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Abstract This paper presents a set of parallel proce-

dures for anisotropic mesh adaptation accounting for

mixed element types used in boundary layer meshes,

i.e., the presented procedures operate in parallel on dis-

tributed boundary layer meshes. The procedures accept

anisotropic mesh metric field as an input for the desired

mesh size field and apply local mesh modifications to

adapt the mesh in order to match the specified mesh

size field. The procedures fully account for the paramet-

ric geometry of curved domains and maintain the semi-

structured nature of the boundary layer elements. The

effectiveness of the procedures are demonstrated based

on three viscous flow examples that include the ON-

ERA M6 wing, a heat transfer manifold, and a scramjet

engine.

Keywords parallel mesh adaptation; boundary layer

mesh; semi-structured mesh; parallel adaptive viscous

flow simulations

1 Introduction

The application of finite elements for reliable numeri-

cal simulations requires that the simulations are exe-

cuted in an automated manner with explicit control of

the approximations made. Since there are no a priori
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methods to control the approximation errors for com-

plex problems, a posteriori methods along with adap-

tive discretization control must be applied [2, 62, 6, 24].

Adaptive meshing is therefore an important compo-

nent for reliable simulation of complex problems, such

as flow problems that develop highly anisotropic solu-

tions which can only be located and resolved through

anisotropic adaptivity (e.g., see [51, 10, 11, 49, 21, 54,

9]). Furthermore, in a number of problem cases it is

desirable in specific locations to use highly anisotropic

elements (e.g., with aspect ratio above 1000) that have a

semi-structured nature and that this underlying struc-

ture is maintained during mesh adaptation [53, 34]. Of

particular interest in this study are viscous boundary

layers that form near solid surfaces in wall-bounded

flows.

The two major classes of mesh adaptation tech-

niques are adaptive re-meshing methods and methods

that use local mesh modification. Re-meshing meth-

ods [51, 21, 23, 26, 19] construct the desired mesh by

regenerating the entire mesh through the application

of automatic mesh generation algorithms governed by

specified element size and shape information while ac-

counting for curved domains. This comes at the cost of

re-meshing the entire domain along with global trans-

fer of the solution fields to the new mesh. On the other

hand, methods based on local mesh modifications retri-

angulate local subdomains (or cavities) until the speci-

fied mesh size field is satisfied (e.g., see [49, 7, 37]). Ef-

fectiveness of local methods depends on the richness of

the underlying local mesh modification operations that

are employed. Some local mesh modification methods

strictly use subdivision operations which can be lim-

ited in both coarsening and anisotropy. For example,

in [5, 40, 31] the coarsening or merging of child ele-

ments to recover parent elements is done by reversing
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previous subdivision operations (i.e., with a derefine-

ment step) at desired locations. Thus, in such methods

coarsening cannot be applied to create elements larger

than those in the initial mesh. This aspect also limits

the amount of anisotropy that can be achieved in ele-

ments. Similarly, some local mesh modification schemes

only adapt to the faceted geometry (i.e., based on the

initial mesh) and do not improve the geometric approxi-

mation of curved domains as the mesh is refined. In con-

trast, other research work has shown that a richer set

of local mesh modification operations [49, 7, 37, 29, 20]

can be utilized to support general (local) coarsening,

reconnection and anisotropy in the mesh as well as to

account for curved domains [38]. These local operations

also support localized transfer of solution fields [5, 44]

at the cavity level as the mesh is incrementally modified

to attain the adapted mesh.

In wall-bounded flows with boundary layers, hybrid

or semi-structured mesh generation methods have been

extensively used [52, 15, 43, 25, 41, 22, 33, 8, 28, 42, 27].

For such problems, local mesh modification operations

have been extended to account for mixed topology el-

ements [53, 34, 30], wherein the semi-structured na-

ture of the mesh is taken into consideration such that

the layers or stacks of wedges (triangular prisms) or

hexes are modified in order to attain the desired lo-

cal mesh resolution while the overall layered structure

is maintained. In [34] subdivision of mixed elements is

employed along with mesh movement to improve geo-

metric approximations for curved domains and in [30]

derefinement is also followed for transient problems,

whereas in [53] a more richer set of local mesh modifica-

tion operations are utilized for mixed element meshes.

In these studies, layered mesh is modified in conjunction

with the rest of the interior mesh consisting of unstruc-

tured tetrahedral elements, where pyramids are used

when necessary to transition between semi-structured

and unstructured portions of the mesh. These stud-

ies have focused on serial boundary layer meshes, i.e.,

where the mesh is not partitioned or distributed.

Mesh adaptation techniques must operate in par-

allel on distributed meshes because most problems of

interest involve complicated geometries and complex

physics that even with adaptivity the resulting meshes

are very large. Adaptive simulations for such problems,

where only the analysis or solve step is parallelized (see,

for example, [65]), turn out to be limited in problem

size and/or time-to-solution due to the serial adapta-

tion step that may take as much or even more time

(compared to the analysis step). Thus, to efficiently ex-

ecute parallel adaptive simulations, both the analysis

and mesh adaptation steps must be parallelized and

run on distributed or partitioned meshes (e.g., see [13,

59, 66]).

Performing mesh adaptation in parallel requires that

all mesh operations are carried out in such a way that

the resulting distributed mesh properly fits together (at

inter-part boundaries). Subdivision or refinement oper-

ations can be understood at the level of single element

and therefore, can be performed in parallel on each pro-

cessor including lower-order mesh entities that reside

on inter-part boundaries. This must be followed by a

communication round between processors to update the

inter-part links based on new mesh entities introduced

at inter-part boundaries (e.g., see [16, 47]). In [47, 50]

parallel refinement and derefinement is used for un-

steady problems, where child elements of a given parent

element reside on the same processor. This makes the

merging of child elements straightforward and commu-

nication is required to delete the necessary vertices at

inter-part boundaries due to derefinement. As in the

serial case, this parallel approach is limited in terms of

the amount of coarsening and anisotropy that can be

achieved in elements. In contrast to a parallel scheme

based on refinement and derefinement, parallel re-meshing

is used in [26]. In this study marked elements (based on

an adaptation criterion) are removed leading to holes in

the distributed mesh. This mesh is repartitioned with

the constraint that every hole to be re-meshed resides

on a single processor in the re-distributed mesh. This

scheme is more flexible in terms of shape and orien-

tation of resulting elements, however, the overall pro-

cess can be time consuming. For example, due to global

repartition of the mesh or when the resulting hole to be
re-meshed is relatively large, due to concentrated adap-

tation in a contiguous portion of the domain, leading to

significant work and memory imbalances between pro-

cessors. On the other hand, in an adaptation approach

that is based on local mesh modifications only small

portions of the mesh are affected at any given time.

Therefore, mesh operations for which the related cavity

resides solely on one part can be carried out in parallel

(similar to the serial case) while a mesh migration is

needed for operations in which the cavity spans mul-

tiple parts. A naive sequence of steps, that intermin-

gle on-part mesh modification and mesh migration at

a low level, will be ineffective due to significant wait

times. However, with a proper control of on-part mesh

modification and mesh migration steps, parallel mesh

adaptation based on local mesh modifications has been

shown to be efficient [16, 3]. These parallel mesh adap-

tation methods focus on general unstructured meshes

and do not take boundary layer meshes into considera-

tion.
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A parallel mesh adaptation scheme for distributed

boundary layer meshes has been presented in [32], where

refinement and derefinement is employed for mixed el-

ements. parallel refinement and derefinement is imple-

mented on mixed element meshes. Similar to refinement

and derefinement of fully unstructured/tetrahedral dis-

tributed meshes discussed above [47, 50], the technique

in [32] requires the child elements of a given parent el-

ement to reside on the same processor such that mesh

derefinement is completed with minimal communica-

tion. As mentioned before, such a scheme limits the

amount of coarsening and anisotropy that can be achieved

for hybrid meshes. Whereas an approach based on a

richer set of local mesh modification operations for dis-

tributed boundary layer meshes can overcome these

limitations but to the best of our knowledge there has

been no study on such an approach. The current work

presents such an approach which is based on paralleliza-

tion of a richer set of local mesh modification operations

for distributed boundary layer meshes (i.e., this paper

generalizes and extends the operations presented for se-

rial boundary layer meshes in [53]).

The organization of the paper is as follows. Sec-

tion 2 briefly provides the terminology used for bound-

ary layer meshes. Section 3 discusses the local mesh

modification operators that are used for the layered por-

tion of the mesh and its interface with the rest of the in-

terior mesh. Section 4 describes the current procedures

for parallel implementation of local mesh modification

operations for distributed boundary layer meshes. Sec-

tion 5 demonstrates the effectiveness of the current pro-

cedures based on three viscous flow problems.

1.1 Nomenclature{
Md
}

the set of topological mesh entities

of dimension d. d = 0: vertex,

d = 1: edge, d = 2: face, d = 3: region.

Md
i the ith mesh entity of dimension d.{
∂Md

i

}
the entities on the boundary or

closure of Md
i .{

Md
i

{
MD

}}
the set of mesh entities of order D

adjacent to Md
i .

2 Boundary layer mesh terminology

A common method to construct boundary layer meshes

with semi-structured portions of regions in the domain

is an advancing layers method [52, 15, 43, 25, 41, 22, 33,

8, 28, 42, 27]. It inflates the unstructured surface mesh

on no-slip walls, where the boundary layers form, into

the volume along the local surface normals in stack of

Fig. 1 Cut of the mesh with boundary layers on the pipe
geometry.

layers of elements in a graded fashion up to a specified

distance. Rest of the domain is filled with unstructured

tetrahedral and pyramidal elements. The example of

a simple mesh with boundary layers defined on pipe

geometry is presented in Figure 1. In addition to the

boundary layer prisms and interior tetrahedra, this ex-

ample includes a few pyramids. Pyramids are used to

transition to the unstructured tetrahedral mesh when

quadrilateral faces of the layered mesh are exposed, for

example, when the number of prisms in neighboring

stacks change due to difference in number of layers.

The boundary layer mesh contains a structure that

can be decomposed into a product of a layer surface

(2D) and a thickness (1D) [53]. The mesh composed of

triangles located at the top of each layer is referred to

as layer surface, while the lines orthogonal to the wall

composed of edges are called growth curves as shown in

Figure 2. The edges that belong to layer surfaces are re-

ferred to as layer edges and ones that reside on growth

curves are called growth edges as depicted in the fig-

ure. Each layer of elements is formed with the help of
layer surfaces above and below with growth edges in

between. The height of each layer is referred to as layer

thickness whereas the collective height of all layers as

adds up to total thickness of a boundary layer. The

number of total vertices (or edges) on growth curves

determine its level. The vertices on walls from which

growth curves originate are referred to as originating

vertices. The top most layer of the stack of boundary

layer elements shares an interface with the unstructured

volume mesh. The interior tetrahedral or prismatic el-

ements, sharing lower-order mesh entities with layered

portion of the mesh, are referred to as interface ele-

ments.

3 Mesh modifications in the layered portion of

the mesh

To maintain the boundary layer stack, the mesh mod-

ification operations are decomposed such that those
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Fig. 2 Decomposition of a boundary layer stack.

that affect the “surface triangulation” of the bound-

ary layer are done consistently through the stack. It is

also necessary to apply the corresponding unstructured

mesh modification at the top of the stack. This sec-

tion describes the management of the modification of

the boundary layer stack including consideration of the

transition into the unstructured mesh at the top of the

stack.

3.1 Mesh metric tensor

A mesh metric field is used to specify the anisotropic

mesh sizes over the problem domain (e.g., see [51, 49,

37]). In an adaptive process, the error estimator or in-

dicator information is used to specify the desired size or

mesh-metric field. This specification at any given point
P is done by a symmetric definite positive tensor T (P ),

referred to as mesh metric tensor, such that the desired

directional mesh resolution at this point follows an el-

lipsoidal surface. That is this tensor transforms an ellip-

soid into a unit sphere. The transformation eTTe = 1,

where e denotes the edge vector, defines a mapping

of the edge in the physical space into a unit edge in

the metric space. Any tetrahedron that perfectly satis-

fies the mesh metric field should be a unit equilateral

tetrahedron in the metric space as depicted in Figure 3.

However, in an unstructured mesh it is often not possi-

ble to satisfy this exactly. Therefore, mesh modification

algorithms constrain edge lengths in the metric space

to be within an interval [Lmin, Lmax] (e.g., [1/
√

2,
√

2]),

and the mean ratio of elements in the metric space to

be close to 1 (with 1 being the ideal value), for example,

see [49, 37].

In the layered part of the mesh, the mesh metric ten-

sor can be decomposed into (2D) ellipse as the planar

part along a layer surface, which dictates local in-plane

Fig. 3 Transformation of a tetrahedral element based on a
mesh metric tensor.

Fig. 4 Decomposition of mesh metric tensor in layered part
of the mesh.

mesh resolution, and (1D) normal component which

controls local layer thickness [53]. Note that layer thick-

ness can also be based on flow physics, for example, in

turbulent boundary layer flows [14]. Figure 4 illustrates

the decomposition of mesh metric field in layered part

of the mesh.

3.2 Local mesh modification cavity

With the input of mesh metric field, the local mesh

modifications are carried out to adapt the mesh in or-

der to match the specified size field. As discussed before,
a richer set of local mesh modification operations [49, 7,

37] is needed for fully unstructured anisotropic meshes.

Each modification operation involves a local cavity or

subdomain which is retriangulated. The cavity for a

given operation is defined as the union of sets of mesh

entities that are changed by the application of the mod-

ification operation with the restriction that the trian-

gulation of the cavity’s boundary remains unchanged.

This means that the cavity’s boundary allows to share

unchanged mesh entities with the other unaffected por-

tions of the mesh.

In 3D, the cavity is defined as the set of mesh regions

along with its closure (i.e., lower-order mesh entities),

which will be modified by the modification associated

with entity Md
k and is denoted as:

{
C(Md

k )
}

= {M3
i

⋃{
∂M3

i

}
|M3

i

is affected by mesh modification

operation applied toMd
k }.

(1)
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The cavity boundary then can be defined as:{
∂C(Md

k )
}

= {Mα
j , α = 0, 1, 2|Mα

j ∈
{
∂M3

i

}
∀M3

i /∈
{
C(Md

k )
}
}. (2)

Eq. 2 states that the cavity boundary contains lower-

order entities Mα
j located on the boundary of regions

comprising cavity
{
C(Md

k )
}

. This way the cavity bound-

ary is shared with adjacent mesh regions that are not

part of the cavity.

The application of a local mesh modification opera-

tion then is a retriangulation of the cavity in which the

mesh topology changes,
{
C(Md

k )
}

, into a set of mesh

entities contained in the set {S} with the following con-

ditions:

{S} 6=
{
C(Md

k )
}
, (3)

{∂S} =
{
∂C(Md

k )
}
. (4)

There can be situations when an entity Md
k which

requests a mesh modification operation might be moved

in the boundaries of a 3D subdomain with no change in

local mesh topology (for example, vertex motion oper-

ation considered in Section 3.3). In this scenario, Eq. 3

would have equality.

3.3 Boundary layer stack modification

To preserve the layered nature of the boundary layer the

“surface triangulation” mesh adaptation utilizes layer-

edge split, collapse and swap operations [53], while layer

thicknesses adjustment and growth curve vertices move-

ment to the geometrical model boundaries are accom-

plished through vertex repositioning operations.

The layer edge split operation splits edges in the

boundary layer stack and applies the appropriate subdi-

visions at the interface in the unstructured mesh. When

edge split is requested for a single layer edge, all edges

in the stack are subdivided. This scheme is conservative

in nature in that it may provide a finer mesh than de-

sired for some layer surfaces. Namely, if M1
I , where I ∈

[1..N ], is the layer edge to be split in the stack ofN layer

edges, then the cavity associated with it consists of a set

of unique regions
{
C
{
M1
i

}}
=
{⋃N

i=1

{
M1
i

{
M3
}}}

.

Figure 5 illustrates the layer edge split operation. The

subdivision of pyramids and tetrahedra at the interface

follows the stack split.

The layer edge collapse operation is performed on

stacks that contain short edges in the local mesh met-

ric in a manner that avoids oscillation between col-

lapse and split operations [53]. The edge collapse op-

erations can only be applied when the affected unstruc-

tured mesh entities at the top of the stack also re-

main valid after the collapse. If
{

(M1
i ,M

0
i )
}

are the

Fig. 5 Example of boundary layer edge split operation.

Fig. 6 Example of boundary layer edge collapse operation.

pairs of stacks of N layer edges to be collapsed and

their corresponding vertices being deleted in the stack,

then the cavity associated with the collapse operator is{
C
{
M0
i

}}
=
{⋃N

i=1

{
M0
i

{
M3
}}}

with deletion of a

set of regions
{⋃N

i=1

{
M1
i

{
M3
}}}

. Figure 6 shows lo-

cal mesh cavity before and after the layer edge collapse

operation.

The layer edge swap operation changes the connec-

tivity of neighboring boundary layer stacks. In com-

parison with tetrahedra which are reconfigured based

on the equatorial plane, there is only one other possi-

ble configuration in case of layer edge swap for layer

faces [53]. If
{
M1
i

}
are the layer edges to be swapped,

then the layer edge swap operation retriangulates the

cavity
{
C
{
M1
i

}}
=
{⋃N

i=1

{
M1
i

{
M3
}}}

with new

layer edges being introduced inside the cavity and dele-

tion of
{
M1
i

}
. The interior regions at the interface ad-

jacent to the top most layer edge being swapped are

retriangulated based on the equatorial plane and are

not guaranteed to have a valid configuration. Thus, ap-

propriate checks are required in order to figure out if

the layer edge swap operation results in a valid mesh

after its completion. Figure 7 gives an example of layer

edge swap operation.

When edge splits are applied to boundary layer edges

on curved wall surfaces, the newly introduced vertices

must be moved to the curved boundary to maintain

the proper geometric approximation. All the vertices in

the growth curve should gradually move following the

correspondent originating vertices with the help of a

movement vector [53]. The movement vector is deter-

mined based on the originating vertex target location

as: m = vt
0−v0, where vt0 is the target location of orig-
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Fig. 7 Example of boundary layer edge swap operation.

Fig. 8 Repositioning of boundary layer vertices due to move-
ment of newly created originating vertex to the domain
boundary.

inating vertex on the curved boundary and v0 is the

original location of the originating vertex. The move-

ment vector m is then applied to all the vertices on

that growth curve. The procedure first evaluates tar-

get locations for vertices on all the growth curves, with

each vertex’s target location calculated as: vti = vi+m,

where vi is the current i-th vertex location on a growth

curve corresponding to its originating vertex location

v0. It then moves vertices to their computed target lo-

cations as depicted in Figure 8. Similar to unstructured

vertex projection to the curved boundary, layer vertex

movement through repositioning is not always possi-

ble without additional mesh modification, especially for

the top most vertices, as it may introduce inverted ele-

ments. In this case local mesh modification operations

are applied to the interior volume mesh to allow the

successful repositioning of top-most vertex which is fol-

lowed by the rest of vertices on the growth curve.

3.4 Subdivision of transition pyramids

For pyramids we consider more subdivision templates

than those presented in our previous work [53]. This

results in more flexibility in parallel mesh adaptation

of boundary layer meshes. Pyramids are subdivided in

the unstructured part of the refinement procedure since

they have to account for both splits of layer edges per-

formed during boundary layer refinement and interior

edge subdivisions applied for tetrahedra refinement tem-

plates.

There are three ways the quadrilateral face of a

pyramid capping a boundary layer edge can be sub-

divided as depicted in Figure 9. While refinement in a

layer direction splits the quadrilateral face using layer

edges only (left of Figure 9), the request to change the

resolution along the thickness direction or number of

layers can be achieved with bisection of the quadri-

lateral face using growth edges (middle of Figure 9).

Additionally, subdivision can be performed in both di-

rections with split of both layer and growth edges (right

of Figure 9).

In the current study templates subdividing growth

edges are not exploited. The reason for this is not due to

any limitation in the ability to split the elements, but

rather because thickness adjustment based on vertex

repositioning was found to be sufficient for the current

problem cases.

The rest of triangular faces of a pyramid are sub-

divided by counting the number of edges tagged for

refinement as shown in Figure 10. The triangular face

templates are the same for the subdivision of layer faces

in a boundary layer and interior faces adjacent to un-

structured regions, and thus do not introduce additional

ambiguities associated with triangular face split. Ulti-

mately, there are eleven possible combinations of edges

in a pyramid that can be tagged for refinement. De-

pending on how edges are marked and which diagonal

edges are chosen for a face with two tagged edges [37],

there are a total of twenty-five subdivision templates.

The most frequently used templates for splitting pyra-

mids are presented in Figure 11.

3.5 Unstructured decomposition of boundary layers

Figure 12 shows a close-up of an adapted mesh on a pipe

geometry without decomposed entities on the left and

on the right with prisms divided into tetrahedra and

pyramids. One can observe that on the left part of the

figure there are boundary layer regions with low aspect

ratio. In order to satisfy the desired mesh resolution in

such cases the corresponding portion of the top of the

boundary layer is converted into unstructured part of

the mesh such that more flexible interior mesh mod-

ifications can be applied to achieve appropriate level

of mesh anisotropy. This is an additional consideration

than previous work [53].

The process of reducing the numbers of layers in

selected stacks, referred to as trimming or unstructured

decomposition of boundary layers, leads to introduction

of additional quadrilateral faces that must be capped

with pyramids so they can be matched to the tetrahedra

used in the unstructured part. This step can be reversed

when a thicker boundary layer is desired. It can be done

by splitting growth edges that will reintroduce more

layers (locally). However, as mentioned before, split of
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Fig. 9 Subdivision of quadrilateral face accounting for the edge split requests.

Fig. 10 Subdivision templates for triangular face.

Fig. 11 Subdivision templates for pyramids.
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Fig. 12 Examples of mesh adaptation without and with unstructured decomposition of low-aspect ratio regions.

growth edges were not need for currently considered

problem cases.

The stack decomposition algorithm relies on the fol-

lowing criterion that adjacent stacks sharing a mesh

face must differ in number of layers only by 1, in which

case connected prism into two tetrahedra and a pyra-

mid; the latter is used to transition between differ-

ent number of layers. This condition can be satisfied

by controlling the number of vertices in neighboring

growth curves in a preprocessing step before executing

the trimming step.

Figure 13 illustrates boundary layer stacks with dif-

ferent number of layers in face-neighbor stacks and have

no more than one layer difference. Note that with this

condition the corresponding number of vertices between

growth curves of a given stack can vary by as much as

two. In the trimming step, the number of layers for

a given growth curve is dictated by the lowest level

regions being decomposed. The lowest level boundary

layer vertices are given a priority to bisect quadrilateral

faces adjacent to it. If vertices next to each other are of

the same level, the priority is granted to one having the

smallest local vertex identifier (ID) which eliminates

any possible ambiguity in selecting diagonal edge for

face subdivision.

The application of this restriction for trimming of

stacks yields a situation in which all prisms that need

to be subdivided into tetrahedra can be triangulated

with templates that do not require introduction of an

interior vertex [60]. Avoiding the need to insert an inte-

rior vertex eliminates specific algorithmic complexities

and typically results in better element shape quality

control [35].

Algorithm 1 Pseudo code for the adaptive unstruc-

tured decomposition procedure.

1: for each boundary layer BLi do
2: for each region in the stack M3

j ∈ BLi from bot-
tom to top do

3: assign: arj = aspect ratio of quad face M2
k ∈

{∂M3
j }

4: if arj < α (where α is a prescribed aspect ratio
value) then

5: consider BLi for the decomposition
6: assign boundary layer vertex level M0

b ∈
{∂M3

j } to the corresponding originating ver-
tex

7: break
8: end if
9: end for

10: end for
11: for each level starting from 0 do
12: if neighboring growth curves’ number of vertices

is more than 1 after decomposition then
13: reduce the number of vertices in the neighbor-

ing growth curve to level + 1
14: end if
15: end for
16: bisect quad faces of each BLi tagged for the decom-

position
17: subdivide regions adjacent to bisected faces
18: tetrahedralize pyramids sharing quad face

A prism can be subdivided into a pyramid and a

tetrahedron if two of its quadrilateral faces are split and

bisecting edges share a common vertex, or into three

tetrahedra if all quadrilateral faces are subdivided and

there is a common vertex between introduced diago-

nal edges as depicted in Figure 14. The decomposition

procedure logic eliminates the possibility of having sit-

uations when only one quadrilateral face is bisected or

there is no common vertex connecting diagonals in a

prism being split.
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Fig. 13 Different number of layers in neighboring boundary
layer stacks and the corresponding number of (indicated by
counts shown at originating vertices). Bold lines represent
edges on the wall surface.

Fig. 14 Subdivision of a prism with diagonal edges bisecting
quadrilateral faces having a common vertex.

The algorithm for unstructured decomposition of

portions of a boundary layer mesh consists of three

parts. The first is responsible for getting the initial

number of layers for each growth curve having its ad-

jacent boundary layers decomposed. The second ad-

justs the number of layers for growth curves such that

they have difference of no more than one vertex after

the decomposition is accomplished. The third assigns

each quadrilateral face being bisected with the appro-

priate vertex originating a subdivision using the rules

described above. Algorithm 1 presents the overall ap-

proach of the unstructured decomposition.

3.6 Overall boundary layer mesh adaptation algorithm

Before we present our approach for parallel boundary

layer mesh adaptation, the overall adaptation proce-

dure is described. It is executed in three stages: mesh

coarsening, iterative mesh refinement, and shape cor-

rection [53]. The first two stages are controlled by mesh

edge length analysis in the transformed space, whereas

the third stage is dominated by both element quality

and mesh edge length control. The boundary layer part

of the mesh has priority in applying mesh modification

operations of a specific type followed by the same opera-

tion for the unstructured entities. This is done because

size requests for entities in boundary layer stacks are

more involved and thus, resolved first.

The coarsening stage applies local mesh modifica-

tion operations to eliminate the majority of edges shorter

that requested by the local mesh size field. A mesh edge

is considered to be short if its length in the transformed

space is smaller than the specified value Lmin [37]. An

advantage to coarsening first is that it will make the

traversals required during mesh adaptation faster and

limit the peak memory used to that needed by the fi-

nal adapted mesh. Thickness adjustment is applied on

the coarsened mesh so that it is only applied to entities

that will remain in the mesh.

Algorithm 2 Pseudo code for mesh adaptation with

boundary layers using the mesh metric field.

1: get mesh metric field from the application
2: apply metric decomposition over layered part of

mesh
3: coarsen short layer edges in metric space
4: coarsen short interior edges in metric space
5: adjust thickness for each growth curve by vertex

movement
6: while mesh resolution is not satisfied for

[Lmin, Lmax] do
7: tag longer layer edges in metric space
8: split tagged layer edges, their adjacent faces and

regions except for the interior ones
9: tag longer interior edges in metric space

10: split tagged interior edges, their adjacent faces
and regions

11: move new boundary layer vertices at curved walls
onto solid surface

12: move new vertices at curved walls onto solid sur-
face for the unstructured part of the mesh

13: coarsen short layer edges in metric space
14: apply unstructured decomposition to parts of

boundary layers with lower aspect ratio
15: coarsen short interior edges in metric space
16: end while
17: eliminate poorly shaped layer faces by layer edge

swaps or layer edge collapses
18: eliminate sliver interior regions by shape control

The second stage refines mesh regions using refine-

ment templates that split the mesh edges longer than

Lmax in the transformed space. Lmin and Lmax are

typically selected to be 1/
√

2 and
√

2 [37], respectively.

The procedure ensures that the refinement is applied

to stack of prisms along with interior elements located

at the interface. This stage also places newly created

boundary vertices onto the domain boundary (e.g., as

defined by the CAD model). It also coarsens any new

short mesh edges introduced by refinement templates.

At the end of an iteration of this step any elements
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at the top of boundary layers, that have their aspect

ratios reduced to a certain value (typically aspect ratio

below 1), are tetrahedralized and made part of the inte-

rior unstructured mesh. Thus removing them from the

boundary layer stack by unstructured decomposition.

The third stage applies shape improvement opera-

tions, which improve the quality of poorly shaped enti-

ties in the transformed space. Those entities are mod-

ified using sets of swap and compound operators [53,

37, 35] to obtain the best possible element quality while

preserving the correct edge length in the metric space [17,

39, 4]. Again, the shape correction operations are car-

ried out in the boundary layer part first with the fol-

lowing mesh optimization in the interior part.

4 Parallel implementation

The execution of parallel mesh adaptation is based on

the fact that the mesh is distributed [3, 57] into a num-

ber of parts, where each part consists of set of adjacent

mesh entities. Each part is treated as a serial mesh with

the addition of mesh part boundaries, that are managed

by the parallel mesh database that describe the groups

of mesh entities residing on inter-part boundaries.

The application of a local mesh modification will

involve a cavity of mesh entities that are either all on

one part, or are on multiple parts. In the case where

the cavity is on a single part, the mesh modification

can be carried out on that part, thus making paral-

lel execution of the adaptation process trivial. In those

cases where the entities for the cavity being modified

are distributed on multiple parts, some form of coor-

dinated inter-processor communication is needed. The

approach used in this work follows the one presented

in reference [53] with specific extensions introduced to

effectively parallelize boundary layer adaptation.

4.1 Distributed mesh infrastructure

The effective implementation of parallel mesh modifi-

cation requires a parallel mesh infrastructure and as-

sociated parallel mesh control tools. The parallel mesh

representation used here [57] maintains the information

on the mesh entities on the part boundaries such that

all parts sharing those entities can obtain information

about those entities on other parts. It supports the abil-

ity to update mesh entities on those part boundaries

if they are modified (e.g. an edge split). It also sup-

ports the movement of mesh entities from one part to

another (referred to as migration) with the inter-part

boundaries being automatically updated.

Since the mesh modifications to boundary layer stacks

are always done to the entire stack, maintaining the

knowledge of the stack is critical. Managing this infor-

mation would be difficult if the mesh regions in a stack

were distributed over multiple processors. Thus the im-

plementation of parallel boundary layer mesh adapta-

tion requires the mesh regions in a boundary layer stack

are placed in a mesh set [64] where each such mesh set

is required to always be on a single part with the ability

to migrate that set and its entities together to another

part. Since the adaptive mesh modification process will

alter the numbers of mesh regions on parts, it is nec-

essary to dynamically repartition the mesh at times to

help control parallel operations and memory usage, and

to improve scalability. The Zoltan library [56] is used

to perform the dynamic load balancing. Since the mesh

modification operations involve irregularly structured

messages of a small size, parallel efficiency and scala-

bility depends on effectively controlling the underlying

message-passing processes. The Inter-Processor Com-

munication Manager (IPComMan) is used [48] for effi-

cient parallel communications between processors. It is

a general-purpose communication package built on top

of MPI [1] which significantly improves inter-processor

communications independently of the architecture and

underlying network being used.

The direct consideration of cavities on the part bound-

ary for such mesh modification operations as collapse

and swap is a complex and expensive procedure since it

leads to a number of communication steps to properly

update the parts with the mesh modification decisions

carried out. Thus, regions from such cavities are local-

ized on one processor such that the cavity retriangula-

tion is applied in serial. To support cavity localization,

a mesh migration is used, where all regions and stacks

of regions involved in the mesh modification operation

are migrated onto a single part [3, 57].

4.2 Refinement and vertex reposition to geometrical

boundaries

Subdivision of mesh edges and their adjacent mesh faces

on part boundaries happens the same way it is done in

serial [16, 3] since replicated faces across part bound-

aries have their bounding edges and vertices in the same

order to ensure the triangulations are consistent across

face neighbors (see Figures 9 and 10). Note that trian-

gular faces can be split using any combination of edges

tagged for refinement, whereas quadrilateral faces as

part of the boundary layer stack always have opposite

edges split so they can be easily bisected. When quadri-

lateral face bisection is performed during the decompo-

sition of boundary layer prisms into unstructured mesh
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entities (see Figure 14), the procedures ensure that the

diagonal bisecting the face is created in the same way on

both parts sharing the face such that there is no mesh

triangulation invalidity introduced during the matching

set up of the newly created entities on the part bound-

ary.

The inter-part links between newly created mesh

entities are updated across the part boundary in a com-

munication step after refinement such that the distributed

mesh is correctly connected across the inter-part bound-

ary. In the execution of that operation the correspond-

ing old-to-new entity mapping is formed such that the

newly created entity links are effectively set during the

communication step. After all tagged edges and faces

have been split, the communication round for subdi-

vided entities on the part boundary is performed to

create inter-part links between new mesh entities by

matching locally mapped old-new entity relationships

with what is received from other parts corresponding

to the specific old entity. The mesh regions were sub-

divided using the same templates as in serial without

any inter-part communication since they are not part

of an inter-processor boundary. The pseudo code of the

parallel refinement algorithm is given in Algorithm 3.

Algorithm 3 Pseudo code for the parallel mesh refine-

ment procedure.

1: for all edges M1
i (and faces M2

i ) which are tagged
for refinement do

2: split M1
i (M2

i ) as depicted in Figure 15
3: if the entity being split is on part boundary then
4: attach the list of newly created entities

NewEntList to corresponding M1
i (M2

i )
5: add M1

i (M2
i ) to the list of entities for linkage

update UpdateLinksList
6: end if
7: end for
8: for all M1

i (M2
i ) from UpdateLinksList do

9: send the attached NewEntList to remote copies
of M1

i (M2
i )

10: when received, set up links between NewEntList
of M1

i (M2
i ) on local part with ones from remote

copies
11: end for
12: subdivide boundary layer stacks and mesh regions

as in serial

The algorithm involves the same logic of updat-

ing inter-part links for both boundary layer and un-

structured parts of the mesh. The only difference for

the boundary layer procedure is that once the stack

of quadrilateral faces exposed to the part boundary is

split, it has to be completely updated with the corre-

sponding one on the part sharing common faces.

Algorithm 4 Pseudo code for the parallel boundary

layer vertex repositioning procedure.

1: for all originating vertices M0
i with model bound-

ary target location TM0
i
(x, y, z) do

2: calculate target locations for each vertex in
growth curve GCj where M0

i ∈ GCj
3: add top-most vertex M0

itop
∈ GCj with its corre-

sponding TM0
itop

(x, y, z) to V txListToSnap

4: end for
5: for all M0

i ∈ V txListToSnap do
6: move M0

i to its target location
7: if movement introduces flat or inverted regions

then
8: if M0

i is on part boundary then
9: add M0

i to V txAdjRgnMigrate
10: else
11: apply mesh modification procedures to in-

sure the movement of M0
i to its target loca-

tion
12: end if
13: else
14: remove M0

i from V txListToSnap
15: end if
16: end for
17: send each vertex M0

i ∈ V txAdjRgnMigrate to its
remote copies

18: vertices which received messages from remote
copies in V txAdjRgnMigrate move to their orig-
inal location

19: perform mesh migration originated by
V txAdjRgnMigrate

20: update V txListToSnap on each part in terms of
vertices migrated

21: repeat 5-20 until V txListToSnap is empty on all
parts

22: for all growth curves GCj where top-most vertex
repositioning was performed do

23: move each vertex in the stack to its calculated
position

24: end for

Figure 15 demonstrates an example of the paral-

lel refinement procedure. The initial distributed mesh

is depicted in Figure 15(a), where thick lines indicate

edges and their bounding faces which are going to be

split and communicated during the refinement step.

One of those edges is represented as M1
0 on P0 and

M1
1 on P1 (Figure 15(a)). Consider a face on view (Fig-

ures 15(b) and 15(c)) of the stack of boundary layer

edges originating from M1
0 and M1

1 respectively, and
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Fig. 15 Example of distributed mesh refinement step.

one edge from the interface region on top of each bound-

ary layer. Figure 15(b) shows the introduction of the

vertex M0
0 splitting the edge M1

0 , and M0
1 splitting

the edge M1
1 . The newly created vertex and two edges

are the child entities and attached to the correspond-

ing edge being split on the part boundary, namely:

M1
0 → {M0

0 ,M
1
2 ,M

1
3 } on P0 and M1

1 → {M0
1 ,M

1
4 ,M

1
5 }

on P1. In order to set up the correct links between the

new entities, a communication round is carried out to

create remote copies between {M0
0 ,M

1
2 ,M

1
3 } on P0 and

{M0
1 ,M

1
4 ,M

1
5 } on P1. M1

0 is sent to P1 with the list of

attached entity addresses, whereas M1
1 is sent to P0.

When P1 receives the message with M1
0 and its list of

children and their addresses, it goes to M1
1 and with

the ordered local old-new mapping updates the links

such that M0
0 corresponds to M0

1 , M1
2 corresponds to

M1
4 , and M1

3 corresponds to M1
5 . Similarly the remote

copies are set up for P0 receiving the message with M1
1

from P1 as depicted on Figure 15(c). After all edges

and faces are split on the part boundary and commu-

nication links are updated, the regions are subdivided

in serial and no further communication is needed. The

resulting mesh is depicted in Figure 15(d).

Once refinement is completed, each part holds a list

of mesh vertices that are classified on curved geome-

tries and need to be projected onto the model bound-

aries [3]. For the boundary layer part of the mesh, the

newly created originating vertices are projected onto to

the solid model surfaces with the help of the movement

vector as described in Section 3.3. In cases where the

projection alone will introduce mesh invalidities in the

unstructured mesh at the top of the stack, a more ex-

tensive sets of local mesh modification operations are

required that include collapses and/or splits [38] and

their parallel execution [16]. Algorithm 4 describes par-

allel boundary layer vertex movement routine.
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4.3 Coarsening and swapping

Layer edge collapse operation is always performed on

the on-part localized cavity [16, 3]. The boundary layer

stacks adjacent to the same growth curve starting with

a vertex M0
d and ending with top most growth curve

vertex M0
dtop

, are checked for the layer edge collapse

operation with corresponding layer edges adjacent to

growth curve vertices being considered . If neither of

stacks of layer edges shorter than the desired size in

a metric space can be collapsed locally, the boundary

layer coarsening procedure migrates all the boundary

layer stacks and interface regions adjacent to the growth

curve vertices from M0
d to M0

dtop
to one part and checks

for the possibility of layer edge collapse operation with

the full local cavity.

Figure 16 shows the example of the edge collapse

operation requesting migration to be accomplished. It

can be seen from the figure that boundary layer vertices

M0
d ..M

0
dtop

for surrounding boundary layers are located

on the part boundary and layer edge collapse for its

adjacent edges cannot be evaluated. Thus, they request

all the adjacent boundary layer stacks and interface re-

gions to be migrated to one part P2 in order to perform

layer edge collapse operation locally.

Algorithm 5 Pseudo code for the parallel boundary

layer coarsening procedure.

1: for all originating vertices M0
d from the list of ver-

tices V txList do
2: check the stack of shortest adjacent edges corre-

sponding to vertices M0
d in growth curve GCj

3: if boundary layer stacks and interface regions as-
sociated with operation are on one part then

4: apply layer edge collapse operation and update
V txList

5: else
6: add vertices on part boundary {M0

di
..M0

dtop
} ∈

GCj into the list V txToMigrate
7: end if
8: end for
9: perform mesh migration using the list
V txToMigrate

10: update V txList in order to be able to traverse
newly migrated vertices

11: repeat 1-10 until V txLst is empty

Algorithm 5 presents the pseudo code for the paral-

lel boundary layer coarsening. Given a dynamic list of

originating vertices to apply layer edge collapse with, it

is repeatedly traversed until the list is empty. To be able

to reduce the number of total mesh migrations, prior

to each traversal, a list of corresponding top-most ver-

tices is initialized on each part to keep track of vertices

on part boundaries which are responsible to request a

migration of boundary layer stacks and mesh regions.

During traversal, the boundary layer stacks are checked

for layer edge collapse operation using the current ver-

tex and adjacent shortest edges. If all boundary layer

stacks and interface regions are on one part, the oper-

ation is applied as in serial and the local dynamic list

is updated. Otherwise, corresponding boundary layer

vertices on part boundaries are added to the list of ver-

tices initiating mesh migration. When all parts are done

traversing their dynamic vertex lists, requests to mi-

grate boundary layer stacks and mesh regions are made

using the list of vertices on part boundaries. These re-

quests then drive the application of mesh migration,

and at the same time updating the dynamic vertex list

of corresponding originating vertices on each part in

terms of which of them need to be checked for the layer

edge collapse operation locally.

Algorithm 6 Pseudo code for the parallel boundary

layer surface optimization procedure.

1: for all stacks starting from zero-level facesM2
i from

the list of zero-layer faces FaceLst do
2: check the best mesh modification operation to be

applied to surrounding boundary layers
3: if boundary layer stacks and interface regions as-

sociated with operation are on one part then
4: apply local mesh modification operation and

update FaceLst
5: else
6: consider M2

ktop
, a top-most face of the bound-

ary layer stack growing from M2
i

7: add top-most vertices M0
jtop
∈ {∂M2

ktop
} into

the list V txToMigrate
8: end if
9: end for

10: perform mesh migration using the list
V txToMigrate

11: update FaceList in order to be able to traverse
newly migrated zero-level layer faces

12: repeat 1-10 until FaceList is empty

Parallelization of swap operations follows the same

overall logic as the collapse operation. In the case of

swaps within the boundary layer they are done at the

end of the process as part of a mesh optimization pro-

cess to improve the quality of layer element shapes [53].

The only difference in this optimization step is driven

by a traversal process focused on improving the shape of
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Fig. 16 Example of parallel layer edge collapse operation involving mesh migration.

elements in the boundary layer. Algorithm 6 describes

the parallel approach of surface optimization routines.

5 Application results

5.1 Adaptive loops and applications

An adaptive loop is created using a set of interopera-

ble components that link analysis codes with geometry-

based problem definitions, automatic mesh generation,

error estimation procedures and generalized mesh mod-

ification procedures (e.g., see [58, 12]). The adaptive

loop connects the analysis and adaptation components

needed for the successful simulation on the problem do-

main. The solution obtained by the analysis routines is

evaluated and used to provide information to adapt the

mesh, which in turn enriches the solution approxima-

tion. The error distribution is determined on the cur-

rent mesh and is converted to the mesh metric size field

which is adapted and then sent back to the solver. Dur-

ing the mesh adaptation execution the necessary solu-

tion fields are transferred in order to be a correct input

for the flow solver on the next analysis step. The over-

all structure of the adaptive loop procedure is shown

on Figure 17.

The capabilities of the parallel anisotropic mesh adap-

tation with boundary layers are demonstrated with three

flow applications. The first case involves the ONERA

M6 wing [61] for which FUN3D solver [46] was used. In

the second case, the simulation of a heat transfer man-

ifold was executed. The CFD analysis for this test was

performed using the PHASTA Navier-Stokes solver [63].

The third test case involves a scramjet engine (of NASA

CIAM configuration [45]), where the analysis was per-

formed using the FUN3D solver.

These studies have been executed on Hopper Cray

XE6 [18] at National Energy Research Scientific Com-

puting Center. It is configured with 2 twelve-core AMD

2.1 GHz processors per node, with separate L3 caches
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Fig. 17 A schematic of the adaptive loop procedure.

and memory controllers, 32 GB or 64 GB DDR3 SDRAM

per node. Hopper has a Gemini interconnect with a 3D

torus topology.

5.2 ONERA M6 wing

The ONERA M6 wing is one of the classic CFD valida-

tion cases [61]. Air enters the wind tunnel at transonic

speed and is accelerated over the wing to supersonic

speeds causing a shock to appear on the upper sur-

face of the wing. The free stream Mach number is 0.84,

and the angle of attack is 3.06o. The free stream pres-

sure and temperature are 42.89 psi and 255.5 K. The

Reynolds number is 11.72 million based on the mean

aerodynamic chord. This flow marks a strong need for

adaptive grids due to unknown shock location a priori

and complex structure of the lambda shock. The refer-

ence experimental data is from Schmitt and Charpin in

1979 [61]. We used FUN3D flow solver for this case.

Three cycles of mesh adaptation were applied for

this case, where Hessian of pressure was used to com-

pute the mesh metric field. Initial mesh contained 0.28M

regions (where M denotes a million). The first adapted

mesh had 0.37M regions, the second adapted mesh had

1.24M regions while the third and finest adapted mesh

had 3.8M regions. Figure 18 presents surface mesh for

the initial and three adapt meshes. The imprint of lambda

shock on the adapted mesh can be clearly seen.

Figure 19 presents the pressure coefficient for the

initial and three adapted meshes. The surface pressure

contours along with surface meshes in Figure 18 show

that the mesh is refined in the shock region and the

lambda shape of the shock is clearly captured. The

mesh away from the shock is coarsened, due to low

values of pressure gradients in this region. The sur-

face pressure contours become sharper and more reg-

ular with adaptivity. One thing to notice is that the el-

ements start to align with the shock in the first adapted

mesh.

In order to perform a more quantitative comparison,

we look at pressure coefficient profiles along the chord

at certain spanwise locations on the wing. Figure 20

shows pressure coefficient along the local chord at two

spanwise locations. In this figure, experimental data is

also included [61]. These plots show that as the mesh

is adapted the pressure coefficient is more accurate. To

establish this aspect further we look at a zoomed view

near the suction peak in Figure 21. The zoomed view

clearly shows that agreement between experimental and

numerical results are improved as the mesh is adapted

further, with finest or third adapted mesh showing the

best agreement among all meshes. For example, at non-

dimensional span location of y/b = 0.9 the peak pres-

sure value is captured far better on the finest adapted

mesh as compared to other adapted meshes. Results on

the initial mesh are least accurate among all meshes.

To evaluate the parallel performance for boundary

mesh adaptivity, a strong-scaling study was conducted.

In this study we consider a finer mesh of the adapted

mesh resulting in 160M regions. Strong scaling study

was executed on processor cores ranging from 512 to

8192. The scaling is based on the execution time of 512

processors and defined as following:

Scaling = (nproc−base∗timebase)/(nproc−test∗timetest),
(5)

where nproc−base is the number of base processors, timebase
is the execution time on a base number of processors,

nproc−test is the number of following test processors,

and timetest is the execution time on that number of
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Fig. 18 ONERA M6 wing: initial and three adapted meshes.

Fig. 19 ONERA M6 wing: pressure on initial and three adapted meshes.

processors. All available cores per node were requested

during the adaptation runs. As indicated in Table 1

the mesh adaptation times decrease with the increased

number of cores. As the given mesh is distributed to

more processors, there is little computation performed

during mesh modification operations relative to the sub-

stantial increase in communications, and the scaling de-

creases on high core counts. Note that Table 1 demon-

strates a strong scaling study where the problem size is

fixed.

Table 1 Mesh adaptation run times and strong scaling for
the ONERA M6 case.

N/proc 512 1024 2048 4096 8192

Time 1212.83 812.68 507.36 322.82 241.94
Scaling 1 0.75 0.60 0.47 0.31

5.3 Heat transfer manifold

The heat transfer manifold test case consists of a large

diameter cylindrical pipe as the inlet, a relatively thin

and flat manifold section, and twenty outlet pipes. Flow
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Fig. 20 Pressure coefficient profiles along the local chord on
initial and three adapted meshes for two spanwise locations.

simulations for this case were done using steady, in-
compressible RANS with the Spalart-Allmaras turbu-

lence model applied. A turbulent velocity profile with a

Reynolds number of 1 million was used at the inlet pipe.

No-slip boundary conditions were assumed at walls and

a natural pressure of zero was prescribed at the outlet.

The solution parameter used in the Hessian-based er-

ror indicator is the static pressure combined with the

scaled dynamic pressure defined as P + 0.5αρu2, where

the scaling factor α = 0.2 was chosen so that an appro-

priate balance of the static and dynamic pressure was

considered. Eigenvalues were computed from the Hes-

sian matrix and were scaled appropriately to get the

mesh sizes along with three orthogonal directions.

The adaptive loop (which consists of a flow solve

and mesh adaptation within each cycle) was carried

out twice, and at each cycle, flow solver was started

from the previous loop’s solution. Each cycle was di-

vided into 1000 time steps with a constant time step

size of 0.1s. The initial computation used a mesh of 3M

elements with pre-defined boundary layers. The first

Fig. 21 Zoom of pressure coefficient profiles, near suction
peak, on initial and three adapted meshes for two spanwise
locations.

adapted mesh has 16M regions, and the second adapted

boundary layer mesh results in 81M regions. The ini-

tial, first and second adapted meshes are depicted in

Figure 22.

For this case we provide a qualitative assessment of

numerical results due to the lack of experimental or any

reference data for comparison. The pressure distribu-

tion near the inlet pipe is provided in Figure 23, whereas

the outlet pipe cuts are presented in Figure 24. The ini-

tial mesh is too coarse and these figures demonstrate its

inability to capture the flow features. Critical flow re-

gions including stagnation points and fillets of the pipes

get significantly refined, as reflected by smoother solu-

tion results. The walls of the manifold, especially the

wall closest to the inflow pipe, get refined to a higher de-

gree. The fillets of outlet pipes also get more refinement.

The central part of the manifold gets relatively lesser re-

finement because of relatively less gradation in solution

fields. Moreover, away from flow regions with stagna-

tion and turns, highly anisotropic mesh elements are

created to effectively model the flow anisotropy, result-
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Fig. 22 Heat transfer manifold: initial (left), first adapted (middle) and second adapted (right) meshes.

Fig. 23 Initial (left), first (middle) adapted and second (right) adapted meshes (top row) and pressure distribution (bottom
row) for the heat transfer manifold test case. The cut is applied to the inflow pipe and the manifold.

ing in significant computational savings over isotropic

meshes of equivalent solution quality.

Figure 25 shows the magnitude of wall shear stress

on the surface of the manifold geometry. With adaptiv-

ity, smoothness of the field improves and features are

captured in a better way. It has been shown in [53]

that wall shear stress computed by adapted boundary

layer meshes is superior to fully unstructured adapted

meshes.

In addition to these results, mesh statistics were

also collected for this case. Specifically, this was done

for three quantities in the metric or transformed space:

layer edge length, interior edge length and mean ratio

for interior regions (for such mesh statistics of fully un-

structured, anisotropically adapted meshes see [49, 37]).

These statistics were collected for the final adaptation

cycle, where it was done for both the input mesh and

the resulting adapted mesh, with respect to the speci-

fied mesh metric field. Figure 26 shows these statistics.

It can be seen that the input mesh has large number

of interior and layer edges whose lengths in the met-

ric space are outside the desired interval of [1/
√

2,
√

2],

however, for the adapted mesh interior edges fall in this

interval indicating the satisfaction of the specified met-

ric field. Note that a large number of layer edges in the

adapted mesh have length (in the metric space) close to



Parallel boundary layer mesh adaptivity 19

Fig. 24 Initial (left), first (middle) and second (right) adapted meshes (top row) and pressure distribution (bottom row) for
the cut of an outflow pipe and the manifold in the heat transfer manifold test case.

0.5. This is due to the conservative nature of the split

scheme for layer edges (i.e., edge split for a single layer

results in split of all layer edges in the stack). Mean ra-

tio plot also shows that the shape of the elements in the

adapted mesh respects the specified mesh metric field.

To evaluate the parallel performance for boundary

mesh adaptivity, as before, a strong-scaling study was

conducted, where mesh adaptation in the second cy-

cle of the adaptive loop was executed on a range of

processors: 256 to 4096 cores. Table 2 gives the scaling

of second-cycle mesh adaptation run times with the ini-

tial mesh of 16M regions, and the final one consisting of

81M regions. In Table 2 the mesh adaptation times de-

crease with the increased number of cores. As before, in

this set of strong scaling runs with given mesh on high

core counts there is little computation performed during

mesh modification operations relative to the substantial

increase in communications, and the scaling decreases

on high core counts.

The solver has been shown to strongly scale [66, 55]

on a large nu mber of cores, i.e., for a fixed amount of

work. It is the analysis part of a simulation which de-

fines the number of processors on which the particular

problem is being executed. If possible, it makes sense to

run mesh adaptation routines on the same number of

cores since bringing the mesh and size field to a smaller

number of cores and repartition it again to a bigger

Table 2 Mesh adaptation run times and strong scaling for
the heat transfer manifold case.

N/proc 256 512 1024 2048 4096

Time 1194.34 785.44 514.45 421.09 339.38
Scaling 1 0.76 0.58 0.36 0.22

number after mesh adaptation is done introduces a sub-

stantial amount of additional work and expensive data

movement.

The work required for mesh adaptation took 0.7% of

the total simulation time on 256 processors and 3.2% of

the simulation time on 4096 processors. In either case,

this cost would not dominate the time spent for the

analysis routines. Thus, even with the loss of strong

scaling in the mesh adaptation step, it is reasonable to

run it on the same number of processors together with

the flow solver.

A weak scaling study was performed for this case

on three unadapted meshes starting with a first mesh

on 256 processors. The second mesh was obtained by

uniform refinement of the first and the third by uni-

form refinement of the second. The mesh metric field

for the second and third meshes was constructed from

that on the first unadapted mesh by scaling by 1/2 and

1/4 respectively. Because of the existence of the bound-

ary layers in the mesh the second and third unadapted
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Fig. 25 Wall shear stress of the initial (left), first (middle) and second (right) adapted meshes.

meshes had roughly six times more regions than the

first and second meshes respectively. Thus the numbers

of processors used to adapt the second and third meshes

was set to 1536 and 9216. Because of the heuristics of

mesh adaptation methods and the fact that the next

meshes are not precisely six times bigger than the pre-

vious mesh, the scaling is calculated using a correction

factor as follows:

Af = Mincr−test/Mincr−base, (6)

Scaling = Af ∗ timebase/timetest, (7)

where Mincr−test and Mincr−base are mesh increase fac-

tors for the number of regions from unadapted to adapted

meshes respectively, and Af is a factor which defines

the difference between number of regions for the adapted

test mesh and the adapted base mesh. The weak scaling

results are presented in Table 3.

It can be inferred from Table 3 that the scaling

does not degrade substantially with the increase in the

number of processors while having relatively the same

amount of workload in each test run. The scaling is af-

fected not only by the growing data exchange between

processors for larger processor counts, but also by the

asynchronous application of mesh modification opera-

tions. Note that although the average workload is ap-

proximately the same per processor, it might be very

different for each specific part depending on the amount

of different types of mesh modification operations ap-
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Table 3 Mesh adaptation run times and weak scaling for the heat transfer manifold case.

Number of processors 256 1536 9216

Initial mesh number of regions 16,319,606 94,487,988 604,853,414
Adapted mesh number of regions 80,890,803 527,501,893 3,702,376,095

Mesh increase factor (Mincr) 4.97 5.58 6.12
Time 1194.34 1381.55 1716.23

Scaling 1 0.97 0.86

Fig. 26 Edge length (leftmost for interior edges and center
for layer edges) and mean ratio (rightmost) distribution in
the transformed space from the final adaptation cycle for the
heat transfer manifold case.

Fig. 27 Slice of the initial mesh for scramjet case: whole en-
gine (top) and a zoomed view of nose cone tip (bottom).

plied locally on the processor and on neighboring parts

across part boundaries.

5.4 Scramjet engine

The NASA CIAM scramjet case [45] was run with a

free stream Mach number of 6.2, and a free stream ref-

erence temperature of 203.5 Kelvin. The initial mesh

had 2.86M regions and its slice is depicted in Figure 27.

Hessian calculations were based on the Mach number

in order to compute the mesh size field.

Two adaptation cycles were completed for the scram-

jet case. The first adapted mesh had 7.2M regions and

the second adapted mesh consisted of 16M regions. Fig-

ure 28 presents a mesh clip-plane view of the first and

second adapted meshes, whereas Figure 29 shows a zoomed

view near the tip of the scramjet engine. For this case

also we provide a qualitative assessment of numerical

results. Figure 30 presents the Mach number contour

plots for the initial, first and second adapted meshes.

In addition, Figure 31 shows adapted meshes and con-
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Fig. 28 Clip-plane view of the engine for the first (top) and
second (bottom) adapted meshes for the scramjet case.

tours of the computed Mach number near the cowl lip

region of the inlet of the combustor area.

The flow solution resolution is greatly improved through

the use of anisotropic mesh adaptation. The second

adapted mesh captures the shock far better than the ini-

tial mesh. In the far field upstream of the shock, where

flow is uniform and parallel, the mesh was appropriately

coarsened. Expected mesh refinement was obtained at

nose cone tip, at the cowl lip, within the combustor

area, at the sharp edges of the combustor area liner, as

well as behind the engine. Mesh anisotropy follows the

shock emanating from the nose cone tip, with coarsen-

ing in the direction tangential to the shock.

Changes in the mesh reflect evidently sharper res-

olution of flow features in the relevant regions of the

domain. The adapted mesh captures the shock better

than the initial mesh, and a sharper resolution of the

shock can be seen in Figure 30. The resolution of shock

in the far-field is limited since it is currently not of pri-

mary concern and far-field resolution can easily be im-

proved with more stringent adaptation criteria. Behind

the engine also, the flow features are better resolved

while using the adapted mesh. Finally, the flow solution

in the combustor area is also better resolved which is

important in proceeding forward with combustion sim-

ulation.

In this case, an anisotropic mesh gradation proce-

dure [36] is also used to reduce high jumps in the mesh

size near the nose cone tip. Figure 32 illustrates the im-

pact of anisotropic grading near the nose cone tip. The

requested sizes at the wall surface are over an order of

Fig. 29 Clip-plane view near engine tip for the first (top)
and second (bottom) meshes for the scramjet case.

Fig. 30 Clip-plane view of Mach contours for initial (top),
first adapted (middle) and second adapted (bottom) meshes.
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Fig. 31 Initial (top), first adapted (middle) and second adapted (bottom) meshes (left column) and Mach number contours
(right column) near the cowl lip and at the entry to the combustor region.

magnitude smaller than the requested sizes in the un-

structured mesh region directly outside the boundary

layer. As a result, the boundary layer stack at the tip

is much more refined than in the adjacent unstructured

mesh, leading to so-called “spider elements” and poorly

shaped elements locally. As confirmed in Figure 32, gra-

dation of the size field alleviates this issue.

Mesh statistics were also collected for this case for

the same three quantities and in the final adaptation

cycle. Figure 33 shows these statistics. It can be seen

that the input mesh has large number of interior and

layer edges whose lengths in the metric space are out-

side the desired interval whereas interior edges in the

adapted mesh fall in this interval. As before, many layer

edges in the adapted mesh are finer (or shorter) than

desired, which is due to the conservative nature of the

split scheme used for layer edges. The percentage of

finer layer edges is higher in this case because the com-

puted sizefield has more variation along the thickness

of the layered mesh (e.g., near the nose cone tip). Mean

ratio also demonstrates that the shape of the elements

in the adapted mesh respects the specified mesh metric

field.

Table 4 provides timings and scalability for mesh

adaptation based on the second adapted meshes. The

strong scaling studies were performed on 128 to 4096

processors. The scaling is based on the execution time

of 128 processors and is calculated the same way it is

defined in the heat transfer manifold test case.

Table 4 supports the observation that the mesh adap-

tation is able to decrease run times with the growing

number of cores. Although the simulation study experi-

ences the fixed size problem phenomena on a high core

count observed in the previous test case, the scalability

factors show better parallel performance of the scramjet

test case compared to the heat transfer manifold case.
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Fig. 32 Impact of anisotropic smoothing for the scramjet adaptation near nose cone tip without grading (left) and with
grading (right).

Note that mesh adaptation took 1.2% of the adaptation

cycle time on 128 processors and 3.6% of the simulation

time on 4096 processors, which is not a significant frac-

tion of time spent for the analysis routines. Thus, even

for a fixed size problem, mesh adaptation routines are

able to efficiently provide adaptation functionality on

high core counts.

Table 5 gives weak scaling results for the scramjet

engine test case, where the scaling factor is calculated

the same way it was described for the heat transfer

manifold test case. It can be found from Table 5 that

having a relatively equal amount of workload per part

in each test run, the scaling does not severely drop with

the increase in number of processors. Unlike the strong

scaling results, the scalability factors show better par-

allel performance of the heat transfer manifold test case

compared to the scramjet engine case, even considering

the fact that the mesh has increased less in size for the

scramjet engine test case during mesh adaptation. As

noted earlier, the mesh adaptation is mesh modification

type-specific and the number of operations on a part

defines the amount of computation and communication

which need to be performed for a specific part.

6 Closing remarks

In this article, an adaptive parallel boundary layer mesh-

ing procedure is presented. The approach described suc-

cessfully works with the distributed meshes and effec-

tively supports layered structure of the mesh while pro-

viding mesh modification routines in parallel using the

anisotropic size field. The parallelization of the anisotropic

mesh adaptation routines with boundary layers allows

the procedure to be applied to large and complex 3D

problem cases.

The procedure has been executed in parallel for three

viscous flow problem cases, namely: the ONERA M6

wing case, a heat transfer manifold case and a scramjet

engine case. It has been demonstrated that boundary

layer mesh adaptation leads to accurate prediction of

flow quantities of interest (e.g., surface pressure) and

appropriately resolves critical flow regions (e.g., lambda

shock). In the ONERA M6 wing case, numerical results

on the finest mesh showed good agreement with the

experimental data. However, in the other two cases a

qualitative assessment was made.

The parallel performance results carried out on prob-

lem domains indicate that mesh adaptation is capable

of decreasing the simulation run times while being exe-

cuted on higher number of cores. With the adaptation

time taking a small fraction of the adaptation loop, par-

allel anisotropic mesh adaptation with boundary layers

presented in this work is able to support efficient large-

scale automated flow simulations. In the future, we plan

to include cases where change in number of layers is

required and far-field solution features (e.g., far-field

shocks) play an important role.
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