Performance and Scalability of Unstructured
Mesh CFD Workflow on Emerging
Architectures

Cameron W. Smith Ben Matthews Michel Rasquin
Kenneth E. Jansen

June 1, 2015

Abstract

The performance and scalability of an unstructured mesh based
CFD workflow on Intel Xeon Phi based system is discussed.

1 Introduction

PHASTA is a parallel, hierarchic (2nd to 5th order accurate), adaptive, sta-
bilized (finite-element [4]) transient analysis solver for compressible or in-
compressible flows. It solves PDE’s typical of physical problems in fluid
mechanics, electromagnetics, biomechanics, etc. PHASTA and it’s prede-
cessor ENSA were the first massively parallel unstructured grid LES/DNS
code [7, 8, 10] and have been applied to flows ranging from validation bench-
marks to complex cases.

The PUMI, parallel unstructured mesh infrastructure, adaptive meshing
and scalable partitioning tools support the creation of meshes with tens of
billions of elements for use by PHASTA. The largest PHASTA scaling run to
date used over three million processors on the Argonne Mira IBM BlueGene
/Q (BGQ) with a 92 billion element PUMI mesh [13]. PUMI supports these
operations through the use of a component based design. At PUMI’s core is
an array based mesh representation component that provides efficient mech-
anisms to query and modify the mesh while maintaining a small memory

footprint [6, 14]. Parallel mesh operations, such as the definition of the par-
tition graph, the migration of elements, and synchronization of off-process
boundary data, is provided by the APF component. These parallel mesh
operations provide the supporting functionality to implement mesh adapta-
tion and fast dynamic load balancing components, MeshAdapt [3, 12] and
ParMA [16, 21], respectively.

ParMA APIs are used to (1) predicatively balance mesh elements during
mesh adaptation to avoid memory exhaustion, and after adaptation oper-
ations are completed, (2) ensure that the applications mesh entity balance
requirements are met. For a PHASTA analysis with linear shape functions
that associated degrees of freedom with mesh vertices ParMA first targets
the reduction of mesh vertex imbalance to ensure the scalability of the dom-
inant equation solution analysis stage, and then balances elements, without
disturbing the vertex imbalance, to scale the equation formation stage (form-
ing the LHS A and the RHS b). PHASTA’s strong scalability on Mira was
improved by over 35% using ParMA meshes relative to meshes prepared with
only graph and geometric based partitioning methods [17].

The performance and scalability of the PUMI and PHASTA tools on Intel
Xeon Phi based systems are examined in this paper and compared against
BGQ system results. Tests were performed on the TACC Stampede and
NERSC Babbage Intel Xeon Phi based systems, and the Argonne BGQ. The
characteristics of the Intel Xeon Phi and the BGQ A2 processor are compared
in Table 1.

processor IBM Intel Xeon Phi | A2/Phi
PowerPC A2 | SE10P

cores 16 61 0.26
hwthreads/core 4 4 1.00
cpu clock freq (GHz) 1.6 1.09 1.47
L1 cache/core (KB) 16 32 0.50
12 cache/core (KB) 2000 512 3.91
total 12 cache (KB) 32000 31232 1.02
in-order yes yes -
theoretical peak MFLOPS 204.8 1073.6 0.19
STREAM benchmark GB/s /core [18, 20] | 1.625 2.623 0.62

Table 1: Hardware comparison.

2 PHASTA Scaling

PHASTA was run on up to 3840 Stampede Phi and BGQ cores as shown in
Table 2. One MPI rank was assigned to each of 60 cores on the Phi; the 61st
core running the OS was avoided. Likewise, one MPI rank was run per core
on BGQ. On Stampede Intel MPT core pinning (I_-MPI_PIN_.DOMAIN=core)
was used to ensure processes did not move between cores and introduce jit-
ter. Processes are pinned by default on the BGQ. To avoid excessive MPI
memory usage on the Phi the rendezvous [1] and connectionless DAPL pro-
tocols [2] are used. Unlike the eager protocol which copies data with the
assumption that the reciever is ready, rendezvous uses a more memory effi-
cient handshaking model where data is not copied until the receiver declares
itself as ready. The connectionless DAPL protocol, UD, reduces memory by
using a fixed number of connection pairs as opposed to the default protocol
which requires each pair of proceses to setup a one-to-one connection. Of the
test cases ran on Babbage (Table 3) only the eight Phi, two Phi per node,
240 process case was slower (by 7%) with UD enabled.

PHASTA maintains strong scaling (relative to base computed on 480
cores) out to 3840 (three processor doublings) on Stampede; Column 3 of
Table 2. Attempts to run with 240 cores for this case failed due to lack of
memory but this is not a great concern given that typical PHASTA produc-
tion runs are in this lightly loaded range (lower element and node counts)
to exploit the strong scaling and compress the time-to-solution. Column 4
indicates the number of elements per part and indeed O(5k) elements per
part is typical for PHASTA production runs. While the dynamic range has
been shown higher on BG (90% scaling through 9 processor doublings) this
is primarily due to the larger “per core” memory. The proposed future path
to exascale machines (Theta and Aurora) for Phi architecture double the
fast memory (8GB to 16GB) together with lighter weight MPI implemen-
tations which will significantly extend the strong scaling in the lower core
count direction while faster interconnects will extend it in the higher core
count direction. That said, the 91% scaling at the typical production run
level already shows great promise for CED on this architecture. Column 4 in
Table 2 shows the timing for runs on the same core count on BGQ. Compar-
ing to Column 2 (with the ratio taken in column 5) it is clear that the Phi
is approaching the same per-core performance as BGQ with no hardware-
specific performance tuning. Work is underway using various tools provided
by Intel, but early results suggest that almost all of the hotspots are currently

vectorizing to a high percentage.

cores | avg. time (sec.) | phi-S | Elements/part | BGQ | BGQ-S | phi/BGQ
480 84.60 1.00 | 45,833 73.7 | 1.00 1.15
960 37.87 1.12 | 22917 37.18 1 0.99 1.02
1920 | 26.12 0.81 | 11,458 18.8 | 0.98 1.39
3840 | 11.60 0.91 | 5,729 9.60 | 0.96 1.21

Table 2: PHASTA scaling results on Stampede.

Table 3 shows results from recent runs on Babbage. This table explores
the influence of a variety of configurations changes on PHASTA performance.
It sets up two normalized “base” configuration; Column 5 shows strong scal-
ing on a per-core basis (as was done on Stampede) whereas Column 6 shows
strong scaling on a per-Phi basis. Note that these base configurations are
not the same as the 8 node, 60 process per node configuration studied in
Table 2 for Stampede, rather, here the base is a 240 process run 8 nodes.
Effectively, this base places twice as large of parts on the same number of
nodes running half as many processors (30 instead of 60). This substantially
reduces the communication pressure by decreasing the number of messages
that must be passed (though the actual size of each message may rise, net
traffic is reduced) and increasing the work load on each process (while hold-
ing half of them idle). Comparing this base to the 60 process per node runs
shows substantial acceleration on a per-Phi basis (1.77 in column 7) which
indicates that PHASTA is not network bound on this hardware and more
processes are beneficial.

Table 3 also includes (in the lower half) results from running with 2
Phi’s per node. Comparing the scaling numbers, it is clear that scaling does
degrade somewhat faster when employing 2 Phi’s per node. This is not of
great concern since Theta and Aurora are proposed to be hostless Phi nodes
and substantially higher network performance.

3 PHASTA Block Size Study

The equation formation work in PHASTA is dominated by the computation
of integrals (intensive loads, stores, multiplies and adds) appearing in the
weak form using quadrature which after implicit time integration [9] yields
a system of non-linear algebraic equations. Equation formation work can be

4

cores | Phis | Phi/node | ppn | Per-Core | Per-Phi
Scaling | Scaling
240 |8 1 30 | 1.00 1.00
480 |8 1 60 | 0.88 1.77
960 | 32 1 30]0.95 0.95
1920 | 32 1 60 | 0.85 1.69
240 |8 2 30 | 1.00 1.00
480 | 16 2 30 10.98 0.98
480 |8 2 60 | 0.81 1.63
960 | 32 2 30 | 0.97 0.97
960 | 16 2 60 | 0.80 1.59
1920 | 64 2 30 10.90 0.90
1920 | 32 2 60 | 0.69 1.39
3840 | 64 2 60 | 0.55 1.11

Table 3: PHASTA scaling results on Babbage.

tuned to specific architectures by varying the number of elements in a block
(block size) . Table 4 shows the results of a sweep on block size from a sig-
nificantly longer run (to gather stable statistics). Column 3 divides a given
block size compute time by the best performing block size to illustrate a
rather broad sweet spot in the 64-96 elements per block range which tails up
rather strongly (50% slow down) for block sizes smaller than 16 or greater
than 256. There is clearly a tradeoff between larger block sizes more effi-
ciently filling the vector loops and smaller block sizes reducing cache misses.
Future work will determine if code modifications can alter this tradeoff to
greater benefit.

4 ParMA Scaling

Running large numbers of MPI process counts on the Phi requires a non-
trivial amount of memory. To test memory usage the same partitioning
followed by ParMA improvement job was done using MPI only and then with
MPI + pthreads, which requires MPI. THREAD _MULTIPLE. Partitioning
from two parts to 128 parts, one part per thread or process, the memory usage
increase for an MPI only run is roughly 30x (51Mb to 1500Mb) while the
MPI+pthread run only has a 2x memory only increased roughly 2x (140Mb

5

Elements per block | time (avg) | tbest/t
16 299.93 0.67
32 236.8 0.85
48 213.45 0.95
64 206.49 0.98
72 202.77 1.00
80 202.56 1.00
96 202.35 1.00
128 228.9 0.88
256 307.39 0.66

Table 4: The effect of block size on Phi PHASTA performance.

elements (M) | parts | sel (s) | migr (s) | reduction | reduction rate
15.5 2048 | 55.61 | 18.15 6 5.250E-03
25.3 4096 | 16.04 | 4.7 8 7.64E-03
202.1 8192 | 5091 |6.71 S 1.07E-04
123.9 16384 | 250.91 | 108.27 11 3.09E-05

Table 5: Stampede native Phi run times ParMA Vertex > Element partition
improvement following local ParMETIS partitioning. 15 MPI ranks were ran
on each Phi and each rank spawns four posix threads.

vs 65Mb). Given the slow memory increase for MPI4pthreads the initial
set of scaling tests were run on up to 16,384 Phi cores as shown in Table 5.
Note, the eager communication protocol was used to avoid an Intel MPI 14
failure seemingly associated with dynamic switching between the eager and
rendezvous protocol based on message length. Investigations into this issue
are ongoing with TACC HPC specialists.

The ‘sel’ times the execution of ParMA element selection [16] while ‘migr’
times the subsequent migrations. The ‘reduction’ column lists the percentage
point reduction in the vertex imbalance after ParMA execution. Imbalance
reduction is normalized in the ‘reduction rate’ column by the number of
elements in the mesh, the number of parts, and the time spent in selection
and migration. From 2048 and 4096 the reduction rate improves, but from
4096 to 8192, and again from 8192 to 16384 a decline in the rate is observed.

Further tests to explore the reduction rate declines will use the latest Intel
15 compilers and Intel MPI 5 (at the time the tests were run only Intel 14 and

Intel MPI 4 were available) using the Phi specific Intel recommended compiler
flags that were successfully applied to PHASTA. In PHASTA performance
gains between 10% and 36% were observed using the ‘-O3 -opt-assume-safe-
padding -opt-streaming-stores always -opt-streaming-cache-evict=0" flags vs
just -O3".

In addition to this effort is an ongoing pursuit of performance with in-
creasing thread counts per MPI rank. Testing has shown that in the pres-
ence of MPI. THREAD MULTIPLE increasing the number of threads per
MPT process has a significant negative affect on performance [15]. Table 6
lists the left-right communication kernel test results using one MPI process
and increasing numbers of threads. MPI implementation tests on Phi pinned
one, two and four threads per core. The growth in Phi run times exceeds
the growth rate observed with MPICH3 on a four core Intel i7-3820 with
hyperthreading enabled. With 32 threads, 8x oversubscribed on the i7, the
i7 processor runs 3x and 6x quicker than the Phi with MVAPICH2-MIC
v2.0 and Intel MPI 5, respectively. Figure 1 depicts the much slower growth
in time as threads are increased on the i7 vs the Phi. This issue is also
being investigated with help from TACC HPC specialists. The degraded
MPI_THREAD _MULTIPLE performance on the Phi may be avoided using
the Intel implementation of the MPI 3.1 endpoints APIs, EPLib [19], the
conceptually similar FineGrain MPI [11], or modification of the PCU [5]
communication library used by ParMA.

threads | threads

system | mpi per core | 2 4 8 16 32
i7-3820 | mpich3 N/A 0.12 0.398 | 1.344 | 1.856 7.578
phi impib 1 0.7422 | 2.7226 | 7.1064 | 18.4822 | 42.765
phi impib 2 0.9698 | 2.3846 | 6.4668 | 15.289 | 41.4386
phi impib 4 0.9668 | 2.0686 | 6.0412 | 13.7852 | 38.2496
phi mvapich2-mic2 | 1 1.1414 | 6.3 5.3218 | 12.2706 | 25.9254
phi mvapich2-mic2 | 2 0.6936 | 2.2848 | 4.9388 | 10.5948 | 22.7568
phi mvapich2-mic2 | 4 0.6854 | 2.7284 | 5.356 | 10.8154 | 23.2128
Table 6: Left-right communication kernel [15] testing on a Stampede

Phi vs an Intel i7-3820 with four cores and hyper threads on with
MPI_THREAD_MULTIPLE.

Figure 1: Threads vs time on a Stampede Phi vs an Intel i7-3820 with four
cores and hyper threads on.

threads vs time

50 —— mpich3iT-
3820
— mipia phi
s mvapich2-
mic2 phi
o
p Pigal
E
12.5
EI /‘/_/
2 B 10 14 18 22 26 30
threads
References

[1] Communication Fabrics Control, Intel MPI Library Reference Manual
for Linux OS, 2015.

[2] Enabling Connectionless DAPL UD in the Intel MPI Library, 2015.

[3] Frédérik Alauzet, Xiangrong Li, E. Seegyoung Seol, and Mark S. Shep-
hard. Parallel anisotropic 3d mesh adaptation by mesh modification.
Engineering with Computers, 21(3):247-258, jan 2006.

[4] A.N.Brooks and T. J. R. Hughes. Streamline upwind / Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on
the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech.
Engng., 32:199-259, 1982.

[5] Daniel A Ibanez, lan Dunn, and Mark S Shephard. Hybrid mpi-thread
parallelization of adaptive mesh operations. Parallel Computing, 2014.

8

[6]

[13]

[14]

[15]

Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S.
Shephard. Pumi: Parallel unstructured mesh infrastructure. ACM
Transactions on Mathematical Software, under review, 2015.

K. E. Jansen. Unstructured grid large eddy simulation of flow over
an airfoil. In Annual Research Briefs, pages 161-173, NASA Ames /
Stanford University, 1994. Center for Turbulence Research.

K. E. Jansen. A stabilized finite element method for computing turbu-
lence. Comp. Meth. Appl. Mech. Engng., 174:299-317, 1999.

K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-«
method for integrating the filtered Navier-Stokes equations with a stabi-
lized finite element method. Comp. Meth. Appl. Mech. Engng., 190:305—
319, 1999.

K.E. Jansen. Unstructured grid large eddy simulation of wall bounded
flow. In Annual Research Briefs, pages 151-156, NASA Ames / Stanford
University, 1993. Center for Turbulence Research.

Humaira Kamal and Alan Wagner. An integrated fine-grain runtime
system for MPI. Computing, 96(4):293-309, 2014.

Aleksandr Ovcharenko, Kedar C. Chitale, Onkar Sahni, Kenneth E.
Jansen, and Mark S. Shephard. Parallel adaptive boundary layer mesh-
ing for cfd analysis. In Xiangmin Jiao and Jean-Christophe Weill, ed-
itors, Proceedings of the 21st International Meshing Roundtable, pages
437-455. Springer Berlin Heidelberg, 2013.

M. Rasquin, C. Smith, K Chitale, S. Seol, B.A. Matthews, J.L.. Martin,
O. Sahni, R.M. Loy, M.S. Shephard, and K.E. Jansen. Scalable fully
implicit finite element flow solver with application to high-fidelity flow
control simulations on a realistic wing design. Computing in Science

and Engineering, 16(6):13-21, 2014.

E.S. Seol. FMDB: Flexible Distributed Mesh Database for Parallel Auto-
mated Adaptive Analysis. PhD thesis, Rensselaer Polytechnic Institute,
Troy, New York, May 20055. SCOREC Report 2005-9.

Cameron W. Smith. Communication kernel for performance testing on
stampede., 2015.

[16]

[17]

[18]

[19]

[20]

[21]

Cameron W. Smith, Michel Rasquin, Dan Ibanez, Kenneth E. Jansen,
and Mark S. Shephard. Application specific partition improvement.
SIAM Journal on Scientific Computing, submitted, 2015.

Cameron W. Smith, Michel Rasquin, Dan Ibanez, Mark S. Shephard,
and Kenneth E. Jansen. Partition improvement to accelerate extreme
scale cfd. SIAM Journal on Scientific Computing, in preparation, 2015.

Konstantin S. Solnushkin. Memory Bandwidth for Intel Xeon Phi (And
Friends), Feb. 2013.

Srinivas Sridharan, James Dinan, and Dhiraj D Kalamkar. Enabling effi-
cient multithreaded mpi communication through a library-based imple-
mentation of mpi endpoints. In High Performance Computing, Network-
ing, Storage and Analysis, SC1j: International Conference for, pages
487-498. IEEE, 2014.

Bob Walkup. Application Performance Characterization and Analysis
on Blue Gene/Q, 2008.

M. Zhou, O. Sahni, T. Xie, M.S. Shephard, and K.E. Jansen. Unstruc-
tured mesh partition improvement for implicit finite element at extreme
scale. Journal of Supercomputing, 59(3):1218 — 28, 2012/03/.

10

