure 5.27 presents the planar-averaged streamwise ve-

locity component. Figure 5.29 presents planar-averaged rms values of the velocity

components and Figure 5.28 presents planar-averaged Reynolds stresses. Very good

agreement between the LES results from the two different LES codes is found. More-

over, good agreement with the accepted DNS simulation was also attained.
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Figure 5.27: Planar-averaged streamwise velocity component for a HD

simulation. Comparison of Drekar results to accepted DNS

and LES simulations is made.
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Figure 5.28: Planar-averaged Reynolds stresses for a HD simulation.

Comparison of Drekar results to accepted DNS and LES

simulations is made.
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(b) Root mean square values of wall-

normal velocity for HD simulation.
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Figure 5.29: Root mean square values of velocity components for a HD

simulation. Comparison of Drekar results to accepted DNS

and LES simulations is made.

Alas, at the present time, the LES simulations of the MHD channel flow are

not complete. This is due to two primary difficulties:

1. Significant effort was expended on simulation of a Hartmann flow problem

with electrically insulating walls. However, the computation involved Prm � 1

which required an unreasonably small time-step when simulating the full MHD

equations to achieve reasonable results. By reasonable, we mean results that

are in good agreement with a DNS simulation performed with the quasi-static
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MHD approximation (Boeck, Krasnov, and Zienicke 2007).

2. Even for flows with Prm = 1, the simulation time required for the flow to

become fully developed is inordinate. We initially attempted a simulation with

perfectly insulating walls. After ∼ 400 flow-through times, the simulation had

still not reached a steady state. We believe that a steady state should be

reached based on previous LES simulations that have been published (Hamba

and Tsuchiya 2010). In that work, the authors mention the extreme amount

of time required for a fully developed profile to be realized.

There are still a few options to pursue in light of these difficulties. Concerning

the first point, the new LES models could be adapted to the quasi-static system

of equations. However, to change the format of Drekar would have led us rather

far astray of our original intention of developing novel LES models for the full

MHD equations. We hope to perform our own DNS simulation in the future and

to compare LES simulations to the DNS simulation of the full MHD equations.

However, considerable computing effort will be required for such an endeavor.

Concerning the second point, it is possible that our implementation of the

insulating boundary conditions influenced the simulation time and ultimately the

results. The procedure discussed in Section 2.4.4 for perfectly insulating boundary

conditions is particularly difficult to implement in a finite element code such as

Drekar. However, a simulation with perfectly conducting boundary conditions is

reasonable to pursue. This simulation is running currently with results on their way

soon.



CHAPTER 6

Discussion and Conclusions

6.1 Review

The field of incompressible MHD is a particularly rich subset of physics and

applied mathematics. The challenges inherent in the equations provide a plethora

of research opportunities. Aside from purely academic pursuits, MHD also plays an

important role in the development of engineering technologies. Designing suitable

engineering systems using electrically conducting fluids requires using computational

techniques. Despite rapid advancement in computer power and technology, MHD

DNS of most engineering systems will remain elusive for the foreseeable future.

One of the most prominent reasons for this difficulty is the phenomenon of fluid

turbulence which again rears its head in MHD. In addition to the velocity field

displaying disordered behavior the EM quantities also display such behavior. This

work sought to develop innovative turbulence models for incompressible MHD and

to demonstrate their effectiveness using simulations of turbulent flow.

The models were built from the mathematical framework of the VMS formu-

lation. This approach was used to develop LES models that differ from present

LES models in several ways. First of all, the LES approach typically introduces the

concept of a filter which decomposes the solution field into a smooth, resolved com-

ponent and an unresolved component. The VMS approach decomposes the solution

field into a discrete component and a continuous subgrid component. The goal in

the traditional LES approach is to numerically approximate the smooth, resolved

component whereas the goal in the VMS formulation is to numerically solve for the

discrete component of the solution. Closure of the LES models is typically obtained

via the introduction of a subgrid model which accounts for the subgrid effects. The

most popular closure model is the dynamic Smagorinsky model which enhances the

viscous dissipation of the fluid field. This dynamic model has been modified for in-

compressible MHD to account for energy transfer between the velocity and magnetic

fields (see Müller and Carati 2002). In principle, the VMS approach is exact and

173
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therefore, up to the model for the subgrid scales, it is exact. Thus, a dynamic model

is not required and there are no undetermined coefficients. However, this ideal is

not realized in practice. The work presented in this document sought to extend the

VMS formulation to incompressible MHD.

This work focused on the development of the VMS formulation for turbulence

modeling of incompressible MHD. The turbulence models were developed within the

context of Fourier-spectral methods and the FEM. There is a connection between

stabilized finite element methods and the VMS formulation. In particular, appli-

cation of the VMS formulation results in classical stabilized FEMs; in this sense

then, a stabilized FEM can be thought of as an incomplete turbulence model. An

important parameter in models developed with the VMS formulation is referred to

as the stabilization parameter. This parameter is typically a matrix and is used to

approximately invert the differential equations for the subgrid scales and therefore

approximately solve for the subgrid fields that influence the resolved solution. In

MHD there is evidence that a non-diagonal stabilization matrix could enhance the

approximation to the subgrid scales. A new non-diagonal stabilization parameter

was designed specifically for this purpose first using Elsässer variables and then de-

riving a new set of transformation variables. The stabilization parameter built upon

Elsässer variables was tested on one- and two-dimensional problems. Very promising

results were obtained for the one-dimensional case as compared to the pure diagonal

stabilization parameter. However, there did not appear to be a distinct advantage

to a non-diagonal stabilization parameter in the multi-dimensional case. Possible

explanations for this involve the type of problems that were tested; it may be that

the non-diagonal stabilization parameter finds its utility for turbulent flow fields

with very large or small magnetic Prandtl numbers. This idea remains to be tested

numerically.

The primary contribution of this thesis was the derivation of turbulence models

for incompressible MHD from the VMS formulation. The mathematical structure of

the resulting equations is similar to that of the incompressible hydrodynamics equa-

tions in that the equations are quadratically nonlinear. These quadratic nonlinear-

ities induce cross stresses and pure subgrid stresses once the VMS decomposition is



175

applied. The pure subgrid stresses are not adequately represented through the clas-

sic closure models. As such, a VMS-motivated, residual-based eddy viscosity model

was introduced for MHD and appended to the VMS models in the MHD equations.

The performance of the models was tested on different flow problems including de-

caying homogeneous, isotropic turbulence and shear turbulence. In the former case

various physical aspects of the models were studied including energy spectra for the

velocity and magnetic fields. Significantly, the capability of the VMS models to

reproduce the subgrid dynamo effect was demonstrated mathematically. Addition-

ally, the VMS models were compared to state-of-the art LES models such as the

alignment-based dynamic Smagorinsky model and were shown to perform quite well.

For inhomogeneous turbulence, the models were implemented into a finite element

code called Drekar at Sandia National Labs and tested on a turbulent MHD channel

flow. The simulation consisted of an electrically conducting fluid moving between

two parallel, perfectly conducting walls. The simulation was performed for Prm = 1.

Turbulence statistics for the velocity field were obtained. Numerical experiments on

convergence of the methods were performed for both the Taylor-Green flow and the

MHD channel flow.

6.2 Future Outlook and Prospects

Although considerable progress has been made in the development of VMS-

based turbulence models for MHD with this work, there is still much exploration

to be done. Different avenues of exploration are outlined here; several of which are

already in progress.

A thorough, quantitative study of the ability of the VMS-based turbulence

models to represent physical effects such as the subgrid dynamo represents an espe-

cially exciting area of research. The VMS method allows for the possibility of a local

inverse energy cascade because it is not always locally dissipative. Such dynamics

are known to occur in MHD. How well do the new models capture such physics? A

key task in such a study is to find an appropriate problem on which to study the sub-

grid dynamo effect because the subgrid dynamo does not appear in all MHD flows.

Long-term goals would be to perform LES simulations of realistic flows such as those
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found in geophysical fluid dynamics and astrophysics and compare predictions to

experimentally measured quantities such as the cross-helicity and magnetic-helicity.

Extensions to inhomogeneous turbulence studies include applications to chan-

nels and ducts with more complicated and realistic geometries. A fascinating ap-

plication area involves liquid metal blankets for a fusion reactor. For such an ap-

plication, a liquid metal flows along first wall of a tokamak reactor. Thus, it is

influenced by the very strong magnetic fields in found in a tokamak. This problem

has additional difficulties including a complicated wall-boundary condition and a

free-surface for the other boundary condition.

Additional areas of interest are to extend the VMS formulation to compress-

ible MHD, Hall-MHD, and plasma kinetic theories such as the Vlasov equation.

Furthermore, interesting studies in uncertainty quantification and optimization of

the turbulence models are also possibilities.
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Hughes, T.J.R., G.R. Feijóo, L. Mazzei, and J.B. Quincy. 1998. “The Variational

Multiscale Method–A Paradigm for Computational Mechanics.” Computer Meth-

ods in Applied Mechanics and Engineering 166 (1-2): 3–24.

Hughes, T.J.R., L. P. Franca, and M. Balestra. 1986. “A New Finite Element For-

mulation for Computational Fluid Dynamics: V. Circumventing the Babuška-
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APPENDIX A

Derivation of Incompressible Momentum Equation

The compressible momentum equation is,

∂m

∂t
+∇ ·

(
m⊗m

ρ

)
= ∇ · T + F

where m = ρu is the momentum. The stress tensor T is assumed to be linearly

related to the rate of strain S,

Tij = Aij + CijklSkl.

The matrix Aij represents the normal forces acting on the fluid element. We tradi-

tionally refer to this as the fluid pressure p. Thus,

Aij = −pδij

where δij is the Kronecker-delta. We will work with fluids that are isotropic. In the

MHD case this precludes ferromagnetic fluids. Thus, the 4th order, isotropic tensor

Cijkl is generally represented as

Cijkl = λδijδkl + µ (δikδjl + δilδjk)

which preserves the desired symmetry of the stress tensor. This symmetry stems

from the conservation of angular momentum. After some manipulation of these

quantities we find

Tij = −pδij + λuk,kδij + 2µSij.
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Thus, the compressible Navier-Stokes equations become

∂m

∂t
+∇ ·

(
m⊗m

ρ

)
= ∇ · (−pI + λ∇ · uI + 2µS) + F.

This is written as

∂m

∂t
+∇ ·

(
m⊗m

ρ

)
= −∇p+∇ (λ∇ · u) +∇ · (2µS) + F.

The equation stating conservation of mass reads

∂ρ

∂t
+∇ · (ρu) = 0.

We will be considering only incompressible flows. Therefore density variations in

space and time are assumed to be negligible. This leads to

∇ · u = 0.

Moreover, material properties such as the fluid molecular viscosity are also assumed

to be constant in space and time. This facilitates a simplification to the momentum

equation. We can write

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) = −∇p+ µ∇2u + f .



APPENDIX B

Details on Filtered Equations

In this chapter we will filter the momentum and induction equations to arrive at an

expression for the subgrid stress tensors for MHD. We only focus on the nonlinear

term since the subgrid stress tensors are the result of the filtering operation applied

to the nonlinear term. For the momentum equation we have

NV = u⊗ u− 1

µ0ρ
B⊗B

= u⊗ u− 1

µ0ρ
B⊗B

+ u⊗ u− u⊗ u− 1

µ0ρ
B⊗B +

1

µ0ρ
B⊗B

= = u⊗ u− 1

µ0ρ
B⊗B

+ u⊗ u− u⊗ u

− 1

µ0ρ

(
B⊗B−B⊗B

)

= NV
F + TV

where

NV
F = u⊗ u− 1

µ0ρ
B⊗B

TV = u⊗ u− u⊗ u− 1

µ0ρ

(
B⊗B−B⊗B

)
.
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The filtered nonlinear term in the induction equation is

N I = −u⊗B + B⊗ u

= −
(
u⊗B− u⊗B + u⊗B

)

+
(
B⊗ u−B⊗ u + B⊗ u

)

= −u⊗B + B⊗ u

−
(
u⊗B− u⊗B

)

+
(
B⊗ u−B⊗ u

)

= N I
F + TI

where

N I
F = −u⊗B + B⊗ u

TI = −
(
u⊗B− u⊗B

)
+
(
B⊗ u−B⊗ u

)
.

The filtered momentum and induction equations are therefore

∂u

∂t
+∇ ·

(
NV

F + TV
)

+∇P − ν∇2u = fV

∂B

∂t
+∇ ·

(
N I

F + TI
)

+∇r − λ∇2B = f I.



APPENDIX C

Index Notation

Index notation, also commonly referred to as the Einstein summation convention, is

a shorthand for writing out summations. The rules for index notation are outlined

below.

1. Summation occurs when two numbers with the same subscript are multiplied.

As an example we consider the dot product of two vectors.

u · v =
n∑

i=1

uivi.

In index notation this becomes,

u · v = uivi.

The summation is simply dropped and the summation limit is implied by the

context of the problem. Such indices are called repeated indices.

2. A free index is an index that is not involved in a summation.

ui = Tijvj (C.1)

3. A free index can be changed only if it is changed on both sides of the equation.

So (C.1) can be changed to

uk = Tkjvj.

4. It makes no sense to have more than than two repeated indices. For example,

the meaning of the following expression is not clear

ti = uiviwi.
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Two very useful symbols written in index notation are the Kronecker delta and the

Cevi-Levita symbol. Both of these symbols are defined in (Panton 2006) and we

follow the notation therein in what follows. The Kronecker delta acts as the identity

matrix. It is defined as

δij =





1 if i = j

0 if i 6= j.

The Cevi-Levi symbol, also known as the alternating symbol, is defined as

εijk =





1 if ijk = 123, 231, 312

0 if i = j, i = k, j = k

−1 if ijk = 321, 213, 132

The following relationship is very useful and is used extensively.

εijkεilm = δjlδkm − δjmδkl.



APPENDIX D

Properties of Integral Forms

We now demonstrate some simple properties of integral forms. In this section we

will consider functions u, v, and w in a region Ω. In general we will have u 6= v 6= w.

The following results hold for u, v, w ∈ Cn however we only consider n = 1 for

demonstration purposes here. Furthermore, a, b ∈ C are constants.

D.1 Linearity and Bilinearity

Linearity in a slot means the following.

A (·, av + bw) = aA (·, u) + bA (·, v) .

To demonstrate this we will consider two examples. First consider the integral form

A1 (u, v) = (u, v) =

∫

Ω

uv dΩ.

Then

A1 (u, av + bw) = (u, av + bw)

=

∫

Ω

u (av + bw) dΩ

=

∫

Ω

auv dΩ +

∫

Ω

buw dΩ

= a

∫

Ω

uv dΩ + b

∫

Ω

uw dΩ

= a (u, v) + b (u,w)

= aA1 (u, v) + bA1 (u,w) .
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Therefore A1 (u, v) is linear in its second slot. We could also test the linearity of

A1 (u, v) in the first slot. We would find,

A1 (au+ bv, w) = (au+ bv, w)

= a (u,w) + b (v, w)

= aA1 (u,w) + bA1 (v, w) .

With this we see that A1 (u, v) is also linear in its first slot. When an integral form

is linear in both slots it is called a bilinear form.

As a second example, we consider the form,

A2 (u, v) =
(
u2, v2

)

=

∫

Ω

u2v2 dΩ.

This gives

A2 (u, av + bw) =
(
u2, (av + bw)2)

=

∫

Ω

u2 (av + bw)2 dΩ

=

∫

Ω

u2
(
a2v2 + 2abvw + b2w2

)
dΩ

= a2
(
u2, v2

)
+ 2ab

(
u2, vw

)
+ b2

(
u2, w2

)

6= aA2 (u, v) + bA2 (u,w) .

It is therefore clear that A2 (u, v) is not linear in the second slot. The same argument

holds for the first slot of A2 (u, v).

As a final note, it is possible that a form may be linear in one slot and not in

another. Such a form is called a semilinear form. An example of such a form would

be

A3 (u, v) =
(
u, v2

)
.

A3 (u, v) is linear in its first slot and quadratic in its second slot.
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D.2 Sesquilinearity

We briefly discuss the property of sesquilinearity. Sesquilinearity is similar to

bilinearity except for one difference. This is illustrated with an example. A form

A (u, v) is said to be sesquilinear if

A (·, av + bw) = a∗A (·, v) + b∗A (·, w)

A (au+ bv, ·) = a∗A (u, ·) + b∗A (v, ·)

where the ∗ denotes a complex conjugate. Note that this is bilinearity except that

the coefficients in one slot become their complex conjugate.

D.3 Symmetry

A symmetric form is one such that

A (u, v) = A (v, u) .

The form

A (u, v) = (u, v) =

∫

Ω

uv dΩ

is very much symmetric. Clearly

A (u, v) =

∫

Ω

uv dΩ

=

∫

Ω

vu dΩ

= A (v, u) .
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The form

A (u, v) = (u, v) +
(
u, v3

)

=

∫

Ω

uv dΩ +

∫

Ω

uv3 dΩ

6=
∫

Ω

vu dΩ +

∫

Ω

vu3 dΩ

= A (v, u)

and is therefore not symmetric.



APPENDIX E

Sundry Vector Derivations

E.1 Derivation of Divergence Form of Induction Equation

The electromotive force term becomes,

−∇× (u×B) = −εijk (εklmulBm),j

= −εkijεklm (ulBm),j

= − [δilδjm − δimδjl] (ulBm),j

= − [uiBj − ujBi],j

= [−uiBj + ujBi],j

= ∇ · (−u⊗B + B⊗ u)

while the diffusion term is

−∇×
(
η

µ0

∇×B

)
= −εijk

(
η

µ0

εklmBm,l

)

,j

= −εijkεklm
(
η

µ0

Bm,l

)

,j

= −εkijεklm
(
η

µ0

Bm,l

)

,j

= − [δilδjm − δimδjl]
(
η

µ0

Bm,l

)

,j

= −
[
η

µ0

(Bj,i −Bi,j)

]

,j

=

[
η

µ0

(Bi,j −Bj,i)

]

,j

= ∇ ·
[
η

µ0

(
∇B− (∇B)T

)]
.
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Thus,

−∇× (u×B)−∇×
(
η

µ0

∇×B

)

= ∇ · (−u⊗B + B⊗ u) +∇ ·
[
η

µ0

(
∇B− (∇B)T

)]
.

E.2 Integral Relationships

E.2.1
∫

Ω
(∇×A) · (u×B) dΩ

∫

Ω

(∇×A) · (u×B) dΩ = −
∫

Ω

A · ∇ × (u×B) dΩ.

This identity will be proved using index notation. Thus,

∫

Ω

(∇×A) · (u×B) dΩ =

∫

Ω

εijkAk,jεilmulBm dΩ

=
��

���
���

���
��:0∫

Γ

εijknjAkεilmulBm dΓ

−
∫

Ω

εijkεilmAk (ulBm),j dΩ

= −
∫

Ω

Akεkij (εilmulBm),j dΩ

= −
∫

Ω

A · ∇ × (u×B) dΩ.

E.2.2
∫

Ω
v · (∇ · (v ⊗w)) dΩ = 0

∫

Ω

v · (∇ · (v ⊗w)) dΩ =

∫

Ω

vi (viwj),j dΩ

= −
∫

Ω

vi,jviwj dΩ −→ No boundary effects

= −
∫

Ω

(viwj),j vi dΩ −→ ∇ ·w = 0.
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Therefore since A = −A ⇒ A = 0 the identity is satisfied. Selecting w = v is a

special case of this identity. Therefore

∫

Ω

v · (∇ · (v ⊗ v)) dΩ = 0.

E.2.3
∫

Ω
v · ∇f dΩ = 0

∫

Ω

v · ∇f dΩ =

∫

Ω

vif,i dΩ

= −
∫

Ω

vi,if dΩ −→ No boundary effects

= 0 −→ ∇ · v = 0

E.3 Vector Identities

E.3.1 j×B

The electromagnetic forcing term in the momentum equation is

j×B =

(
1

µ0

∇×B

)
×B

=
1

µ0

εijk (εjlmBm,l)Bk

=
1

µ0

εjkiεjlmBm,lBk

=
1

µ0

(δklδim − δkmδil)Bm,lBk

=
1

µ0

(Bi,kBk −Bk,iBk)

=
1

µ0

(BiBk),k −
1

µ0

(
1

2
BkBk

)

,i

=
1

µ0

∇ · (B⊗B)− 1

µ0

∇
(

1

2
B ·B

)
.
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E.3.2 −n× (u1 ×B1)

−n× (u1 ×B1) = −εijknjεklmulBm

= −εklmεklmnjukBm

= − [δilδjm − δimδjm]njukBm

= − [njuiBj − njujBi]

= − [uiBj − ujBi]nj

= [ujBi − uiBj]nj

= [−u1 ⊗B1 + B1 ⊗ u1] · n.

E.3.3 v × (∇×w)

Given two vectors v and w we have

v × (∇×w) = εijkvj (εklm∂lwm)

= εkijεklmvj∂lwm

= [δilδjm − δimδjl] vj∂lwm
= −vj [∂jwi − ∂iwj]

= −2
[
∇w − (∇w)T

]
· v.



APPENDIX F

Spectral Equations from the Variational Statement

The variational form of the MHD equations is written using a concise notation in

this section. The reason for this is that the momentum and inductions equations

take on a similar form when written in the divergence form. Thus, the variational

form for both the momentum and induction equations are written as

A (W,U) =

(
v,

da

dt

)
+ (w,∇ · (a⊗ b + c⊗ d)) + (w,∇P) + (∇w,D∇v) (F.1)

where a, b, c, d are vector fields and D is a diffusion coefficient. Note also that v

is either u or B depending on the equation being considered. Table F.1 shows the

specific variables that the nonlinear form takes for each equation.

Table F.1: Coefficient mappings corresponding to the nonlinear term

in (F.1).

Momentum Induction

a u −u

b u B

c − 1
µ0ρ

B B

d B u

For reference we present the basis functions for the fields,

W =
∑

q

Ŵ (q) e−ıq·x

U =
∑

k

Û (k) e−ık·x.

For algebraic simplicity we will consider the linear and nonlinear terms in turn. We
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begin with the linear terms. Thus,

(∑

q

ŵ (q) e−ıq·x,
d

dt

∑

k

v̂ (k) eık·x

)
+

(∑

q

ŵ (q) e−ıq·x,∇
∑

k

P̂eık·x

)
+

D

(
∇
∑

q

ŵ (q) e−ıq·x,∇
∑

k

v̂ (k) eık·x

)

=
∑

k

∑

q

ŵ (q) · dv̂ (k)

dt

(
e−ıq·x, eık·x

)
+
∑

k

∑

q

ŵ (q) · ıkP̂ (k)
(
e−ıq·x, eık·x

)
+

D
∑

k

∑

q

ŵ (q) · v̂ (k) (−ıq · ık)
(
e−ıq·x, eık·x

)

= (2π)3
∑

k

ŵ (k) ·
(

dv̂ (k)

dt
+ ıkP̂ (k) + D |k|2 v̂ (k)

)
.

The final step results from the following relationship

(
e−ıq·x, eık·x

)
=





(2π)3 , q = k

0 q 6= k
.

The nonlinear term is

(∑

q

ŵ (q) e−ıq·x,∇ ·
(∑

l

â (l) eıl·x ⊗
∑

m

b̂ (m) eım·x +
∑

l

ĉ (l) eıl·x ⊗
∑

m

d̂ (m) eım·x

))

=
∑

q

∑

l

∑

m

ŵ (q) ·
[
â (l)⊗ b̂ (m) + ĉ (l)⊗ d̂ (m)

]
· (l + m)

(
e−ıq·x, eıl+m·x)

=
∑

q

∑

l

ŵ (q) ·
[
â (l)⊗ b̂ (k− l) + ĉ (l)⊗ d̂ (k− l)

]
· k
(
e−ıq·x, eık·x

)

= (2π)3
∑

k

∑

l

ŵ (k) ·
[
â (l)⊗ b̂ (k− l) + ĉ (l)⊗ d̂ (k− l)

]
· k.

The forcing term becomes

(w, f) = (2π)3
∑

k

ŵ (k) f̂ (k) .
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Putting it all together results in

∑

k

ŵ (k) ·
[

dv̂ (k)

dt
+ ıkP̂ (k) + D |k|2 v̂ (k)

+
∑

l

ŵ (k) ·
[
â (l)⊗ b̂ (k− l) + ĉ (l)⊗ d̂ (k− l)

]
· k
]

=
∑

k

ŵ (k) · f̂ (k) .

This is true for all weighting functions and therefore we arrive at an equation for

each wavenumber,

dv̂ (k)

dt
+ ıkP̂ (k) + D |k|2 v̂ (k) + N̂ (k) · k = f̂ (k)

where

N̂ (k) =
∑

l

â (l)⊗ b̂ (k− l) + ĉ (l)⊗ d̂ (k− l) .


