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Exceptional stiffening in composite fiber networks
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We study the small strain elastic behavior of composite athermal fiber networks constructed by adding stiffer
fibers to a cross-linked base network. We observe that if the base network is in the affine deformation regime, the
composite behaves similar to a fiber-reinforced continuum. When the base network is in the nonaffine deformation
regime, the stiffness of the composite increases by orders of magnitude upon the addition of a small fraction of
stiff fibers. The increase is not gradual, but rather occurs in two steps. Of these, one is associated with the stiffness
percolation of the network of added fibers. The other, which occurs at very small fractions of stiff fibers, is due
to the percolation of perturbation zones, or “interphases,” induced in the base network by the stiff fibers, regions
where the energy is stored mostly in the axial deformation mode. Their size controls the stiffening transition and
depends on base network parameters and the length of added fibers. It is also shown that the perturbation field
introduced in the base network by the presence of a stiff fiber is much longer ranged than in the case when the
fiber is tied to a continuum of same modulus with the base network.
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I. INTRODUCTION

Materials made from fibers are ubiquitous in everyday
life. Random fiber networks are the structural component
of many consumer products, baby diapers, special clothing,
filters, paper of various kinds, and insulation, to name just
few applications. Random fiber networks are also an essential
component of most biological materials. Connective tissues
are networks of fibers, whereas the cytoskeleton of eukaryotic
cells is an active network of F-actin.

Most networks of interest are “composite,” i.e., are made
from fibers with different properties. In papers, mixtures
of fibers with different lengths and stiffnesses are used to
provide enhanced strength and toughness. Connective tissue
is made from collagen and elastin fibers [1]. The cytoskeleton
includes microtubules, which are much stiffer and longer than
the F-actin filaments [2]. In all these cases, the presence
of the second type of fiber imparts special properties to
the composite network, above and beyond the exceptional
properties exhibited by some homogeneous (made from the
same type of fiber) networks [3–11]. An example is provided
by some elastomeric materials whose toughness and strength
increase almost by an order of magnitude when a small number
of much longer filaments is cross-linked to the base molecular
network [12].

The conventional view in mechanics of composites is
that when a set of short fibers is embedded in a continuum
matrix, the stiffness of the material increases linearly with
their density [13]. As discussed here and in Ref. [14], an
exceptional increase in stiffness is observed when stiff fibers
are cross-linked to a base homogeneous network. The effect
can be used to engineer artificial fibrous materials and may be
already exploited by living organisms that need to change their
stiffness in a broad range without dramatic structural changes.

To place the discussion in context, it is necessary to review
several results related to athermal homogeneous networks
[3,5,15] made from fibers of the same length L, cross-sectional
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size, and the same mechanical properties, cross-linked rigidly
at all contacts. The important parameters in this system are
L, the density ρ, which represents the total length of fiber per
unit area, and the quantity λ = √

Ef I/Ef A, which represents
the ratio of the bending and axial stiffness of fibers. Here
Ef is Young’s modulus of the fiber material. It has been
shown [3,5,15] that the network moduli depend on parameter
w = n7(λ/L)2, where n is the average number of cross-links
per fiber and, for filaments with circular cross sections, λ/L

is the fiber aspect ratio. If cross-links are placed at all fiber
intersections, n = L/lc, where lc is the mean segment length
which is related to ρ through the Corte-Kallmes equation
lc = π/2ρ [16]. For w larger than a threshold (≈105 [15,17]),
network deformation is approximately affine and similar to the
deformation of a homogeneous continuum. The elastic moduli
become independent of w and scale linearly with ρ and the
axial stiffness of fibers Ef A, E ∼ Ef Aρ. Office paper and
all heavily cross-linked and high density networks belong to
this category. For smaller w values, the deformation of the
network is strongly nonaffine. The mechanical heterogeneity
is large, and the network cannot be mapped to a homogeneous
continuum model [17,18]. The elastic modulus of such two-
dimensional (2D) structures scales as E ∼ Ef Iρn7 ∼ Ef Iρ8

in this regime. Most biological networks belong to this class.
To give an example of how fast a nonaffine network stiffens,
if ρ increases by 5%, E increases by 47.7%.

Composite networks, constructed by adding fibers of certain
properties set to a base homogeneous network made from
different fibers, have been studied only recently [14,19,20].
Bai et al. [14] observed a strong gradual stiffening upon adding
a small fraction of stiff fibers to a nonaffinely deforming
base network, even though the added fibers do not form a
secondary stress bearing network. They associate the effect
with a crossover to the affine regime induced by the addition
of the stiffer fibers. This small strain effect is not observed in
Ref. [19] where a similar type of network is analyzed in three
dimensions. However, Ref. [19] indicates that the presence of
stiffer fibers reduces the critical strain marking the transition
between the linear and the nonlinear elastic regimes, which is
apparently in agreement with the experimental results reported
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in Ref. [21]. In this paper, we consider a family of composite
networks similar to those studied in Ref. [14] and show that
stiff fibers bonded to a nonaffinely deforming base induce an
“interphase” (i.e., a region of the base network) in which the
strain energy is stored predominantly in the axial mode of
the fibers. These interphases are approximately elliptical with
their large semiaxis scaling with the length of the added fibers
and their small semiaxes being defined by the base network
density and fiber length. When these interphases percolate,
the stiffness of the composite increases dramatically. This
happens at a density of added fibers significantly smaller than
that at which the added fibers percolate and form a stress
bearing network. Hence, we show that the stiffening observed
in Ref. [14] happens abruptly at a well-defined density of added
fibers due to a percolation phenomenon.

II. MODEL DEFINITION AND METHODS

To construct a two-dimensional network model (Mikado),
one drops fibers of length L with random centroid positions
and random orientations in a domain of size a. The density ρ

is kept as a parameter. Fibers are elastic with modulus Ef and
have axial and bending stiffnesses Ef A and Ef I , respectively.
Here we denote the base and added stiff fibers by subscripts
“b” and “a,” respectively. The added fibers are introduced with
random centroid positions and random orientations. These are
cross-linked to all fibers they contact, base and added, or are
cross-linked only to the base fibers, in separate models. The
two types of networks are referred to as “fully cross-linked”
(FCL) and “base cross-linked” (BCL), respectively. The fibers
belonging to the base are cross-linked at all contact points. All
cross-links are rigid such that they transmit both forces and
moments.

Fibers are represented as Timoshenko beams with the strain
energy computed as indicated in Ref. [22]. Specifically, the
total energy of the system is the sum of the strain energies
associated with bending, axial, and shear deformation, i.e.,

U = 1

2

∑
fibers

∫
Ef I

(
dψ(s)

ds

)2

+ Ef A

(
du(s)

ds

)2

+ γGf A

(
dv(s)

ds
− ψ(s)

)2

ds. (1)

In this expression v(s) represents the transverse displace-
ment, and du(s)

ds
is the axial strain at position s along the fiber.

The rotation of the fiber cross section is dv(s)
ds

, whereas ψ(s)
represents the rotation of a plane which remains perpendicular
to the neutral axis of the beam. Hence dv(s)

ds
− ψ(s) represents

the shear deformation of the beam. γ is a constant which is
considered 0.88 (for beams with circular cross sections).

Due to the pronounced heterogeneity of the network which
is introduced by the random process of network generation,
the overall mechanical response is affected by strong size
effects [17]. In this paper we consider systems large enough to
eliminate the size effects and to render the computed effective
moduli independent of the boundary conditions (a > 10L).

The network is deformed in uniaxial tension. Displacement
boundary conditions are applied in the direction of loading
u2 = δ, whereas the boundaries parallel to the loading di-

rection are traction free, σ11 = 0; σ12 = 0. Periodic boundary
conditions are used in all models. The solution is found by
minimizing the total system energy using the finite element
solver ABAQUS.

Added fibers of length ranging from La = 0.25 to 1.5 and
with λa = 10−2 are considered. Unless otherwise specified,
the base network has Lb = 0.5, ρb = 50 and λb in the range
(10−7,10−4) and has cross-links at all fiber intersection points.
All lengths are normalized with an arbitrary length equal to
twice the base fiber length. The base network with λb = 10−7

is strongly nonaffine, and the degree of nonaffinity decreases
gradually as λb increases.

III. RESULTS

Let us focus first on the overall behavior of the composite
network and its relationship with the relevant system param-
eters. Figure 1 shows the variation in the network modulus
E with the density of added fibers ρa for base networks with
λb = 10−4,10−5,10−6, and 10−7. FCL cases are shown with
open symbols and dashed lines, whereas BCL cases are shown
with filled symbols and continuous lines. The data points on the
vertical axis correspond to the homogeneous base network and
can be predicted based on the results reported in Refs. [15,22].

In the FCL case, the data merge to a unique curve at large
ρa since in this limit the network formed by the added fibers
dominates the behavior. This limit configuration corresponds
to a homogeneous network with La = 0.5 and λa = 10−2.
The FCL composites with λb < 10−4 exhibit a significant
increase in the stiffness at ρa2 ≈ 12, which corresponds to
the stiffness percolation of the added network. The transition
is not observed when the added fibers are not cross-linked
between themselves (BCL), which indicates that this is indeed
a stiffness percolation point. The critical point for stiffness
percolation in this model is defined by Laρa2 = 6.7 [23,24],
which corresponds to ρa2 ≈ 13.4. The value observed in Fig. 1
is slightly smaller, likely due to the size effect. The size effect,

FIG. 1. (Color online) Composite network modulus versus the
density of stiff added fibers ρa . The added fibers have La = 0.5, λa =
10−2, whereas the base has Lb = 0.5, ρb = 50, and various λb’s.
FCL and BCL cases are shown with dashed and continuous lines,
respectively. Two transitions are observed for the more nonaffinely
deforming networks at critical densities ρa1 and ρa2 .
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FIG. 2. (Color online) BCL data from Fig. 1 replotted with the
vertical axis normalized by (Ef A)b to evidence the parameter
controlling the behavior at large ρa . For the curve corresponding to
the continuum base, the vertical axis is normalized with the modulus
of the continuum.

which is particularly strong close to the critical point, renders
the percolation transition rather gradual.

Interestingly, the curves corresponding to the lower value of
λb, i.e., λb = 10−6 and λb = 10−7, exhibit another transition
at much smaller densities of the added fibers ρa1 ≈ 4. In this
range of densities, the “stiffeners” are too sparse to contact
each other. This sharp transition was not observed in Ref. [14]
due to their choice of added fiber length La as discussed below.

The BCL systems exhibit the transition at ρa1 but not the
percolation transition at ρa2 . In the limit of large ρa clear
differences are observed between the asymptotes. However,
all curves are parallel and depend on ρa . To clarify the origin
of this difference, the BCL curves from Fig. 1 are replotted in
Fig. 2 with the vertical axis normalized by the axial stiffness
of the base network fibers (Ef A)b. The collapse of the curves
at large ρa indicates that in this limit the stiffness of BCL
networks scales as E ∼ (Ef A)b.

The added fibers of these networks are connected via
the base fibers. As the density ρa increases, the length of
a segment (or path) belonging to the base network which
connects two added fibers decreases. This situation is akin
to the systems studied in Refs. [25,26] where homogeneous
networks with flexible cross-links are studied. As the stiffness
of the cross-links decreases, the network behavior is controlled
by these connectors, and the modulus decreases linearly with
their stiffness. In our case, the connectors are segments of the
base network fibers. As these become shorter, their behavior
is controlled by their axial stiffness. This follows from the
known result that the modulus of homogeneous networks with
short fiber segments between cross-links is proportional to the
axial stiffness of fibers E ∼ Ef A. Hence, the presence of a
small number of stiff fibers leads to a crossover to the axially
dominated and affine deformation mode of the network. Note
that this transition happens in homogeneous networks at much
larger densities. To reemphasize the effect, we show in Fig. 2
results for systems in which the stiff fibers are bonded to a
continuum (which plays the role of the base in this case).
The computed stiffness is normalized by the modulus of the

continuum base. This situation corresponds to a perfectly
affinely deforming base and represents the limit of the series of
base networks with increasing λb. The spectacular difference
between this curve and those corresponding to bases having
small λb values evidences the strong constraining effect of
the stiff added fibers on the nonaffine deformation of the base
network.

The most interesting result of the present data set is the
rapid increase in the stiffness close to the critical density ρa1 .
Therefore, it is necessary to clarify the origin of this phe-
nomenon which is not encountered in continuum equivalents
of this problem. To this end, we study the perturbation field
induced by an isolated added fiber to the deformation field of
the base network. We place a single stiff fiber on a nonaffine
base of λb = 10−6, ρb = 50, and Lb = 1.0 and subject the
system to uniaxial deformation in a direction making 45◦ with
the fiber axis. We evaluate ratio R of the strain energy of the
base network stored in the axial deformation mode to the total
strain energy. The homogeneous base network is in the bending
dominated regime, and R is smaller than 0.05 for all regions of
this system. Figure 3 shows the map of R for the base network
with a single added fiber. The map indicates that a perturbed
region, which we refer to as an interphase, exists around the
stiffener. Within this approximately elliptical interphase, R
takes values as large as 0.5. The result shown in Fig. 3 is
obtained by averaging over 20 replicas of the base network
in order to reduce the noise, but the effect is visible in each
realization.

Systems having the same base network and added fibers
of length varying from La = 0.25 to 3 are also studied, and
we observe that the large semiaxis of the elliptical interphase
is proportional to La . The small semiaxis is independent of
La and is defined by the parameters of the base network.
Specifically, it increases with increasing Lb and ρb. The

FIG. 3. (Color online) Map of the fraction R of the strain energy
stored in the axial deformation mode of fibers to the total strain energy
for a base network with Lb = 0.5,ρb = 50, and λb = 10−6 to which a
single fiber with La = 1.5, λa = 10−2 is added. The fiber is oriented
at 45◦ relative to the (vertical) loading direction. The energy stored
in the added fiber is not included in the values reported here.
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dependence can be approximated with a linear function in
the range studied ρb ∈ [50,100],Lb ∈ [0.5,1.5].

To further investigate this effect, added fibers of different
lengths are considered, and the analysis leading to the BCL
data in Fig. 2 is repeated. Specifically, base networks with
ρb = 50 and λb ranging from 10−7 to 10−4 and added fibers
with La = 0.25, 0.5, and 1 and λa = 10−2 are considered in
different models. The modulus of these composites normalized
with (Ef A)b is shown in Fig. 4(a) versus ρa . The critical
density ρa1 decreases with increasing La .

Let us consider now that the large increase in stiffness at
ρa1 and the crossover of the system to the axial deformation
mode are associated with the percolation of the added fiber
interphases. To quantify this effect, we make use of percolation
data for identical, randomly distributed, and randomly oriented
overlapping ellipses in 2D reported in Refs. [27,28]. If the
semiaxes of the ellipses are s1 and s2(s1 > s2), the percolation
threshold can be approximated by ρa1 (2s1) � − 4

π
ln 18

19+4y
,

where y = s1/s2 + s2/s1 [27]. The right side of this equa-
tion is shown graphically in Fig. 5. The plot also shows
ρa1 (2s1)

√
s2/s1 versus s2/s1, which is approximately constant

over a broad range of the aspect ratio. Hence, the quantity
ρa1 (2s1) can be approximated up to a multiplicative constant
with

√
s1/s2. The approximation is valid for almost the entire

FIG. 4. (Color online) BCL results for cases in which the length
of the added fibers La is varied. (a) shows the data in coordinates
similar to those in Fig. 2. The plot in (b) uses a different variable on
the horizontal axis such to collapse the curves at the transition ρa1 .

FIG. 5. (Color online) Variation in the normalized number den-
sity of ellipses at percolation with the ellipse aspect ratio (blue
squares) along with the variation of the same function multiplied
by

√
s2/s1 (red circles).

range of aspect ratios, i.e., for 0.01 < s2/s1 < 1. With s1 ∼ La ,
we conclude that ρa1

√
La should be a constant for a given base

(i.e., for constant s2). Figure 4(b) shows the curves in Fig. 4(a)
with the variable on the horizontal axis modified to ρa

√
La .

The figure shows the collapse of the stiffening transitions of
networks with different added fibers and statistically identical
bases.

To check the robustness of these concepts, we repeated
the analysis leading to the data in Fig. 4 with base networks
with ρb = 100, λb = 10−6, and Lb = 0.5 and with ρb = 50,
λb = 10−6, and Lb = 1 in separate simulations. The results
are shown in Figs. 6(a) and 6(b), respectively. The parameters
of the added fibers are similar to those used in Fig. 4, i.e., λa =
10−2 and La = 0.25, 0.5, or 1 in separate models. The curves
collapse in the vicinity of the critical point ρa1 , indicating that
the model proposed holds for various bases as well. We also
note that a similar result can be obtained if the interphase shape
is considered rectangular and percolation data for identical
overlapping rectangles are used [29]. The present conclusions
hold provided La is sufficiently large (La larger than the mean
segment length of the base network) such that the added fibers
effectively reinforce the base network.

It is interesting to draw a parallel between the role of inter-
phases in this problem and in polymer-based nanocomposites.
It is now commonly accepted that the polymer matrix in the
vicinity of inclusions has modified properties relative to the
polymer far from such interfaces. This interphase plays a
critical role in nanocomposites since as the filler size decreases,
the interphase volume, which scales with the filler-matrix
interface area, increases fast. The macroscopic properties of
the composite become then dominated by the properties of
these interphases, and interesting properties result when the
interphases percolate. This is similar to the case discussed
here in which the modification of the base network behavior
due to the added fibers becomes visible on the system scale
only after the percolation of interphases, point beyond which
it has a dramatic global effect.

It is further interesting to outline a related effect which
leads to enhanced long-range interaction of the added stiff
fibers. Let us study the perturbation field induced by an isolated
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FIG. 6. (Color online) BCL results for cases in which the length
of the added fibers La is varied and nonaffinely deforming networks
with different fiber length Lb and different density ρb are considered
as bases [(a) and (b), respectively].

added fiber in the deformation field of the base network. As
described above, we place a single stiff fiber on a nonaffine
base of λb = 10−6 and ρb = 50 and subject the system to
uniaxial deformation in a direction making 45◦ with the fiber
axis. The perturbation field is computed by subtracting the
displacements of the network without the added fiber, and the
result is averaged over ten realizations of the base network
to eliminate the variability introduced by the specific base
network geometries.

Figure 7(a) shows the normalized perturbation displace-
ment 	u2 = (u2 − ub

2)/δ introduced by an added fiber of
length La = 0.5 and λa = 10−2. u2 and ub

2 are the displace-
ment fields of the base cross-links with and without the added
fiber in the direction of the far-field loading x2, and δ is
the applied boundary displacement. Figure 7(b) shows the
equivalent field computed for the case when the same fiber
is tied to a continuum base of stiffness equal to that of the
base network used to compute ub

2 in Fig. 7(a). The number
of contours in the two figures is identical, and the contours
correspond to the same values of the variable.

The figure indicates a substantial difference between the
range and the amplitude of the effect of a stiffener fiber added to
the network and to a continuum of the same effective stiffness.
The fiber added to the network modifies the deformation
of the base network to a much larger extent. Clearly, this
is another manifestation of the interphase discussed above
and contributes to the enhanced interaction of stiffener fibers
causing the effect shown in Fig. 1.

To summarize the above discussion, exceptional stiffening
results in composite networks constructed by adding relatively
stiff fibers to a nonaffinely deforming homogeneous network.
Multiple orders of magnitude increase in stiffness is observed
for the network with λb = 10−7 upon the addition of only 5%
of fibers with λa = 10−2 (Fig. 1). This is in sharp contrast with
the increase of 47.7% expected for a nonaffinely deforming
homogeneous network whose density is increased by 5%

FIG. 7. (Color online) Perturbation field 	u2/δ introduced by cross-linking a stiff fiber with La = 0.5, λa = 10−2 to (a) a nonaffine base
network with ρb = 50 and λb = 10−6 and (b) to a continuum of stiffness identical to that of the base network in (a). The perturbation field is
normalized with δ, the applied far-field displacement. The fiber is oriented at 45◦ relative to the (vertical) loading direction.

012401-5



A. S. SHAHSAVARI AND R. C. PICU PHYSICAL REVIEW E 92, 012401 (2015)

(equivalent to adding fibers identical to those of the base)
and with the small 5% increase expected for an affinely
deforming homogeneous network whose density increases
by 5%.

IV. CONCLUSIONS

In this paper we investigate the variation in the elastic
modulus of a fiber network to which much stiffer fibers are
bonded and show that an exceptionally strong stiffening effect
is observed at small densities of stiffener fibers. It is shown
that the effect is associated with the percolation of regions in
which the deformation of the base network is perturbed by
the presence of added stiff fibers and this occurs at densities

ρa1 smaller than required to form a stress bearing network
of added fibers (ρa2 ). The difference between ρa1 and ρa2

depends primarily on the length of added fibers La . This
percolation transition is observed in both FCL and BCL
networks. The perturbation field introduced by an isolated stiff
fiber tied to a nonaffinely deforming network does not have
a continuum equivalent. Hence, the observed large sensitivity
of the effective modulus to the addition of a small number
of stiff fibers is not observed in affinely deforming networks
and when fibers are bonded to continua. The present results
indicate how a network can be engineered to take advantage
of this large sensitivity. This effect may be already used by
living organisms to modify their properties in a broad range
with minimal structural changes.
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