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a b s t r a c t

The effect of correlations of the spatial distribution of inclusions in a two-phase composite
is studied numerically in this work. Microstructures with fractal distribution of inclusions,
characterized by long-range power law correlations, are compared with random inclusion
distributions of same volume fraction. The elastic–plastic response of composites with stiff
elastic inclusions and elastic–plastic matrix is studied, and it is concluded that fractal
microstructures always lead to stiffer composites, with higher strain hardening rates, com-
pared with the equivalent composites with randomly distributed inclusions. Composites
with filler distributions characterized by shorter range, exponential correlations exhibit
behavior intermediate between that of random and power law-correlated microstructures.
Larger variability from replica to replica is observed in the fractal case. The pressure in
inclusions is larger in the case of fractal microstructures, indicating that these are expected
to be advantageous in applications such as toughening of thermoset polymers which takes
place via the cavitation mechanism. The effect of the spatial distribution of inclusions on
the effective damping of the composite is also investigated. The matrix is considered elastic
and non-dissipative, while inclusions dissipate energy. The composite with fractal micro-
structure provides more damping than the random microstructure of same filler volume
fraction, and the effect increases with increasing fractal dimension. When damping is
introduced only in the interfaces between matrix and inclusions, the spatial distribution
of fillers becomes inconsequential for the overall composite behavior. These results are rel-
evant for the design of composites with hierarchical multiscale structure.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are broadly used in engineering for
their properties emerging from the interaction of the
constituent phases. In most man-made composites the
structure is either random or periodic. Particulate compos-
ites, made by mixing inclusions of nominally monodis-
perse dimensions in a matrix, have a random
microstructure. In many other situations, manufacturing
processes lead to periodic microstructures, as for example

in woven fiber composites. Therefore, the distribution of
inclusions in the matrix is dictated primarily by technolog-
ical reasons and not by considerations related to the
optimization of system level properties of the material.

Exceptions to this rule are structures designed by an
optimization scheme aimed at achieving an optimum of
an objective function representing one or multiple macro-
scopic properties. Such structures can be produced only by
specialized techniques lacking high throughput, such as
additive manufacturing (e.g. Vaezi et al., 2012).

Biological materials, on the other hand, have complex
microstructures which are optimized to perform a certain
function while using the minimum volume of material.
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Examples are the trabecular bone (Parkinson and Fazzalari,
2000) and various types of marine shells (Meyers et al.,
2006). Mass is distributed in the trabecular bone only in re-
gions carrying large stresses, while in shells structural ele-
ments are distributed in layers such to maximize strength
and toughness. Most of these materials are hierarchical
and some are self-similar across a range of scales. These
structures have some degree of stochasticity and are either
only approximately periodic (e.g. the structure of abalone
shells) or lack translational symmetry all together (e.g.
the trabecular bone).

It is useful to ask why nature designs structures with
self-similar multiscale structure. In the context of engi-
neered materials, one may alternatively ask how inclusions
should be distributed in a composite to maximize macro-
scopic properties, while preserving some level of stochas-
ticity, which is mandated by the technological need to
produce such materials at reasonable cost and in large vol-
umes. This is the objective of the current work.

Specifically, while acknowledging that the volume
fraction of inclusions is the major factor controlling the
properties of the composite, we inquire what benefits may
be obtained if the reinforcing phase is distributed in a spa-
tially correlated way. To address this question, we compare
random and spatially correlated distributions of inclusions.
The limit case of a spatially correlated microstructure is a
fractal, in which correlations are described by a power law
and the exponent of the correlation function depends on
the fractal dimension (Falconer, 2003). Fractal microstruc-
tures lack translational symmetry, but have scaling symme-
try, i.e. remain self-similar upon a scaling operation
(Mandelbrot, 1983; Falconer, 2003). The properties of inter-
est are the elastic–plastic response and the damping behav-
ior of the composite. Damping is of interest in applications
in which the material is subjected to intense vibrations
(e.g. composites used for helicopter blades) and inclusions
are added to enhance energy dissipation, while providing
stiffness and strength. Damping may take place in the vol-
ume of inclusions or/and at the interface with the matrix.
Another problem of interest is toughening of brittle poly-
mers (thermosets) by the addition of rubbery inclusions.
Toughening is triggered in such situations by cavitation
within inclusions. This process is driven by the hydrostatic
stress component. Inclusions are usually distributed ran-
domly in the polymer volume and it is interesting to inquire
if a different stochastic distribution could lead to larger
toughening at prescribed filler volume fraction.

The effect of the distribution of inclusions on the elastic
moduli of composites has been studied for a long time. Re-
views on the homogenization of random composites are
presented in Nemat-Nasser and Hori (1999), Torquato
(2002) and Dvorak (2013). Remarkable results have been
obtained regarding the bounds on the elastic moduli of
such composites. These expressions are generally given in
terms of the volume fraction of the constituents. The clos-
est bounds for the bulk modulus which take into account
only the volume fraction have been derived by Hashin
and Shtrikman (HS) (Hashin and Shtrikman, 1962). A fam-
ily of higher order bounds, which take into account statis-
tical measures of the microstructure geometry, have been
proposed more recently with the purpose of reducing the

separation between the upper and lower bounds (e.g.
Beran and Molyeux, 1966; Silnutzer, 1972; Milton, 1981;
Milton, 1982; Phan-Tien and Milton, 1982; Quinatanilla
and Torquato, 1995). The n-point bounds are written in
terms of n-point microstructural correlation functions
which define the probability that n points with specified
relative positions are all located in a certain phase of the
composite. Any statistical correlation of the microstructure
can be accounted for by using these methods. A review of
the higher order bounds and the geometric parameters re-
quired for their evaluation is provided in Torquato (2002).

Fractal structures have been studied in connection with
various physical processes such as transport (Dzhaparidze
and van Zanten, 2003), diffusion limited aggregation
(Witten and Sander, 1983), and dislocation patterning dur-
ing deformation of metals (Zaiser and Hahner, 1999; Bako
and Hoffelner, 2007), microscale plasticity (Chen et al.,
2010; Ostoja-Starzewski, 2012). Fractal concepts were also
used in percolation theory (Bergman and Kantor, 1984),
quantum mechanics (Argyris et al., 2000), fracture
mechanics (Bazant, 1997), etc. However, despite its practi-
cal importance, very few attempts have been made to
study the deformation of such structures or that of com-
posites containing fractal inclusions.

The elastic moduli of deterministic fractal structures
have been predicted using standard finite element models
and renormalization group concepts to extrapolate to the
range of scales not accessible by direct simulation (Oshm-
yan et al., 2001). Dyskin applied the differential self-con-
sistent method (initiated in Salganik (1973)) for media
containing self-similar distributions of spherical/ellipsoi-
dal pores or cracks (Dyskin, 2005). The author proposes
to model such materials by a sequence of continua with
effective elastic properties. This does not take into account
the interaction of inclusions. Other approaches consider
the reformulation of the governing equations to account
for the fractal nature of the inclusion domains. Tarasov
studied porous materials having pores with a broad range
of sizes and in which the mass of the material within a vol-
ume of dimension R scales as mðRÞ � RQ , with Q non-inte-
ger (Tarasov, 2005a,b). The author replaces the fractal body
with an equivalent continuum governed by a ‘‘fractal met-
ric’’. The balance equations for mass, linear and angular
momentum for the equivalent continuum are reformulated
in terms of this metric. This method was further developed
recently in Ostoja-Starzewski (2007, 2009) to represent the
mechanics of heterogeneous bodies with fractal
microstructure.

Carpinteri et al. studied the deformation of a bar in
which the strain is localized in a subset of cross-sections
forming a Cantor set (Carpinteri et al., 2004). These authors
use fractional operators to rewrite the balance equations,
although in one dimension this is not immediately neces-
sary. The deformation of a two-dimensional composite
with Cantor-like inclusion distribution was studied in
Soare and Picu (2007). A numerical method using enriched
shape functions that account for the finer scale geometry
was developed in this work and was applied to structures
with an arbitrary number of scales.

In Picu and Soare (2009) fractional calculus based on
local fractional operators introduced by Kolwankar and
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Gangal (1996) and Kolwankar (1998) were used to formu-
late the balance equations on the fractal support. The for-
mulation was applied to modeling the deformation of
two-dimensional composites containing a fractal distribu-
tion of inclusions in a matrix. The method is readily
extendable to three-dimensional composites.

In the stochastic case, in addition to Monte Carlo (MC)
methods (Papadrakakis and Papadopoulos, 1996), various
systematic ways of approaching numerically partial differ-
ential equations defined on single-scale stochastic do-
mains were proposed in the literature. Methods based on
probabilistic finite elements (second order perturbation
PFEM) (Liu et al., 1986, 1987), or the spectral approach
for stochastic finite elements (SSFEM) (Ghanem and Spa-
nos, 1991) are relevant examples. These methods were ap-
plied to various problems in solid and fluid mechanics such
as for example to study transport through porous media
(Ghanem and Dham, 1998) and elastic deformation
(Matthies et al., 1997). The elastic deformation of compos-
ites with fractal microstructure was represented using the
stochastic finite element method in Soare and Picu (2008a)
based on an approximation of the spectral decomposition
of the representation of the fractal microstructure pre-
sented in Soare and Picu (2008b).

In most problems involving fractal microstructures
studied to date, the mechanical behavior of interest was
either the dynamic or the quasistatic elastic response. In
the present work we use ensemble averaging of realiza-
tions modeled using finite elements and investigate a
broader range of mechanical properties, as mentioned
above. This allows investigating not only the global com-
posite behavior, but also the local stress distribution,
which is relevant in damage nucleation and evolution.

The article begins with an overview of the models and
methods used (Section 2), and continues with results per-
taining to the elastic–plastic deformation (Section 3.1),
internal stresses in structures subjected to quasistatic
deformation (Section 3.2), and the investigation of the ef-
fect of the distribution of inclusions on the damping
behavior of the composite (Section 3.3). Conclusions are
presented in closure.

2. Models and methods

Two phase two-dimensional composites are considered.
The matrix fills the Euclidean space of the problem do-
main. In each realization, inclusions form a fractal which
is a generalization of the classical Cantor set to probabilis-
tic structures embedded in 2D (Soare and Picu, 2008a). The
microstructure is constructed hierarchically by iteratively
applying a set of transformation rules. The first generation
(approximation of the fractal set with an infinite number of
scales) is obtained by starting with an Euclidean domain,
dividing it in M equal cells and selecting randomly P of
them which are to be filled by inclusions. The characteris-
tic length of these inclusions is e1. The number of possible
configurations at the first generation is M!=ðP!ðM � PÞ!Þ.
The next generations are obtained by dividing again each
of the fractal cells in M equal parts from which M � P are
transformed into ‘‘matrix’’ cells. Thus, the approximation

of the domain A at a certain scale n, An, is seen as a reunion
of Mn cells of characteristic dimension en, of which Pn are
occupied by the inclusion (fractal) material. The remaining
Mn � Pn cells are occupied by the matrix. The number of
possible configurations at iteration, n, is
½M!=ðP!ðcM � PÞ!Þ�p

n�1þ���þpþ1. The volume fraction of inclu-
sions is given by f ¼ ðP=MÞn, while the fractal dimension
of the set is D ¼ 2logðPÞ=logðMÞ. The natural numbers M
(M P 2) and P (1 6 P < M) are kept as parameters in this
analysis. Fig. 1(a) shows a realization of a composite with
M = 9, P = 6 and n = 5, which has volume fraction f = 13.1%
and fractal dimension D = 1.63. Note that the fractal
dimension is smaller than 2, the dimension of the embed-
ding space.

It is important to observe that the set of inclusions rep-
resents a fractal object only in the range of scales defined
by the smallest representative length, en, and the largest
length scale of the problem. If the upper bound (the dimen-
sion of the structure in Fig. 1(a)) is taken to be L, one com-
putes en ¼ L=Mn=2, or e5 ¼ L=243 for Fig. 1(a). For any set
with given en, the object is non-fractal and with dimension
equal to that of the embedding space at all length scales
smaller than en. The composite is not defined on scales lar-
ger than L in the present case, since the boundary condi-
tions are defined at this scale. The fractal object does not
have translation symmetry, rather it has scaling symmetry.
For example, one may fill the embedding space with repli-
cas of the fractal set bounded by L and en, but the resulting
structure will have translation symmetry on scales larger
than L, and scaling symmetry between L and en.

An important property related to the present discussion
is that the fractal structure has long range, power law cor-
relations. Consider the characteristic function defined on
the fractal support, taking values of 1 in inclusions and 0
elsewhere: hðx1; x2Þ ¼ 1 if ðx1; x2Þ 2 An, and hðx1; x2Þ ¼ 0
if ðx1; x2Þ 2 A� An. This function is probed with resolution
en. On scales larger than en one has ACFðrÞ ¼ hðx1 þ r; x2Þ
hðx1; x2Þðx1 ;x2Þ � r�4þ2D, as r !1 (Falconer, 2003; Gneiting
and Schlather, 2004), where hxiðx1 ;x2Þ indicates ensemble
averaging over all points defined by the coordinate pair
(x1, x2). Due to its stochastic isotropy, the fractal object
has ACFðrÞ ¼ hðx1 þ a1; x2 þ a2Þhðx1; x2Þðx1 ;x2Þ � r�4þ2D, with
r2 ¼ a2

1 þ a2
2.

The behavior of these structures is compared with that
of composites with random distribution of inclusions of
same volume fraction and having the same characteristic
length en, which, in this case, represents the size of the ran-
domly distributed inclusions. Fig. 1(b) shows a realization
of a random structure having the same f and en as the
structure in Fig. 1(a). The correlation of the characteristic
function h of the random microstructure is a Delta function
of variable r when probed with resolution en. Comparing
the mechanical behavior of composites similar to those
in Fig. 1(a) and (b) provides insight into the role of spatial
correlations of the position of inclusions in defining the
composite mechanics.

In order to put this discussion in perspective, we have
also considered composites in which the position of inclu-
sions is exponentially correlated. An example is shown in
Fig. 1(c). This structure has the same parameters f and en

with those in Fig. 1(a) and (b), but has

R.C. Picu et al. / Mechanics of Materials 69 (2014) 251–261 253



Author's personal copy

ACFðrÞ ¼ hðx1 þ a1; x2 þ a2Þhðx1; x2Þðx1 ;x2Þ � expð�r=r0Þ for
all pairs a1 and a2 having the property r2 ¼ a2

1 þ a2
2, and

with r0 a constant. The specific situations in which such
structures are used and the parameters involved (e.g. r0),
are discussed in Section 3.1.

It is of interest to outline the method used to generate
the exponentially correlated samples. To this end, domain
A is partitioned on scale en. On the resulting square lattice,
the characteristic function takes random binary values, 0
and 1. An Ising model is then used to evolve the system.
The Ising model has been extensively studied in statistical
physics and was used to model phase transitions in many
systems, e.g. see Baxter (1982). In the present context, each
cell is assigned a spin (either s = +1 or s = �1) depending on
the local value of the characteristic function. The spins
interact such that the total energy of the system in absence
of an external field is E ¼ �

P
fi;jgJsisj, where the summation

is performed over all interacting cells/spins {i, j}. Parameter
J can be selected to depend on the relative position of the
two cells i and j. The system is evolved using a Monte Carlo
procedure which is controlled by a temperature-like
parameter, b ¼ 1=kBT. When the dimensionality is larger
than one, the mean field solution of this model predicts a
phase transition once the temperature decreases below a
critical value, or b > bc . For b < bc , spins are random and
the total magnetization, hsi, vanishes. Below the critical va-
lue, the system acquires a net magnetization. In the lan-
guage of the present application, when b < bc , function h
is either 0 or 1 with equal probability, and f = 0.5. For
b > bc , one of the two phases dominates and h can be ad-
justed such to obtain the volume fraction, f, in the desired
range of values. To this end, b is selected in the close vicin-
ity of the critical point. Numerical Ising models have pro-
vided a richer physics which could not be captured by
the mean field approach. The system exhibits residual
magnetization even above the critical temperature due to
spin clustering and the phase transition takes place
gradually.

The interesting property of the Ising model is that it
provides exponential spatial correlations, or clustering, of
the spins and the correlation of the characteristic function
h is exponentially decaying. The range can be adjusted, to

some extent, by controlling the constant J in the energy
function and its dependence on the distance between the
interacting spins, si and sj. In this work, interactions are
considered up to the second nearest neighbors of the
square lattice. The interaction strength is J = 2.5 for both
first and second nearest neighbors. The temperature
parameter b was kept in the close vicinity of the critical
point provided by the mean field solution, bc ¼ 2=ðzJÞ,
where z is the number of interacting neighbors of each site.

Fig. 2 shows the correlation function obtained using this
procedure and corresponding to Fig. 1(c), along with the
power correlation function corresponding to the fractal
microstructure of Fig. 1(a). The random distribution of
Fig. 1(b) leads to a Delta function centered at zero and is
not shown in Fig. 2. The corresponding best fits to the
two curves in Fig. 2, exponential and power law, are also
shown. Note that the characteristic length of the exponen-
tial function, r0, is selected such that it provides a
reasonable approximation for the power law correlation

L

Fig. 1. The three types of composite microstructures studied in this work. The matrix is shown in white and inclusions in black. (a) Fractal distribution of
inclusions with M = 9, P = 6 and n = 5. The smallest length scale, or the dimension of an isolated inclusion is en ¼ e5 ¼ L=243. The volume fraction of
inclusions is f = 0.131 and the fractal dimension is D = 1.63. (b) Random distribution of inclusions of same f and en. (c) Microstructure characterized by an
exponential correlation function of inclusion positions and having the same f and en as the fractal structure in (a).

Fig. 2. Normalized ACF(r) functions for a fractal microstructure with
M = 9, P = 5 and n = 4 (blue circles) having D = 1.46 and f = 0.131, and for a
clustered microstructure similar to that in Fig. 1(c) and with f = 0.131
(filled red squares). The functions are normalized by the variance ACF(0).
The dotted red line represents an exponential fit to the ACF of the
clustered microstructure. The slope of the blue dashed line is �0.95. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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in the vicinity of the origin. The exponential correlation has
an early cut-off at r > r0 � 4en, while the decay of the cor-
relation function of the fractal is much slower and the cor-
relation function is much longer ranged.

These microstructures are discretized and their
mechanical response is determined with a finite element
model. We have used the commercial finite element pack-
age Ansys for all simulations. The two-dimensional simula-
tion domain for each representation is a square of length L,
which is meshed uniformly with 4-node plane stress ele-
ments. At a given M value, the same level of refinement
is maintained for all scales, n. For example, all structures
with M = 9 and n = 2–5 are meshed with 9722 elements,
i.e. with elements of size en=4, where en corresponds to
n = 5. We have tested in representative cases that further
mesh refinement does not lead to significantly different
system-scale results. Furthermore, we checked that at this
level of mesh refinement the use of 8-node elements does
not lead to different results.

Model size effects are usually a concern when analyzing
structures with spatial correlations. In the case of ran-
domly distributed inclusions, the model size should be at
least an order of magnitude larger than the characteristic
size of inclusions in order to insure that the results are
model size-effect free (Dvorak, 2013). This insures scale
decoupling between the characteristic length scale of the
microstructure and the scale of observation/homogeniza-
tion. A similar rule applies in presence of correlations.
For example, in the case of the exponentially correlated
microstructures of Fig. 1(c), L should be an order of magni-
tude larger than r0 (here r0 � 4en and L ¼ 243en). The case
of the fractal microstructures is different as the geometry
is scale-free and hence correlation decay is power law.
The behavior of these structures is intrinsically dependent
on the two scale (upper, L, and lower, en) at which the hier-
archy is truncated. This ‘‘size effect’’ is an intrinsic property
of the fractal microstructures which, we suggest, can be
used to advantage in material design.

In models used to determine the elastic–plastic re-
sponse, inclusions are linear elastic with Young’s modulus
and Poisson ratio E2 and m2, while the matrix is represented
with a bi-linear model with slopes E1 and 0.1E1 in the elas-
tic and plastic regimes, respectively. In all simulations
E2 = 6E1, m1 = m2 = 0.3 and kinematic hardening is used for
the plastic range. The yield strain of the matrix material
is 0.01. In models used to study the damping behavior of
the composite, the two materials are linear elastic and iso-
tropic with E2 = 6E1 and m1 = m2 = 0.3. Parameters character-
izing damping are discussed in Section 3.4. In all cases
discussed below, stress is normalized by E1 and displace-
ments by L.

3. Results and discussion

Structures with fractal and random microstructures are
studied with respect to their elastic–plastic and damping
behavior. The central question posed refers to the role of
the distribution of heterogeneity in defining the overall re-
sponse of the composite.

3.1. Elastic–plastic behavior

Structures similar to those shown in Fig. 1 are consid-
ered for this study. The matrix fills the square problem do-
main and embeds inclusions of dimension en. Stress–strain
curves are computed for 100 realizations, each being
loaded uniaxially in displacement control up to a global
strain of 2%. The boundaries in the direction perpendicular
to the loading direction are traction free. The stress–strain
curves and all subsequent plots represent the ensemble
average stress. The standard deviation is below 1% for the
random case and approximately 5% for the fractal case
(which is about the size of the symbols used in Fig. 3).

Fig. 3 shows results for two fractal microstructures with
M = 9, P = 5 and n = 2 and 3, respectively (filled symbols),
and random microstructures of the same volume fraction
(open symbols). The volume fractions are f = 0.308 and
0.171 for n = 2 and 3, respectively. It is seen that all curves
are bilinear, and that at the same volume fraction the curve
corresponding to the fractal case is above that for the random
microstructures. However, the probability that two specific
realizations with fractal and random microstructures lead
to stress–strain curves which are in the reverse order is not
zero. As n increases, f decreases and hence the curves asymp-
tote to the stress–strain curve of the matrix (shown by the
continuous line in Fig. 3). Furthermore, as n increases, the
distinction between the curves for fractal and random cases
decreases since the volume fraction f decreases.

The effective elastic modulus of the composite, Ee, and
the strain hardening rate defined by the slope Ep, can be
evaluated from the stress-strain curves as suggested in
Fig. 3. These two parameters fully define the uniaxial re-
sponse of the composite, therefore we focus attention on
their dependence on the fractal dimension, D, and the vol-
ume fraction, f. Specifically, the fractal dimension controls
the exponent of the autocorrelation power function and
hence comparing fractal structures with same f and various
D, one may infer the effect of the spatial correlation of the
distribution of heterogeneity on the overall composite
response.

Fig. 3. Stress–strain curves for composites with fractal microstructure
(filled symbols) and random microstructures of same volume fraction
(open symbols), with M = 9, P = 5, n = 2 (circles) and M = 9, P = 5, n = 3
(squares). The continuous line represents the mechanical behavior of the
matrix material. The dashed lines define slopes Ee and Ep.
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Fig. 4(a) shows the variation of the elastic modulus, Ee/
E1, with the volume fraction, f, for random structures (open
symbols), and various fractal structures. Data are shown
for M = 9, P = 5, and n = 2–5 (blue circles), which all have
D = 1.46, for M = 4, P = 3, n = 7 and 8 (green squares), which
have D = 1.58, and for M = 81, P = 42, n = 2 and 3 (red trian-
gles), which have D = 1.7. These structures have different
filler volume fractions. Obtaining fractal geometries with
the same f and various D values is not possible. The thick
continuous orange lines represent the Hashin–Shtrikman
bounds for the two-dimensional case (Hashin and Shtrik-
man, 1962; Hashin, 1965).

The data points for the random microstructures align on
a curve described by Eq. (1) and shown by the continuous
thin line in Fig. 4(a).

Ee=E1 ¼ 1:73f 2 þ 1:27f þ 1 ð1Þ

The four data points corresponding to fractal structures
with M = 9, P = 5, D = 1.46, are well represented by a similar
curve, which is shown by the dashed line in Fig. 4(a). It is
possible to approximate all data with the expression:

Ee=E1 ¼ 1:73gf 2 þ 1:27gf þ 1 ð2Þ

with g ¼ 0:2ð3Dþ 1Þ, which holds for D > 1.3 This indicates
that the stiffness increases with D, which is a consequence
of the stronger interaction of inclusions in the fractal
structures.

The influence of filler packing on the elastic moduli has
been discussed before. The properties of fiber composites
loaded perpendicular to the preferential direction of fibers
have been determined for a variety of periodic arrange-
ments (e.g. Brockenbrough et al., 1991; Nakamura and Sur-
esh, 1993). For random microstructures one can make use
of the n-point bounds derived in the homogenization liter-
ature (for a review see Torquato (2002)) to investigate the
expected variation of the elastic constants in presence of
long range correlations. The three point bounds for the
bulk (Kl;Ku) and shear (Gl;Gu moduli in two dimensions
are given by Milton (1982) and Torquato (2002):

Ku ¼ hKi �
f ð1� f ÞðK2 � K1Þ2

h~Ki þ hGin
;

Kl ¼ hKi �
f ð1� f ÞðK2 � K1Þ2

h~Ki þ ðhG�1inÞ
�1 ð3aÞ

Gu ¼ hGi �
f ð1� f ÞðG2 � G1Þ2

h~Gi þH
;

Gl ¼ hGi �
f ð1� f ÞðG2 � G1Þ2

h~Gi þW
ð3bÞ

where hzi ¼ ð1� f Þz1 þ fz2, h~zi ¼ ð1� f Þz2 þ fz1, and
hzin ¼ ð1� n2Þz1 þ n2z2 for any quantity, z, and defining
phase 2 as the stiffer inclusions and phase 1 being the ma-
trix. Parameters H and W in Eq. (3b) are given by:

H ¼
2hKinhGi

2 þ hKi2hGig
hK þ 2Gi2

ð4aÞ

W�1 ¼ 2hK�1in þ hG
�1ig ð4bÞ

The bounds for Young’s modulus, E, are computed using Eq.
(3) and the 2D relationship between the three types of
moduli, 4=E ¼ 1=Gþ 1=K.

n and g, are 3-point parameters characterizing the dis-
tribution of inclusions (phase 2) in the matrix. These are gi-
ven for the two-dimensional case by Milton (1982) and
Torquato (2002):

n2 ¼
4

pf ð1� f Þ

Z 1

0

dr
r

Z 1

0

ds
s

Z p

0
dh0cosð2h0Þ

� ½S3ðr; s; tÞ � S2ðrÞS2ðsÞ=f � ð5aÞ

g2 ¼
16

pf ð1� f Þ

Z 1

0

dr
r

Z 1

0

ds
s

Z p

0
dh0cosð4h0Þ

� ½S3ðr; s; tÞ � S2ðrÞS2ðsÞ=f � ð5bÞ

where S2(z) is the 2-point correlation function representing
the probability that the ends of a segment of length z are

Fig. 4. Variation of (a) the elastic modulus (Ee/E1), and (b) strain hardening rate (Ep/E1) with the volume fraction, for microstructures with randomly
distributed inclusions (open symbols and continuous thin line), and for various fractal microstructures having M = 9, P = 5, and n = 2–5 (blue circles), M = 4,
P = 3, n = 7 and 8, M = 9, P = 6, n = 4 and 5 (green squares), M = 81, P = 42, n = 2 and 3 (red triangles). Data for microstructures with exponential correlation
function (Fig. 1(c)) are shown in (b) with crosses and dashed-dot line. The thick orange continuous lines in (a) represent the 2D Hashin–Shtrikman bounds.
The thin continuous line and the dashed line in both (a) and (b) represent the best fit to the random structures data and to the fractal structures with M = 9,
P = 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

256 R.C. Picu et al. / Mechanics of Materials 69 (2014) 251–261



Author's personal copy

both in phase 2, and S3(z1, z2, z3) is the 3-point correlation
function representing the probability that all corners of a
triangle of edge lengths z1, z2, z3 are in phase 2. Length t
is computed in terms of r, s and h0 as
t2 ¼ r2 þ s2 � 2rscosðh0Þ.

The 2-point correlation function is evaluated numeri-
cally from the microstructure. For all microstructures stud-
ied S2 has the limit values S2ð0Þ ¼ f and S2ð1Þ ¼ f 2. For the
random microstructure S2ðrÞ ¼ f 2 for all r > en. The fractal
microstructures lead to S2 functions with power law decay
on scales r > en. The 3-point correlation function S3 is esti-
mated using the approximation in terms of 2-point corre-
lation functions proposed in Banissadi et al. (2012):

S3ðr; s; tÞ �
t

r þ sþ t
S2ðrÞS2ðsÞ

f
þ s

r þ sþ t
S2ðrÞS2ðtÞ

f

þ r
r þ sþ t

S2ðtÞS2ðsÞ
f

ð6Þ

which is reported to provide estimates with a maximum
error of 20%. The value of n2 computed using Eq. (5a) for
the random microstructure with f = 0.0953 is n2 ¼ 0:33.
This is larger than the value predicted with the formula
n2 ¼ 0:08079ð1� f Þ þ 0:91921f (n2 = 0.1607) proposed in
the literature for symmetric-cell materials of checkerboard
type (Torquato, 2002). For the same random microstruc-
ture we obtain g2 ¼ 0:126 using Eq. (5b). The correspond-
ing parameters for the fractal microstructure with M = 9,
P = 5, n = 4 (D = 1.465, f = 0.0953) are n2 ¼ 0:373 and
g2 ¼ 0:212.

The HS bounds are compared with the 3-point bounds
evaluated using Eqs. (3) and (4) in Fig. 5. The range defined
by the higher order bounds is much narrower than that de-
fined by the HS bounds, as expected. The observation rele-
vant for the present discussion is that both 3-point bounds
shift up as the range of spatial correlations increases,
which is in agreement with the generic trend reported in
this article for all effective properties discussed. In fact,
considering that as the correlation range increases, param-
eters n2 and g2 increase, this trend can be inferred directly

from Eq. (3) without the need to perform a numerical
study.

Fig. 4(b) shows the normalized strain hardening rate
versus the filler volume fraction for composites with ran-
dom microstructures, composites with microstructures
having exponential correlations, and fractal microstruc-
tures with parameters similar to those discussed in rela-
tion to Fig. 4(a). The strain hardening rate is independent
of strain since the composite has a bilinear stress–strain
curve. It is seen that all microstructures with spatial corre-
lations of the distribution of inclusions have larger strain
hardening rates than the random microstructures. The
longer ranged the correlation, the larger is the value of
Ep. The fractal dimensions of the fractal microstructures
considered is D = 1.43, 1.58, 1.63 and 1.7, for the structures
with (M = 9, P = 5), (M = 4, P = 3), (M = 9, P = 6) and (M = 81,
P = 42), respectively. It is apparent that as D increases, the
data move to higher values of Ep.

An interesting comparison can be made between the
fractal system with M = 9, P = 5 and the system with expo-
nential correlations. The correlation functions for these
two types of structures are shown in Fig. 2. The exponen-
tial correlation is selected such to approximately match
the power law correlation of the fractal structures at small
values of r/en. The data in Fig. 4(b) indicate that the strain
hardening rate of the fractal microstructure is always lar-
ger than that of the microstructure with exponential corre-
lations. This indicates the effect of the range of spatial
correlations: as this parameter increases, the effective
modulus, Ee/E1, and the strain hardening rate, Ep/E1, in-
crease. This is attributed to the enhanced interaction of
inclusions in the microstructures with non-random distri-
butions of inclusions.

The effect of filler packing on strain hardening rates was
observed before for periodic structures in 2D plane strain
models (Brockenbrough et al., 1991; Nakamura and Suresh,
1993; Suresh and Brockenbrough, 1993). For example, it
was observed that the strain hardening rate was signifi-
cantly smaller for square diagonal-packed square fillers
than for square edge-packed fillers. The higher the con-
straint imposed by the filler on the deformation of the ma-
trix, the larger the strain hardening rate. Another
interesting effect was obtained when comparing circular
and square fillers at same filler volume fraction and same
periodic arrangement. It was concluded (Brockenbrough
et al., 1991) that random distribution of squares leads to
larger strain hardening rates than random distributions
of circular inclusions. This was attributed to the large con-
straining effect of fillers with stress concentrators (sharp
corners). We expect that such stress concentrations exists
in our models too; however, this has no bearing on our
conclusions since all composites compared here have the
same filler geometry.

It may be observed that the effect described here can be
interpreted to some extent as a size effect. As discussed in
Section 2, no scale decoupling exists in the fractal case. For
given model size, L, the truncation of the hierarchy is more
pronounced as D increases since the decay of the correla-
tion function is slower. Hence, a stronger ‘‘size effect’’ is ex-
pected. For imposed displacement boundary conditions,
one obtains an overestimate of the elastic moduli (Huet,

Fig. 5. Hashin–Shtirkman bounds (continuous orange lines) and 3-point
bounds for the random (dashed black curves) and fractal (dash-dot blue
curves) microstructures. The symbols represent the effective moduli of
fractal microstructures with M = 9, P = 5, and n = 2–5 (blue circles), and of
random microstructures of same volume fraction f, from Fig. 4a. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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1990) and, as D increases at given filler volume fraction
one expects to obtain systematically larger values of the
moduli. However, this is not the only reason for the larger
Ee/E1 and Ep/E1 obtained at larger D. The stronger interac-
tion of fillers in fractals with larger fractal dimension is
responsible to a larger extent for the effect discussed in
this section.

3.2. Internal stresses

The stress distribution in the microstructure is also of
interest. The maximum principal stress controls fracture
under monotonic and fatigue loading conditions. Probabil-
ity distribution functions (PDF) of the stress in the matrix
elements have been computed for all microstructures.
Fig. 6(a) shows the distribution function of the maximum
(tensile) principal stress in the fractal microstructure with
M = 9, P = 6 and n = 5, along with the PDF of the same quan-
tity in the matrix of the material with random microstruc-
ture of same volume fraction (f = 0.131). The far field
loading is uniaxial tension and the stress is evaluated at
a total strain of 2%. The stress was normalized in both cases
by the far field mean stress: 0.012E1 for the random micro-
structure, and 0.0122E1 for the fractal microstructure.
Therefore, the means of the two normalized PDFs are at
1. It is seen that the distribution corresponding to the frac-
tal microstructure is shifted to smaller values of stress.
However, the decay of the tails is much slower. The tails
at large stresses cross over, with the fractal carrying more
extreme stress values than the random microstructure.
This discussion holds for other fractal cases as well.

It is also interesting to look at the PDF of the pressure
within inclusions. As discussed in the introduction, this is
relevant for situations in which fillers are used to toughen
a brittle polymer. Toughening of epoxies using rubbery
particles (e.g. Hayes and Seferis, 2001; Kinloch, 2003) is
currently used in commercial products. In these applica-
tions, the hydrostatic stress in inclusions produces cavita-
tion and/or filler–matrix interface debonding. Energy
dissipation, leading to macroscopic toughness, is due to
both the deformation of inclusions during the cavitation
process, and the plastic deformation of the matrix between
inclusions. The matrix plastic deformation is promoted by

the release of the triaxial stress state as a consequence of
filler cavitation. Recently it was suggested that the domi-
nant effect is the dissipation in the matrix.

Fig. 6(b) shows the PDF of the hydrostatic stress (rh =
rii/3) in inclusions for the fractal case with M = 9, P = 6
and n = 5, and for the random microstructure of same vol-
ume fraction. The horizontal axis is normalized such to
bring the two PDFs to mean 1. A more significant difference
is observed in this case, with the fractal microstructure
having a broader PDF, and exhibiting a slowly decaying tail
on the tensile side of the distribution. This indicates that in
fractal microstructures cavitation occurs at a lower far field
stress. Considering that fractal microstructures are in aver-
age stiffer than their random counterparts, the observation
suggests that cavitation occurs at smaller strains, which is
beneficial in most applications. The origin of the different
PDF of the fractal microstructure can be associated with
the stronger interaction of inclusions in this type of geom-
etry. The inter-particle distance has a broader distribution
function than in the random microstructure case and
hence inclusion interactions and the plastic deformation
of matrix ligaments between inclusions are more
pronounced.

3.3. Damping behavior

The damping behavior of these composites is discussed
next. This is relevant for many applications in which com-
posites are used as energy absorbing materials. In such sit-
uations, it is useful to inquire how should the inclusions be
distributed in order to obtain maximum damping at given
volume fraction of filler material. The objective of this sec-
tion is to provide a quantitative assessment of this issue
and to determine the role of the spatial correlation of the
distribution of inclusions in defining the damping behavior
of the composite.

Two situations are discussed. In the first case the matrix
is considered linear elastic with no damping and dissipa-
tion being allowed within inclusions. In the second case,
both matrix and inclusions are linear elastic and non-dissi-
pative, while damping is introduced in the interfaces.
These two limit situations are representative for different
classes of composites and the results are expected to shed

Fig. 6. Probability distribution functions for (a) the maximum principal stress in the matrix, rmax, and (b) the hydrostatic stress in inclusions, rh, in a fractal
microstructure with M = 9, P = 6, n = 5 (filled symbols) and the random microstructure with the same filler volume fraction (open symbols). These quantities
are normalized with the respective far-field (or system average) values.
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light on the microstructural optimization of these
materials.

Structures similar with those in Fig. 1 are modeled
using finite elements. The equation of motion is of the
form:

½M�f€ug þ ½C�f _ug þ ½K�fug ¼ f0g; ð7Þ

where [M], [C] and [K] are the mass, viscous damping and
stiffness matrices. A solution of the form fug ¼ f/gekt is
sought for Eq. (7), which leads to an eigenvalue problem
with eigenvalues appearing in complex conjugate pairs of
the form kr ¼ rr 	 ixr , r = 1, . . .,n, where n is the total num-
ber of degrees of freedom of the problem. For subcritical
damping, the damping ratio

fr ¼ �
rrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
r þx2

r

p ð8Þ

defines the ratio between the damping coefficient and the
critical damping coefficient for mode r. Note that for pro-
portional damping, the relation x0r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ r2
r

p
can be

written between the eigenfrequency of mode r with damp-
ing, xr , and the corresponding eigenfrequency of the un-
damped system, x0r . Therefore, x0r is always larger than
xr . Below, we report the damping ratio f1 corresponding
to the mode with lowest eigenfrequency.

When energy dissipation takes place only in interfaces
between fillers and matrix, interface elements are used to
introduce damping.

3.3.1. Damping in the filler volume
Fig. 7 shows the damping ratio for the lowest eigenfre-

quency mode, f1, function of the volume fraction of inclu-
sions for various systems. The open symbols and the thick
line correspond to the random distribution of inclusions
(Fig. 1(b)), while the other symbols correspond to fractal
microstructures with various fractal dimensions. As in

Fig. 4, the dashed line is fitted to the blue circles which cor-
respond to fractal structures with M = 9, P = 5 and various n
values. The data points and error bars are evaluated from
sets of 100 replicas for each configuration.

As the fractal dimension increases, the departure from
the random case is more pronounced. For the fractal struc-
ture with the largest fractal dimension considered, M = 91,
P = 42, n = 3, D = 1.701, the damping ratio is 53% larger than
that for the random microstructure of same volume frac-
tion. This significant increase is due entirely to the interac-
tion between inclusions which is enhanced by their
hierarchical distribution.

All fractal structures considered exhibit enhancements
relative to the corresponding random cases, the increase
being function of D. Fig. 8 shows the percentage increase
of the damping ratio relative to the random case of same
volume fraction versus the fractal dimension, for all cases
considered. A linear relationship emerges, with gains close
to 100% for fractal dimensions close to 1.9.

Fig. 7. Variation of the damping ratio, Eq. (8), with the volume fraction
for composites with random (open circles) and fractal microstructures.
The continuous and dashed lines are fitted to the results for random and
fractal (M = 9, P = 5, blue circles) microstructures. The other filled symbols
correspond to fractal microstructures with M = 4, P = 3, n = 7 and 8, M = 9,
P = 6, n = 4 and 5 (green squares), M = 81, P = 42, n = 2 (red triangles),
M = 36, P = 10, n = 2, M = 49, P = 14, n = 2, M = 64, P = 18, n = 2 (gray
circles). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Increase of the damping ratio in fractal microstructures relative to
the corresponding random microstructures of same volume fraction,
versus the fractal dimension, D.

Fig. 9. Variation of the damping ratio with the total length of interfaces
per unit area of the model, for the case in which damping takes place in
the interfaces between matrix and fillers only, for random microstruc-
tures (open symbols and line) and for fractal microstructures with M = 9,
P = 5 and n = 2–5 (blue filled symbols). (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)
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3.3.2. Damping in the filler–matrix interfaces
Let us consider now that both matrix and filler materi-

als are linear elastic and non-dissipative, and dissipation
takes place in the interface between matrix and inclusions.
The comparison is performed between composites with
fractal and random microstructures having the same total
interface length.

Fig. 9 shows the damping ratio corresponding to the
lowest eigenfrequency mode for fractal microstructures
with M = 9, P = 5 and n = 2–5, and for the corresponding
random microstructures. The emerging physical picture is
quite different from that discussed in Section 3.3.1. The
damping ratio increases linearly with the total interfacial
length, and the way the inclusions are distributed has no
influence on the overall dissipation. This observation is
interesting and provides guidance to composite design
for damping applications.

4. Conclusions

The objective of this work is to establish the role of spa-
tial correlations of the distribution of inclusions in defining
the mechanical behavior of particulate composites. In par-
ticular, fractal microstructures having power law-corre-
lated characteristic functions are compared with random
microstructures which have no spatial correlation. The
central question is whether fractal microstructures have
enhanced properties relative to the random microstruc-
tures with identical filler volume fraction.

It is observed that composites with fractal microstruc-
tures are stiffer and have larger strain hardening rates,
the effect increasing with the fractal dimension. A pro-
nounced effect results when both materials are elastic,
but energy dissipation is allowed within fillers. In this case,
fractal microstructures dissipate up to 100% more energy
compared with the random microstructures of same filler
volume fraction. Interestingly, if viscous damping is intro-
duced only in the interface between fillers and matrix, the
distribution of inclusions has no effect on the overall
damping of the composite.

On the local scale, the pressure within inclusions has
more extreme values in the fractal composite. This is
important in situations in which cavitation in inclusions
is used as a method to enhance the toughness of the com-
posite. The present results indicate that cavitation takes
place at a lower overall stress in the composite with fractal
microstructure.

In conclusion, microstructures with long-range corre-
lated distributions of inclusions are preferable in some
applications, as they exhibit significantly different behav-
ior relative to that of composites with random distribution
of inclusions. However, the mechanical response of fractal
microstructures depends on the range of scales of the frac-
tal hierarchy and indirectly on the model/sample size rela-
tive to the size of the smallest inclusions. This size effect is
absent in the case of random microstructures or micro-
structures with short-range correlations, provided the
model is at least an order of magnitude larger than the cor-
relation length.

The present results can be used to improve the design of
composites for structural applications. At present, the only
technology able to produce microstructures with specific
distributions of inclusions is additive manufacturing. The
low throughput and rather large cost of these methods
prohibit their use for large scale composite fabrication, ex-
cept in few cases, such as when the final product is in the
form of thin films. Powder metallurgy and electrolytic co-
deposition have been used to fabricate composites with
graded compositions, however, these methods do not in-
sure obtaining the desired, position independent spatial
correlation of properties discussed here. Further research
is needed in the manufacturing area to develop methods
adequate for the fabrication of such materials.
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