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Abstract

Summation-by-parts (SBP) operators offer the efficiency of finite-difference methods with the prov-
able time stability of Galerkin finite-element methods, but they have traditionally been limited to
tensor-product domains. This paper presents a definition for multidimensional SBP finite-difference
operators that is a natural extension of the classical one-dimensional SBP definition. Theoretical
implications of the definition are investigated for the special case of a diagonal-norm (mass) matrix,
and it is shown that the operators retain the desirable properties of tensor-product SBP opera-
tors. A cubature rule with positive weights is proven to be a necessary and sufficient condition
for the existence of diagonal-norm SBP operators on a particular domain. Concrete examples of
multidimensional SBP operators are constructed for the triangle and tetrahedron; similarities and
differences with spectral-element and spectral-difference methods are discussed. An assembly pro-
cess is described that builds diagonal-norm SBP operators on a global domain from element-level
operators. Numerical results of linear advection on a doubly periodic domain demonstrate the
accuracy and time stability of the simplex operators.

Keywords: summation-by-parts, finite-difference method, unstructured grid, spectral-element
method, spectral-difference method, mimetic discretization

1. Introduction

Summation-by-parts (SBP) operators are high-order finite-difference schemes that mimic the
symmetry properties of the differential operators they approximate [1]. Respecting such symmetries
has important implications; in particular, they enable SBP discretizations that are both time-stable
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and high-order accurate [2–4], properties that are essential for robust, long-time simulations of
turbulent flows [5, 6].

Most existing SBP operators are one-dimensional [7–10] and are applied to multidimensional
problems using a multi-block tensor-product formulation [11–13]. Like other tensor-product meth-
ods, the restriction to multi-block grids complicates mesh generation and adaptation, and it limits
the geometric complexity that can be considered in practice.

The limitations of the tensor-product formulation motivate our interest in generalizing SBP
operators to unstructured grids. There are two ways this generalization has been pursued in the
literature: 1) construct global SBP operators on an arbitrary distribution of nodes, or; 2) construct
SBP operators on reference elements and assemble a global discretization by coupling these smaller
elements.

While the first approach is appealing conceptually, it presents challenges. Kitson et al. [14]
showed that, for a given stencil width and design accuracy, there exists grids for which no stable,
diagonal-norm SBP operator exists. Thus, building stable high-order SBP operators on arbitrary
node distributions may require unacceptably large stencils. When SBP operators do exist for a
given node distribution, they must be determined globally by solving a system of equations, in
general. The global nature of these SBP operators is exemplified in the mesh-free framework of
Chiu et al. [15, 16].

The second approach — constructing SBP operators on reference elements and using these
to build the global discretization — is more common and presents fewer difficulties. The primary
challenge here is to extend the one-dimensional SBP operators of Kreiss and Scherer [1] to a broader
set of operators and domains. The existence of such operators, at least in the dense-norm case4,
was established by Carpenter and Gottlieb [17]. They proved that operators with the SBP property
can be constructed from the Lagrangian interpolant on nearly arbitrary nodal distributions, which
is practically feasible on reference elements with relatively few nodes. More recently, Gassner
[18] showed that the discontinuous spectral-element method is equivalent to a diagonal-norm SBP
discretization when the Legendre-Gauss-Lobatto nodes are used with a lumped mass matrix.

Of particular relevance to the present work is the extension of the SBP concept by Del Rey
Fernandez et al. [19]. They introduced a generalized summation-by-parts (GSBP) definition for ar-
bitrary node distributions on one-dimensional elements, and these ideas helped shape the definition
of SBP operators presented herein.

Our first objective in the present work is to develop a suitable definition for multi-dimensional
SBP operators on arbitrary grids and to characterize the resulting operators theoretically. We note
that the discrete-derivative operator presented in [15] is a possible candidate for defining (diagonal-
norm) multi-dimensional SBP operators; however, it lacks properties of conventional SBP operators
that we would like to retain, such as the accuracy of the discrete divergence theorem [20].

Our second objective is to provide a concrete example of multi-dimensional diagonal-norm SBP
operators on non-tensor-product domains. We follow the element-based approach and construct
SBP operators for triangular and tetrahedral elements. The resulting operators are similar to those
used in the nodal triangular-spectral-element method [21–23]. Unlike the spectral-element method
based on cubature points, we do not insist on a polynomial basis and use the resulting freedom to
enforce the summation-by-parts property; this leads to provably time-stable schemes.

The remaining paper is structured as follows. Section 2 presents notation and the proposed
definition for multi-dimensional SBP operators. We study the theoretical implications of the pro-

4In this paper, norm matrix is synonymous with mass matrix.
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posed definition in Section 3. We then describe, in Section 4, how to construct diagonal-norm
SBP operators for the triangle and tetrahedron. Section 4 also establishes that SBP operators on
subdomains can be assembled into SBP operators on the global domain. Results of applying the
triangular SBP operators to the linear advection equation are presented in Section 5. Conclusions
are given in Section 6.

2. Preliminaries

To make the presentation concise, we concentrate on multi-dimensional SBP operators in two
dimensions; the extension to higher dimensions follows in a straightforward manner. Furthermore,
in many cases we present definitions and theorems for operators in the x coordinate direction only.

2.1. Notation

We consider discretized derivative operators defined on a set of n nodes, S = {(xi, yi)}ni=1.
Capital letters with script type are used to denote continuous functions. For example, U(x) ∈ L2(Ω)
denotes a square-integrable function on the domain Ω. We use lower-case bold font to denote the
restriction of functions to the nodes. Thus, the restriction of U to S is given by

u = [U(x1, y1), . . . ,U(xn, yn)]T . (1)

Following this convention, the nodes themselves will often be represented by the two vectors x =
[x1, . . . , xn]T and y = [y1, . . . , yn]T. More generally, the restriction of monomials to S is represented

by xj =
[
xj1, . . . , x

j
n

]T
and yj =

[
yj1, . . . , y

j
n

]T
, with the convention that xj = yj = 0 if j < 0. We

use the element-wise Hadamard product, denoted ◦, to represent the product of functions restricted
to the nodes. For example, the restriction of xayb to S is given by xa ◦ yb.

Matrices are represented using capital letters with sans-serif font; for example, the first deriva-
tive operators with respect to x and y are represented by the matrices Dx and Dy, respectively.
Entries of a matrix are indicated with subscripts, and we follow Matlab R©-like notation when ref-
erencing submatrices. For example, A:,j denotes the jth column of matrix A, and A:,1:k denotes its
first k columns.

2.2. Multidimensional SBP operator definition

We propose the following definition for Dx, the SBP first-derivative operator with respect to
x. An analogous definition holds for Dy and, in three-dimensions, Dz. Definition 1 is a natural
extension of the definition of GSBP operators proposed in [19], which itself extends the classical
SBP operators introduced by Kreiss and Scherer [1].

Definition 1. Two-dimensional summation-by-parts operators: Consider an open and
bounded domain Ω ⊂ R2 with a piecewise-smooth boundary Γ. The matrix Dx is a degree p SBP
approximation to the first derivative ∂

∂x on the nodes S = {(xi, yi)}ni=1 if

i) Dxx
ax ◦ yay = axx

ax−1 ◦ yay , ∀ ax + ay ≤ p;

ii) Dx = H−1Sx = H−1
(
Qx + 1

2Ex

)
, where Qx is antisymmetric, and Ex is symmetric;

iii) H is symmetric positive definite, and;

iv) (xax ◦ yay)T Exx
bx ◦ yby =

∮
Γ
xax+bxyay+bynxdΓ, ∀ ax + ay, bx + by ≤ τEx,

where τEx ≥ p and n = [nx, ny]T is the outward pointing unit normal to the surface Γ.
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Before studying the implications of Definition 1 in Section 3, it is worthwhile to motivate and
elaborate on each of the four properties in the definition.

Property i ensures that Dx is an accurate approximation to the first-partial derivative with
respect to x. It does this in the usual way by requiring that the operator be exact for polynomials
of total degree less than or equal to p. Consequently, in two dimensions the minimum number of
nodes necessary to satisfy property i is

nmin =
(p+ 1) (p+ 2)

2
. (2)

For d dimensions it is necessary to have at least
(
p+d
d

)
nodes. Unlike finite-element methods, SBP

operators generally need more nodes than required by the accuracy conditions, in order to satisfy
properties ii–iv.

Property ii is needed for the SBP operator to mimic integration by parts (IBP). Recall that
the IBP formula for the x derivative is∫

Ω
V ∂U
∂x

dΩ =

∮
Γ
VUnxdΓ−

∫
Ω
U ∂V
∂x

dΩ,

where the outward-pointing unit normal to the surface is n = [nx, ny]T. The SBP approximation
of IBP follows immediately from property ii:

vTHDxu = vTExu− uTHDxv, ∀ v,u ∈ Rn. (3)

The matrix H must be symmetric positive-definite to guarantee stability: without property iii,
the discrete “energy”, uTHu, could be negative when uTu > 0, and vice versa. The so-called norm
matrix H can be interpreted as a mass matrix, i.e.

Hi,j =

∫
Ω
φi(x)φj(x)dΩ,

but it is important to emphasize that SBP operators are finite-difference operators, and there is
no (known) closed-form expression for the basis {φi}ni=1, in general. In the diagonal norm case, we
shall show that another interpretation of H is as a cubature rule.

Finally, property iv implies that Ex is a degree τEx approximation to the surface integral∮
Γ
VUnxdΓ. (4)

While property iv is not explicitly present in one-dimensional SBP definitions [1, 7], it is implicitly
satisfied by tensor-product SBP operators [20]. For general domains, property iv must be explicitly
enforced in order to approximate the surface integral in IBP accurately, and, consequently, retain
desirable properties like dual consistency [24].

3. Analysis of diagonal-norm multi-dimensional summation-by-parts operators

In this section, we determine the implications of Definition 1 on the constituent matrices of a
multi-dimensional SBP operator and whether or not such operators exist. The focus is on diagonal-
norm operators; however, the ideas presented here can be extended to dense-norm operators, i.e.
where the matrix H is not diagonal.

The following lemma will prove useful in the sequel. It follows immediately from properties i
and ii, so we state it without proof.
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Lemma 1 (compatibility). Let Dx = H−1(Qx + 1
2Ex) be an SBP operator of degree p. Then we

have the following set of relations:

ax

(
xbx ◦ yby

)T
Hxax−1 ◦ yay + bx (xax ◦ yay)T Hxbx−1 ◦ yby =(

xbx ◦ yby
)T

Exx
ax ◦ yay , ax + ay, bx + by ≤ p. (5)

We refer to (5) as the compatibility equations for the x derivative; H must simultaneously
satisfy analogous relations for Ey. The relation between H and Ex was first derived by Kreiss and
Scherer [1] and Strand [7], to construct a theory for one-dimensional classical finite-difference-SBP
operators. Furthermore, Del Rey Fernández et al. [19] have used these relations to extend the
theory of such operators to a broader set. What is presented in this paper is a natural extension of
those works to multi-dimensional operators, and the derivation of (5) follows in a straightforward
manner from any of the mentioned works.

For diagonal-norm operators, meaning that H is a diagonal matrix, Definition 1 leads to the
following:

Theorem 1. Let H be the diagonal norm matrix associated with the SBP operators Dx and Dy

of degree p on S. If u,v ∈ Rn are the restriction to S of smooth functions U(x, y) and V(x, y),
respectively, then vTHu must must be at least a degree 2p− 1 approximation to the integral inner
product

∫
Ω VUdΩ.

Proof. This result follows in an analogous fashion to the one-dimensional result, see Section 4.1
[19]. One starts with the compatibility equations for the x coordinate (5) and proves the result. It
then follows that the compatibility equations for the y coordinate are also satisfied.

A direct consequence of Theorem 1 is

Corollary 1. The nodal coordinates, S = {(xi, yi)}ni=1, and diagonal entries of H from a diagonal-
norm SBP operator form a cubature rule with positive weights that is exact for polynomials of
degree 2p− 1.

Now we prove the following:

Theorem 2. Let nmin = (p + 1)(p + 2)/2 be the dimension of the polynomial basis of degree p
in two dimensions, and consider the node set S = {(xi, yi)}ni=1 with n ≥ nmin nodes. Define the
generalized Vandermonde matrix V ∈ Rn×nmin whose columns are the monomial-basis elements
evaluated at the nodes;

V:,k = xi ◦ yj−i, k =
j(j + 1)

2
+ i+ 1, ∀ j = 0, 1, . . . , p, i = 0, 1, . . . , j.

If the columns of V are linearly independent, then the existence of a cubature rule of degree τH ≥
2p− 1 with positive weights is necessary and sufficient for the existence of degree p diagonal-norm
SBP operators approximating the first derivatives ∂

∂x and ∂
∂y on the node set S.

Proof. The necessary condition follows immediately from Theorem (1). To prove sufficiency, we
must show that, given a cubature rule, we can construct an operator that satisfies properties i–iv
of Definition 1 on the same node set as the cubature rule.
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Before proceeding, we introduce some matrices that facilitate the proof. Let Vx ∈ Rn×nmin be
the matrix whose columns are the x derivatives of the monomial-basis:

(Vx):,k = ixi−1 ◦ yj−i, k =
j(j + 1)

2
+ i+ 1, ∀ j = 0, 1, . . . , p, i = 0, 1, . . . , j.

We construct an invertible matrix Ṽ ∈ Rn×n by appending a set of linearly independent vectors,
W ∈ Rn×(n−nmin), to V:

Ṽ ≡
[
V W

]
.

Similarly, we define
Ṽx ≡

[
Vx Wx

]
,

where Wx ∈ Rn×(n−nmin) is an arbitrary matrix. Below, we use the degrees of freedom in Wx to
satisfy the SBP definition.

Let H be the diagonal matrix whose entries are the cubature weights ordered consistently with
the cubature node set S. Since the cubature weights are positive, property iii is satisfied.

Next, we use the cubature to construct a suitable Ex. Using V and Vx, we define the symmetric
matrix

Ẽx ≡ VTHVx + VT
xHV.

Since V and Vx are polynomials of degree p and p − 1, respectively, evaluated at the nodes, the
cubature is exact for the right-hand side of Ẽx:(

Ẽx

)
k,l

=

∫
Ω
ixi−1yj−ixqyr−qdΩ +

∫
Ω
qxiyj−ixq−1yr−qdΩ

=

∮
Γ
xi+qyj−i+r−qnxdΓ, ∀ j, r = 0, 1, . . . , p, i = 0, 1, . . . , j, q = 0, 1, . . . , r,

where k = j(j+ 1)/2 + i+ 1, and l = r(r+ 1)/2 + q+ 1. To make the connection with property iv,
let ax = i, ay = j − i, bx = q and by = r − q. Then,(

Ẽx

)
k,l

=

∮
Γ
xax+bxyay+bynxdΓ, ax + ay = j ≤ p, bx + by = r ≤ p. (6)

Now we can define the boundary operator

Ex ≡ Ṽ−T

[
Ẽx FT

F G + GT

]
Ṽ−1,

where F ∈ R(n−nmin)×nmin and G ∈ R(n−nmin)×(n−nmin) have arbitrary entries. It follows from this
definition that Ex is symmetric. Moreover, together with (6), this definition implies

(
VTExV

)
k,l

=
(
Ẽx

)
k,l

=

∮
Γ
xax+bxyay+bynxdΓ,

so Ex satisfies property iv.
Finally, let

Qx ≡ HṼxṼ
−1 − 1

2
Ex. (7)
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The accuracy conditions, which are equivalent to showing DxV = Vx, follow immediately from this
definition of Qx:

DxV = H−1

(
Qx +

1

2
Ex

)
V = H−1

(
HṼxṼ

−1
)
V = Vx,

thus, property i is satisfied.
Our remaining task is to show that Qx can be constructed to be antisymmetric; inspecting (7),

we see that the Wx block of Ṽx provides the only available degrees of freedom to achieve this task.
If we can show that

ṼTQxṼ =

[
VTQxV VTQxW
WTQxV WTQxW

]
can be made antisymmetric, then the result will follow for Qx. Consider the first block in the 2× 2
block matrix above, i.e.

VTQxV = VTHVx −
1

2
VTExV.

Adding this block to its transpose, we find

VTQxV + VTQT
xV = VTHVx + VT

xHV − VTExV, (8)

where we have used the symmetry of Ex. The right-hand side of (8) is the matrix form of the
(rearranged) compatibility equations (5). Thus, VTQxV+VTQT

xV = 0, proving that the first block
is antisymmetric. For the remaining three blocks, antisymmetry requires(

VTQxW
)T

= −WTQxV, and WTQxW = −WTQT
xW.

Substituting Qx and simplifying, we obtain the following equations for the unknown Wx:

VTHWx = −VT
xHW + VTExW, and WTHWx + WT

xHW = WTExW.

The first matrix equation constitutes nmin(n − nmin) scalar equations, while the second equation
holds (n − nmin)2 scalar equations. Therefore, there are n(n − nmin) equations in total. This is
precisely the number of degrees of freedom in Wx. Therefore, by choosing those values for Wx that
satisfy the matrix equations above, we ensure the antisymmetry of Qx.

Remark 1. For a given cubature rule, we have shown existence but not uniqueness of an SBP
operator. In the proof of Theorem 2, all of the degrees of freedom in Wx were used to satisfy the
antisymmetry of Qx; however, we did not use any of the freedom in the matrices F and G found in
Ex. Therefore, in general, there are infinitely many operators associated with a given cubature rule
that satisfy Definition 1.

We now characterize Sx.

Theorem 3. The matrix Sx of a degree p diagonal-norm multi-dimensional SBP operator is a
degree τSx = min (τEx , 2p) approximation to the bilinear form

(V,U) =

∫
Ω
V ∂U
∂x

dΩ (9)

Proof. The proof is analogous to the proof in [20] for one-dimensional classical finite-difference-SBP
operators.
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Using Theorem (3) we can characterize Qx as follows:

Theorem 4. The matrix Qx of a degree p diagonal-norm multi-dimensional SBP operator is a
degree τQx = min (τEx , 2p) approximation to the bilinear form

(V,U) =

∫
Ω
V ∂U
∂x

dΩ− 1

2

∮
Γ
VUdΓ (10)

Proof. By Theorem (3) we have that(
xbx ◦ yby

)T
Sxx

ax ◦ yay =

∫
Ω
xbxyby

∂xaxyay

∂x
dΩ,

∀ ax + ay + bx + by ≤ min (τEx , 2p) .

(11)

Substituting Sx = Qx + 1
2Ex into (11), with rearrangement, gives

(
xbx ◦ yby

)T
Qxx

ax ◦ yay =

∫
Ω
xbxyby

∂xaxyay

∂x
dΩ− 1

2

(
xbx ◦ yby

)T
Exx

ax ◦ yay ,

∀ ax + ay + bx + by ≤ min (τEx , 2p) .

(12)

Using the definition of Ex we get the desired result(
xbx ◦ yby

)T
Qxx

ax ◦ yay =

∫
Ω
xbxyby

∂xaxyay

∂x
dΩ− 1

2

∮
Γ
xaxyayxbxybydΓ,

∀ ax + ay + bx + by ≤ min (τEx , 2p) .

(13)

4. Constructing the operators

This section describes how we construct diagonal-norm SBP operators for triangles and tetra-
hedrons. The algorithms described below have been implemented in the Julia package Summa-
tionByParts5.

4.1. The node coordinates and the norm matrix

Theorem 1 tells us that the diagonal entries in H are positive weights from a cubature that is
exact for polynomials of total degree 2p − 1. Thus, our first task is to find cubature rules with
positive weights for the triangle and tetrahedron. Additionally, we seek rules that use as few nodes
as possible for a given accuracy and that respect the symmetries of the triangle and tetrahedron.

For the operators considered in this work, we require that
(
p+d−1
d−1

)
cubature nodes lie on each

boundary facet, where d is the spatial dimension. This requirement on the nodes is motivated by
the particular form of the Ex, Ey, and Ez operators that we consider below; however, Definition
1 does not require a prescribed number of boundary nodes, and SBP operators for the 2- and
3-simplex may exist that do not have any boundary nodes at all.

5https://github.com/OptimalDesignLab/SummationByParts.jl
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Table 1: Active orbits and their node counts for triangular-element operators. The notation Perm indicates that
every permutation of the barycentric coordinates is to be considered. Free-node counts are decomposed into the
product of the number of nodes in the orbit times the number of orbits of that type.

operator degree, p

orbit name barycentric form 1 2 3 4

fixed nodes vertices Perm(1, 0, 0) 3 3 3 3

mid-edge Perm
(

1
2 ,

1
2 , 0
)

— 3 — 3

centroid
(

1
3 ,

1
3 ,

1
3

)
— 1 — —

free nodes edge Perm (α, 1− α, 0) — — 6× 1 6× 1

S21 Perm (α, α, 1− 2α) — — 3× 1 3× 2

# free parameters — — 2 3
# nodes total 3 7 12 18

p = 1 p = 2 p = 3 p = 4

Figure 1: Node distributions for cubature rules adopted for the SBP operators on triangles.

Cubature rules that meet our requirements for triangular elements are presented in refer-
ences [21–23, 25] in the context of the spectral-element and spectral-difference methods. Table 1
summarizes the rules that are adopted for triangular-element SBP operators of degree p = 1, 2, 3,
and 4. For reference, the node locations for the triangular cubature rules are shown in Figure 1.

To find cubature rules for the tetrahedron, we follow the ideas presented in [23, 26, 27]. Our
procedure is briefly outlined below for completeness, but we make no claims regarding the novelty
of the cubature rules or our method of finding them.

We assume that each node belongs to a (possibly degenerate) symmetry orbit [26]. As indicated
above, we assume that the cubature-node set includes p+1 nodes along each edge and (p+1)(p+2)/2
nodes on each triangular face. For the interior nodes, we activate the minimum number of symmetry
orbits necessary to satisfy the accuracy conditions; these orbits have been identified through trial-
and-error.

Each symmetry orbit has a cubature weight associated with it, and orbits that are non-
degenerate are parameterized using one or more barycentric parameters. Together, the orbit
parameters and the weights are the degrees of freedom that must be determined. They are
found by solving the nonlinear accuracy conditions using the Levenberg-Marquardt algorithm.
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The accuracy conditions are implemented using the integrals of orthogonal polynomials on the
tetrahedron [28, 29].

Table 2 summarizes the node sets used for the tetrahedron cubature rules, and Figure 2 illus-
trates the node coordinates.

4.2. The boundary operators

Definition 1 implies that the boundary operator Ex satisfies

vTExu =

∮
Γ
UVnx dΓ,

for all polynomials U and V whose total degree is less than τEx ≥ p. In particular, if we choose U
and V to be nodal basis functions on the faces, we can isolate the entries of Ex. This is possible,
because we have insisted on operators with

(
p+d−1
d−1

)
nodes on each facet, which leads to a complete

nodal basis. For further details on the construction of the boundary operators, we direct the
interested reader to [30, pg. 187].

Remark 2. The boundary operators, when restricted to the boundary nodes, are dense matrices.
Contrast this with the tensor-product case, where the boundary operators are diagonal matrices. In
the simplex case, we have not found a way to construct diagonal Ex, Ey and Ez that are sufficiently
accurate.

4.3. The antisymmetric part

The accuracy conditions are used to determine the antisymmetric matrices Qx, Qy, and Qz.
We will describe the process for Qx, since it can be adapted in a straightforward way to Qy and,
in the case of the tetrahedron, Qz.

In theory, we can compute Qx using the monomials xaxyay that appear in the SBP-operator
definition; however, these basis functions are known to produce ill-conditioned Vandermonde ma-
trices. Instead, we follow the standard practice in spectral-element methods and apply the accuracy
conditions to appropriate orthogonal bases on the triangle and tetrahedron [28–30]

Let P and Px be the matrices whose columns are the orthogonal basis function values and
derivatives, respectively, evaluated at the nodes. Then the accuracy conditions imply DxP = Px,
or, in terms of the unknown Qx,

QxP = HPx −
1

2
ExP.

This can be recast as the linear system
Aq = b, (14)

where q denotes a vector whose entries are the strictly lower part of Qx:

q ( (i−2)(i−1)
2

+ j) = (Qx)i,j , 2 ≤ i ≤ n, 1 ≤ j < i.

There are (n− 1)n/2 unknowns and n×
(
p+d
d

)
equations in (14); thus, for the operators considered

here, there are more equations than unknowns. Fortunately, the compatibility conditions ensure
that the system is consistent. Indeed, for p ≥ 3 the rank of A is actually less than the size of
q, so there are an infinite number of solutions. In these cases, we choose the minimum-norm
least-squares solution [31] to (14).
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Table 2: Active orbits and their node counts for tetrahedral-element operators. See the caption of Table 1 for an
explanation of the notation.

operator degree, p

orbit name barycentric form 1 2 3 4

fixed nodes vertices Perm(1, 0, 0, 0) 4 4 4 4

mid-edge Perm
(

1
2 ,

1
2 , 0, 0

)
— 6 — 6

centroid
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
— 1 — 1

face centroid Perm
(

1
3 ,

1
3 ,

1
3 , 0
)

— — 4 —

free nodes edge Perm (α, 1− α, 0, 0) — — 12× 1 12× 1

face S21 Perm (α, α, 1− 2α, 0) — — — 12× 1

S31 Perm (α, α, α, 1− 3α) — — 4× 1 4× 1

S22 Perm
(
α, α, 1

2 − α,
1
2 − α

)
— — — 6× 1

# free parameters — — 2 4
# nodes total 4 11 24 45

p = 1 p = 2 p = 3 p = 4

Figure 2: Node distributions for cubature rules adopted for the SBP operators on tetrahedra.

4.4. Similarities and differences with existing operators

There is a vast literature on high-order discretizations for simplex elements, so we focus on the
two that share the most in common with the proposed SBP operators: the diagonal mass-matrix
spectral-element (SE) method [21–23] and the spectral-difference (SD) method [32].

Our norm matrix H is identical to the lumped mass matrices in the SE method. The difference
between the methods arises in the definition of Sx. In the SE method of Giraldo and Taylor [23],
the Sx matrix is defined as

(
SSE
x

)
i,j

=

n∑
k=0

Hk,kφi(xk, yk)
∂φj
∂x

(xk, yk),

where {φi}ni=1 is the so-called cardinal basis. For a degree p operator, the cardinal basis is a
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polynomial nodal basis that is a super-set of the basis for degree p polynomials; the basis contains
polynomials of degree greater than p, because the number of nodes n is greater than

(
p+d
d

)
, in

general. Consequently, the cubature defined by H is not exact for the product φi∂φj/∂x when
p ≥ 2, and the resulting SSE

x does not satisfy the SBP definition for the p ≥ 2 discretizations.
Indeed, as the results below demonstrate, the higher-order SE operators are unstable and require
filtering or numerical dissipation even for linear problems.

Remark 3. The SSEx matrix in the diagonal mass-matrix SE method can be made to satisfy the SBP
definition by using a cubature rule that is exact for the cardinal basis; however, such a cubature rule
would require additional cubature points and would defeat the purpose (i.e. efficiency) of collocating
the cubature and basis nodes.

Diagonal-norm SBP operators can also be viewed as a special case of the SD method in which
the unknowns and fluxes are collocated. As pointed out in [32], this means that our proposed SBP
operators require more unknowns to achieve a given accuracy than spectral-difference methods;
however, collocation eliminates the reconstruction step, so there is a tradeoff between memory
and floating-point operations. More importantly, this relative increase in unknowns applies only
to discontinuous methods. If we assemble a global SBP operator, as described below, then the
number of unknowns can be significantly reduced.

4.5. Assembly of global SBP operators from elemental operators

The SBP operators defined in Sections 4.1–4.3 can be used in a nodal DG formulation [30]
with elements coupled weakly using, for example, simultaneous approximation terms [33, 34]. An
alternative use for these element-based operators, and the one pursued here, is to mimic the
continuous Galerkin formulation. That is, we assemble global SBP operators from the elemental
ones.

We need to introduce some additional notation to help describe the assembly process and
facilitate the proof of Theorem 5 below. Suppose the domain Ω is partitioned into a set of K
non-overlapping subdomains Ω(k) with boundaries Γ(k):

Ω =
K⋃
k=1

Ω̄(k), and Ω(k) ∩ Ω(l) = ∅, ∀ k 6= l,

where Ω̄(k) = Ω(k) ∪ Γ(k) denotes the closure of Ω(k).
Each subdomain is associated with a set of nodes S(k) ≡ {(x(k)

i , y
(k)
j )}ni=1, such that (x

(k)
i , y

(k)
i ) ∈

Ω̄(k). In the present context, some of the nodes in S(k) will lie on the boundary Γ(k) and be shared
by adjacent subdomains.

Let S ≡ ∪kS(k). Suppose there are n′ unique nodes in S, and let each node be assigned a
unique global index. Suppose i′ is the global index corresponding to the ith local node of element
k. We define Z(k)(i, j) to be the n′ × n′ matrix with zeros everywhere except in the (i′, j′) entry,
which is unity. If ei′ denotes the i′ column of the n′ × n′ identity, then Z(k)(i, j) = ei′e

T
j′ .

We can now state and prove the following result.
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Theorem 5. Let D
(k)
x =

(
H(k)

)−1
S

(k)
x be a degree p SBP operator for the first derivative ∂/∂x on

the node set S(k). If

H ≡
K∑
k=1

n∑
i=1

H
(k)
i,i Z

(k)(i, i)

Sx ≡
K∑
k=1

n∑
i=1

n∑
j=1

(
S(k)
x

)
i,j

Z(k)(i, j),

then Dx = H−1Sx is a degree p SBP operator on the global node set S.

Proof. We need to check each of the four properties in Definition 1.

i) The first property is straightforward, albeit tedious, to verify. H−1 exists by property iii, which
is shown to hold independently below, so we have

Dxx
ax ◦ yay = H−1Sxx

ax ◦ yay

= H−1

 K∑
k=1

n∑
i=1

n∑
j=1

(
S(k)
x

)
i,j

Z(k)(i, j)

xax ◦ yay

= H−1
K∑
k=1

n∑
i=1

H
(k)
i,i

H
(k)
i,i

n∑
j=1

(
S(k)
x

)
i,j
ei′x

ax
j′ y

ay
j′

= H−1
K∑
k=1

n∑
i=1

H
(k)
i,i ei′

n∑
j=1

(
D(k)
x

)
i,j
xaxj y

ay
j

= H−1
K∑
k=1

n∑
i=1

H
(k)
i,i ei′axx

ax−1
i y

ay
i

= H−1

[
K∑
k=1

n∑
i=1

H
(k)
i,i Z

(k)(i, i)

]
axx

ax−1yay ,

But the term in brackets above is the definition of H, so we are left with Dxx
ax ◦ yay =

axx
ax−1yay , as desired.

ii) We form the decomposition Sx = Qx + 1
2Ex where

Qx =
K∑
k=1

n∑
i=1

n∑
j=1

(Qx)(k) (i, j)Z
(k)
i,j ,

Ex =
K∑
k=1

n∑
i=1

n∑
j=1

E(k)
x (i, j)Z

(k)
i,j .

The matrix Qx is antisymmetric, because it is the sum of antisymmetric matrices. Similarly,
Ex is symmetric, because it is the sum of symmetric matrices. Hence, property ii is satisfied.

iii) H is clearly diagonal and positive by construction, so property iii is satisfied.
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iv) Finally, property iv can be verified through direct evaluation:

(xax ◦ yay)T Exx
bx ◦ yby =

K∑
k=1

n∑
i=1

n∑
j=1

E(k)
x (i, j) (xax ◦ yay)Z

(k)
i,j x

bx ◦ yby

=

K∑
k=1

∮
Γ(k)

xax+bxyay+bynxdΓ

=

∮
Γ
xax+bxyay+bynxdΓ,

where we have used the fact that the boundary fluxes of adjacent elements cancel analytically.

5. Results

The linear advection equation is used to verify and study the triangular-element SBP operators
of Section 4. In particular, we consider the problem

∂U
∂t

+
∂U
∂x

+
∂U
∂y

= 0, ∀ (x, y) ∈ Ω = [0, 1]2,

U(x, 0, t) = U(x, 1, t), and U(0, y, t) = U(1, y, t),

U(x, y, 0) =

{
1− (4r2 − 1)5 if r ≤ 1

2

1, otherwise,

where r(x, y) ≡
√

(x− 1
2)2 + (y − 1

2)2. The boundary conditions imply periodicity in both the x

and y directions and the PDE implies an advection velocity of (1, 1). The initial condition is a C4

continuous bump function that is periodic on Ω.
A nonuniform mesh for the square domain Ω is generated, in order to eliminate possible error

cancellations that may arise on uniform grids. The vertices of the mesh are given by

xi,j =
i

N
+

1

40
sin (2πi/N) sin (2πj/N) , yi,j =

j

N
+

1

40
sin (2πi/N) sin (2πj/N) ,

whereN is the number of elements along an edge, and i, j = 0, 1, 2, . . . , N . The nominal element size
is h ≡ 1/N . A triangular mesh is generated by dividing each quadrilateral {xi,j , xi+1,j , xi,j+1, xi+1,j+1}
along the diagonal from xi+1,j to xi,j+1. Finally, for an SBP element of degree p, the reference-
element nodes are mapped (affinely) to each triangle in the mesh. Figure 3 illustrates a represen-
tative mesh for p = 3 and N = 12.

The global SBP operators are constructed using the assembly process described in Section 4.5.
Appropriate coordinate transformations are used to adapt the reference-element SBP operators to
each triangle in the mesh. In addition, the periodic boundaries are transparent to the operator,
that is, nodes that coincide on the periodic boundary are considered the same.

The classical 4th-order Runge-Kutta scheme is used to discretize the time derivative. The
maximally stable CFL number for each SBP operator was identified for N = 32 using Golden-
Section optimization, where the CFL number was defined as

√
2∆t/h for a time-step size of ∆t.

Each discretization was run for a period of T = 1 and considered stable if the final L2 norm of
the solution was less than the initial solution norm. The results of the optimization are listed in
Table 3.
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Table 3: Maximally stable CFL numbers for the SBP operators on the nonuniform mesh with N = 32.

p=1 p=2 p=3 p=4

CFLmax 1.885 0.532 0.270 0.149

Figure 3: Example mesh with p = 3 and N = 12 for
accuracy and energy-norm studies.

Figure 4: L2 error between the solution at t = 1 and
initial condition for different mesh spacing and oper-
ators.

5.1. Accuracy and efficiency studies

Figure 4 plots the L2 error between the initial condition and the final solution at t = 1 (i.e.
one period) for SBP-operator degrees one to four and a range of N . Specifically, if u0 and u are
the discrete initial and final solutions, respectively, and H is the SBP norm on the global domain,
then the error is

L2 Error =

√
(u− u0)T H (u− u0).

The mesh resolution ranges from N = 4 to N = 64 in increments of 4. Each case was time
marched using CFLmax/2, which was determined to be sufficiently small to produce negligible
temporal discretization errors.

The results in Figure 4 demonstrate relative improvement when the operator degree is increased;
however, the convergence rates of the p = 2 and p = 4 operators appear to be lower than the
expected asymptotic rates, and the convergence rate of the p = 3 operator is higher than expected.
Giraldo and Taylor also observed convergence rates that were inconsistent with the expected rates
when the diagonal mass matrix triangular spectral-element method was applied to linear advection
on the sphere. The root cause of these unexpected convergence rates is unclear and will be the
focus of future work.

Figure 5 plots the L2 error, normalized by the L2 norm of the initial condition, versus CPU time.
The runs were performed on an Intel R© Core i5-3570K processor and the code was implemented in
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Figure 5: Normalized L2 error at T = 1 versus CPU time measured in seconds.

Julia version 0.4.0. For this problem, the p = 2 SBP discretization is the most efficient over the
range of accuracies typical of engineering applications. When the desired relative accuracy is below
0.3%, the p = 4 discretization is the most efficient. These results are typical of other high-order
discretizations applied to linear convection.

5.2. Stability studies

Figure 6 shows the spectra of the SBP and SE spatial operators for the linear advection problem.
Specifically, these eigenvalues are for the global operator Sx +Sy when N = 12. The eigenvalues of
the SBP operators are imaginary to machine precision, which mimics the continuous spectrum for

this periodic problem. This is as expected, because the boundary operators E
(k)
x cancel between

adjacent elements when the SBP derivative operator is assembled, leaving only the antisymmetric
parts. The SE operator for p = 1 also has a purely imaginary spectrum, because it is identical to the
linear SBP operator; however, the spectra of the high-order SE operators have a real component.

The consequences of the eigenvalue distributions are evident when the linear advection problem
is integrated for two periods. Figure 7 plots the difference between the solution L2 norm at time
t ∈ [0, 2] and the initial solution norm, i.e. the change in “energy”,

∆E = uT
nHun − uT

0 Hu0,

where un denotes the discrete solution at time step n. For this study, N = 12 and the CFL number
was fixed at 0.01 to reduce temporal errors.

The energy history in Figure 7 clearly shows that the SE operators are unstable for this linear
advection problem, while the SBP operators are stable. The small (linear) decrease in the SBP
energy error is due to temporal errors and can be eliminated by using a different time-marching
method, e.g. leapfrog, or at the cost of using a sufficiently small CFL number.

6. Conclusions

We proposed a definition for multidimensional SBP operators that is a natural extension of the
classical one-dimensional SBP operator definition. We studied the theoretical implications of the
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p = 1 (SBP) p = 2 (SBP) p = 3 (SBP) p = 4 (SBP)

p = 1 (SE) p = 2 (SE) p = 3 (SE) p = 4 (SE)

Figure 6: Eigenvalue distributions for the SBP (upper row) and the SE (lower row) spatial discretizations of the
linear advection problem. Note the different ranges for the real variables.

Figure 7: Time history of the change in the solution energy norm. Note the use of a symmetric logarithmic scale on
the vertical axis.
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definition in the case of diagonal-norm operators, and showed that the generalized operators retain
the attractive properties of tensor-product SBP operators. A significant theoretical result of this
work is that, for a given domain, a cubature rule with positive weights is necessary and sufficient
for the existence of diagonal-norm SBP operators on that domain.

We also constructed diagonal-norm SBP operators for the triangle and tetrahedron. To the
best of our knowledge, this is the first example of SBP operators of degree p ≥ 2 on these domains.
We also presented an assembly procedure that constructs SBP operators for a global domain from
element-wise SBP operators.

Finally, we verified the triangle-element SBP operators using linear advection on a doubly
periodic domain. The results demonstrate the time stability and accuracy of the operators. The
results suggest these operators could be effective for the long-time simulation of turbulent flows on
complex domains.
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