
Scalable fully implicit finite element flow solver with
application to high-fidelity flow control simulations on a

realistic wing design

Michel Rasquin13

mrasquin@alcf.anl.gov

Cameron Smith2

smithc11@rpi.edu

Kedar Chitale2

chitak2@rpi.edu

Seegyoung Seol2
seols@rpi.edu

Benjamin A. Matthews3

benjamin.a.matthews@colorado.edu

Jeffrey L. Martin3

jeffrey.l.martin@colorado.edu

Onkar Sahni2
sahni@rpi.edu

Raymond M. Loy1

rloy@alcf.anl.gov

Mark S. Shephard2

shephard@rpi.edu

Kenneth E. Jansen3

kenneth.jansen@colorado.edu

1Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439
2Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180

3Aerospace Engineering, University of Colorado Boulder, 429 UCB, Boulder, Colorado 80309

ABSTRACT
Massively parallel computation provides enormous capacity
to perform simulations on a time scale that can change the
paradigm of how simulations are used by scientists, engineers
and other practitioners to address discovery and design. We
consider in this work an active flow control application on a
realistic wing design that could be leveraged only by a scal-
able fully implicit unstructured finite element flow solver
and the access to high performance computing resources.
After a brief introduction, we first describe the main objec-
tives and promises of our active flow control application. We
then summarize the main features in the implementation of
our massively parallel flow solver, which can address turbu-
lent flow phenomena on any arbitrary complex geometries.
Finally, we demonstrate its excellent strong scalability at ex-
treme scale. For that purpose, scaling studies are performed
with unstructured meshes of 11 and 92 billion elements on
the Argonne Leadership Computing Facility’s Blue Gene/Q
Mira machine with up to 786,432 cores and 3,145,728 MPI
processes.

1. INTRODUCTION
Numerical methods for partial differential equations have
reached a level of maturity for a range of physical prob-
lems including ones in fluid mechanics, solid mechanics, elec-
tromagnetics, biomechanics, to name a few, where applica-
tion to cases of practical interest is now becoming feasible.
These practical cases can be divided into two broad classes:
(a) one class that involves challenging and inherently large
problems, for example, engineering flows in complicated ge-
ometries (such as detailed aeronautical configurations) with
complex physics (such as flow instabilities/turbulence or multi-
phase interactions) or (b) a second class of problems where
the results are used in time-critical decisions (such as rapid
design). Both of these classes of problems place extreme
demands on the numerical solver. When the solution of
interest is sensitive to small details of the complex geome-

try and/or if complex anisotropic solution features develop
a wide range of length scales that cannot be determined a
priori, adaptive unstructured meshes offer tremendous re-
duction in computational effort. Furthermore, many such
solutions are transient in nature and contain time scales
whose resolution can be critical to the analysis, strongly mo-
tivating the consideration of implicit time integrators whose
numerical stability does not depend on the value of the time
step. Such problems are otherwise prohibitively expensive
to consider with contrasting methods using structured grids
(meshes grow too large), explicit techniques (time step be-
comes too small) and/or procedures with limited scalability
(time-to-solution takes too long).
To meet their full potential, the unstructured and implicit
techniques must scale for extremely-large practical problems
and also yield dramatic compression in time-to-solution(s)
for a fixed-size problem. In this study, we present a par-
allelization paradigm and associated procedures that en-
ables our implicit, unstructured mesh flow solver to achieve
strong scalability on a leadership-class computing facility.
Although the paradigm and procedures introduced herein
are in the context of implicit, non-linear finite element meth-
ods, the techniques are amenable to other linear or non-
linear, explicit or implicit numerical methods for partial dif-
ferential equations, for example, finite volume methods. We
demonstrate the effectiveness of the current procedures that
yield excellent strong scalability on the Argonne Leadership
Computing Facility’s Blue Gene/Q Mira system with up to
786,432 cores. The parallel paradigm is applied to an un-
steady and turbulent incompressible viscous flow solver with
application to active flow control over a swept and tapered
wing that is presented in the next section. Cases consid-
ered use partitions exceeding 3.1 million parts and up to 92
billion finite elements.

2. FLOW CONTROL APPLICATION
The aerodynamic simulations of this project involve model-
ing of active flow control to produce large-scale flow changes
from micro-scale input, which are the key features of this

1



emerging technology [1, 2]. These large-scale flow changes
can range for instance from the re-attachment of separated
flow on wing profiles under unfavorable conditions to vir-
tual aerodynamic shaping of lifting surfaces. To name a few
examples, experiments have already demonstrated that this
micro-scale input can restore and maintain flow attachment
and reduce vibrations in wind turbine blades during dy-
namic pitch, thereby reducing unsteady loads on gearboxes
that are currently the prime failure point. In virtual-shape
flight control surfaces for aerial vehicles (including commer-
cial airplanes), conventional control surfaces such as flaps
and rudder can be augmented or even replaced with active
flow control over a wide range of operating conditions, thus
improving their lift-to-drag ratio and/or control power.

In this work, we focus our attention to a realistic two compo-
nent wing assembly with a swept back tapered main element
and flap at a high deflection angle of 30◦ and a Reynolds
number of 3.5 × 105. For such a configuration, flow control
is known to have the capacity to augment the streamwise
momentum near the flap suction peak where separation is
typically observed to limit flap effectiveness for high deflec-
tion angles. This can result in a significant improvement of
the aerodynamic performance in terms of lift and an exten-
sion of the flight envelope with higher deflection angles [3].

That said, the objective here is to achieve the same aero-
dynamic lift but with a smaller wing design so that signifi-
cant jet-fuel reduction will result both through a drag and
weight reduction. For that purpose, we consider an array
of twelves synthetic jets located periodically in the spanwise
direction of this wing assembly, at the junction between the
main element and the flap. Concretely, these synthetic jets
are produced by the periodic ejection and suction of fluid
through a small orifice induced by the movement of a di-
aphragm at a high frequency inside a resonance cavity. The
complete geometry of these jet cavities is taken into account
in our geometric model and the resulting unsteady flow both
inside the cavities and in the jet plumes is simulated with
high accuracy in terms of grid resolution, temporal reso-
lution and turbulence modeling. In particular, low-fidelity
turbulence models such as RANS have shown their limita-
tion for predicting such massively separated flow. Therefore
a high-fidelity Delayed Detached Eddy Simulation (DDES)
model [4] is used, which is particularly well suited for this
application where flow separation is induced by a sharp an-
gle in the geometry.

Our goal with these high-fidelity numerical simulations is to
provide a complementary and detailed view of the flow in-
teractions at a much higher Reynolds number than previous
simulations, approaching engineering application scales for
the first time. Figure 1 shows some of the scales that we
could capture with our approach and highlights the vortical
structures of the flow which develop downstream the de-
flected flap. We can concretely observe from this picture
the well-known root and tip vortex on such a wing pro-
file, along with the turbulent structures in the wake of the
deflected flap and the synthetic jets arising from their re-
spective orifice. The requirements in terms of temporal and
grid resolution for accurate prediction of such complex flows
highlight the need for efficient parallel discretization meth-

(a) Full span view.

(b) Zoom near the tip.

Figure 1: Flow visualization in the wake of a de-
flected flap of a realistic two component wing as-
sembly with active flow control through isosurface
of instantaneous Q criterion colored by speed.

ods and HPC resources. We use for that purpose our open-
source massively parallel finite element flow solver named
PHASTA, as detailed in the next section.

3. PARALLEL IMPLICIT SOLVER
In the next sections, we review the critical features of our
flow solver to allow the discussion of the scaling study pre-
sented later in article. More details on the implementation
of our flow solver are available in reference [5].

3.1 Basics of implicit solvers
The computational work involved in implicit methods for
partial differential equations (e.g., finite element or finite
volume methods) mainly consists of two components: (a)
formation/assembly of the linearized algebraic system of equa-
tions and (b) computation of solution to the linear system of
equations. In the first component, entity-level evaluations
over the mesh (e.g., for finite elements, element-wise integra-
tion based on numerical quadrature) are performed to form
the system of equations, Ax = b (where, b is the right-
hand-side or residual-vector of the weak form and A is the
left-hand-side or linearized tangent-matrix of b with respect
to unknown solution coefficients x). The resulting system is
sparse but involves a large number of unknowns. The sec-
ond work component involves computation of a solution to
the formed system of equations. Here, pre-conditioned iter-
ative procedures are suitable for large, sparse systems (e.g.,
GMRES [6, 7]).

2



In the current solver, the Navier-Stokes equations are dis-
cretized in space and time. Discretization in space is car-
ried out with a stabilized finite element method. This step
leads to a weak form of the governing equations, where the
solution (and weight function) are first interpolated using
hierarchic, piecewise polynomials [8, 9], and followed by the
computation of integrals appearing in the weak form using
Gauss quadrature. Implicit integration in time is then per-
formed using a generalized-α method [8]. The resulting non-
linear algebraic equations are linearized to yield a system of
equations which are solved using iterative procedures, e.g.,
GMRES is applied to the linear system of equations Ax = b.

3.2 Parallel paradigm
All computations are based on a decomposition, or partition,
of the mesh into parts with equal work load. The term part
is used to denote a set of mesh entities whereas partition
is used to indicate the collection of all parts; together all
the parts within a partition comprise the aggregate mesh.
Consequently, for a mesh with fixed element topology and
order, a balanced partition implies that each part contains as
close to the average number of mesh entities as possible [5].

One important point to consider during partitioning is that
the computational load (in any part) during the system for-
mation stage (i.e., during formation of A and b) depends
on the elements present in the part whereas in the system
solution stage it depends on the degrees-of-freedom (dofs),
or unknowns in the system of equations on that part. For
example, in the case of linear finite elements of all the same
topology, work involved in equation formation is propor-
tional to the number of mesh elements in the part while dur-
ing equation solution the work is proportional to the number
of mesh nodes in the part since the unknowns are associated
with the nodes.

Element-based partitioning is currently used as it is natural
for the element-integration/equation-formation stage mak-
ing it highly scalable. So long as the dof balance is also pre-
served, this partitioning also maintains the scalability in the
iterative linear solve step. Typically, element balance (with
sufficient load per part) and minimization of amount of com-
munications during partitioning results in a reasonable dof
balance as well. In element-based partitioning, each element
is uniquely assigned to a single part but in turn leads to
shared dofs or unknowns in the system of equations. Here,
a shared dof (or unknown) is defined as one that appears
on inter-part boundary, see solid dots in Figure 2, whereas
a non-shared dof resides solely on one part (e.g., interior
to a part). Therefore, the communication effort related to
shared dofs is peer-to-peer, i.e., required only among con-
nected neighboring parts, and grows with the number of dofs
on the surface/boundary that is shared in segments with one
or more neighboring parts. Note that in situations where the
number of mesh elements per part is relatively small (in the
order of few thousand), significant imbalance in dofs can re-
sult, since the balance of dofs is not explicitly requested.
Furthermore, the percentage of shared dofs increases in sit-
uations where a fixed-size problem is spread over more and
more parts as is the case during strong scaling studies and
thus, eventually becomes detrimental to scaling [10].

In order to ensure a well balanced partition at extreme

Figure 2: Portion of a mesh on three parts. Solid
dots indicate shared dofs.

scale, our procedure relies on two libraries called PUMI and
ParMA, which provide respectively a parallel infrastructure
with a general unstructured mesh representation and dy-
namic load balancing operations to reduce potential dof im-
balance [11, 12]. Typically, we can maintain the part im-
balance in terms of both element and vertices below 15%,
which guarantees a good performance and scalability of our
flow solver even for complex geometries.

Once the mesh partition is complete, the interaction be-
tween neighboring parts in PHASTA is defined based on
shared dofs, as shown in Figure 2, where every shared dof
resides as an image on each part sharing it. Only one image
among all images of a shared dof is assigned to be the owner
thereby making all other images explicitly declared to be
non-owners [5], see Figure 3. This process insures that the

Figure 3: Control relationships are established be-
tween multiple images of shared dofs (dofs are locally
numbered on each part). Solid dot denotes an owner
image whereas hollow ones indicate non-owners.

sum total of dofs based on owner images over all the parts
within a partition is independent of the partitioning and is
equal to the number of (unique) dofs in the aggregate mesh.
Such a control relationship among images of shared dofs al-
lows the owner image of each shared dof to be“in-charge” for
data accumulation and update and in turn limits communi-
cations to exist only between owner and non-owners (i.e.,
non-owner images do not communicate to each other). Fur-
thermore, data exchange is done only for vector entries as
this is sufficient to advance the computations, which means
that incomplete entries in the matrix A will be implicitly up-
dated during the iterative solve and construction of Krylov
vectors. In summary, all the steps in the numerical analysis
phase operate from a physical decomposition of the mesh.
Typically, with one part per processor-core (or process), each
core executes a copy of the analysis code to handle the com-
putational work and interactions corresponding to its part.
Collectively, all the cores have the same information as in

3



the unpartitioned or serial case but no one core holds or has
knowledge of the entire tangent matrix, A, nor the residual
vector b. Thus, to be able to process the computations in
parallel, interactions between shared dofs are completed via
communications. The following attributes are therefore pos-
sessed by the current approach to maintain strong scalability
to 786,432 cores [5]:

• Partitioning is maintained among all compute stages of
the solver including equation-formation and equation-
solution and thus, no re-distribution of data is required
in between.

• The critical step of balancing computations and com-
munications is followed throughout the analysis phase
with the help of a distributed partition-graph that de-
scribes interaction of every part with its neighbors.
Communications are dominated by non-blocking point-
to-point operations that are bounded to neighboring
parts only whereas blocking collective operations are
required to compute norms during iterative solves within
the linear algebra routine.

• There is no information required in a global view such
as global numbering of dofs or equation number; as
each part handles elements (and dofs) allocated to it
in a local manner and exchanges data associated with
shared dofs through communication steps and struc-
tures defined in terms of local images.

• Control relationships are established between images
of each shared dof residing on multiple parts (i.e., two
or more parts). Such a relationship allows owner image
of each shared dof to be in-charge for data accumula-
tion and update and thus, limits communications to
exist only between owner and non-owners (i.e., non-
owners do not communicate to each other). Further-
more, exchange of data is done at a part-level (and not
for each and every pair of owner and non-owner), and
is done only for vector entries (e.g., in b, the right-
hand side of the global system, and Krylov vectors of
the iterative linear solver).

3.3 Parallel implicit solve
In a transient, non-linear problem, multiple linearizations
are performed for each time step to obtain a converged non-
linear solution at that step before advancing to the next time
step. Each linearization includes two primary work compo-
nents of equation-formation and equation-solution. To allow
the advancement of computations in parallel, we employ the
communication steps and structures defined above.

Each processor first performs interpolation and numerical
integration over the (interior and boundary) elements on its
local part to form the linearized equations, i.e., the tan-
gent matrix (A) and the residual vector (b). At this point,
the entries associated to shared dofs in A and b are in-
complete and contain the contributions from elements local
to the part. As a following step two communication stages
(accumulation from the non-owner to the owner nodes and
update from the owner to the non-owner nodes) are carried
out to obtain complete values (only) in the residual vector
(b) on each core. Although one could elect to communicate
the on-part entries of the tangent matrix (A) to make them
complete, our approach does not and limits communications

to vector entries only [5]. The next step in an implicit solve
involves finding the solution update vector (x).

We currently use Krylov iterative solution techniques to find
x (e.g., GMRES [6, 7]) in two steps. First, a Poisson’s sys-
tem is solved for the pressure with a Conjugate Gradient
method and the solution vectors are saved. Then, GM-
RES is applied to the coupled momentum and continuity
equations while simultaneously maintaining the strong sat-
isfaction of the continuity established via the Poisson solve
through deflation of the saved vectors. This complex solver
has proven highly efficient for incompressible flows. These
Krylov techniques employ repeated products of A with a
series of vectors (say, p) to construct a orthonormal basis of
vectors used to approximate x. In this series, the outcome
of any matrix-vector product is another vector q (=Ap)
which is used to derive the subsequent vector in the series
while the first vector in the series is derived from the residual
vector (b) which contains complete values at this point of
the solve. Even though A contains only on-part values for
shared dofs, it is still possible to perform the basic kernel
of (sparse) matrix-vector product, i.e., q = Ap, provided
vector p contains complete values (as is the case for the first
vector derived from vector b). Note that due to the dis-
tributive property of Ap product, the resulting vector q will
contain on-part (incomplete) values. In other words, values
from a local Ap product can be assembled to obtain com-
plete values in q. Therefore, after a local Ap product we can
apply our two-pass communication strategy to obtain com-
plete values in q (provided p contained complete values).
Before proceeding to the next product in the series, it is im-
portant to note that the computation of norms is required to
perform orthonormalization. In this step, the norm of vec-
tor q, and its dot-product with the previous vectors in the
series, are computed. To compute a norm or dot-product,
first a local dot-product is computed (requiring no commu-
nication) but then, to obtain a complete dot-product, a sum
across all cores is needed. A collective communication (of
allreduce type) is used to carry out the global summation. It
is important to point out that while computing a local dot-
product value, only the owner image of each shared dof takes
active part to correctly account for its contribution in the
complete (or global) dot-product. Successive Ap products
are carried out along with communications to obtain com-
plete values and to perform orthonormalization. This series
of steps leads to an orthonormal basis of vectors which is
used to find an approximate update vector x and marks the
end of a non-linear iteration step [5].

Note that the computation of the eddy viscosity for the
DDES turbulence model requires an additional system to
be formed and solved, following the same procedure as de-
scribed in the previous sections. Since there is only 1 dof
per vertex for this scalar system, the cost for the formation
and resolution of this scalar system represents about 20%
of the cost of the main system associated with the momen-
tum and continuity equations. For the sake of conciseness,
the scalability for the formation and resolution of the main
system only is presented in the next section.

4. SCALING RESULTS
We now present a scaling study performed on the Argonne
Leadership Computing Facility’s Blue Gene/Q Mira system

4



(a) Overall (system formation+solve).

(b) System formation.

(c) System solve.

Figure 4: Strong scaling factor for the 92 billion
element mesh (base case: 256k cores with 1 MPI
per core).

with up to 786,432 cores. Furthermore, Mira can support
even more acceleration by running up to 4 threads per core,
leading to 3,145,728 MPI processes at full machine scale. We
consider in this scaling study two tetrahedral unstructured
meshes with 92 billion and 11 billion elements, resulting in
linear systems with approximately 63 billion and 8 billion
dofs, respectively.

In what follows, we define the scaling factor associated with
an execution time t measured on a number of cores nc as

sf = (tbase × ncbase)/(t× nc), (1)

where tbase and ncbase are the execution time and the num-
ber of cores of the base case on the lower core count with
1 MPI process per core. For 1 MPI process per core, this

(a) Overall (system formation+solve).

(b) System formation.

(c) System solve.

Figure 5: Strong scaling factor for the 11 billion
element mesh (base case: 32k cores with 1 MPI per
core).

scaling factor takes an exact value of 1 beside the reference
when scaling is perfect (i.e. linear). Since Eq. 1 utilizes the
number of cores and not the number of processes, the scaling
factor associated with 2 and 4 MPI processes per core repre-
sents the acceleration factor when using multiple hardware
threads per core with respect to the base simulation.

4.1 92 billion element mesh
For the 92 billion element mesh, 3 core counts are considered
with respectively 256k1, 512k and 768k cores. PHASTA
currently requires a number of parts in the partitioned mesh
equal to the number of processes, each part being treated
by one single MPI process. Therefore, we have partitioned

11k = 1,024.

5



the 92 billion element mesh from 256k to 3,072k parts in
order to run with 1, 2 and 4 MPI processes per core on
the considered core counts. The case with 256k cores and 1
MPI process per core is considered as the base case (sf = 1)
for all the other configurations. Note that the maximum
element and vertex imbalance among all the parts is less
than 10% for the largest partitioning in 3,072k parts, which
is an essential feature of our partitioning tools to ensure the
strong scalability of unstructured solvers.

Figure 4(a) shows excellent overall scaling as the number of
cores increases from 256k to 768k cores, whether 1, 2 or 4
MPI processes per core are considered. On 768k cores, over-
all scaling factors equal to 1.12, 1.74 and 2.26 are indeed
observed for respectively 1, 2 and 4 MPI processes per core.
Breaking down the total computation time into its two main
contributions, the system formation and system solve rep-
resents respectively about one third and two thirds of the
total computation time. As highlighted in Figure 4(b), sys-
tem formation demonstrates almost perfect scaling (sf = 1)
with 1 MPI process per core. Besides, the acceleration when
using multiple MPI processes per core is also constant for all
three core counts. On the other hand, the system solve in
Figure 4(c) shows a super linear effect, which is typically due
to better utilization of the memory subsystem. As multiple
MPI processes per core are used, the acceleration appears to
be larger for the system formation in Figure 4(b) than for
the system solve in Figure 4(c).

4.2 11 billion element mesh
We present now the performance results on core counts rang-
ing from 32k to 768k cores for a 11 billion element mesh.
Considering the decreasing part size across the partition,
down to about 3650 elements per part for the 3,072k parti-
tion, excellent mesh element and node balance is maintained
since both peak element and vertex imbalance is limited to
12% and 14% respectively.

The overall strong scalability of PHASTA is again illustrated
in Figure 5(a). Considering as a reference 32k cores with 1
MPI process per core, PHASTA is able to achieve a 0.92
scaling on 768k cores (namely 24 times more cores) with
still 1 MPI process per core. We also note that the accelera-
tion factor with 4 MPI processes per core reaches 1.60 at full
machine scale and 1.99 on 128k cores. Breaking down again
the total computation time in its two main components, the
element formation appears again to scale perfectly in Fig-
ure 5(b). When using multiple MPI processes per core, the
acceleration factor for the system formation is significant
and almost constant throughout all core counts. In partic-
ular, we observe a similar acceleration factor as for the 92B
element mesh, with a value larger than 2.50 with 4 MPI pro-
cesses per core. However, the scalability of the system solve
in Figure 5(c) degrades slightly down to 0.87 on 768k cores
with 1 MPI process per core and 1.26 with 4 MPI processes
per core. The slight loss of scaling for the system solution
observed for the 11B element case and currently investigated
is attributed to (i) the increased node imbalance at smaller
part sizes, (ii) the subsequent growth of the shared dofs on
the part boundaries, (iii) the increased communication-to-
computation ratio, and (iv) the memory access for the Ap
product of the Krylov iterative procedure.

5. CONCLUSIONS
We demonstrated how the development of massively parallel
computation, along with scalable numerical methods, pro-
vides the capacity to perform high-fidelity simulations on a
time scale that enables incredible scientific breakthroughs in
computational mechanics. In particular, we consider in this
work DDES simulations of turbulent flows with application
to flow control, which has shown its capacity to improve
significantly the aerodynamics performance of realistic wing
profiles. We presented for that purpose the procedures, data
structures, and algorithms for the exceptional strong scaling
of the PHASTA implicit, unstructured finite element solver
with 3,145,728 MPI processes on the multi-petaflop Mira
system at the Argonne Leadership Computing Facility.
Strong scaling of 92% is achieved on 768k cores for a 11 bil-
lion tetrahedral element mesh with respect to a 32k core,
one MPI process per core baseline, which corresponds to
over four and a half doublings in the number of cores. Us-
ing four MPI processes per core, the scaling or acceleration
factor reaches 160% on 768k cores for the same 11 billion
element mesh. For a 92 billion element mesh, strong scaling
of 112% and 226% with respectively one and four MPI pro-
cesses per core is achieved on 768k cores with respect to a
256k core, one MPI process per core baseline.
A time compression factor of about 38.5 yielded from only
a factor of 24 increase in processing cores for the 11 billion
element mesh demonstrates the ability to apply the work-
flow for time critical applications. 92 billion element mesh
results demonstrate the workflows ability to efficiently scale
on massive problem sizes, which is critical for applications
with a large disparity in characteristic length scales.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the use of the resources of the
Leadership Computing Facility at Argonne National Labo-
ratory. This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract DE-AC02-06CH11357,
U.S. Department of Energy under grant DE-SC00066117
(FASTMath SciDAC Institute) and in part by the National
Science Foundation under grant 0749152. This work also
utilized the Janus supercomputer, which is supported by the
National Science Foundation (award number CNS-0821794)
and the University of Colorado Boulder. The Janus super-
computer is a joint effort of the University of Colorado Boul-
der, the University of Colorado Denver and the National
Center for Atmospheric Research. The solution presented
herein made use of the Acusim linear algebra solution li-
brary provided by Altair Engineering Inc. and meshing and
geometric modeling libraries by Simmetrix Inc. We also ac-
knowledge Daniel Ibanez from RPI for his contribution to
the meshing tools used in this work.

7. REFERENCES
[1] A. Glezer and M. Amitay, “Synthetic Jets,” Annual

Review of Fluid Mechanics, vol. 34, no. 1, pp. 503–529,
2002.

[2] O. Sahni, J. Wood, K. E. Jansen, and M. Amitay,
“Three-dimensional interactions between a finite-span
synthetic jet and a crossflow,” Journal of Fluid
Mechanics, vol. 671, pp. 254 – 287, 2011.

[3] M. Amitay and A. Glezer, “Controlled transients of
flow reattachment over stalled airfoils,” International

6



Journal of Heat and Fluid Flow, vol. 23, no. 5,
pp. 690–699, 2002.

[4] P. R. Spalart, S. Deck, M. Shur, K. Squires, M. K.
Strelets, and A. Travin, “A new version of
detached-eddy simulation, resistant to ambiguous grid
densities,” Theoretical and computational fluid
dynamics, vol. 20, no. 3, pp. 181–195, 2006.

[5] O. Sahni, M. Zhou, M. S. Shephard, and K. E. Jansen,
“Scalable implicit finite element solver for massively
parallel processing with demonstration to 160K cores,”
in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pp. 68:1–68:12, 2009.

[6] Y. Saad and M. Schultz, “GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems,” SIAM Journal of Scientific and
Statistical Computing, vol. 7, pp. 856–869, 1986.

[7] F. Shakib, T. J. R. Hughes, and Z. Johan, “A
multi-element group preconditioned GMRES
algorithm for nonsymmetric systems arising in finite
element analysis,” Comp. Meth. Appl. Mech. Engng.,
vol. 75, pp. 415–456, 1989.

[8] K. E. Jansen, C. H. Whiting, and G. M. Hulbert, “A
generalized-α method for integrating the filtered
Navier-Stokes equations with a stabilized finite
element method,” Comp. Meth. Appl. Mech. Engng.,
vol. 190, pp. 305–319, 1999.

[9] C. H. Whiting, K. E. Jansen, and S. Dey, “Hierarchical
basis for stabilized finite element methods for
compressible flows,” Computer Methods in Applied
Mechanics and Engineering, vol. 192, no. 47-48,
pp. 5167 – 5185, 2003. Linear model problem;.

[10] M. Zhou, O. Sahni, M. Shephard, K. Devine, and
K. Jansen, “Controlling unstructured mesh partitions
for massively parallel simulations,” SIAM J. Sci.
Comp., vol. 32, no. 6, pp. 3201–3227, 2010.

[11] S. Seol, C. W. Smith, D. A. Ibanez, and M. S.
Shephard, “A parallel unstructured mesh
infrastructure,” in High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC
Companion:, pp. 1124–1132, 2012.

[12] M. Zhou, O. Sahni, T. Xie, M. Shephard, and
K. Jansen, “Unstructured mesh partition improvement
for implicit finite element at extreme scale,” Journal of
Supercomputing, vol. 59, no. 3, pp. 1218 – 28,
2012/03/.

7


