
PARALLEL ADAPTIVE INFRASTRUCTURE FOR
MAGNETICALLY CONFINED FUSION PLASMA SIMULATIONS

By

Fan Zhang

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: MECHANICAL ENGINEERING

Approved by the
Examining Committee:

Mark S. Shephard, Dissertation Adviser

Assad Oberai, Member

Onkar Sahni , Member

Fengyan Li, Member

Stephen C. Jardin, Member

Rensselaer Polytechnic Institute
Troy, New York

August 2015
(For Graduation December 2015)

c© Copyright 2015

by

Fan Zhang

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENT . xi

ABSTRACT . xii

1. Background and Thesis Organization . 1

1.1 Background and Motivation . 1

1.2 Organization of Dissertation . 4

2. Finite Element Formulation of Extended MHD Equation 5

2.1 Governing Equations . 5

2.1.1 Continuity Equation . 6

2.1.2 Momentum Equation . 6

2.1.3 Maxwell-Faraday Equation . 7

2.1.4 Equation Set Considered . 8

2.2 Fourth-order PDE and its Weak Formulation 8

2.2.1 2D Incompressible MHD under Large-aspect-ratio Approxi-
mation . 10

2.2.2 Fourth-order PDE . 11

2.2.3 Integration Identities . 13

2.2.4 Weak Formulation . 15

2.3 C1 Finite Elements . 15

2.3.1 Reduced Quintic Triangle Element 16

2.3.2 Cubic Hermite Polynomial . 19

2.3.3 C1 Wedge Element . 21

3. Explicit a posteriori Estimator . 24

3.1 Model Problem . 25

3.2 Explicit a posteriori Estimator . 27

3.3 Implementation: Evaluation of Derivatives 34

3.4 Effectiveness of Error Estimator . 35

3.4.1 Steady-state Solution: Hartmann Boundary Layer 36

3.4.2 Error Estimation on Hartmann Boundary Layer Problem . . . 39

iii

4. M3D-C1 Simulation Loop and Extensions towards Automated Version . . . 47

4.1 M3D-C1 Simulation Loop . 47

4.1.1 Simulation Loop on 2D Mesh 47

4.1.2 Simulation Loop on 3D Mesh 49

4.1.3 Simulation Loop from 2D Mesh to 3D Mesh 50

4.2 Mesh Entity and DOF Ordering . 51

4.2.1 Mesh Entity Ordering and Ownership on Partitioned Mesh . . 51

4.2.2 Global DOF Ordering . 52

4.3 Parallel Sparse Matrix . 53

4.3.1 Matrix Sparsity Pattern . 53

4.3.2 Matrix Partition . 55

4.4 Mesh-adjacency Based Matrix Assembly Procedure 56

4.4.1 Preallocation Stage . 59

4.4.2 Matrix Set-up Stage . 59

4.4.3 Parallel Assembly Stage . 61

4.4.4 Memory Usage Improvement 61

4.5 Solution Mapping during Mesh Modification 64

4.5.1 Solution Mapping from 2D Mesh to 3D Mesh 64

4.5.2 Solution Transfer with Local Modification 64

5. Mesh Generation and Adaptation for Confined Fusion Plasma Simulation . 66

5.1 Introduction . 66

5.2 Geometric Model Definition . 67

5.2.1 Geometric Description . 68

5.2.2 Topological Representation . 70

5.2.3 Shape Definition . 71

5.2.3.1 Physical Curves . 71

5.2.3.2 Physics Curves . 72

5.2.4 Geometric Model Construction 73

5.3 Meshing Procedure . 74

5.3.1 Unstructured Triangulation 75

5.3.2 Layered Mesh Generation . 75

5.3.3 Mesh Modification . 77

5.3.4 3D Mesh Construction . 78

5.4 Examples . 79

iv

5.4.1 XGC1 . 79

5.4.2 M3D-C1 . 80

5.5 Closing Remarks . 81

6. Improvement of Numerical Conditioning 88

6.1 Elemental Regularization and Symmetric Preconditioning 89

6.2 Definition of Scaling Factors . 91

6.2.1 Scaling Factor due to Applying Derivatives as DOFs 91

6.2.2 Scaling Factor due to Multicomponent of the Velocity 93

6.2.3 Scaling Factor due to Integration over Element 93

6.2.4 Overview . 95

6.2.5 Extension to 3D Element . 96

6.3 Results . 96

7. Examples of Parallel Adaptive Simulations with M3D-C1 101

7.1 Adaptive Error Control . 101

7.2 Tilt Mode . 102

7.3 Double Tearing Mode . 109

7.4 Edge Localized Modes . 116

7.5 2D Simulation to 3D Simulation . 118

8. Conclusion and Future Work . 122

8.1 Conclusion . 122

8.2 Future Work . 123

REFERENCES . 125

v

LIST OF TABLES

2.1 Multipliers of the shape functions and corresponding field values asso-
ciated with the vertex in the C1 triangle element. 17

2.2 DOFs and corresponding field values associated with the vertex in the
C1 triangle element. 19

2.3 Multipliers of the shape functions and corresponding field values asso-
ciated with the vertex in the C1 cubic Hermite Element. 21

2.4 DOFs and corresponding field values associated with the vertex in the
C1 cubic Hermite element. 21

2.5 Multipliers of the shape functions and corresponding field values asso-
ciated with the vertex in the C1 wedge element. 22

2.6 DOFs and corresponding field values associated with the vertex in the
C1 wedge element. 23

3.1 Global effectivity indices calculated on the meshes in Figure 3.3. 40

3.2 Global effectivity indices calculated on the meshes in Figure 3.4. 40

4.1 Running time of the parallel matrix assembly by using PETSc directly
and by using the mesh-adjacency based procedure. There are 13,113
vertices on each plane and 36 DOFs associated with each vertex. The
number of the processes in each process group is 312. 63

6.1 Condition numbers of the original velocity matrix and the regularized
matrix by applying the diagonal rescaling factors on a sequence of uni-
form meshes. The number of DOFs of the largest matrix is 140,994. . . 96

6.2 Magnitude of the diagonal entries of the linear system. 97

6.3 Condition number of the linear system on the anisotropic mesh. 97

6.4 Condition numbers of the original systems (condorg) and regularized
systems (condreg). 99

7.1 Growth rate of the kinetic energy (∼ eγt) on the uniform meshes with
13,437, 23,399, and 53,564 nodes and the adapted mesh with 11,941
nodes. 118

vi

LIST OF FIGURES

1.1 Components of a mesh-based adaptive loop. 3

2.1 Cylindrical coordinate system used in M3D-C1. 10

2.2 Wedge mesh element between two cross-sections in M3D-C1. 16

2.3 Triangle element with (ξ, η) as the local coordinate and (R,Z) as the
global coordinate [3]. 16

2.4 Shape functions associated with the vertex located at (0,1). 18

2.5 Hermite cubic polynomial defined on [0, 1]. 20

3.1 Illustration of terms used by Section 3.2. 28

3.2 Profiles of the Velocity (∂U
∂Z

= −V · R̂) and current density (j = −∇2ψ)
defined by Equation 3.37. 38

3.3 Initial and adapted meshes for Ha = 6.3. 41

3.4 Initial and adapted meshes for Ha = 20.0. 42

3.5 Estimated and true element errors on the final adapted mesh in Fig-
ure 3.3 (Ha = 6.3). 43

3.6 Estimated and true element errors on the final adapted mesh in Fig-
ure 3.4 (Ha = 20.0). 44

3.7 Steady state solution of ψ on the final adapted mesh in Figure 3.3 and 3.4. 45

3.8 Velocity profile and current density on the initial and final adapted mesh
at R = 0 (Figure 3.4) with Ha = 20.0. 46

4.1 Simulation loop of M3D-C1 on a 2D mesh. 49

4.2 Simulation loop of M3D-C1 on a 3D mesh. 50

4.3 Simulation loop from the 2D mesh to the 3D mesh. 51

4.4 3D Matrix structure with six cross-sections in the torus geometry. Each
diagonal block corresponds to a 2D cross-section. 55

4.5 PETSc matrix layout. 56

4.6 Global DOF ordering and the matrix layout on a mesh partitioned and
loaded by two processes. Vertex 1 is owned by process 1 and vertex 3
is owned by process 2. 57

vii

4.7 Memory usage by using PETSc and the mesh-adjacency based proce-
dure. Each mesh vertex is attached with 36 DOFs. On each plane, there
are 1034 mesh vertices and 2.7× 107 non-zeros values in the assembled
matrix. 62

4.8 Edge split. 65

5.1 Topological entities (rectangles) and associated shape information (el-
lipses) in the geometric model. 68

5.2 Geometric components of the fusion reactor [4]. The coordinate system
is (R,Z, ϕ) or (r, θ, ϕ), where R, r, ϕ and θ are major radius, minor
radius, toroidal angle and poloidal angle, respectively. The model com-
ponents include the (0) magnetic axis, (1) open magnetic flux surfaces,
(2) closed magnetic flux surfaces, (3) separatrices, (4) scrape-off layer,
(5) plasma core, (6) X-points, (7) vacuum vessel, (8) wall area, (9)
plasma area, (10) vacuum boundary, (11) outer wall boundary, and
(12) inner wall boundary. 69

5.3 Geometric faces on the toroidal cross-section in XGC1. 70

5.4 Geometric faces on the plane (loop 1’ of the wall face is offset to be
distinct from loop 2). 71

5.5 Wall curve of NSTX [5] by the cubic spline interpolation with C2 con-
tinuity. 72

5.6 Magnetic field line on a closed magnetic flux surface. 73

5.7 Basic topological splits (the loops on the right side are shown with an
offset). 74

5.8 One-element-deep marching procedure to generate triangular mesh faces
between curves. 77

5.9 Improved mesh near the X-point. 78

5.10 3D mesh constructed on 8 process groups. 79

5.11 Mesh example with one X-point (labeled by the solid circle). 80

5.12 Mesh example with two X-points (left) and no X-point (right). 83

5.13 Two meshes with different field line placement (δψ) and vertex spacing
(di) parameters. 84

5.14 Improved X-point area by different targeted mesh sizes (h). 84

5.15 Initial mesh on the NSTX model with a finite-thickness wall. 85

viii

5.16 Anisotropically-adapted mesh in M3D-C1. 86

5.17 Cross-cut view of a 3D mesh with 64 planes in M3D-C1. 87

6.1 Condition number of the velocity matrix on a sequence of uniform mesh.
The reduced model uses one-scalar representation and the full model
uses three-scalar representation [6]. 88

6.2 Magnitude of diagonal entries that correspond to the function value in
the mass matrix on a graded mesh before and after rescaling by f(J) = h. 95

6.3 Condition number of the original velocity matrix and the regularized
matrix by applying the diagonal rescaling factors. 97

6.4 Mesh with the ratio of anisotropic mesh sizes in the two directions up
to 10. 98

6.5 Convergence behavior of the original and the regularized linear systems
by applying the diagonal rescaling factors. The linear systems are solved
by block Jacobi preconditioned GMRES. Each block is factorized by the
incomplete LU (ILU) which is cheaper than the complete LU. 100

7.1 Contour plots of the ψ field in the tilt mode. 103

7.2 Toroidal current density in the tilt instability on the uniform mesh with
6219 nodes. 104

7.3 Toroidal current density on the adapted meshes at t=1, 2, 3, 4, 6 and
8. The number of mesh nodes are 200, 326, 664, 737, 665 and 675
respectively (also see the second row of Figure 7.6). 105

7.4 U field at t=6 on the adapted mesh (mesh e in Figure 7.3) and uniformly
refined meshes (the contour plot shows the structure of the streamline). 106

7.5 U field at t=8 on the adapted mesh (mesh f in Figure 7.3) and uniformly
refined meshes (the contour plot shows the structure of the streamline). 107

7.6 Top: kinetic energy on the adapted mesh (Figure 7.3) and the uniform
meshes with 409, 1544, 6219 nodes; bottom: the number of mesh nodes
in the adapted mesh at each step. The minimum mesh size in the
adapted meshes are the same as the mesh with 6219 nodes. The plots
are marked every two steps. The mesh is adapted every four steps. . . . 108

7.7 Profile of the safety factor (q) in the equilibrium. r is the minor radius
(see Figure 2.1). 113

7.8 Profile of the toroidal current density in the equilibrium over the minor
radius, r. 113

ix

7.9 Perturbed toroidal current density (j̃) and the perturbed U component
of the velocity field (Ũ) developed on a uniform mesh with 96,703 nodes
in the double tearing mode (η = 10−7). 114

7.10 Initial mesh and the adapted mesh by eight processes for the double
tearing mode. The major radius, R (see Figure 2.1), ranges in [2.2, 4.2].
The meshes are colored by the process ranks. 114

7.11 Change of kinetic energy (Ek in Equation 7.4) on the adapted mesh
with 10,396 nodes (Figure 7.10) and the uniform meshes with 24,276,
37,050, 52,960, and 96,703 nodes. 115

7.12 Initial equilibrium of the ψ and pressure fields. The lines show the
structure of the magnetic flux surfaces (also see Section 5.2.3.2). 116

7.13 Initial mesh (1,469 nodes) and the adapted mesh (11,941 nodes) for
edge localized mode by eight-process run. 117

7.14 Toroidal current (j̃) and Ũ fields on the adapted mesh in Figure 7.13. . 118

7.15 Close-up view of Ũ on the adapted mesh in Figure 7.13. 119

7.16 Profiles of the safety factor (q), the toroidal current density (j), and the
pressure (p) over the minor radius (r) in the axisymmetric equilibrium
by the 2D simulation. 120

7.17 3D simulation that uses the axisymmetric solution calculated on the 2D
mesh. The 2D mesh is a uniform mesh with 1159 nodes. There are 8
planes in the 3D mesh. Sub-figure a is the Poincare plot of the magnetic
flux surfaces. 121

7.18 Poincare plot of the magnetic flux surfaces on the planes with ϕ = 0, 1
2
π.121

x

ACKNOWLEDGMENT

My first gratitude goes to my advisor, Dr. Mark S. Shephard. I greatly value the

opportunity and experience to work as his Ph.D. student. Without his continuous

support and patience, it would be impossible to finish this thesis. His rigorous

attitude on the technology and his persistence to useful innovations will continue to

guide me in the future.

I would like to thank the rest of the committee members: Dr. Assad Oberai,

Dr. Onkar Sahni, Dr. Fengyan Li and Dr. Stephen C. Jardin for their invaluable

advice on the thesis.

I am particularly grateful to Dr. Stephen C. Jardin for giving me the access

to the M3D-C1 code and the computing resources, for the responsive replies to all

my questions, and for the efforts to set up the tests used in the thesis.

I thank Dr. E. Seegyoung Seol for the help on the project and the encour-

agement to finish the thesis. I am also grateful to the other people who helped on

the project: Dr. Nathaniel M. Ferraro, Dr. Jin Chen, Dr. Danail Vassilev, and Dr.

Fabien Delalondre.

I would like to thank Dr. Weiying Zheng and Dr. Shi-peng Mao for the infor-

mative discussions on error estimation during my visit to the Institute of Computa-

tional Mathematics and Scientific/Engineering Computing of the Chinese Academy

of Sciences.

I am deeply grateful to the friends who have shared both my joyful and upset

moments at RPI: Xiangyu Wang, Bin Wu, Jia Zhang, Lijuan Zhang, Yanheng Li,

Jianfeng Liu, Yi Chen, Chu Wang, Jianguo Zhong, Yingying Wang, Jicong Cao and

Qiukai Lu. Special thanks to Dr. Lingyun Li and Dr. Emily Liu for offering the

precious advise on my life at RPI.

I would like to express my gratitude to my parents, Zengguang Zhang and

Meixiang Wei, for their love and support throughout my life.

Lastly, I would like to thank my dear wife, Xuejiao Cao, for being on my side

all theses years.

xi

ABSTRACT

Numerical simulations of the magnetically confined plasmas play an important rule

in understanding and predicting the physics in tokamak devices. In the present

study, a parallel adaptive infrastructure for the magnetically confined fusion plasma

simulations is developed.

An automatic meshing procedure is needed by two simulation codes under de-

velopment at Princeton Plasma Physics Lab, M3D-C1 and XGC1. M3D-C1 requires

the mesh generated and adapted on the tokamak cross-section with the option to

contain a finite-thickness wall in the domain, and the 3D mesh constructed out of

2D meshes. XGC1 requires the mesh edges aligned with the magnetic flux surfaces.

The mesh is one-element deep between adjacent flux surfaces and mesh improvement

is applied at the X-point(s). A geometric model including both the tokamak wall

structure and the magnetic flux surfaces is introduced to reflect the meshing needs.

A component-based mesh generation procedure with control parameters specified on

the geometric model is developed by combining unstructured triangulation, layered

mesh generation by a one-element-deep marching procedure, local mesh modifica-

tion, and toroidal 2D mesh extrusion to create a 3D mesh of the full reactor.

Mesh-based needs in M3D-C1 include a procedure to form the global discrete

equation, methods to estimate the simulation error, and a loop of adaptive mesh

control. A mesh-adjacency based matrix assembly procedure with more efficient

memory usage than the procedure using the PETSc matrix library directly is devel-

oped. The numerical conditioning of the global discrete system is improved through

element-level operations. An explicit a posterior error estimator that calculates the

mesh-dependent norm of the residual in the strong form is derived for the reduced

MHD model under the large-aspect-ratio approximation. Software tools such as

PUMI for mesh management and geometric model interfacing, APF for field man-

agement, MeshAdapt for mesh modification, PETSc for global equation solving, and

Simmetrix for initial mesh generation are used to form the parallel adaptive loop in

M3D-C1.

xii

CHAPTER 1

Background and Thesis Organization

1.1 Background and Motivation

Controlled fusion reactions hold the promise of providing a clean and sustain-

able energy source for future generations. The key issue in harnessing fusion energy

is to confine the fuel such that the fusion reaction can happen in a sustainable and

controlled way. Tokamak devices use magnetic confinement to achieve the sustain-

able fusion reaction. It is well known that the ionized fusion fuel inside the tokamak

exists in a plasma state. Theoretical studies of the magnetically confined plasmas,

especially through numerical simulations, play an important rule in analyzing and

predicting the physics in the tokamak.

Numerical studies of plasmas in the tokamak face challenges from both the un-

derlying complex physics and the software tools. The characteristic physics occur at

multiple scales in both the spatial and temporal dimensions [1, 2] and require taking

advantages of multi-level computational models. As the size of problems simulated

increases, especially to the extreme scale, high-performance parallel computers must

be used to properly solve the problem in a realistic time.

Mesh related needs of two codes targeted for parallel simulation of plasma

physics are considered in this thesis. M3D-C1 [3, 7, 8, 9, 6, 10] is a fusion plasma

code under development at Princeton Plasma Physics Lab (PPPL). Finite elements

with C1 inter-element continuity are used to solve the fourth-order partial differential

equations (PDEs) that are derived from the extended magnetohydrodynamic (MHD)

equations combined with a stream function and/or potential representation for the

velocity and magnetic potential vector fields [6]. The second fusion code also under

development at PPPL is XGC1 which uses the particle-in-cell (PIC) method to

simulate gyrokinetic particle turbulence [11, 12, 13].

Both fusion codes apply the mesh-based methods as the discretized represen-

tation of the simulation domain. In the mesh-based simulation, the reliability of

results is efficiently improved through adaptive mesh control [14]. A mesh-based

1

2

adaptive analysis program includes the following components (Figure 1.1):

(A) A problem definition in terms of the mathematical model to represent the

governing physics and a domain over which that physics is to be modeled.

(B) A mesh infrastructure that provides the interface from the problem definition

to a discretized representation of the problem.

(C) A component to discretize the mathematical model over mesh entities. Given

the inputs of the geometric domain, the mesh, and the field information de-

scribing the distribution of the material properties, loading and boundary

conditions, this component produces the mesh entity discrete equations.

(D) A component to assemble the discrete equations. Given the mesh entity contri-

butions and the ordering of the degrees of the freedom (DOFs), this component

assembles the global discrete equation.

(E) A component to evaluate the current solution fields by solving the global

discrete equation.

(F) A component to determine the adequacy of the current mesh discretization.

Given the solution field, this component assesses the solution quality and

generates the correction indication field.

(G) A component to control the quality of the mesh-based solution by improving

the mesh. Given the correction indication field, the mesh is adapted and the

solution fields are mapped from the original mesh to the improved mesh.

This thesis presents a parallel adaptive infrastructure for the magnetically

confined fusion plasma simulations. It aims to address the following issues that

arise from the simulation codes:

1. The geometry of fusion reactors needs to be defined to comply with the com-

putational models. To meet the needs of the specific models used to discretize

the mathematical model used by M3D-C1 and XGC1, the geometry will in-

clude both the physical components from the tokamak design, and the desired

3

Figure 1.1: Components of a mesh-based adaptive loop.

physics components from features interior to the reactor. The geometric model

with the topological representation [15] and the shape information needs to

be defined as the necessary input of the mesh infrastructure (B in Figure 1.1)

[16].

2. Controlled meshes must be generated and adapted (B and G in Figure 1.1).

The challenges of meshing for fusion simulations lie in satisfying the specific

requirements from different computational methods. Fully automatic meshing

procedures that meet the specific constraints of the fusion simulation codes

are needed.

3. An infrastructure that includes interacting software tools for the functional

components in Figure 1.1 and methods for error estimation is needed to im-

prove the accuracy and efficiency of the simulation by adaptive mesh control.

The entire simulation workflow needs to be a fully automatic procedure that

executes the adaptive control loop illustrated in Figure 1.1. Information flow be-

4

tween the components of the analysis program needs to be tracked and mapped

simultaneously when the mesh is adapted or the level of discretization is changed.

This thesis provides methods and associated software to address each of these areas.

In addition, a method to improve the numerical conditioning through element-level

operations was developed to provide a better starting point to the equation solvers.

1.2 Organization of Dissertation

The following paragraphs outline the organization of the dissertation.

Chapter 2 reviews the extended MHD equations and the finite element formu-

lation used by M3D-C1.

Chapter 3 discusses an explicit a posteriori error estimator developed for M3D-

C1.

Chapter 4 gives an overview of the M3D-C1 code and the extensions towards

an automated version.

Chapter 5 presents the tokamak mesh definition procedure for the fusion

plasma codes, M3D-C1 and XGC1 [17]. A geometric model that includes both the

reactor wall structure and the magnetic flux surfaces is introduced to support the

meshing procedure. Mesh control parameters to meet the needs of the simulation

procedure are identified and can be specified on that geometric model. The mesh

generation procedure is constructed by combining the meshing operations that sat-

isfies the constraints from the simulation procedures while creating well controlled

graded meshes.

Chapter 6 presents a procedure to improve the numerical conditioning of the

resulting matrix systems for M3D-C1. The preconditioning method is based on the

knowledge of the scales associated with the element-level physics.

Chapter 7 demonstrates the results of the parallel adaptive simulations with

M3D-C1.

Chapter 8 concludes the work carried out and discusses possible future works.

CHAPTER 2

Finite Element Formulation of Extended MHD Equation

This chapter presents an overview of the extended MHD equation and its finite

element discretization in M3D-C1. The overview is extracted from [3, 7, 8, 9, 6, 10].

2.1 Governing Equations

The governing equations solved by M3D-C1 combine the Navier-Stokes equa-

tions of fluid dynamics and Maxwell’s equations of electromagnetism. For simplicity

of the presentation, the form considered does not include the particle source, the

gyroviscosity tensor [8] or the two-fluid terms. In addition, the fluid viscosity and

electrical resistivity are assumed constant.

The symbols in the equations are defined as:

ρ: ion density,

B: magnetic field,

E: electric field,

J: electric current density,

V: ion fluid velocity,

P : ion fluid pressure,

µ: dynamic viscosity,

Πµ: deviatoric stress tensor due to fluid viscosity,

η: electrical resistivity.

The differential operators are defined and expanded in the Cartesian coordi-

nate by the index notation that follows [18] as

∇: gradient operator, ∇F ≡ F,i

5

6

∇·: divergence operator, ∇ · F ≡ Fi,i

∇×: curl operator, ∇× F ≡ εijkFk,j

∇2: Laplace operator, ∇2F ≡ F,ii

I: identity tensor, I = δij

Also see Section 7.3 for the differential operators defined on the RZ plane in the

cylindrical coordinate system.

2.1.1 Continuity Equation

The continuity equation describes the conservation law of mass in the ion fluid.

The equation is
∂ρ

∂t
+∇ · (ρV) = 0. (2.1)

The fluid is considered as “incompressible” if the change of particle density, ρ,

is negligible [18]. The continuity equation for the incompressible fluid reduces to

∇ ·V = 0. (2.2)

2.1.2 Momentum Equation

The momentum equation describes the conservation law of momentum in the

ion fluid. The equation takes the form as

ρ

(
∂V

∂t
+ V · ∇V

)
= ∇ ·Πµ + J×B−∇P. (2.3)

For Newtonian fluid, the deviatoric stress tensor, Πµ, takes the form as [18]

Πµ = µ(∇V + (∇V)T)− 2

3
µ(∇ ·V)I. (2.4)

For an incompressible fluid that satisfies ∇·V = 0, the deviatoric stress tensor

7

and its contribution to the momentum equation is simplified as

Πµ = µ(∇V + (∇V)T), (2.5a)

∇ ·Πµ = µ∇2V. (2.5b)

J × B is the Lorentz force applied to the electric current by the magnetic

field [19]. This force couples the fluid motion with the electromagnetic field in the

momentum equation.

2.1.3 Maxwell-Faraday Equation

The Maxwell-Faraday equation relates the magnetic field varying in time with

the electric field varying in space by [19]

∂B

∂t
= −∇× E. (2.6)

Ohm’s law in the conductive fluid is [20]

E + V ×B = ηJ, (2.7)

and Ampere’s circuital law (without Maxwell’s addition) is [19]

J = ∇×B. (2.8)

Note that the physics quantities are non-dimensionalized and the magnetic constant

does not appear in Ampere’s circuital law. Equation 2.7 and Equation 2.8 are used

to eliminate the electric field from the Maxwell-Faraday equation. The equation

describing the dynamics of the magnetic field is rewritten in terms of the velocity

as
∂B

∂t
= ∇× (V ×B)− η∇× (∇×B). (2.9)

Note that the term of V×B in Equation 2.9 couples the velocity field and the

magnetic field.

8

2.1.4 Equation Set Considered

Combining the equations discussed in Section 2.1.1, 2.1.2 and 2.1.3, and sub-

stituting Ampere’s circuital law (Equation 2.8) into the momentum equation, the

equation set for the incompressible MHD is

ρ

(
∂V

∂t
+ V · ∇V

)
= µ∇2V + (∇×B)×B−∇P, (2.10a)

∂B

∂t
= ∇× (V ×B)− η∇× (∇×B). (2.10b)

where V and B satisfy

∇ ·V = 0, (2.11a)

∇ ·B = 0. (2.11b)

Note that Equation 2.11b is Gauss’s law for magnetism.

2.2 Fourth-order PDE and its Weak Formulation

Equation 2.10 and its extended form that includes the compressible part of

the fluid [6] only contain differential operators up to second order. Two additional

steps are taken to derive the fourth-order PDE that will be written in a cylindrical

reference frame.

Define two sets of the scalar fields as [U, ω, χ] and [ψ, f], and the poloidal

gradient operator as ∇⊥ ≡ R̂ ∂
∂R

+ Ẑ ∂
∂Z

. The velocity vector, V, and the magnetic

field, B, are represented by the scalar fields in the (R,Z, ϕ) coordinate system

(Figure 2.1) as [6]

V = R2∇U ×∇ϕ+R2ω∇ϕ+
1

R2
∇⊥χ, (2.12a)

B = ∇ψ ×∇ϕ−∇⊥
∂f

∂ϕ
+Bϕ∇ϕ, (2.12b)

where Bϕ = F0 + R2∇ · ∇⊥f such that ∇ · B = 0. F0 is the constant defined from

9

the total toroidal current, I0, as [6]

F0 =
I0

2π
. (2.13)

V written in the general form of Equation 2.12a contains the compressible part. We

leave the scope of the incompressible MHD defined by Equation 2.10 for a moment.

The following three operators are applied to the momentum equation (Equation 2.3)

[6]:

∇ϕ · ∇⊥ ×R2, (2.14a)

R2∇ϕ·, (2.14b)

−∇⊥ ·
1

R2
, (2.14c)

such that three scalar equations from the momentum equation are obtained as

∇ϕ · ∇⊥ ×R2

{
ρ

(
∂V

∂t
+ V · ∇V

)}
= ∇ϕ · ∇⊥ ×R2 {∇ ·Πµ + J×B−∇P} ,

(2.15a)

R2∇ϕ ·
{
ρ

(
∂V

∂t
+ V · ∇V

)}
= R2∇ϕ · {∇ ·Πµ + J×B−∇P} ,

(2.15b)

−∇⊥ ·
1

R2

{
ρ

(
∂V

∂t
+ V · ∇V

)}
= −∇⊥ ·

1

R2
{∇ ·Πµ + J×B−∇P} .

(2.15c)

Note that deviatoric stress tensor, Πµ is defined by Equation 2.4.

The two operators, ∇ϕ · ∇⊥× and ∇ϕ·, are applied to Equation 2.6 to obtain

the two scalar equations from the Maxwell-Faraday Equation as

∇ϕ · ∇⊥ ×
{
∂B

∂t

}
= ∇ϕ · ∇⊥ × {−∇× E} , (2.16a)

∇ϕ ·
{
∂B

∂t

}
= ∇ϕ · {−∇× E} . (2.16b)

Note that E is substituted by Ohm’s law (Equation 2.7).

The rest of the section illustrates the procedure that derives the fourth-order

10

Figure 2.1: Cylindrical coordinate system used in M3D-C1.

PDE and its weak formulation using the reduced MHD model under the large-

aspect-ratio approximation as the example.

2.2.1 2D Incompressible MHD under Large-aspect-ratio Approximation

We consider the case when the ratio between the major axis and minor axis of

the torus is large (R0

r0
>> 1, see Figure 2.1). Under the large-aspect-ratio approxi-

mation, ∇ϕ = 1
R
ϕ̂ ∼ 1

R0
ϕ̂, and the set of the unit vectors [Ẑ, R̂, ϕ̂] on a constant ϕ

plane is assumed to be a set of Cartesian coordinates.

Assume R0 = 1 and we have ϕ̂ = ∇ϕ. Consider the reduced MHD model that

only contains the 2D stream function, U = U(R,Z), and the poloidal magnetic flux,

ψ = ψ(R,Z). V and B are represented by U and ψ in the form as (see Equation 2.12

by replacing R = 1)

V = ∇U × ϕ̂ = ∇× (Uϕ̂) = −∂U
∂Z

R̂ +
∂U

∂R
Ẑ, (2.17a)

B = ∇ψ × ϕ̂ = ∇× (ψϕ̂) = −∂ψ
∂Z

R̂ +
∂ψ

∂R
Ẑ. (2.17b)

The following useful identities are listed to derive the desired fourth-order

11

PDE:

∇× (f × g) ≡ (g · ∇)f + (∇ · g)f − (f · ∇)g − (∇ · f)g, (2.18a)

∇×∇× f ≡ ∇(∇ · f)−∇2f , (2.18b)

∇ · (f × g) ≡ (∇× f) · g − f · (∇× g), (2.18c)

∇× (∇f) ≡ 0, (2.18d)

f × (g × h) ≡ (f · h)g − (f · g)h. (2.18e)

Gauss’s law for magnetism (∇·B = 0) and the fluid incompressibility (∇·V =

0) are satisfied by the scalar representation defined by Equation 2.17. In addition,

Equation 2.17 defines V and B on the 2D constant ϕ plane in the sense that ϕ̂·B = 0

and ϕ̂ ·V = 0.

For simplicity of notation, define Poisson bracket as

< F,G >≡ −(∇F ×∇G) · ϕ̂ ≡ ∂F

∂R

∂G

∂Z
− ∂F

∂Z

∂G

∂R
. (2.19)

From the definition of V and B by Equation 2.17,

V ×B = (∇U × ϕ̂)× (∇ψ × ϕ̂) = −ϕ̂ · (∇ψ ×∇U)ϕ̂ =< ψ,U > ϕ̂, (2.20)

and

∇2(V ×B) = ∇2 < ψ,U > ϕ̂. (2.21)

Applying Identity 2.18c and noticing that ϕ̂ ·B = 0 and ϕ̂ ·V = 0, we obtain

∇ · (V ×B) = 0. (2.22)

2.2.2 Fourth-order PDE

To obtain the fourth-order PDE with regard to U and ψ, we substitute Equa-

tion 2.17 into Equation 2.10 and apply the operator ϕ̂ · ∇⊥× to the both sides (see

Equation 2.15a and 2.16a by replacing R = 1). Since we only consider the 2D case,

12

we have ϕ̂ · ∇× ≡ ϕ̂ · ∇⊥× and we use ϕ̂ · ∇× for the simple notation.

First consider the ρV term in Equation 2.10. Noticing ρ is constant, ∂U
∂ϕ

= 0,

and Identity 2.18b, it can be seen that

ϕ̂ · (∇× ρV) = ρϕ̂ · ∇ × (∇× Uϕ̂) = −ρϕ̂ · (∇2Uϕ̂) = −ρ∇2U. (2.23)

Similarly,

ϕ̂ · (∇×B) = −∇2ψ. (2.24)

Now consider the viscosity force in Equation 2.10. The viscosity force is re-

duced to

∇ · Πµ = µ∇2(∇U × ϕ̂). (2.25)

Considering that ϕ̂ ·(∇U×ϕ̂) = ∇U ·(ϕ̂×ϕ̂) = 0, ϕ̂ ·∇×(∇2f) = ∇2(ϕ̂ ·∇×f)

and Identity 2.18a, we have

ϕ̂ · ∇ × (∇ · Πµ) = ϕ̂ · ∇ × [µ∇2(∇U × ϕ̂)]

= µ∇2[ϕ̂ · ∇ × (∇U × ϕ̂)]

= −µ∇2[ϕ̂ · (∇ · ∇Uϕ̂)]

= −µ∇4U. (2.26)

From Identity 2.18b and ∇ ·B = 0, it can be seen that ∇×∇×B = −∇2B.

The electrical resistivity term in Equation 2.10 after applying ϕ̂ · ∇× is obtained

similarly as the viscosity force:

ϕ̂ · ∇ × (η∇×∇×B) = η∇4ψ. (2.27)

Consider the convection term V · ∇V after applying ϕ̂ · ∇× in Equation 2.10:

ϕ̂ · ∇ × (V · ∇V) = R̂ · ∂(V · ∇V)

∂Z
− Ẑ · ∂(V · ∇V)

∂R
=< ∇2U,U > . (2.28)

Similarly, from the properties defined by Equation 2.20 and 2.22, and Identity 2.18a

and 2.18b, and the property defined by Equation 2.22, the terms of ∇×B×B and

13

V ×B after applying ϕ̂ · ∇× are

ϕ̂ · ∇ × (∇×B×B) = ϕ̂ · [(B · ∇)∇×B]

= < ∇2ψ, ψ >, (2.29)

ϕ̂ · ∇ × [∇× (V ×B)] = −ϕ̂ · ∇2(V ×B)

= −∇2 < ψ,U > . (2.30)

From Identity 2.18d, the pressure term, ∇P , after applying ϕ̂ · ∇× does not

appear in the equation.

Combining the intermediate properties derived in this section, the fourth-order

PDE for U and ψ is summarized as follows:

−ρ∇2∂U

∂t
+ ρ < ∇2U,U > − < ∇2ψ, ψ > +µ∇4U = 0, (2.31a)

−∇2∂ψ

∂t
+∇2 < ψ,U > +η∇4ψ = 0. (2.31b)

2.2.3 Integration Identities

Equation 2.31 is converted to the weak form by integrating the test-function

weighted integral form by parts [21]. The integration by parts is performed by

applying Stokes’ theorem and Gauss’s theorem [19] that take the form as∫
Ω

∇× F · dS =

∮
∂Ω

F · dr, (2.32a)∫
Ω

∇ · FdΩ =

∮
∂Ω

F · n̂dS. (2.32b)

Specifically, we define the integration on the RZ plane with the constant ϕ.

We have

dΩ = dRdZ, (2.33a)

dS = ϕ̂dΩ, (2.33b)

and dr and n̂dS are infinitesimal changes along the tangent and normal direction of

the boundary.

14

From Gauss’s theorem and the following two identities that take the form as

ν∇2F ≡ ∇ · (ν∇F)−∇ν · ∇F, (2.34a)

ν∇4F ≡ ∇ · (ν∇(∇2F))−∇ · (∇2F∇ν) +∇2ν∇2F, (2.34b)

we have∫
Ω

ν∇2FdΩ =

∮
∂Ω

νn̂ · ∇FdS −
∫

Ω

∇ν · ∇FdΩ, (2.35a)∫
Ω

ν∇4FdΩ =

∮
∂Ω

νn̂ ·
{
∇(∇2F)

}
dS −

∮
∂Ω

∇ν · n̂∇2FdS +

∫
Ω

∇2ν∇2FdΩ.

(2.35b)

From Identity 2.18d, we have the identity as

∇× (F∇G) ≡ ∇F ×∇G+ F (∇×∇G) ≡ ∇F ×∇G. (2.36)

From Identity 2.36 and also noticing F×G = −G× F, we have

ν(∇F ×∇G) ≡ ν {∇ × (F∇G)} ≡ ∇× (νF∇G) + F∇G×∇ν. (2.37)

Applying Stokes’ theorem, we have the integration identity∫
Ω

ν(∇F ×∇G) · dS =

∮
∂Ω

νF∇G · dr +

∫
Ω

F∇G×∇ν · dS. (2.38)

Taking the ϕ̂ component of Equation 2.38, using the definition of the Poisson

bracket in the vector form (< F,G >= −(∇F ×∇G)ϕ̂), and reversing the direction

of integral,
∮

, (along the direction −ϕ̂), we have the integration identity of Poisson

bracket as∫
Ω

ν < F,G > dΩ =

∮
∂Ω

νF

(
∂G

∂R
dR +

∂G

∂Z
dZ

)
+

∫
Ω

F < G, ν > dΩ. (2.39)

15

Specifically, replacing F with ∇2F in Equation 2.39, we have∫
Ω

ν < ∇2F,G > dΩ =

∮
∂Ω

ν∇2F

(
∂G

∂R
dR +

∂G

∂Z
dZ

)
+

∫
Ω

∇2F < G, ν > dΩ.

(2.40)

2.2.4 Weak Formulation

For simplicity of the presentation, we assume homogeneous Dirichlet boundary

conditions for both U and ψ in Equation 2.31, that is, U = ∇U · n̂ = ψ = ∇ψ · n̂ = 0

at the boundary. Define the test function space as

V = {ν | ν ∈ H2, ν = ∇ν · n̂ = 0 at ∂Ω}, (2.41)

and the solution space as

W = V . (2.42)

Apply Identity 2.35a to the operator ∇2, Identity 2.35b to the operator ∇4, and

Identity 2.40 to swap ∇2(·) and the test function in Poisson bracket. The weak

form of the problem defined by Equation 2.31 is stated as:

Find (U, ψ) ∈ W ×W, such that for all (ν, q) ∈ V × V ,∫
Ω

{
ρ∇∂U

∂t
· ∇ν + ρ∇2U < U, ν > −∇2ψ < ψ, ν > +µ∇2U∇2ν

}
dΩ = 0,

(2.43a)∫
Ω

{
∇∂ψ
∂t
· ∇q −∇ < ψ,U > ·∇q + η∇2ψ∇2q

}
dΩ = 0,

(2.43b)

where the initial condition is (U, ψ) = (U0, ψ0) at t = 0.

2.3 C1 Finite Elements

C1 finite elements are applied for spatial discretization of the fourth-order

PDEs (such as Equation 2.43). The C1 reduced quintic triangle element [3] is

used on the cross-section of the tokamak. The 3D C1 wedge element is obtained

by introducing the cubic Hermite polynomial in the toroidal direction to the C1

16

Figure 2.2: Wedge mesh element between two cross-sections in M3D-C1.

Figure 2.3: Triangle element with (ξ, η) as the local coordinate and (R,Z)
as the global coordinate [3].

reduced quintic triangle element [6]. Figure 2.2 illustrates the wedge mesh element

by connecting the triangle elements on two tokamak cross-sections on the (RZϕ)

coordinate system.

2.3.1 Reduced Quintic Triangle Element

A set of shape functions on the triangle with constrained fifth-order polyno-

mials is defined to have C1 inter-element continuity [3]. The mapping from the local

coordinate (ξ, η) to the global coordinate (R,Z) is defined as R

Z

 =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 ξ

η

+

 R0

Z0

 , (2.44)

where (R0, Z0) is the origin point of the (ξ, η) coordinate system in Figure 2.3.

Eighteen shape functions {µi} that are fifth-order polynomials of (ξ, η) need

17

Table 2.1: Multipliers of the shape functions and corresponding field val-
ues associated with the vertex in the C1 triangle element.

multiplier λ1 λ2 λ3 λ4 λ5 λ6

field value U U,ξ U,η U,ξξ U,ξη U,ηη

to be defined. The shape functions are expanded as

µi =
21∑
k=1

αkiξ
mkηnk , 0 ≤ mk + nk ≤ 5, i = 1, 2, ..., 18 (2.45)

There are twenty-one coefficients {αki} in each fifth-order polynomial. The co-

efficients are constrained to satisfy the following conditions which yield an eighteen-

DOF C1 element:

• The desired DOFs are the terms in field value, first-order and second-order

derivatives at the vertices. It gives eighteen desired equations.

• Three constraints are applied that force the normal derivatives of the shape

functions along the edges reduced to cubic polynomials so that C1 inter-

element continuity can be satisfied using the eighteen DOFs.

Figure 2.4 plots the first six shape functions derived by solving the linear

system with twenty unknowns (the coefficient of the term ξ4η is zero) to obtain the

coefficient of the fifth-order polynomials for each shape function. The matrix of the

linear system can be found in Appendix A of Reference [3]. Due to the inclusion of

the constraints, the order of polynomial completeness is fourth.

A scalar field U can be interpolated with the eighteen shape functions on the

triangle as

U(ξ, η) =
18∑
i=1

λiµi(ξ, η), (2.46)

where λi is the multiplier associated with µi. From the construction of the shape

functions, {λi} equals to the value of U , U,ξ, U,η, U,ξξ, U,ξη, and U,ηη at the three

vertices respectively. The first six multipliers associated with vertex P1 in Figure 2.3

and the corresponding field values evaluated at the vertex are listed in Table 2.1.

18

(a) function value (b) 1st-order derivative in R direction

(c) 1st-order derivative in Z direction (d) 2nd-order derivative in R direction

(e) twisted derivative in R, Z direction (f) 2nd-order derivative in Z direction

Figure 2.4: Shape functions associated with the vertex located at (0,1).

The desired DOFs, [U, U,R, U,Z , U,RR, U,RZ , U,ZZ], are values in the cylindrical

coordinate. Thus the final steps convert the values from the local (ξ, η) coordinate

system to the global (R,Z) coordinate system. The first six DOFs associated with

vertex P1 and the corresponding field values evaluated at P1 are listed in Table 2.2.

The relations to convert the derivatives are constructed from the chain rule as

19

Table 2.2: DOFs and corresponding field values associated with the ver-
tex in the C1 triangle element.

DOF d1 d2 d3 d4 d5 d6

field value U U,R U,Z U,RR U,RZ U,ZZ

follows (noticing that the transformation defined by Equation 2.44 is linear):

U,ξ = U,RR,ξ + U,ZZ,ξ = U,Rcos(θ) + U,Zsin(θ), (2.47a)

U,η = U,RR,η + U,ZZ,η = −U,Rsin(θ) + U,Zcos(θ), (2.47b)

U,ξξ = U,RRR
2
,ξ + 2U,RZR,ξZ,ξ + U,ZZZ

2
,ξ

= U,RRcos
2(θ) + 2U,RZsin(θ)cos(θ) + U,ZZsin

2(θ), (2.47c)

U,ξη = U,RRR,ξR,η + U,RZ(R,ξZ,η +R,ηZ,ξ) + U,ZZZ,ξZ,η

= −U,RRcos(θ)sin(θ) + U,RZ [cos2(θ)− sin2(θ)] + U,ZZsin(θ)cos(θ),

(2.47d)

U,ηη = U,RRR
2
,η + 2U,RZR,ηZ,η + U,ZZZ

2
,η

= U,RRsin
2(θ)− 2U,RZsin(θ)cos(θ) + U,ZZcos

2(θ). (2.47e)

The full set of relations between the multipliers and DOFs is



λ1

λ2

λ3

λ4

λ5

λ6



=



1 0 0 0 0 0

0 cos(θ) sin(θ) 0 0 0

0 −sin(θ) cos(θ) 0 0 0

0 0 0 cos2(θ) 2sin(θ)cos(θ) sin2(θ)

0 0 0 −sin(θ)cos(θ) cos2(θ)− sin2(θ) sin(θ)cos(θ)

0 0 0 sin2(θ) −2sin(θ)cos(θ) cos2(θ)





d1

d2

d3

d4

d5

d6



.

(2.48)

2.3.2 Cubic Hermite Polynomial

The C1 cubic Hermite polynomial is used to interpolate the field in the toroidal

ϕ direction (See Figure 2.1 for the coordinate system). Define ϕ̃ ∈ [0, 1] as the local

20

Figure 2.5: Hermite cubic polynomial defined on [0, 1].

coordinate and the mapping to the global coordinate ϕ as

ϕ = ϕi + (ϕi+1 − ϕi)ϕ̃, (2.49)

where ϕi and ϕi+1 are the toroidal angles of the two cross-sections (Figure 2.2).

Figure 2.5 plots the shape functions defined on the interval [0, 1]. The two

shape functions associated with the point ϕ̃ = 0 are

Φ1(ϕ̃) = (ϕ̃− 1)2(2ϕ̃+ 1), (2.50)

Φ2(ϕ̃) = ϕ̃(ϕ̃− 1)2, (2.51)

such that Φ1(0) = 1,Φ′1(0) = Φ1(1) = Φ′1(1) = 0 and Φ′2(0) = 1,Φ2(0) = Φ1(1) =

Φ′1(1) = 0. The two shape functions associated with the point ϕ̃ = 1 are

Φ3(ϕ̃) = ϕ̃2(3− 2ϕ̃), (2.52)

Φ4(ϕ̃) = ϕ̃2(ϕ̃− 1). (2.53)

A scalar field U can be interpolated with the four shape functions on the

interval as

U(ϕ̃) =
4∑
i=1

λiΦi(ϕ̃), (2.54)

where λi is the multiplier associated with Φi. From the construction of the shape

21

Table 2.3: Multipliers of the shape functions and corresponding field val-
ues associated with the vertex in the C1 cubic Hermite Ele-
ment.

multiplier λ1 λ2 λ3 λ4

field value U(0) U,ϕ̃ (0) U(1) U,ϕ̃ (1)

Table 2.4: DOFs and corresponding field values associated with the ver-
tex in the C1 cubic Hermite element.

DOFs d1 d2 d3 d4

field value U(ϕi) U ′(ϕi) U(ϕi+1) U ′(ϕi+1)

functions, {λi} equal to the value of U,U,ϕ̃ at the two points of the interval. The

four multipliers associated with the two points ϕ̃ = 0, 1 and the corresponding field

values are listed in Table 2.3.

Four DOFs are defined in the 1D cubic Hermite element and the values are

equal to U and U,ϕ at the two points, respectively. The DOFs and the corresponding

field values on [ϕi, ϕi+1] are listed in Table 2.4 (U ′ ≡ U,ϕ is used). The relations

between λi and di for the cubic Hermite element from the chain rule are

λ1 = d1, (2.55a)

λ2 = (ϕi+1 − ϕi)d2, (2.55b)

λ3 = d3, (2.55c)

λ4 = (ϕi+1 − ϕi)d4. (2.55d)

2.3.3 C1 Wedge Element

The 3D C1 element is defined on the wedge (Figure 2.2) by combining the

C1 triangle element and the C1 Hermite polynomial. Define the local coordinate

(ξ, η, ϕ̃) and the mapping to the global coordinate (R,Z, ϕ) as


R

Z

ϕ

 =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 ϕi+1 − ϕi



ξ

η

ϕ̃

+


R0

Z0

ϕi

 . (2.56)

Field U is interpolated in the wedge mesh element (Figure 2.2) with the shape

22

Table 2.5: Multipliers of the shape functions and corresponding field val-
ues associated with the vertex in the C1 wedge element.

multiplier λ11 λ21 λ31 λ41 λ51 λ61

field value U U,ξ U,η U,ξξ U,ξη U,ηη
multiplier λ12 λ22 λ32 λ42 λ52 λ62

field value U, ϕ̃ U,ξϕ̃ U,ηϕ̃ U,ξξϕ̃ U,ξηϕ̃ U,ηηϕ̃

functions of the C1 triangle {µi} and the cubic Hermite {Φi} as

U(ξ, η, ϕ̃) =

(
18∑
i=1

αiµi(ξ, η)

)
·

(
4∑
j=1

βjΦj(ϕ̃)

)
, (2.57)

where αi and βj are coefficients of µi and Φj, respectively.

It can be further written as

U =
18∑
i=1

4∑
j=1

λijµi(ξ, η)Φj(ϕ̃), (2.58)

where λij = αiβj is the multiplier of the shape function µi(ξ, η)Φj(ϕ̃).

There are totally seventy-two (18×4) multipliers in the wedge elements. From

the properties of µi and Φj, the seventy-two multipliers equal to the values of U ,

U,ξ, U,η, U,ξξ, U,ξη, U,ηη, U,ϕ̃, U,ξϕ̃, U,ηϕ̃, U,ξξϕ̃, U,ξηϕ̃ and U,ηηϕ̃ evaluated at the six

vertices of the wedge mesh element. The twelve multipliers associated with vertex

1 in Figure 2.2 and the corresponding field values evaluated at the vertex are listed

in Table 2.5.

Seventy-two DOFs are defined in the C1 wedge element. The DOFs equal to

values of U , U,R, U,Z , U,RR, U,RZ , U,ZZ , U,ϕ, U,Rϕ, U,Zϕ, U,RRϕ, U,RZϕ and U,ZZϕ

at the six vertices, respectively. The first twelve DOFs associated with vertex 1 in

Figure 2.2 and the corresponding field values evaluated at the vertex are listed in

Table 2.6.

The relation between the multipliers of the shape functions and DOFs are

obtained by combing Equation 2.48 and Equation 2.55.

23

Table 2.6: DOFs and corresponding field values associated with the ver-
tex in the C1 wedge element.

DOF d1 d2 d3 d4 d5 d6

field value U U,R U,Z U,RR U,RZ U,ZZ
DOF d7 d8 d9 d10 d11 d12

field value U,ϕ U,Rϕ U,Zϕ U,RRϕ U,RZϕ U,ZZϕ

CHAPTER 3

Explicit a posteriori Estimator

Adaptive mesh control [22] is an efficient method to improve the reliability of simula-

tion results. The procedure of mesh adaptation is driven by the mesh size field that

is aimed to equally distribute the estimated error between mesh elements [23, 24].

In order to obtain the desired mesh size field, it is necessary to estimate the error

distribution in the solution.

There are limited studies on the error estimation in the area of adaptive MHD

simulations. The error is estimated either from a priori knowledge of the solution

property or from a posteriori evaluation of the solution field.

The a priori approach requires of a reasonable understanding and prediction

of the physics. Error indicators based on the post processed fields of specific solution

properties are used in the MHD simulation [25, 26, 27, 28]. The approach has been

applied by M3D-C1 using the magnetic flux field in the plasma equilibrium ([29],

also see Section 5.4.2).

The a posteriori approach [22, 30] is better suited to explicitly control the

discretization error. M3D-C1 uses a C1 finite element method and it is difficult

to apply methods by recovering first-order derivatives such as the superconvergent

patch recovery technique [31, 24]. Richardson extrapolation is applied in multilevel

adaptive mesh refinement (AMR) [32]. However, it requires a multilevel mesh rep-

resentation. [33] applies the error indicator by minimizing a mesh energy functional

with moving mesh techniques.

This chapter presents an explicit a posteriori estimator [30, 34, 35, 36] devel-

oped for M3D-C1. The model for 2D incompressible MHD (Section 2.2.1) is used

for simplicity of the presentation. Section 3.1 states the problem in terms of the bi-

linear and trilinear forms, and defines the corresponding error equation. Section 3.1

follows the methodology proposed by [37]. Section 3.2 makes use of the results from

[34, 36, 22, 38] and defines the error estimator. Section 3.3 discusses the aspects of

implementation. Section 3.4 illustrates the effectiveness of the error estimator.

24

25

3.1 Model Problem

The problem defined by Equation 2.43 in Section 2.2.4 is considered. For

simplicity of the notation, assume ρ = 1. Define the following two bilinear forms:

a1(u, v) =

∫
Ω

∇u · ∇vdΩ, (3.1a)

a2(u, v) =

∫
Ω

∇2u∇2vdΩ. (3.1b)

Define the following two trilinear forms:

c1(u, v, w) =

∫
Ω

∇2u < v,w > dΩ, (3.2a)

c2(u, v, w) = −
∫

Ω

∇ < u, v > ·∇wdΩ, (3.2b)

where <,> is the Poisson bracket defined as (also see Equation 2.19)

< F,G >≡ ∂F

∂R

∂G

∂Z
− ∂F

∂Z

∂G

∂R
. (3.3)

Note that the Poisson bracket defined by Equation 3.3 is a bilinear form.

With the definitions of the bilinear and trilinear forms, the problem defined

by Equation 2.43 is stated as:

Find (U, ψ) ∈ W ×W, such that for all (ν, q) ∈ V × V ,

a1(
∂U

∂t
, ν) + c1(U,U, ν)− c1(ψ, ψ, ν) + µa2(U, ν) = 0, (3.4a)

a1(
∂ψ

∂t
, q) + c2(ψ,U, q) + ηa2(ψ, ν) = 0, (3.4b)

where the initial condition is (U, ψ) = (U0, ψ0) at t = 0, and V and W are the

sub-spaces of H2 defined by Equation 2.41 and Equation 2.42.

Define the finite-dimensional test function space, Vh ∈ V , and the finite-

dimensional solution space, Wh ∈ W . Assume (Uh, ψh) ∈ Wh × Wh is the finite-

element solution. Define the spatial discretization error as

(e, E) = (U − Uh, ψ − ψh) ∈ V × V . (3.5)

26

Substituting U = Uh + e and ψ = ψh + E into Equation 3.4, we obtain the

error equation as [37]

a1(
∂e

∂t
, ν) +


c1(e, Uh, ν)

+c1(Uh, e, ν)

+c1(e, e, ν)

−


c1(E,ψh, ν)

+c1(ψh, E, ν)

+c1(E,E, ν)

+ µa2(e, ν)

=


−a1(∂Uh

∂t
, ν)

−c1(Uh, Uh, ν)

+c1(ψh, ψh, ν)

−µa2(Uh, ν)


, (3.6a)

a1(
∂E

∂t
, q) +


c2(E,Uh, q)

+c2(ψh, e, q)

+c2(E, e, q)

+ ηa2(E, q) =


−a1(∂ψh

∂t
, q)

−c2(ψh, Uh, q)

−ηa2(ψh, q)

 . (3.6b)

Note that the subscripted quantity by letter h, (·)h, is the spatial discretized form

of the quantity, (·).
We assume the temporal discretization error will be kept small compared with

the spatial discretization error by choosing a sufficiently small time step, δt [37].

Under this assumption, a simple scheme is used for the temporal discretization.

Notationally, the superscript n, (·)n, is used to represent the discretized form of (·)
at t = nδt. Applying the implicit backward Euler method for the bilinear terms,

and the explicit forward Euler for the trilinear terms in Equation 3.6, we obtain the

temporal discretized error equation as

a1(en+1, ν)

δt
+ µa2(en+1, ν) =


−a1(Un+1

h −Unh ,ν)

δt

−c1(Un
h , U

n
h , ν)

+c1(ψnh , ψ
n
h , ν)

−µa2(Un+1
h , ν)


+RU

h (en, En), (3.7a)

a1(En+1, q)

δt
+ ηa2(En+1, q) =


−a1(ψn+1

h −ψnh ,q)
δt

−c2(ψnh , U
n
h , q)

−ηa2(ψn+1
h , q)

+Rψ
h (en, En). (3.7b)

27

where

RU
h (en, En) =

a1(en, ν)

δt
−


c1(en, Un

h , ν)

+c1(Un
h , e

n, ν)

+c1(en, en, ν)

+


c1(En, ψnh , ν)

+c1(ψnh , E
n, ν)

+c1(En, En, ν)

 ,

(3.8a)

Rψ
h (en, En) =

a1(En, q)

δt
−


c2(En, Un

h , q)

+c2(ψnh , e
n, q)

+c2(En, en, q)

 . (3.8b)

RU
h (en, En) and Rψ

h (en, En) are set to zero by arguing that the history-accumulated

error does not represent the mesh areas that need better resolution at this time [37].

Alternatively, Equation 3.7 can also be obtained by applying both the tempo-

ral and spatial discretization, subtracting the fully-discretized solution from Equa-

tion 3.4, and dropping the truncation error of the temporal discretization.

3.2 Explicit a posteriori Estimator

We apply the explicit a posteriori estimator of [30] that directly computes a

mesh-dependent norm of the residual in the strong form [34]. The same type of the

error estimators are studied for the Stokes equation with the Dirichlet boundary

conditions [34], the Poisson equation with the Dirichlet-Neumann boundary condi-

tions [36], the biharmonic equation with the Dirichlet boundary conditions [22, 38],

and the convection-diffusion equations with the Dirichlet-Neumann boundary con-

ditions [39]. We summarize the key steps in constructing an explicit error estimator

using the results from the papers referred to, particularly [30].

Key terms used in describing the error estimator include:

P : triangulation of the 2D domain,

K ∈ P : a triangle element in P with the boundary as ∂K that is made up of

three edges,

Γ ∈ ∂P : a single edge element,

28

γ: angle between edge Γ and R̂,

hK = diam(K): diameter of triangle K (the length of the longest edge in the

triangle is used here),

‖F‖2
L2(K) =

∫
K F

2dΩ: L2 integration of f on element K,

‖F‖2
L2(Γ) =

∫
Γ
F 2dΓ: L2 integration of f on edge Γ ,

[·]Γ = (·)Γ∈K − (·)Γ∈J will represent the jump discontinuity along the interior

mesh edge, Γ , that is shared by element K and J . Note that the normal and

tangent directions of edge Γ are defined in element K.

Figure 3.1 illustrates the terms defined in the section. The interior edge, Γ, is

shared by Element K and J . Assume n̂, n̂′, τ̂ , and τ̂ ′ are the unit vectors in the

normal and tangent directions of edge Γ in Element K and J , respectively. Note

that

n̂′ = −n̂, (3.9a)

τ̂ ′ = −τ̂ . (3.9b)

Figure 3.1: Illustration of terms used by Section 3.2.

Assume the normal and tangent directions of edge Γ are n̂ and τ̂ (the same

as is defined in element K). Two types of jump discontinuity are considered:

• Normal flux jump comes from the discontinuity of the term, ∂F
∂n
≡ ∇F · n̂,

due to the application of Gauss’s theorem (Equation 2.32b) and integration

29

identities derived from it (Equation 2.35b). We have the following relation in

Figure 3.1:(
∂F

∂n

)
Γ∈K

+

(
∂F

∂n′

)
Γ∈J

= (∇F)Γ∈K · n̂+ (∇F)Γ∈J · n̂′

=

(
∂F

∂n

)
Γ∈K
−
(
∂F

∂n

)
Γ∈J

. (3.10)

It defines the jump discontinuity of the normal flux as[
∂F

∂n

]
Γ

=

(
∂F

∂n

)
Γ∈K
−
(
∂F

∂n

)
Γ∈J

. (3.11)

• Discontinuity of the “force”, F, in the tangent direction is due to the appli-

cation of Stokes’ theorem (Equation 2.32a) and integration identities derived

from it (Equation 2.40). We have the following relation in Figure 3.1:

(F · τ̂)Γ∈K + (F · τ̂ ′)Γ∈J = (F · τ̂)Γ∈K − (F · τ̂)Γ∈J . (3.12)

Specifically, we replace F with ∇F and use the following relation:

τ̂ = cos(γ)R̂ + sin(γ)Ẑ, (3.13)

where γ is the angle between τ̂ and the R axis (Figure 3.1). This defines the

jump discontinuity in the tangent direction as

[∇F · τ̂]Γ =

[
∂F

∂R
cos(γ) +

∂F

∂Z
sin(γ)

]
Γ

=

(
∂F

∂R
cos(γ) +

∂F

∂Z
sin(γ)

)
Γ∈K
−
(
∂F

∂R
cos(γ) +

∂F

∂Z
sin(γ)

)
Γ∈J

. (3.14)

Note that the solution using the finite element space, Vh, for the spatial dis-

cretization, and the temporal discretization of the forward Euler on the bilinear

30

forms and the backward Euler on the trilinear forms is Un
h that satisfies

a1(Un+1
h − Un

h , νh)

δt
+ c1(Un

h , U
n
h , νh)− c1(ψnh , ψ

n
h , νh) + µa2(Un+1

h , νh) = 0,

(3.15a)

a1(ψn+1
h − ψnh , qh)

δt
+ c2(Un

h , ψ
n
h , qh) + ηa2(ψn+1

h , qh) = 0.

(3.15b)

Adding Equation 3.15 to the right-hand-side of Equation 3.7 (NoticingRU
h (en, En)

and Rψ
h (en, En) are set to zero), we obtain

a1(en+1, ν)

δt
+ µa2(en+1, ν) =


−a1(Un+1

h −Unh ,ν−νh)

δt

−c1(Un
h , U

n
h , ν − νh)

+c1(ψnh , ψ
n
h , ν − νh)

−µa2(Un+1
h , ν − νh)


, (3.16a)

a1(En+1, q)

δt
+ ηa2(En+1, q) =


−a1(ψn+1

h −ψnh ,q−qh)

δt

−c2(ψnh , U
n
h , q − qh)

−ηa2(ψn+1
h , q − qh)

 . (3.16b)

It can be seen that the weighting functions on the right-hand-side of Equation 3.16

are changed to (ν − νh, q − qh) compared with Equation 3.7. To be more exact,

(νh, qh) ∈ Vh×Vh in Equation 3.16 is the interpolant of (ν, q) ∈ V ×V that satisfies

Theorem 1.1 in [30]. [40] gives the definition of the interpolant in Hilbert spaces.

Integrate the right-hand-side of Equation 3.16 by parts (see Equations 2.35a,

31

2.35b and 2.40). Specifically, we have from Equation 2.35b

a2(Un+1
h , ν − νh) =

∫
Ω

∇2Un+1
h ∇2(ν − νh)dΩ

=
∑
K∈P

∫
K
∇2Un+1

h ∇2(ν − νh)dΩ

=
∑
K∈P


∫
K(ν − νh)∇4Un+1

h dΩ

−
∮
∂K(ν − νh)n̂ · (∇∇2Un+1

h)dS

+
∮
∂K∇(ν − νh) · n̂∇2Un+1

h dS


=

∑
K∈P

∫
K

(ν − νh)∇4Un+1
h dΩ

+
∑

Γ∈∂P\∂Ω

∫
Γ

 (ν − νh)
[
−∂∇2Un+1

h

∂n

]
Γ

+∇(ν − νh) · n̂
[
∇2Un+1

h

]
Γ

 dS.

(3.17a)

Note that we applied the following properties:

n̂ · (∇∇2Un+1
h) =

∂∇2Un+1
h

∂n
(3.18a)[

−(ν − νh)
∂∇2Un+1

h

∂n

]
Γ

= (ν − νh)
[
−∂∇

2Un+1
h

∂n

]
Γ

, (3.18b)[
∇(ν − νh) · n̂∇2Un+1

h

]
Γ

= ∇(ν − νh) · n̂
[
∇2Un+1

h

]
Γ
. (3.18c)

Similarly, we have from Equation 2.35a

a1(Un+1
h − Un

h , ν − νh) =

∫
Ω

∇(Un+1
h − Un

h) · ∇(ν − νh)dΩ

=
∑
K∈P

∫
K
∇(Un+1

h − Un
h) · ∇(ν − νh)dΩ

=
∑
K∈P

 −
∫
K(ν − νh)∇2(Un+1

h − Un
h)dΩ

+
∮
∂K(ν − νh)n̂ · ∇(Un+1

h − Un
h)

 dS

=
∑
K∈P

−
∫
K

(ν − νh)∇2(Un+1
h − Un

h)dΩ. (3.19a)

Note that we used the homogeneous Dirichlet boundary conditions and the property

32

of the C1 continuity in the solution.

The term of c1(Un
h , U

n
h , ν − νh) is integrated by parts from Equation 2.40 as

c1(Un
h , U

n
h , ν − νh) =

∫
Ω

∇2Un
h < Un

h , ν − νh > dΩ

=
∑
K∈P

∫
K
∇2Un

h < Un
h , ν − νh > dΩ

=
∑
K∈P


∫
K(ν − νh) < ∇2Un

h , U
n
h > dΩ

−
∮
∂K(ν − νh)∇2Un

h

(
∂Unh
∂R
dR +

∂Unh
∂Z
dZ
) 

=
∑
K∈P

∫
K

(ν − νh) < ∇2Un
h , U

n
h > dΩ

+
∑

Γ∈∂P\∂Ω

−
∫
Γ

(ν − νh)

∇2Un
h

 ∂Unh
∂R
cos(γ)

+
∂Unh
∂Z
sin(γ)


Γ

dS.

(3.20a)

Note that we used the following property (also see Equation 3.13):

dR = cos(γ)dS, (3.21a)

dZ = sin(γ)dS. (3.21b)

The other terms in Equation 3.16 are integrated by parts similarly. This leads to

the error equation written as the element residual and the jump discontinuity across

the mesh edge:

a1(en+1, ν)

δt
+ µa2(en+1, ν) =


∑
K∈P

∫
K(ν − νh)RU

1 dΩ

+
∑

Γ∈∂P\∂Ω

∫
Γ

(ν − νh)[RU
2]ΓdS

+
∑

Γ∈∂P\∂Ω

∫
Γ
∇(ν − νh) · n̂[RU

3]ΓdS

 ,

(3.22a)

a1(En+1, q)

δt
+ ηa2(En+1, q) =


∑
K∈P

∫
K(q − qh)Rψ

1 dΩ

+
∑

Γ∈∂P\∂Ω

∫
Γ

(q − qh)[Rψ
2]ΓdS

+
∑

Γ∈∂P\∂Ω

∫
Γ
∇(q − qh) · n̂[Rψ

3]ΓdS

 .

(3.22b)

33

The R terms are defined as:

RU
1 =

1

δt
∇2(Un+1

h − Un
h) +

 − < ∇2Un
h , U

n
h >

+ < ∇2ψnh , ψ
n
h >

− µ∇4Un+1
h , (3.23a)

Rψ
1 =

1

δt
∇2(ψn+1

h − ψnh)−∇2 < ψnh , U
n
h > −η∇4ψn+1

h , (3.23b)

RU
2 =

 ∇
2Un

h

(
∂Unh
∂R
cos(γ) +

∂Unh
∂Z
sin(γ)

)
−∇2ψnh

(
∂ψnh
∂R
cos(γ) +

∂ψnh
∂Z
sin(γ)

)
+ µ

∂∇2Un+1
h

∂n
, (3.23c)

Rψ
2 =

∂

∂n
< ψnh , U

n
h > +η

∂∇2ψn+1
h

∂n
, (3.23d)

RU
3 = −µ∇2Un+1

h , (3.23e)

Rψ
3 = −η∇2ψn+1

h , (3.23f)

Define the energy norms for U and ψ on V as

|||e|||U =

√
a1(e, e)

δt
+ µa2(e, e), (3.24a)

|||E|||ψ =

√
a1(E,E)

δt
+ ηa2(E,E). (3.24b)

It can be seen that the energy norms are equivalent to the H2 norms defined on V
[34].

From the approximation theory in H2 space [40, 30] (setting s = r = l = 2

and m = 0 for Theorem 1.1 in [30]), and the procedure for defining the explicit a

posteriori estimator in [30] (setting ν = en+1 and q = En+1 in Equation 3.22, apply-

ing Cauchy-Schwarz Inequality and Theorem 1.1 in [30], and using the equivalence

34

of the energy norm as the H2 norm), we obtain the a posteriori estimate as

|||en+1|||U ≤ C


∑
K∈P h

4
K
∥∥RU

1

∥∥2

L2(K)

+
∑

Γ∈∂P\∂Ω h
3
K
∥∥[RU

2

]
Γ

∥∥
L2(Γ)

+
∑

Γ∈∂P\∂Ω hK
∥∥[RU

3

]
Γ

∥∥
L2(Γ)


1
2

, (3.25a)

|||En+1|||ψ ≤ C



∑
K∈P h

4
K

∥∥∥Rψ
1

∥∥∥2

L2(K)

+
∑

Γ∈∂P\∂Ω h
3
K

∥∥∥[Rψ
2

]
Γ

∥∥∥
L2(Γ)

+
∑

Γ∈∂P\∂Ω hK

∥∥∥[Rψ
3

]
Γ

∥∥∥
L2(Γ)



1
2

. (3.25b)

The local error estimator on element K is defined by

ε2UK = h4
K||RU

1 ||2L2(K) +
1

2

∑
Γ∈∂K\∂Ω

(
h3
K
∥∥[RU

2

]
Γ

∥∥2

L2(Γ)
+ hK

∥∥[RU
3

]
Γ

∥∥2

L2(Γ)

)
,

(3.26a)

ε2ψK = h4
K||R

ψ
1 ||2L2(K) +

1

2

∑
Γ∈∂K\∂Ω

(
h3
K

∥∥∥[Rψ
2

]
Γ

∥∥∥2

L2(Γ)
+ hK

∥∥∥[Rψ
3

]
Γ

∥∥∥2

L2(Γ)

)
.

(3.26b)

Note that the local error estimator reduces to the result in [38] for the bihar-

monic equation with the Dirichlet boundary conditions by dropping the non-linear

terms and the time-derivative terms.

3.3 Implementation: Evaluation of Derivatives

The shape functions are written as the fifth-order polynomials of the local

(ξ, η) coordinate (Figure 2.3 in Section 2.3.1). The mapping from the local (ξ, η)

coordinate to the global (R,Z) coordinate is defined as (also see Equation 2.44) R

Z

 =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 ξ

η

+

 R0

Z0

 , (3.27)

where (R0, Z0) is the origin point of the (ξ, η) coordinate system.

In order to obtain the terms defined by Equation 3.26, the derivatives of the

35

shape functions up to fourth order need to be evaluated in the global (R,Z) coordi-

nate. It is straightforward to evaluate the derivatives in the local (ξ, η) coordinate,

given that the polynomials are written explicitly in terms of ξ and η. The inverse

of the matrix in Equation 2.48 gives the transformation from the derivatives with

respect to (ξ, η) to the derivatives with respect to (R,Z) up to the second order by

replacing θ with −θ. In order to keep the simple notation, define c = cos(θ) and

s = sin(θ). By applying the chain rule recursively, we get the transformation for

the third-order derivatives as
F,RRR

F,RRZ

F,RZZ

F,ZZZ

 =


c3 −3c2s 3cs2 −s3

c2s c3 − 2s2c s3 − 2sc2 s2c

s2c −s3 + 2sc2 c3 − 2s2c −sc2

s3 3s2c 3sc2 c3




F,ξξξ

F,ξξη

F,ξηη

F,ηηη

 , (3.28)

and the transformation matrix for the fourth-order derivatives is

c4 −4c3s 6c2s2 −4cs3 s4

c3s c4 − 3s2c2 −3c3s+ 3cs3 3c2s2 − s4 −s3c

c2s2 2sc3 − 2s3c c4 + s4 − 4s2c2 2s3c− 2sc3 s2c2

s3c −s4 + 3s2c2 −3s3c+ 3sc3 −3s2c2 + c4 −sc3

s4 4s3c 6s2c2 4sc3 c4


. (3.29)

3.4 Effectiveness of Error Estimator

This section demonstrates the effectiveness of the error estimator defined in

Section 3.2.

Define the global error estimator for U and ψ as [37]

ε2U =
∑
K∈P

ε2UK, (3.30a)

ε2ψ =
∑
K∈P

ε2ψK. (3.30b)

36

The global effectivity indices are defined as [30]

βU =
εU

|||en+1|||U
, (3.31a)

βψ =
εU

|||En+1|||ψ
, (3.31b)

where (en+1, En+1) = (Un+1 − Un+1
h , ψn+1 − ψn+1

h), and ||| · |||U and ||| · |||ψ are the

energy norms defined by Equation 3.24.

3.4.1 Steady-state Solution: Hartmann Boundary Layer

The effectiveness of the error estimator is studied on the problem of the Hart-

mann boundary layers between two planes. It is a steady state of the conductive fluid

under low Reynold numbers [41]. Assume that two planes are placed at Z = −w
and Z = w, there is a background magnetic field along the Z axis with the mag-

nitude as B, and the characteristic magnitude of the velocity is one. The laminar

flow through two planes takes the pattern as [41]

V · R̂ = 1− 1

cos(Ha)
cosh

(
Ha

w
Z

)
, (3.32a)

V · Ẑ = 0, (3.32b)

where Ha is the Hartmann number defined as

Ha =
Bw
√
µη
. (3.33)

The solution of the laminar flow indicates that the boundary layers with the thick-

ness characterized as δ = w
Ha

are developed at Z = ±w.

Given the definition of the U and ψ by Equation 2.17, we seek the analytic

solution that takes form as

U = Z − w

Ha

1

cos(Ha)
sinh

(
Ha

w
Z

)
, (3.34a)

ψ = C1R + C2cosh

(
Ha

w
Z

)
. (3.34b)

37

Note that the steady-state solution of Equation 2.31 satisfies (ρ ≡ 1)

< ∇2U,U > − < ∇2ψ, ψ > +µ∇4U = 0, (3.35a)

∇2 < ψ,U > +η∇4ψ = 0. (3.35b)

Substituting Equation 3.34 into Equation 3.35, we obtain

C1 = B, (3.36a)

C2 =
µ

cosh(Ha)B
. (3.36b)

Substituting C1 and C2 into Equation 3.34, we obtain the analytic solution of

the steady state as

U = Z − w

Ha

1

cos(Ha)
sinh

(
Ha

w
Z

)
, (3.37a)

ψ = BR +
µ

cosh(Ha)B
cosh

(
Ha

w
Z

)
. (3.37b)

Figure 3.2 plots the analytic solution defined by Equation 3.37 with two planes

placed at Z = ±2. Ha is set to be 6.3 (B = 1.0, µ = 1.0, η = 0.1) and 20.0

(B = 1.0, µ = 0.1, η = 0.1), respectively. It shows that the current also exhibits the

structure of the boundary layers in addition to the velocity profile. Also note that

the characteristic magnitude of the velocity defined analytically is minus one.

38

Figure 3.2: Profiles of the Velocity (∂U
∂Z

= −V · R̂) and current density
(j = −∇2ψ) defined by Equation 3.37.

39

3.4.2 Error Estimation on Hartmann Boundary Layer Problem

In order to obtain the steady-state solution, the Dirichlet boundary conditions

are set to satisfy the analytic solution by Equation 3.37 at the domain boundary.

The initial condition is set as the perturbed solution of the analytic solution. The

simulation domain is a [−2, 2]× [−2, 2] rectangular. Two sets of tests are performed

that use Ha = 6.3 (B = 1.0, µ = 1.0, η = 0.1) and Ha = 20.0 (B = 1.0, µ =

0.1, η = 0.1), respectively. For each set of the tests, a coarse initial mesh is used.

The mesh is adapted when the solution reaches the steady state. The loop continues

with calculating the steady state on the adapted mesh until the estimated local error

falls below the given criterion. The global effectivity indices are calculated during

each iteration.

The energy norm defined by Equation 3.24 depends on the size of time step, δt.

Since the solution goes to steady state, the energy norm should be independent of δt.

Re-wring Equation 3.6 by dropping the time derivative terms, using the technique

that defines the error estimator for the steady incompressible Navier-Stokes equation

in [30, 42], and following the procedure in Section 3.2, we obtain the same error

estimator as in Equation 3.26 (dropping the δt terms and the superscript n for (·)n

terms), and the energy norm for the steady-state problem is

|||e|||U =
√
µa2(e, e), (3.38a)

|||E|||ψ =
√
ηa2(E,E). (3.38b)

Figure 3.3 and 3.4 plot the initial and adapted meshes for the cases of Ha = 6.3

and Ha = 20.0. It can be seen that the mesh is refined at Z = ±2 where the

boundary layers are developed (see Figure 3.2). Figure 3.7 illustrates the steady

state solution of ψ on the final adapted mesh.

Table 3.1 and 3.2 calculate the global effectivity indices on the two sets of

meshes in Figure 3.3 and Figure 3.4. It can be seen the global effectivity indices

for a given problem over estimate the true error. Although the degree of the over

estimation is relatively large, they are reasonably steady and the distribution of the

element level values is consistent with that of the true error (Figure 3.5 and Fig-

40

Table 3.1: Global effectivity indices calculated on the meshes in Fig-
ure 3.3.

mesh initial iteration 1 iteration 2
βU 25.4 33.7 27.3
βψ 10.8 10.4 8.8

Table 3.2: Global effectivity indices calculated on the meshes in Fig-
ure 3.4.

mesh initial iteration 1 iteration 2 iteration 3 iteration 4
βU 10.3 7.0 10.5 10.7 10.7
βψ 12.1 7.1 10.4 10.7 10.7

ure 3.6). Although additional improvements to this error estimator are possible, the

application to the fusion plasma problems of interest (see Chapter 7) would need to

be taken into account and it would greatly increase the complexity of the deriva-

tion. Consideration of such improvements, along with more explicit consideration

of temporal error control, remains an area of future investigation.

Figure 3.8 plots the velocity profile and current density on the initial and final

adapted mesh (Figure 3.4) with Ha = 20.0. It can be seen the solution on the

adapted mesh agrees with the analytic solution.

41

(a) initial (b) iteration 1

(c) iteration 2

Figure 3.3: Initial and adapted meshes for Ha = 6.3.

42

(a) initial (b) iteration 1

(c) iteration 2 (d) iteration 3

(e) iteration 4

Figure 3.4: Initial and adapted meshes for Ha = 20.0.

43

(a) estimated error of U (b) true error of U

(c) estimated error of ψ (d) true error of ψ

Figure 3.5: Estimated and true element errors on the final adapted mesh
in Figure 3.3 (Ha = 6.3).

44

(a) estimated error of U (b) true error of U

(c) estimated error of ψ (d) true error of ψ

Figure 3.6: Estimated and true element errors on the final adapted mesh
in Figure 3.4 (Ha = 20.0).

45

(a) Ha = 6.3

(b) Ha = 20.0

Figure 3.7: Steady state solution of ψ on the final adapted mesh in Fig-
ure 3.3 and 3.4.

46

Figure 3.8: Velocity profile and current density on the initial and final
adapted mesh at R = 0 (Figure 3.4) with Ha = 20.0.

CHAPTER 4

M3D-C1 Simulation Loop and Extensions towards

Automated Version

This chapter reviews the parallel adaptive simulation loop in M3D-C1 and the spe-

cific developments made for M3D-C1. Section 4.1 presents the software tools in the

parallel adaptive loop. Section 4.2 discusses the mesh entity and DOF ordering on

the partitioned mesh. Section 4.3 gives an overview of the parallel sparse matrix

generated by the finite element procedure in M3D-C1. A matrix assembly procedure

based on the mesh adjacency information is discussed in Section 4.4. Section 4.5

introduces the solution mapping method during the mesh modifications.

4.1 M3D-C1 Simulation Loop

4.1.1 Simulation Loop on 2D Mesh

Figure 4.1 illustrates the workflow of the adaptive loop for M3D-C1 on a 2D

mesh. Specific software tools used are placed within the boxes of the functional

components illustrated by Figure 1.1 in Section 1.1. The workflow and the software

components include:

• [A in Figure 4.1] The mathematical model defines the governing PDEs of the

problem (see Section 2.1), the initial condition and boundary conditions over

the problem domain.

• [B in Figure 4.1] The geometric model of the tokamak cross-section is con-

structed with the boundaries represented by the analytic functions or splines

fitted to an ordered set of points. The 2D mesh on the toroidal plane (tokamak

cross-section) is generated with the Simmetrix mesh generation tool [43] and

partitioned by the graph-based partitioning tool in the Parallel Unstructured

Mesh Infrastructure (PUMI) [44]. The geometric model and the distributed

mesh are loaded in PUMI that provides the interface to the geometric model

47

48

and manages the distributed mesh. For the detailed discussion on the geomet-

ric model and mesh definition, see Section 5.4.2.

• [C in Figure 4.1] The fourth-order PDEs derived from the MHD equations

are discretized with the C1 element [3, 8, 6] and the element contributions to

the stiffness matrix and the force vector are calculated. The geometric entity

that a mesh entity is classified on identifies the set of the governing equation

applied in the region with the three region types being plasma, material wall

and vacuum. The geometric shape information such as the normal direction

and curvature provides the necessary boundary information during the PDE

discretization process [2]. The input fields needed to define the element contri-

butions include the equilibrium of the plasmas and/or the solution field from

the previous time step. For the detailed discussion on the PDE discretization,

refer to Section 2.2 and 2.3.

• [D in Figure 4.1] The element contributions to the stiffness matrix and the

force vector are assembled to form the global discrete equation. A global DOF

ordering that assigns integer labels to the DOFs associated with the mesh

vertex is calculated. The integer corresponds to the equation number in the

global discrete system.

• [E in Figure 4.1] The global discrete system is solved to get the solution fields

(for instance, the velocity and magnetic fields) at the current time step. Direct

solvers such as SuperLU [45] are used to solve problems on the 2D mesh.

• [F in Figure 4.1] A mesh size field is defined either from the priori knowledge

of the solution or the posteriori error estimation (see Chapter 3) if the mesh

on the cross-section needs to be improved.

• [G in Figure 4.1] The mesh is adapted through MeshAdapt [46, 47]. The fields

on the original mesh are mapped onto the new mesh.

49

Figure 4.1: Simulation loop of M3D-C1 on a 2D mesh.

4.1.2 Simulation Loop on 3D Mesh

Figure 4.2 illustrates the workflow of a 3D M3D-C1 simulation. Similar to the

simulation loop on the 2D mesh (Figure 4.1), the specific software tools used are

placed within the boxes of the functional components. Note that the components in

the dashed boxes (F and G in Figure 4.2) are to be put in place for the 3D simulation

loop in the future.

The application of the C1 wedge element (Section 2.3.3) requires that the 3D

mesh in M3D-C1 is constructed by connecting the matched pairs of the 2D meshes on

the planes that correspond to the cross-sections of the torus in the toroidal direction.

The 2D mesh is either generated by Simmetrix [43] or adapted from the simulation

loop on the 2D mesh (Figure 4.1). The processes used for the 3D simulation are

grouped and the number of the process groups is equal to the number of the planes

used in the 3D simulation (input information of B in Figure 4.2). Each process

50

group loads the same distributed 2D mesh, and the wedge elements are created

between the mesh parts that correspond to the matched pairs of the toroidal planes

(see Section 5.3.4 for the detailed description).

In addition to the mesh setup, iterative solving methods are used to solve the

problems on the 3D mesh compared with the simulation loop on the 2D mesh. The

global discrete system is solved through PETSc [48] (E in Figure 4.2).

Figure 4.2: Simulation loop of M3D-C1 on a 3D mesh.

4.1.3 Simulation Loop from 2D Mesh to 3D Mesh

Figure 4.3 illustrates the simulation loop from the 2D mesh to the 3D mesh.

The loop starts with the simulation on the 2D mesh and the axis-symmetric insta-

bilities are developed on the tokamak cross-section (C in Figure 4.3). The mesh

on the cross-section is adapted by evaluating the solution quality if needed (E in

Figure 4.3). If the instabilities in the toroidal direction of the tokamak also need

to be developed (F in Figure 4.3), the simulation is switched to the 3D mesh (G in

Figure 4.3). See Section 5.3.4 for the detailed description on the 3D mesh construc-

51

tion from the 2D mesh. The 3D simulation represents a full set of instabilities in all

the spatial directions of the tokamak (D in Figure 4.3).

The Attached Parallel Field and Mesh Interface Library (APF) in PUMI [44] is

used to store and manage the fields in the adaptive simulation loop (H in Figure 4.3).

It provides the array-based field data structure for the mesh-based analysis, the

automatic data migration during the dynamic mesh load balancing [44], and the

interface to define the field mapping method associated with the mesh modifications.

Figure 4.3: Simulation loop from the 2D mesh to the 3D mesh.

4.2 Mesh Entity and DOF Ordering

4.2.1 Mesh Entity Ordering and Ownership on Partitioned Mesh

The mesh entities, specifically the mesh vertices and the mesh elements (the

mesh faces in 2D and the mesh regions in 3D) for M3D-C1, are ordered based on

the adjacency information [49] to improve the data locality. Enhanced data locality

leads to an increased cache hit rate of the program and thus improve the efficiency

of the computation [49].

On the partitioned mesh, there are copies of the same mesh entities at the

52

mesh part boundary and one copy of the mesh entity is set as the “owner” [44]. The

ownership is used to decide the inter-part message passing [50] and to perform the

consistent mesh modifications [44] on the partitioned mesh.

For the details on the mesh-adjacency based ordering and the ownership rule

on the partitioned mesh, refer to [49, 44].

4.2.2 Global DOF Ordering

In order to assemble the element contribution to the stiffness matrix and the

force vector in the global discrete system, the DOFs are labeled with the integers that

start with one and increase continuously. The integers give the equation numbers

in the global discrete system (D in Figure 4.1 and 4.2).

Given that the DOFs are associated with the mesh vertices in M3D-C1 (see

Section 2.3), the DOFs are labeled from the ordering and the ownership of the mesh

vertices (Section 4.2.1). The algorithm that orders the DOFs on the partitioned

53

mesh is summarized as follows:

procedure ORDER_DOF

var DOFVERTEX = {number of DOFs associated with a vertex}

var VERTEXSTART={start vertex number}

var DOFSTART={start DOF number}

get the number of owned mesh vertices in the mesh part

get VERTEXSTART by MPI_Reduce

(VERTEXSTART=1 on the first mesh part)

DOFSTART = (VERTEXSTART-1) * DOFVERTEX + 1

for P = 1 to the number of the vertices in the mesh part

if vertex P is owned by the mesh part

label DOFs of P from DOFSTART

to DOFSTART + DOFVERTEX -1

DOFSTART = DOFSTART + DOFVERTEX

end if

end for

for each mesh vertex on the part boundary

if the vertex is owned by the mesh part

send the DOF numbers to the non-owner copies

else

receive the DOF numbers from the owner copy

end if

end for

end procedure

4.3 Parallel Sparse Matrix

4.3.1 Matrix Sparsity Pattern

The global DOF ordering on the partitioned mesh discussed in Section 4.2 also

provides the row and column numbers to the stiffness matrix in the finite element

procedure of M3D-C1. Since the matrix in the finite element analysis is obtained by

assembling the contribution from the individual element, there is a non-zero value

54

in the matrix at the location specified by the row and the column that correspond

to the same mesh vertex or two mesh vertices in the same element. As a result,

the sparsity of the matrix is decided by the global DOF ordering and the element

connectivity.

For example, given the DOF ordering on the mesh in Figure 4.6, the contri-

butions of element a and element b to the global matrix are

Ka =


ka11 ka12 ka13

ka21 ka22 ka23

ka31 ka32 ka33

 , (4.1)

and

Kb =


kb11 kb13 kb14

kb31 kb33 kb34

kb41 kb43 kb44

 , (4.2)

respectively. The resulted global matrix by assembling Ka and Kb is

K =


ka11 + kb11 ka12 ka13 + kb13 kb14

ka21 ka22 ka23

ka31 + kb31 ka32 ka33 + kb33 kb34

kb41 kb43 kb44

 , (4.3)

The matrices in M3D-C1 also exhibit the block structures in a hierarchical

way. The C1 finite elements assign multiple DOFs to each mesh vertex. Each mesh

vertex is associated with six DOFs on the 2D mesh or twelve DOFs on the 3D mesh

(Section 2.3). In addition to the multiple DOFs at the element level, the vector

fields are represented by the multiple scalar components and the number of the

scalar components is decided by the M3D-C1 option. For example, the velocity field

in the full MHD model is represented by the three scalar components, (U, ω, χ), in

the cylindrical coordinate (R,ϕ, z) as (also see Equation 2.12 in Section 2.2)

V = R2∇U ×∇ϕ+R2ω∇ϕ+
1

R2
∇⊥χ, (4.4)

55

and the one-scalar representation of the velocity field in the reduced MHD model is

V = R2∇U ×∇ϕ. (4.5)

The block structure of the matrices by the definition of the finite element and the

vector field exist in both the 2D and 3D simulations. In 3D simulation, the construc-

tion of the 3D mesh by connecting the meshes on the pair of the adjacent planes

leads to the matrix with the cyclic tri-diagonal block structure (Figure 4.4). The

diagonal blocks of the 3D matrix (Figure 4.4) are used to form the preconditioning

method for the iterative solving process (E in Figure 4.2) [6].

Figure 4.4: 3D Matrix structure with six cross-sections in the torus ge-
ometry. Each diagonal block corresponds to a 2D cross-
section.

4.3.2 Matrix Partition

The sparse matrix is partitioned to the processes row-wisely in PETSc [51].

Each process “owns” a range of the rows labeled by continuous numbers. The matrix

layout in PETSc is illustrated in Figure 4.5. The matrix with the number of rows

as n2 is distributed on two processes. The first process owns the rows labeled from

1 to n1, and the second process owns the rows labeled from n1 + 1 to n2.

In M3D-C1, the ownership of the rows inherits from the ownership of the DOFs

that is decided by the mesh vertex ownership (see Section 4.2). Figure 4.6 illustrates

the global DOF ordering and the layout of the distribution matrix on a partitioned

mesh. Assume the DOF or the vertex labeled by 1 is owned by process 1 and the

56

Figure 4.5: PETSc matrix layout.

DOF or the vertex labeled by 3 is owned by process 2. Process 1 owns row 1 and

row 2 and process 2 owns row 3 and row 4 in the resulted matrix.

As is discussed in Section 4.3.1, the locations that the element contributions

are assembled to the matrix are decided by the global DOF numbers associated with

the element. Matrix values in the rows owned by the process are “on-part” values

and matrix values in the rows owned by other processes are “off-part” values. For

example, element a on process 1 in Figure 4.6 contributes the values of the rows and

columns indexed by 1, 2, 3 in the global matrix (see Equation 4.1). The values in

row 1 and row 2 are on-part values on process 1. The values in row 3 (ka31, ka32, and

ka33 in Equation 4.1) are off-part values on process 1.

4.4 Mesh-adjacency Based Matrix Assembly Procedure

As is discussed in Section 4.3.2, there are off-part matrix values generated by

the finite element procedure on the partitioned mesh. These off-part values need

to be sent to the owner processes to assemble the global matrix. PETSc is used as

the matrix library in M3D-C1. Extra memory is needed to store the off-part values

in PETSc, compared with the on-part values during matrix assembly. The curve

marked by the circles in Figure 4.7 plots the memory usage to assemble the 3D

matrix with the structure illustrated by Figure 4.4. The memory usage is profiled

by the valgrind massif tool [52] on a 64 bit machine (piglet at SCOREC) with

57

Figure 4.6: Global DOF ordering and the matrix layout on a mesh par-
titioned and loaded by two processes. Vertex 1 is owned by
process 1 and vertex 3 is owned by process 2.

the PETSc version as 3.5.1. The 3D mesh is constructed following the procedure

in Section 4.1.2. There are 1034 vertices on the input 2D mesh. Six processes

are divided into six groups, and each process loads the same 2D mesh. 3D wedge

elements are created between the matched pair of the processes. The contribution

of a single wedge element are assembled to the rows of the global matrix that are

owned by the two processes (see Figure 2.2). At stage 0-1 in Figure 4.7, the sparsity

of the global matrix is set up and the memory needed by the global matrix is

preallocated. At stage 1-2, the element contribution is calculated and passed to the

matrix structure in PETSc. The additional memory compared with stage 0-1 is

to store the off-part values generated by the element procedure. At stage 2-3, the

off-part values are passed to the owner processes and the assembled global matrix

is obtained at stage 3-4. The additional memory used to store and pass the off-

part values (see the peak memory at stage 2-3) is about seven times of the memory

needed by the assembled global matrix (see the memory usage at stage 0-1 or stage

3-4) for the 3D matrix studied.

In order to reduce the memory footprint during the matrix assembly, a proce-

dure that takes advantage of the mesh-adjacency information is developed to perform

the parallel matrix assembly. The off-part values generated by the element procedure

are not directly assembled to the matrix that is to form the global discrete system.

Instead, an auxiliary on-part matrix is created to store these off-part values. The

58

values in the auxiliary matrix are sent to the owner processes by the point-to-point

communication pattern on the partitioned mesh [50, 53] and assembled on the owner

processes to the matrix in the global discrete system.

The following data structures used by the matrix assembly procedure are de-

fined:

• NVERTEX: the number of the vertices in a mesh element (equal to 3 for the 2D

triangle element and 6 for the 3D wedge element),

• DOFVERTEX: the number of DOFs associated with a mesh vertex,

• ELMMAT: the element matrix (Ka in Equation 4.1 or Kb in Equation 4.2 if

DOFVERTEX equals one),

• PARAMAT: the parallel matrix partitioned row-wisely in the global discrete sys-

tem (K in Equation 4.3),

• SEQMAT: the auxiliary on-part matrix to store the element contributions that

are off-part with respect to PARAMAT,

• GLBIDX: the array of the global DOF numbers attached to a vertex (see Sec-

tion 4.2),

• LOCIDX: the array of indices corresponding to the locations of the DOF values

in the array-based field data structure (local DOF numbers) [44].

The details of the procedure is discussed by the following sub-sections.

59

4.4.1 Preallocation Stage

The preallocation stage calculates the number of the non-zero values in each

row of the matrix and provides the information to the matrix library. Preallocation

is performed for both the parallel matrix in the global discrete system, PARAMAT and

the auxiliary on-part matrix, SEQMAT. The algorithm is summarized as the follows:

procedure PREALLOCATE_MATRIX

for each mesh vertex in the local mesh part

if the vertex is owned by other processes

get the number of the adjacent vertices

in the local mesh part as NUMADJ

set the number of non-zero values in the rows of SEQMAT

associated with the vertex to be (1+NUMADJ)*DOFVERTEX

else

get the number of the adjacent vertices

in the global complete mesh as NUMADJ

set the number of non-zero values in the rows of PARAMAT

associated with the vertex to be (1+NUMADJ)*DOFVERTEX

end if

end for

end procedure

4.4.2 Matrix Set-up Stage

During the matrix set-up stage, the element contribution is calculated and

assembled to PARAMAT or SEQMAT, depending on whether the vertex in the element

is owned by the process. Note that the block structure of the matrix due to the

multiple DOFs at the element level (Section 4.3.2) is used to assemble the element

contribution. A block of the matrix values instead of a single matrix value is assem-

60

bled to the corresponding matrix at a time.

procedure SETUP_MATRIX

for each element in the local mesh part

calculate ELMMAT

for each vertex in the element

if the vertex is owned by the process

get GLBIDX of the vertex

assemble the rows of ELMMAT

associated with the vertex to PARAMAT by GLBIDX

else

get LOCIDX of the vertex

assemble the rows of ELMMAT

associated with the vertex to SEQMAT by LOCIDX

end if

end for

end for

end procedure

61

4.4.3 Parallel Assembly Stage

During parallel assembly stage, matrix values stored in the auxiliary ma-

trix, SEQMAT, are sent to the owner processes and assembled to the global matrix,

PARAMAT, on the owner processes. The algorithm is described as follows [50, 53]:

procedure ASSEMBLE_PARALLEL_MATRIX

for each vertex in the local mesh part

if the vertex is owned by other processes

get the list of the adjacent vertices

on the local mesh part as VERTEXADJ

add the vertex to VERTEXADJ

get global DOF numbers of VERTEXADJ in GLBIDX

get local DOF numbers of VERTEXADJ in LOCIDX

get the rows in SEQMAT by LOCIDX

pack GLBIDX and the rows into data buffer

to be sent to the owner process

end if

end for

destroy SEQMAT

send the data to the owner processes

receive the data from non-owner processes

assemble the rows received to PARAMAT

end procedure

Note that the block structure of the matrix (Section 4.3.2) is further used to reduce

the data size during parallel communication. The indices of the blocks are sent

instead of the indices of individual values (GLBIDX in the algorithm).

4.4.4 Memory Usage Improvement

Figure 4.7 compares the memory usage of the 3D matrix assembly by the

mesh-adjacency based procedure and the procedure using PETSc directly. At stage

0-1, the memory needed to store the matrix/matrices is preallocated. The parallel

assembly by PETSc only preallocates the amount of the memory for the rows owned

62

Figure 4.7: Memory usage by using PETSc and the mesh-adjacency
based procedure. Each mesh vertex is attached with 36
DOFs. On each plane, there are 1034 mesh vertices and
2.7× 107 non-zeros values in the assembled matrix.

by the calling process. The mesh-adjacency based parallel assembly also preallocates

the auxiliary on-part matrix (see the additional amount of memory by the mesh-

adjacency based parallel assembly at stage 0-1). At stage 1-2, the element matrix

values are generated and passed to the matrix structure. The parallel assembly by

PETSc stores off-part values in a separate data structure (referred as “stash” [51])

and new memory for the off-part values is allocated incrementally as the element

procedure goes on. The mesh-adjacency based parallel assembly stores the off-part

values to the auxiliary on-part matrix of which the memory is preallocated at stage

0-1. At stage 2-3, off-part matrix values owned by the other processes are sent. An

additional data buffer is allocated to send/receive the values for both methods. At

stage 3-4, the final assembled global parallel matrix is obtained. Both methods use

the same amount of memory at this stage. Also notice that the storage format of

63

Table 4.1: Running time of the parallel matrix assembly by using PETSc
directly and by using the mesh-adjacency based procedure.
There are 13,113 vertices on each plane and 36 DOFs associ-
ated with each vertex. The number of the processes in each
process group is 312.

number of planes (process groups) 6 12 24 48
number of processes 1,872 3,744 7,488 14,976
number of DOFs 2.8E6 5.7E6 11.3E6 22.7E6
number of non-zero values 2.1E9 4.2E9 8.5E9 17.0E9
mesh-adjacency-assembly time 0.41s 0.43 s 0.44 s 0.45 s
PETSc-assembly time 0.84 s 0.88 s 0.96 s 0.97 s

the auxiliary matrix (SEQMAT) and the data buffer for the message passing at stage

2-3 in the mesh-adjacency based assembly take advantage of the block structure of

the sparse matrix. Only the indices of the blocks are stored instead of the individual

values. As for the matrix to form the global discrete system (PARAMAT), the storage

format does not use the block structure due to the limitation of the current PETSc

implementation (see [48] for further information).

It shows that the peak memory is reduced to ∼ 25% by the mesh-adjacency

based parallel matrix assembly procedure. The matrix assembly procedure that uses

the mesh-adjacency information improves the efficiency of the matrix assembly in

M3D-C1 regarding to the memory cost.

Table 4.1 compares the running time to perform the parallel matrix assembly

(Section 4.4.3) on NERSC Edison [54]. It can be seen that the running time by the

mesh-adjacency based procedure is reduced by more than 50% compared with the

procedure using PETSc directly due to the smaller size of the inter-process message

(see stage 2-3 in Figure 4.7). The mesh-adjacency based assembly procedure also

shows scalability on the weak scaling study in Table 4.1 by applying the point-to-

point communication pattern [50, 53].

64

4.5 Solution Mapping during Mesh Modification

4.5.1 Solution Mapping from 2D Mesh to 3D Mesh

When the simulation loop is switched from the 2D to the full 3D (Figure 4.3),

the solution fields on the 2D mesh are mapped to the 3D mesh. Assume U is an

axis-symmetric field defined on the 2D mesh. To map U from the 2D mesh to the

3D mesh, the DOFs of the C1 wedge elements are specified (see Section 2.3.3). For

each vertex, the number of DOFs needed by U is changed from six to twelve. The

DOFs corresponding to U , U,R, U,Z , U,RR, U,RZ , U,ZZ on the 3D mesh are assigned

with the same values as on the original 2D mesh. The DOFs corresponding to U,ϕ,

U,Rϕ, U,Zϕ, U,RRϕ, U,RZϕ, U,ZZϕ are assigned to zero since the field on the 3D mesh

is still axis-symmetric and there is no variation in the ϕ direction (∂U/∂ϕ = 0).

4.5.2 Solution Transfer with Local Modification

In the adaptive loop illustrated by Figure 4.1, the solutions are mapped to the

new mesh when the mesh is adapted by applying the local modifications. We focus

on the case that a edge is split on the toroidal 2D mesh in M3D-C1. Figure 4.8

illustrates the edge split operation during the local mesh modifications [46]. The

edge split operation creates a new vertex, P . The DOF values associated with the

new vertex need to be specified. Assume the original finite element solution field on

elements J and K is

UJ(ξ, η) =
18∑
i=1

λJi µi(ξ, η), (4.6a)

UK(ξ, η) =
18∑
i=1

λKi µi(ξ, η), (4.6b)

respectively, where µi is the ith reduced quintic shape function (Section 2.3.1), and

λi is the multiplier of µi calculated from the DOFs associated with the triangle by

Equation 2.48.

The coordinate of P (R,Z) is converted to the local coordinate in elements J

and K by Equation 2.44 as P (ξJ , ηJ), and P (ξK , ηK), respectively. The function

value, first and second order derivatives of the field in Equation 4.6 are evaluated at

65

P and converted to the DOF values by the inverse mapping defined by Equation 2.48

as {dJi } and {dKi }, respectively.

The DOFs associated with P are specified as

di =
SJ

SK + SJ
dJi +

SK

SK + SJ
dKi , (4.7)

where i = 1, 2, ..., 6, and SJ and SK are areas of the elements J and K, respectively.

Figure 4.8: Edge split.

Given the property of the C1 field, it can be seen:

• DOFs corresponding to the function value and the first-order derivatives are

interpolated from the original field directly.

• DOFs corresponding to the second-order derivatives are obtained by averaging

the values evaluated at the new vertex in the elements adjacent to the edge to

be split.

Solution transfer associated with the other types of local modifications, such

as the swap and the collapse operations, is performed either by keeping the DOF

values associated with the mesh vertices unchanged (swap operation) or dropping

the DOFs along with the mesh vertex to be collapsed. More sophisticated solution

transfer methods such as the superconvergent patch recovery (SPR) [55] is to be

investigated in the future.

CHAPTER 5

Mesh Generation and Adaptation for Confined Fusion

Plasma Simulation

5.1 Introduction

Mesh-based methods are extensively applied to study the behaviors of the

plasmas in tokamak geometries [11, 2, 1]. The challenges of meshing for fusion

reactor simulations lie in satisfying the specific requirements from the combination

of physics of interest and the computational methods applied to model the physics.

A fully automatic meshing procedure is needed to most effectively meet specific

constraints from different fusion plasma simulation codes.

XGC1 [56] applies the particle-in-cell method (PIC) to solve the gyrokinetic

Vlasov-Maxwell system and it focuses on the physics phenomena at the plasma edge.

The motion of particles is tracked and the fields that provide the driving force are

computed on the mesh [11, 57, 13]. In case of meshes for XGC1, the magnetic flux

surfaces form a set of curves on the 2D cross-section. Based on the combination of

the complex physics and numerical methods used in XGC1 [11, 57, 13], the meshing

requirements include: (i) mesh edges must align with the magnetic flux surfaces, (ii)

mesh vertices on the magnetic flux surfaces must be placed in a specific manner [13]

to follow the motion of particles through the magnetic field, (iii) the mesh should

be one-element deep between adjacent magnetic flux surfaces, (iv) the layered mesh

between surfaces needs to be improved at particular areas such as the X-point [4, 58],

and (v) the mesh should be generated on the real geometries of fusion reactors.

M3D-C1 [3, 7, 8, 9, 6, 10, 59] studies non-linear magnetohydrodynamic (MHD)

instabilities of the plasmas in the tokamak. C1 finite elements are applied to solve

the fourth order PDEs that arise when a stream function/potential representation

This chapter is in Press: F. Zhang et al., “Mesh generation for confined fusion
plasma simulation,” Eng. with Comput.

66

67

for the velocity and magnetic potential vector fields are combined with the MHD

equations. The meshing requirements are (i) initial 2D mesh generation on the

toroidal cross-section geometry, (ii) mesh adaptation on the toroidal cross-section,

and (iii) 3D geometric model and distributed mesh construction out of multiple 2D

models and meshes. An initial unstructured mesh on the cross-section is generated

with the controlled mesh size, and then improved by anisotropic mesh adaptation.

The 3D mesh with wedge elements is created by connecting triangular mesh faces

on 2D cross-sections.

This paper discusses a set of procedures to meet the particular meshing re-

quirements of the XGC1 and M3D-C1 plasma physics codes as follows: Section 5.2

describes the geometry definition in the fusion plasma codes. Section 5.3 discusses

software design and algorithms applied to generate meshes in a controlled man-

ner. Section 5.4 and Section 5.5 present resulting meshes and the closing remarks,

respectively.

5.2 Geometric Model Definition

In a geometry-based analysis environment, an effective representation of the

analysis domain is a non-manifold boundary topology with associated shape infor-

mation [60]. A geometric model boundary representation is a hierarchy of regions,

shells, faces, loops, edges, vertices, (Figure 5.1) and use entities for vertices, edges,

loops, and faces [61] that can effectively define the adjacencies seen in analysis model

idealizations of physical domains. The geometric model is a necessary input for the

reliable automatic meshing [62].

The mesh is a discretized representation of the geometric model. It consists

of the four types of topological entities, which are regions (3D), faces (2D), edges

(1D) and vertices (0D), with controlled size, shape, and distribution [63, 64, 65].

A mesh that does not bound any higher dimensional entities is termed an element

with respect to the simulation.

68

Figure 5.1: Topological entities (rectangles) and associated shape infor-
mation (ellipses) in the geometric model.

5.2.1 Geometric Description

Tokamak devices use a magnetic field to confine the plasmas for sustainable

fusion reactions. The basic tokamak geometry is a torus that is symmetric along the

toroidal direction. Magnetic field lines wind around the torus and form magnetic

flux surfaces [4]. The meshing procedure first generates the 2D geometric model

and then generates a 2D mesh based on the geometry.

Figure 5.2 illustrates the 2D geometric model of the toroidal cross-section. In

order to comply with different meshing requirements of the plasma simulation codes,

the geometry of the tokamak contains the combination of the physics and physical

components. The physics and physical components are depicted on the left and

right of Figure 5.2, respectively.

A separatrix (3 in Figure 5.2) adjacent to the magnetic axis (0 in Figure 5.2)

splits the face into two distinct areas, the scrape-off layer (4 in Figure 5.2) and

the plasma core (5 in Figure 5.2). The scrape-off layer is the area between the

separatrix and the wall boundary. In axisymmetric equilibria of the plasmas, the

69

Figure 5.2: Geometric components of the fusion reactor [4]. The co-
ordinate system is (R,Z, ϕ) or (r, θ, ϕ), where R, r, ϕ and θ
are major radius, minor radius, toroidal angle and poloidal
angle, respectively. The model components include the (0)
magnetic axis, (1) open magnetic flux surfaces, (2) closed
magnetic flux surfaces, (3) separatrices, (4) scrape-off layer,
(5) plasma core, (6) X-points, (7) vacuum vessel, (8) wall
area, (9) plasma area, (10) vacuum boundary, (11) outer wall
boundary, and (12) inner wall boundary.

magnetic flux surfaces (2 and 3 in Figure 5.2) in the plasma core are nested toroids,

that form non-intersecting loops on the 2-dimensional toroidal cross-section between

the magnetic axis and the separatrix. The magnetic surfaces diverge at the X-point

(6 in Figure 5.2) that is a saddle point of the magnetic flux field on the separatrix.

The flux surfaces intersect the wall in the area of the scrape-off layer. In addition

to the plasma area, the geometry can include a vacuum vessel (7 in Figure 5.2) and

a finite thickness wall (8 in Figure 5.2). The vacuum vessel is the outermost area

of the fusion device surrounding the wall. The plasma area (9 in Figure 5.2) is the

interior area bounded by the limiter or the boundary of the material wall [4]. There

may exist one or more separatrices in the plasma area.

The geometry of XGC1 contains the plasma area with the scrape-off layer (4

in Figure 5.2) separated by the separatrix (3 in Figure 5.2) and the plasma core (5

in Figure 5.2). It also includes magnetic flux surfaces (1 and 2 in Figure 5.2) in the

plasma area and the inner wall boundary to meet the requirement of placing mesh

vertices. Multiple identical planes are placed around the torus axis.

The geometry of M3D-C1 is a 3D torus made up of the vacuum vessel (7 in

70

Figure 5.2), the material wall with or without a finite thickness, δh, (8 in Figure

5.2), and the plasma area (9 in Figure 5.2). Each plane forms a cross-section of the

tokamak, so multiple planes are placed around the torus axis, each with an identical

mesh as is also the case with XGC1. The outer boundary of the vacuum vessel is a

simple loop (10 in Figure 5.2) that encloses the wall area.

5.2.2 Topological Representation

Figure 5.3 illustrates the topological structure of model faces in XGC1 geom-

etry. Faces interior to the separatrix are bounded by two loops that correspond to

a pair of adjacent closed magnetic flux surfaces (faces B and E) or a pair defined

by the magnetic axis and the adjacent closed magnetic flux surface (face A). Faces

exterior to the separatrix are bounded by one loop that corresponds to a collection

of open magnetic flux surfaces and a portion of the wall boundary (faces D, F , G

and H).

Figure 5.3: Geometric faces on the toroidal cross-section in XGC1.

The geometry of M3D-C1 is a torus composed of multiple wedge segments

separated by the planes placed around the major axis of the torus. There are up

to three model regions between two adjacent planes, which represent the plasma

(Figure 5.4a), wall (Figure 5.4b) and vacuum (Figure 5.4c) areas. Note that the

71

simulation domain may consist of the plasma area only or the three areas depending

on the input options of M3D-C1. Each model region is bounded by a shell that

consists of two faces on the two planes and faces joining two planes. There are up

to three model faces on any given plane or cross-section, which are bounded by the

loops on the boundary of the material wall and the vacuum (Figure 5.4).

(a) plasma face (b) wall face (c) vacuum face

Figure 5.4: Geometric faces on the plane (loop 1’ of the wall face is offset
to be distinct from loop 2).

5.2.3 Shape Definition

On the toroidal cross-section, the key shape information is the geometry of

curves. There are two kinds of curves in the geometric model. The first are physical

domain curves that define the inner/outer walls of the reactor and the vacuum

boundary. The second are physics curves that define the features interior to the

reactor. A physics curve corresponds to a specific magnetic flux surface.

5.2.3.1 Physical Curves

The geometry of the reactor wall curves is defined by either CAD model input,

analytic functions, or splines fitted to an ordered set of points. Figure 5.5 illustrates

72

Figure 5.5: Wall curve of NSTX [5] by the cubic spline interpolation with
C2 continuity.

a wall curve with C2 continuity by interpolating an ordered set of points with the

cubic B-splines [66] in M3D-C1.

5.2.3.2 Physics Curves

The intersection of the magnetic flux surfaces and a plane with a constant ϕ

value form the physics curves, which are flux surfaces composed of common mag-

netic field lines. Magnetic fields in axisymmetric equilibria can be described by the

poloidal magnetic flux field, ψ = ψ(R,Z), and the field related to the poloidal cur-

rent density, I(ψ) [4]. Given ψ = ψ(R,Z) and I(ψ), the magnetic field B is defined

as [4]

B = − 1

R

∂ψ

∂Z
R̂ +

1

R

∂ψ

∂R
Ẑ +

I(ψ)

R
ϕ̂ (5.1)

The value of ψ does not change along the direction of B from the definition.

Therefore, each magnetic flux surface associates with a constant ψ.

The 3D field lines along the constant magnetic flux surfaces are defined in

the parametric form as L(t) = [LR(t), LZ(t), Lϕ(t)]. Given a set of the constant

magnetic flux surfaces, {ψi}, the field lines are as follows:

dLR
dt

=
RBR

Bϕ

= −∂ψ
∂Z

R

I(ψi)

dLZ
dt

=
RBZ

Bϕ

=
∂ψ

∂R

R

I(ψi)

dLϕ
dt

= 1 (5.2)

73

Equation 5.2 describes how the poloidal component of B changes according to

a unit change of ϕ. Figure 5.6 illustrates the 3D field line on a closed magnetic flux

surface.

Figure 5.6: Magnetic field line on a closed magnetic flux surface.

The ordinary differential equation defined by Equation 5.2 is integrated by the

Runge-Kutta method on a uniform grid. The two flux fields, ψ(R,Z) and I(ψ), are

defined by fitting the experimental data with splines [67, 68].

Given the definition of magnetic field line in Equation 5.2, the physics curves

are obtained by replacing Lϕ(t) with a constant value.

5.2.4 Geometric Model Construction

Figure 5.7 illustrates two basic topological splits that are applied iteratively to

construct the geometric model on the toroidal cross-section. A model face is either

split by the model edges that connect two model vertices on the boundary of the

model face or by the model edges that form a loop interior to the model face.

If the model face is to be split by a list of model edges associated with a

magnetic flux surface, the value of ψ is specified to create the curves associated with

the model edges. The value of ψ between adjacent magnetic flux surfaces is changed

by δψ that is specified by the user. The exceptional case is at the magnetic axis

point where dψ
dr
∼ 0. The new value of ψ near the magnetic axis point is determined

based on the physical distance between the adjacent flux surfaces.

74

Figure 5.7: Basic topological splits (the loops on the right side are shown
with an offset).

5.3 Meshing Procedure

In the automatic mesh generation procedure, mesh control parameters are

specified onto the entities of the 2D geometric model defining a cross-section. The

purposes of mesh control parameters are (i) meeting the mesh layout constraints, (ii)

having the desired mesh gradation, (iii) controlling mesh quality, and (iv) meeting

the needs of the simulation procedure. The full set of mesh control parameters

includes:

• di to control spacing mesh vertices on a magnetic flux surface.

• δψ to control spacing of the magnetic flux surfaces. δψ specifies the change

in the values of ψ between adjacent magnetic flux surfaces. The number of

75

magnetic flux surfaces used is proportional to ψmax−ψmin
δψ

, where ψmax and ψmin

are the maximum and minimum values of ψ in the domain.

• Mesh size control on the model entities.

• Element shape control that determines the desired shape of mesh elements.

• Ansiotropic mesh size field that drives the mesh adaption.

The mesh generation procedure consists of four software components: (i) un-

structured triangulation, (ii) layered mesh generation, (iii) general mesh modifica-

tion, and (iv) toroidal mesh extrusion of the 2D mesh to create a 3D mesh of the

full reactor.

5.3.1 Unstructured Triangulation

Unstructured triangulation creates a graded mesh in the portion of domain

where there is no need to generate an one-element-deep mesh. A number of tools

are available to generate unstructured triangular meshes. The Simmetrix MeshSim

[43] is used in mesh generation for XGC1 and M3D-C1 due to its benefits of well

controlled graded meshes based on a geometry based specification, and the ability

to be incorporated as a component of an overall meshing procedure responsible for

meshing selected portion of the domain. In case of XGC1, MeshSim is used to mesh

the geometric faces between the open magnetic flux surfaces and the wall boundary

(faces D and F, and part of face C in Figure 5.3). In case of M3D-C1, it is used to

create an initial mesh of the entire 2D domain.

5.3.2 Layered Mesh Generation

In XGC1, the motion of particles is driven by the electromagnetic field and the

particle orbits mainly follow the magnetic flux surfaces in axisymmetric equilibria

of the plasmas since the magnetic field pertubation is small. The motion of particles

changes the charge and current density that determines the field by the gyrokinetic

Possion and Ampere’s equations [11, 13]. Meshes following the equilibrium field

lines improve the efficiency of parallel particle tracking, and the accuracy of deriva-

tive calculation along the field line. Therefore, in case of the mesh in XGC1, mesh

76

vertices and edges on the model edge and interior area need to follow the field lines

associated with the magnetic flux surfaces. The constant electromagnetic turbu-

lence contours also follow the equilibrium magnetic field closely. Thus, the meshes

following magnetic field line also improve the efficiency of the field solvers.

The vertex placement on the toroidal cross-section is as follows. Assume the

number of planes placed around the major axis of the torus is n. For the magnetic

flux surface with ψ = ψ0, an initial vertex, L(0) = [R0, Z0, 0], is picked up on

the plane with ϕ = 0 and it satisfies ψ(R0, Z0) = ψ0. The vertices on the curve

(Equation 5.2) are placed at the sequence of the parameters defined as

ti =
i

2nπ
, i = 0, 1, ..., N − 1 (5.3)

The sequence is terminated and an approximately closed curve is formed based

on the mesh vertex spacing requirement, di, or it reaches the wall boundary. Note

that ϕ of each vertex is replaced by a constant value and the vertices are projected

to the same cross-section.

The parameter, di, is specified to set a tolerance of vertex spacing. The se-

quence of the vertices defined by Equation 5.3 is refined by bisecting the interval of

parameters if the distance between vertices is greater than di. For example, bisecting

the interval [ti, ti+1] places an additional point L(ti+ti+1

2
) between points, L(ti) and

L(ti+1). The sequence of the vertices is coarsened if the distance between vertices

falls below di.

Given the placement of the curves and vertices, triangular elements on the ge-

ometric faces between adjacent curves are created by an one-element-deep marching

procedure. The procedure starts with an edge designated as an initial working edge.

The two marching options of creating new elements in the marching direction are

evaluated based on the validity of the element and the shape indicator. The validity

requires that the new edge must fall between the working edge and the edge on the

surface in the marching direction. The marching option with a better element shape

is chosen to form a new element. The edge created between the layers becomes the

new working edge. The procedure continues until the last element is created.

Figure 5.8 illustrates the one-element-deep marching procedure. Assume the

77

working edge is (i, j). The new edge created by the marching procedure can be

either (i, j + 1) or (j, i + 1) and the corresponding new element is (i, j, i + 1) or

(j, i, j+1). According to the validity requirement, edges {(i, j), (i, j+1), (i, i+1)} or

{(j, i), (j, i+1), (j, j+1)} must be placed clockwise or counter-clockwise. Therefore,

element (i, j, i + 1) or (j, i, j + 1) must satisfy (~vi,j × ~vi,j+1) · (~vi,j+1 × ~vi,i+1) > 0 or

(~vj,i×~vj,i+1) · (~vj,i+1×~vj,j+1) > 0 to be valid, where ~vj,i defines the vector from point

i to point j. Element (j, i, j+ 1) is invalid although it gives a better shape indicator,

thus it won’t be chosen as the new element in the marching procedure. Note that

the current point placement controlled by di leads to the similar local mesh size

on the two adjacent curves and the situation that neither element is valid does not

happen.

Figure 5.8: One-element-deep marching procedure to generate triangular
mesh faces between curves.

5.3.3 Mesh Modification

General mesh modifications allow the users to adapt the unstructured mesh

to match an anisotropic mesh size field defined over the initial mesh [69, 46, 70]. In

order to evaluate the mesh quality, the mesh element is transformed by the metric

tensor that defines the desired mesh size field [71] such that the mesh modification is

controlled by the modification criterion and the desired mesh size field. The quality

of the element size and shape are evaluated in the metric space. The type of the local

mesh modification is chosen based on the evaluation of different operations [46].

In this paper, the mesh adaptation procedure is used to improve both the

78

initial unstructured mesh and the layered mesh in the selected areas, and/or to

adapt them to control mesh discretization errors. In case of XGC1, the layered

mesh generation controlled by δψ and di results in elements with poor shapes near

the X-point. Therefore, mesh modification is used to improve the mesh quality and

element shapes near the X-point. Figure 5.9 illustrates the layered mesh before and

after mesh modification near the X-point. In M3D-C1, an initial mesh is obtained

by the unstructured triangulation controlled by the mesh size parameters specified

on the model entities and mesh adaption is performed during the analysis. In this

case, error indicators, or given functions, are used to define a new anisotropic mesh

size field and a combined set of mesh modification operations are applied to convert

the current mesh into one that satisfies the new mesh size field [14].

(a) initial (b) final

Figure 5.9: Improved mesh near the X-point.

5.3.4 3D Mesh Construction

In parallel simulations, a mesh is split into multiple parts for the purpose of

distribution to processes. Therefore, each part consists of the set of mesh entities

that is assigned to a process. For efficient manipulation, a part is uniquely identified

within an entire mesh by a global part ID. Based on the adjacency relations, mesh

entities on inter-part boundaries are duplicated to connect entities across parts such

that they describe part boundaries. With the addition of part boundaries, each part

is treated as a serial mesh. Each mesh entity duplicated on a inter-part boundary

maintains a set of remote copies that is the memory location of mesh entity du-

plicated in the other part. The remote copy information is updated as the mesh

79

partitioning changes dynamically, which is required by mesh modification or load

balancing [72, 44].

In a 2D M3D-C1 analysis with P processes, the mesh is distributed into P

parts. In a 3D M3D-C1 simulation, N copies of the same 2D mesh are loaded

into N *P processes, where N *P processes are divided into N process groups such

that each process group loads the 2D mesh onto a set of P processes. Within a

process group, each process is assigned with a rank p, 0≤p<P, and a process group

is uniquely identified as plane i, 0≤i<N. For each plane i, the backward plane is

the plane i -1, and the forward plane is the plane i+1. For plane 0, the backward

plane is plane N -1. For the plane N -1, the forward plane is the plane 0. In order to

switch the mesh from 2D to 3D, on each plane i, a remote copy of the forward plane

is created and then quadrilateral mesh faces and wedge elements are created using

the entities on plane i and the remote copy of the forward plane. The total number

of 3D elements created is the number of triagular faces in the 2D mesh times the

number of planes. Figure 5.10 illustrates a 3D mesh constructed with 8 planes.

Figure 5.10: 3D mesh constructed on 8 process groups.

5.4 Examples

5.4.1 XGC1

Using the meshing control parameters discussed in Section 5.3, the steps for

mesh generation are as follows: (i) the geometric model with the material wall

boundary and magnetic flux surfaces interior to the domain is created, (ii) triangular

80

elements are created on the model face with matched ψ curves that are oriented in

the opposite directions, (iii) mesh modification is applied to improve the elements

in poor shape near the X-point, and (iv) the rest of area is filled with unstructured

elements.

Figure 5.11 and 5.12 illustrate the mesh examples with different numbers of

X-point in the simulation domain. Figure 5.13 depicts how δψ and di control the

spacing of ψ curves and mesh vertices on each curve. Figure 5.14 illustrates how

the targeted mesh size field affects mesh improvement in the X-point area.

Figure 5.11: Mesh example with one X-point (labeled by the solid circle).

5.4.2 M3D-C1

The simulation domain for M3D-C1 consists of at most three areas that corre-

spond to the plasma area, the finite-thickness material wall and the vacuum vessel.

In a 2D mesh, unstructured mesh elements are created and then adapted by an

ansiotropic size field. In a 3D mesh, the full torus is created by extrusion of the

toroidal 2D meshes on toroidal cross-sections.

Figure 5.15 depicts an example of the initial mesh on the NSTX model with

a finite-thickness wall. The mesh size is specified at the model faces of the plasma,

81

material wall and the vacuum vessel to control the initial mesh. Figure 5.16 illus-

trates an example of parallel mesh adaptation in four processes with the boundary

curve defined as

R(t) = c1 + c2cos (t+ c3sin(t))

Z(t) = c4 + c5sin(t), 0 ≤ t ≤ 2π (5.4)

The mesh size field is calculated from the poloidal magnetic flux field ψ. A normal-

ized field is defined as ψ̃ = ψ−ψ0

ψl−ψ0
, where ψl and ψ0 are the field values at the plasma

boundary and the magnetic axis, respectively. The mesh size normal to the surface

is h1 and the mesh size tangent to the surface is h2 that are defined as

h−1
i = h̃−1

i +
1

lci

(
1 + ψ̃−ψc

Wc

)2 , i = 1, 2 (5.5)

where lci, ψc and Wc are constants. h̃i is defined as

h̃i = bi[1− e−|
ψ̃
a1
−1|a2

] + ci, ψ̃ < a1

h̃i = di[1− e−|
ψ̃
a1
−1|a2

] + ci, ψ̃ > a1 (5.6)

where bi, di, ai and ci are constants. The constant parameters of the equations are

determined such that the adapted mesh has finer size at the magnetic flux surface

ψ̃ = a1. Since the solution to the physical equations varies more rapidly in the

direction normal to the magnetic surfaces than within the surfaces, the directional

mesh size fields are defined to represent this property. Figure 5.17 illustrates an

example of a 3D mesh constructed with 64 planes.

5.5 Closing Remarks

This paper has presented a set of procedures for the automatic mesh genera-

tion with well-defined control parameters to satisfy the needs of two fusion plasma

simulations codes, XGC1 and M3D-C1. Core capabilities include:

• Employing a geometric model definition of the domain that represents physical

82

and physics components that must be reflected in the resulting mesh.

• Straightforward specification of the needed mesh control information in terms

of the geometric model.

• A component-based mesh generation procedure that satisfies the constraints

of the simulation procedures while creating well controlled graded meshes.

83

Figure 5.12: Mesh example with two X-points (left) and no X-point
(right).

84

(a) δψ = 0.006, di = 3cm (b) δψ = 0.012, di = 6cm

Figure 5.13: Two meshes with different field line placement (δψ) and ver-
tex spacing (di) parameters.

(a) h = 2di (b) h = di

Figure 5.14: Improved X-point area by different targeted mesh sizes (h).

85

Figure 5.15: Initial mesh on the NSTX model with a finite-thickness wall.

86

(a) initial mesh (1678 elements)
colored by process rank

(b) solution field on the initial
mesh

(c) adapted mesh (5746 elements) and its close-up (colored by pro-
cess rank)

Figure 5.16: Anisotropically-adapted mesh in M3D-C1.

87

Figure 5.17: Cross-cut view of a 3D mesh with 64 planes in M3D-C1.

CHAPTER 6

Improvement of Numerical Conditioning

The systems of the equations in M3D-C1 are obtained by discretizing the fourth-

order PDEs derived from the extended MHD (see Chapter 2). The systems of the

equations are hard to solve due to the poor conditioning (Figure 6.1). Direct solvers

such as SuperLu [45] are applied for problems on the 2D mesh and GMRES based

iterative methods [73] with the 2D direct solver as the preconditioner are used to

solve problems on the 3D mesh [6]. The usage of direct solvers becomes an issue

due to loss of good scaling as the size of the problem simulated and the number of

computing cores used increase. The effective usage of iteratively solvers requires the

numerical conditioning of the global matrix improved.

Figure 6.1: Condition number of the velocity matrix on a sequence of
uniform mesh. The reduced model uses one-scalar represen-
tation and the full model uses three-scalar representation [6].

The ill-conditioning of the linear system is dictated by the complex physics that

couple the multi-scale components [6] and the fourth-order PDE solved that requires

the usage of the C1 finite elements [21]. The procedure of defining shape functions

88

89

and obtaining the elemental contribution of the matrix, together with the spectrum

analysis of the physics waves [6], were examined. A method by redefining the shape

functions is introduced and a diagonal form is applied to improve the numerical

conditioning. Three terms are introduced in the diagonal form. The first term is to

account for the “element size” and “element size squared” introduced by using the

first-order and second-order derivatives as degrees of freedom in the finite element

discretization. The second is the physics-based scaling of the contributions to the

multicomponent set of equations based on the grouping of eigenvalues associated

with the components. The third accounts for integration over elements if the mesh

size varies over the domain. The new linear system has both the diagonal and off-

diagonal values in a closer range. The finite element is regularized to result in a

linear system with a smaller condition number. The procedure of shape function

modification can be viewed as a symmetric preconditioning method applied to the

original system algebraically.

Section 6.1 defines the method of redefining the shape functions and its relation

with the symmetric preconditioning. Section 6.2 discusses the three scaling factors

in the diagonal form. The results of applying the scaling factors are discussed in

Section 6.3.

The condition number of the sparse matrix is calculated by the matlab routine,

condest, which estimates 1-norm condition number of a square matrix [74].

6.1 Elemental Regularization and Symmetric Precondition-

ing

The linear system derived from the finite element discretization of PDEs takes

the form

Kd = f , (6.1)

where K is the stiffness matrix, d is the displacement vector, and f is the load

vector.

To alter the numerical conditions of the system, we define the new set of

DOFs and associated shape functions (d̃, Ñ) by applying a transformation to the

90

original set of DOFs and associated shape functions (d,N) through a non-singular

transformation matrix (S) that takes the form as

d̃ = STd, (6.2a)

Ñ = S−1N. (6.2b)

The new linear system by the new DOFs and shape functions is

K̃d̃ = f̃ , (6.3)

where

K̃ = S−1KS−T , (6.4a)

f̃ = S−1f . (6.4b)

The process of defining the new DOFs and shape functions can be viewed as

a split preconditioning applied to the original linear system [73]. The split precon-

ditioning is symmetric in the sense that the right preconditioning matrix (S−T) is

the transpose of the left preconditioning matrix (S−1).

The matrix S is the regulation matrix in order to transform the element to gen-

erate an algebraically equivalent but numerically better linear system. The matrix

S satisfying the following properties are desired for numerical efficiency:

• K̃ = S−1KS−T is a better conditioned system.

• S and S−1 is easy to get.

• Ñ = S−1N still maintains the localized property of the shape functions that

does not harm the efficiency of the finite element. The new shape functions

associated with the mesh vertex are bounded by the mesh patch that are

formed by the elements sharing the same vertex.

The simplest form of S is the diagonal matrix. Define a diagonal matrix D and the

91

new pair of DOFs (d̃) and associated shape functions (Ñ) is

d̃ = Dd, (6.5a)

Ñ = D−1N. (6.5b)

It can be viewed as applying a symmetric diagonal preconditioning which takes

the form of K̃ = D−1KD−1 (see Equation 6.4a, given that D−1 = D−T).

6.2 Definition of Scaling Factors

This section defines three terms that contribute to the diagonal of the trans-

formation matrix, D.

6.2.1 Scaling Factor due to Applying Derivatives as DOFs

Recall the DOFs of the C1 triangle element applied by M3D-C1 correspond to

the function value, the first and second derivatives ([3], also see Section 2.3.1). The

corresponding shape functions vary at the different rates of the mesh size and they

can be scaled by a factor that is a function of mesh size.

[75] gives the definition of the same C1 triangle element in an explicit form.

The normalized multipliers (λ ∼ O(1)) in the area coordinate (ξ, η) and the DOFs

in the global coordinate (R,Z) are related by [75]

λ

λ,ξ

λ,η

λ,ξξ

λ,ξη

λ,ηη


=



1

O(hR) O(hZ)

O(hZ) O(hZ)

O(h2
R) O(hRhZ) O(h2

Z)

O(h2
R) O(hRhZ) O(h2

Z)

O(h2
R) O(hRhZ) O(h2

Z)





d

d,R

d,Z

d,RR

d,RZ

d,ZZ


. (6.6)

Note that “,” means taking the derivative to keep the consistent notation with the

previous chapters. The associated shape functions are transformed by the inverse

transpose of the matrix and possess similar mesh size related scales [75].

The transformation matrix in Equation 6.6 illustrates how the shape functions

92

and the corresponding DOFs depend on the mesh size. The scaling factor of the

ith DOF can therefore be defined as hdi , where d = 0, 1, 2 depending the order

of derivative of the ith DOF, and hi is the nodal element size in the direction of

derivative that the ith DOF attached to. Specially, hi = (hRhZ)
1
2 for the DOF

corresponding to the twisted derivative (d,RZ).

A simple example can illustrate how the scaling factor of the DOFs can rescale

both the diagonal and off-diagonal terms of the matrix. Assume the original linear

system takes the form

K =



1 hR hZ h2
R hRhZ h2

Z

hR h2
R hRhZ h3

R h2
RhZ hRh

2
Z

hZ hRhZ h2
Z h2

RhZ hRh
2
Z h3

Z

h2
R h3

R h2
RhZ h4

Z h3
RhZ h2

Rh
2
Z

hRhZ h2
RhZ hRh

2
Z h3

RhZ h2
Rh

2
Z hRh

3
Z

h2
Z hRh

2
Z h3

Z h2
Rh

2
Z hRh

3
Z h4

Z


. (6.7)

Apply the diagonal rescaling matrix as

D−1 =



1 0 0 0 0 0

0 1
hR

0 0 0 0

0 0 1
hZ

0 0 0

0 0 0 1
h2R

0 0

0 0 0 0 1
hRhZ

0

0 0 0 0 0 1
h2Z


, (6.8)

and it results in a system

K̃ =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


. (6.9)

93

6.2.2 Scaling Factor due to Multicomponent of the Velocity

The velocity of the full MHD model has three scalar components and these

components are weakly coupled after applying the annihilation operators ([6], also

see Equation 2.14 in Section 2.2). The velocity in the full MHD model is represented

by the scalar components, (U, ω, χ), in the cylindrical coordinate (R,ϕ, z) as (also

see Equation 2.12 in Section 2.2)

V = R2∇U ×∇ϕ+R2ω∇ϕ+
1

R2
∇⊥χ. (6.10)

The reduced models of two-scalar representation is

V = R2∇U ×∇ϕ+R2ω∇ϕ, (6.11)

and the one-scalar representation is

V = R2∇U ×∇ϕ. (6.12)

The analysis of eigenvalues of the stiffness matrix [6] indicates that different scalar

component represent different groups of waves in the plasmas. Three factors (α1,

α2, and α3) are introduced to rescale the shape functions such that different groups

of eigenvalues are in a closer range. This is equivalent to rewrite Equation 6.10 as

V = α2
1R

2∇U ×∇ϕ+ α2
2 ·R2ω∇ϕ+ α2

3 ·
1

R2
∇⊥χ. (6.13)

6.2.3 Scaling Factor due to Integration over Element

Elemental contribution of the matrix is also a function of the element size. The

variation of the magnitude due to integration over elements with quite different sizes

can worsen the numerical conditioning of the system. A scaling factor is introduce

to account for this effect.

Define the physical coordinate x, the parametric coordinate ξ and the mapping

x = x(ξ). The Jacobian matrix and its determinant are J = dx
dξ

and J = det(J).

94

Some common terms in the integration of the weak form is listed as follows:

dΩx = JdΩξ, (6.14a)

∇xµ = J−T∇ξµ, (6.14b)

∇xµ · ∇xν = J−1J−T : ∇ξµ∇ξν, (6.14c)

< µ, ν >x≡ µ,xν,y − µ,yν,x =
1

J
[µ, ν]ξ . (6.14d)

If J is constant in the domain of the element (e.g., area coordinate), the magnitude

of J and its determinate J is related to the element size as

J ∼ h, (6.15a)

J ∼ hdim. (6.15b)

where dim is the dimension of the domain. Considering that the integration in

the parametric coordinate without the Jacobian is usually normalized, we have an

estimation of the order of integration terms as,∫
dΩx ∼ hdim, (6.16a)∫

µ(x)ν(x)dΩx ∼ hdim, (6.16b)∫
∇xµ · ∇xνdΩx ∼ hdim−2, (6.16c)∫
∇2
xµ · ∇2

xνdΩx ∼ hdim−4. (6.16d)

Therefore the magnitude of the result can be scaled by hdim−n which depends on

the total order of the derivative n appearing in the integration. The scaling factor

f(J) due to integration can be defined as

f(J) =
√
hdim−n = h(dim−n)/2, (6.17)

and specifically

f(J) = h1−n/2 (6.18)

95

for the 2D case. Figure 6.2 is an example that illustrates how the magnitude of

(a) mesh (b) original (c) rescaled by f(J) = h

Figure 6.2: Magnitude of diagonal entries that correspond to the function
value in the mass matrix on a graded mesh before and after
rescaling by f(J) = h.

diagonal entries varies due to integration and they are in closer range after applying

the rescaling factor. A graded mesh on a circular domain with the radius as r0 is

used in Figure 6.2. The mesh size is 0.002 at r = 0.5r0, 0.03 at r = 0 and 0.04 at

r = r0. Mass matrix is obtained by integrating product of the shape functions as∫
µiνjdΩ ∼ h2. The diagonal entries which correspond to the function value vary

from 4E − 6 to 1E − 3 while the mesh size varies from 0.002− 0.03. After applying

the scaling factor f(J) = h, the magnitude of the diagonals varies from 0.5 to 8.

6.2.4 Overview

The three scaling factors in the elemental equilibration matrix are put together

and the final diagonal transform matrix takes the form as

Dij = αih
d
i h̃

1−n/2
i δij, (6.19)

where d = 0, 1, 2 depending the order of derivative of the ith DOF, hi is the nodal

element size in the direction of derivative that the ith DOF attached to, h̃i is the

nodal element size which evaluates the area of the integration domain, and n is the

total order of derivatives in the dominant part of the integration.

96

Table 6.1: Condition numbers of the original velocity matrix and the reg-
ularized matrix by applying the diagonal rescaling factors on
a sequence of uniform meshes. The number of DOFs of the
largest matrix is 140,994.

mesh size 0.08 0.04 0.02 0.01

original
reduced model 1.5E08 3.0E09 9.8E10 3.8E12
full model 4.0E12 3.5E14 5.0E16 6.9E18

regularized
reduced model 2.2E04 4.4E04 1.7E05 1.1E06
full model 1.1E08 1.5E07 2.4E07 3.6E08

6.2.5 Extension to 3D Element

The 3D shape functions are defined by taking tensor product of the C1 reduced

quintic shape functions and the Hermite cubic polynomials [6]. The DOFs are listed

in Table 2.6 in Section 2.3.3. The new DOFs correspond to field values that takes

the derivative in the ϕ direction. It can be rescaled following the same procedure

that rescales the derivatives in the 2D plane. Define the mesh size in the ϕ direction

as hϕ, and the scaling factor by Equation 6.19 is extended to the 3D element,

Dij = αih
d
ih

d′

ϕ h̃
1−n/2
i δij, (6.20)

where d′ is the order of derivative in the ϕ direction (d′ = 0, 1) and the other symbols

have the same meaning as Equation 6.19.

6.3 Results

The result on a sequence of uniformly refined meshes is presented first (Fig-

ure 6.3 and Table 6.1). The condition number of the regularized system is reduced

by 104 ∼ 1010 for the full model with three components of the velocity. Despite

of the simple form of elemental regulation, the condition number is substantially

reduced.

Table 6.2 and Table 6.3 illustrate how the scaling factor, f(J), due to integra-

tion can improve the numerical conditioning on an anisotropic mesh (Figure 6.4).

The highest total order of derivatives is fourth to obtain the elemental contribution

of the matrix. f(J) is set to be h̃−1 (Equation 6.18 by setting n = 4). Table 6.2 lists

97

(a) reduced model (one-scalar repre-
sentation)

(b) full model (three-scalar represen-
tation)

Figure 6.3: Condition number of the original velocity matrix and the
regularized matrix by applying the diagonal rescaling factors.

Table 6.2: Magnitude of the diagonal entries of the linear system.

hR hZ
hZ
hR

d(R,Z) d,R d,Z d,RR d,RZ d,ZZ

original
0.03 0.03 1 1.6E+03 3.6E-02 7.8E-02 1.0E-06 6.1E-06 5.5E-06
0.004 0.04 10 3.4E+03 9.5E-02 1.1E-00 3.0E-07 1.1E-05 7.8E-05

f(J) = 1
0.03 0.03 1 1.6E+02 3.5E+01 8.0E+01 1.0E+00 6.0E+00 5.6E+00
0.004 0.04 10 3.4E+03 6.0E+03 7.1E+02 1.2E+03 4.9E+02 3.6E+01

f(J) = h̃−1 0.03 0.03 1 1.5E-01 3.2E-02 7.2E-02 9.0E-04 5.5E-03 5.1E-03
0.004 0.04 10 7.1E-01 1.3E-00 1.5E-01 2.5E-01 1.0E-01 7.6E-03

the typical values of diagonal entries of the original linear system on the anisotropic

mesh. The order of difference is reduced from 109 to 103 after rescaling the DOFs

due to derivatives, and is further reduced to 102 after applying f(J) = h−1. The

condition number is reduced from 8.2E + 12 to 6.6E + 06 after applying the scaling

factor due to DOfs of derivatives and further reduced to 1.2E + 06 by applying

f(J) = h̃−1 (Table 6.3).

A 3D test problem with up to 55,296 dof (4 planes and 384 nodes each plane)

is tested. Table 6.4 shows the difference of the condition number and the number

of iterations to convergence when applying the block Jacobi preconditioner with

Table 6.3: Condition number of the linear system on the anisotropic
mesh.

original f(J) = 1 f(J) = h−1

8.2E+12 6.6E+06 1.2E+06

98

Figure 6.4: Mesh with the ratio of anisotropic mesh sizes in the two di-
rections up to 10.

each block factorized by incomplete LU. The condition number of the matrices is

reduced by the order of ∼ 105. The velocity matrix (s1 mat) applies rescale factor

that takes both mesh size and different scalar variable into account and thus the

condition number is reduced by a larger amount than the other linear systems.

Figure 6.5 shows the change of convergence behaviors. The regularized matrices

by applying the diagonal rescaling factors give smaller number of iteration for the

linear systems that advance the density and magnetic field. The velocity equation

fails to converge due to the fact the fourth-oder differential operators dominate (see

Section 2.2).

It can been seen from the numerical tests that the elemental regulation by the

diagonal scaling factors greatly reduces the condition number of the linear systems

of equations in M3D-C1. Although the method alone is likely not enough to achieve

99

Table 6.4: Condition numbers of the original systems (condorg) and regu-
larized systems (condreg).

matrix DOF/node # unknowns condorg condreg Iterorg Iterreg
mass mat 12 18,432 4.4E14 6.1E09 187 35
s8 mat 12 18,432 2.4E14 1.78E09 52 42
s1 mat 36 55,296 8.0E18 1.8E10 fail to converge
s9 mat 24 36,864 1.2E14 1.8E09 593 606
s2 mat 36 55,296 1.0E16 1.4E11 120 77

the most efficient iterative solving process, it provides a better starting point to

investigate more sophisticated solving methods [76, 77] in the future.

100

0 50 100 150 200
−10

−8

−6

−4

−2

0

iteration number

re
la

tiv
e

re
si

du
al

orginal
rescaled

(a) mass mat: mass matrix

0 20 40 60
−10

−8

−6

−4

−2

0

iteration number

re
la

tiv
e

re
si

du
al

orginal
rescaled

(b) s8 mat: advance density

0 2000 4000 6000 8000 10000
−7

−6

−5

−4

−3

−2

−1

0

iteration number

re
la

tiv
e

re
si

du
al

orginal
rescaled

(c) s1 mat: advance velocity

0 200 400 600
−10

−8

−6

−4

−2

0

re
la

tiv
e

re
si

du
al

iteration number

orginal
rescaled

(d) s9 mat: advance pressure

0 20 40 60 80 100 120
−10

−8

−6

−4

−2

0

iteration number

re
la

tiv
e

re
si

du
al

orginal
rescaled

(e) s2 mat: advance magnetic field

Figure 6.5: Convergence behavior of the original and the regularized lin-
ear systems by applying the diagonal rescaling factors. The
linear systems are solved by block Jacobi preconditioned GM-
RES. Each block is factorized by the incomplete LU (ILU)
which is cheaper than the complete LU.

CHAPTER 7

Examples of Parallel Adaptive Simulations with M3D-C1

This chapter demonstrates examples of the parallel adaptive simulations with M3D-

C1. Section 7.1 discusses the adaptive error control used by the examples. Sec-

tion 7.2 presents the adaptive non-linear simulation of the tilt mode. Section 7.3

and Section 7.4 study the linear instability of the double tearing mode and the edge

localized mode on the adapted meshes, respectively. Section 7.5 demonstrates the

capability of switching the simulation loop from the 2D mesh to the 3D mesh.

7.1 Adaptive Error Control

The explicit error estimator defined by Section 3.2 is used to drive the adaptive

simulation loop (Section 4.1) on the 2D mesh. εUK and εψK estimate the spatial

discretization error for the U and ψ equations (Section 2.2.4), respectively. In order

to decide the desired mesh size, a single element error indicator is defined by [42]

εK =
√
ε2UK + ε2ψK. (7.1)

Given εK, the desired mesh size field is specified to control the element error

by [55, 78]

hnew
hold

=

(
τ

εK

) 2
2p+d

, (7.2)

where hnew is the targeted mesh size, hold is the original mesh size, εK is the estimated

element contribution to the error, τ is the targeted element error, d is the spatial

dimension (d = 2 here), and p is the convergence rate of the solution depending on

the smoothness of the solution and the order of polynomial completeness in the finite

element [24]. The order of polynomial completeness for the C1 triangle element used

by M3D-C1 is fourth (Section 2.3.1). The convergence rate in H2 norm is equal to

3 if the solution is smooth enough in the sense that U ∈ H4 [21]. In practice, p ≤ 3

is used. The bounds of the relative mesh size (hnew
hold

) and the absolute mesh size

(hnew), and the maximum number of nodes in the adapted mesh are also specified

101

102

to control the adaptive result.

For the non-linear adaptive simulation, such as the tilt mode in Section 7.2,

the solution is transferred during the local mesh modification (Section 4.5). For the

linear simulation that studies the instability of the eigen-modes in the perturbed

plasma equilibria, such as the double tearing mode in Section 7.3, the simulation goes

back the stage of setting the initial condition (the perturbed plasma equilibrium)

on the new mesh after the mesh is adapted.

7.2 Tilt Mode

The error estimator defined by Equation 3.26 in Section 3.2 is applied to the

simulation of the tilt mode [3, 25, 79]. The problem is described by Equation 3.4.

The initial condition is set as

ψ0 =

 2/kJ0(k)J1(kr)cosθ, r > 1,

(r − 1/r)cosθ, r < 1,
(7.3a)

U0 = 0.1e−r
2

cos(z). (7.3b)

ψ0 defines the magnetic field of the bipolar vortexes (Figure 7.1) and they correspond

two anti-parallel toroidal currents. U0 defines a clockwise rotation. The bipolar

vortexes rotate around the geometric center. When aligned horizontally, the vortexes

start compelling each other until they vanish at the wall boundary. The contour plots

of the ψ field and the toroidal current density are illustrated in Figure 7.1 and 7.2.

The results are obtained by M3D-C1 on a [0, 4] × [0, 4] domain with 6219 nodes.

The fluid viscosity and electrical resistivity are set as µ = 0.005 and η = 0.001,

respectively. The time step, δt, is set as 0.05. It can be seen that the toroidal

current localizes at the leading edges of the vortexes and forms the current sheets

during the process (Figure 7.2).

The simulation result on the adapted mesh and the uniformly refined meshes

are compared. Three uniformly refined meshes with the numbers of mesh nodes as

409, 1544 and 6219 nodes are used. The minimum mesh size in the adapted meshes

is set to be the same as the mesh with 6219 nodes. Figure 7.3 illustrates the toroidal

103

(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 7.1: Contour plots of the ψ field in the tilt mode.

current density on the adapted meshes at different time steps. It can be seen that

the mesh is adaptively refined at the leading edges of the vortexes where the current

sheets locate.

Figure 7.4 plots the U field at t=6 on the adapted mesh and uniformly refined

meshes. The contours of U in the figure show the structures of the streamline. It

shows that the structure of the streamline in the fluid on the adapted mesh matches

with the result on the finest uniform mesh (b in Figure 7.4). Figure 7.5 illustrates

the U field at t=8 on the adapted mesh and uniformly refined meshes. It can be

seen that the adapted mesh with 674 nodes shows a more clearly better solution of

the fluid streamline (U field) than the uniform meshes with 409 and 1544 nodes as

the simulation time accumulates.

The kinetic energy of the fluid is defined as

Ek =

∫
Ω

1

2
V 2dΩ =

∫
Ω

1

2
∇U · ∇UdΩ. (7.4)

Note that ρ = 1 and the velocity is represented by U only for the tests. Figure 7.6

compares the kinetic energy by the simulations on the uniformly refined meshes and

the adaptive mesh. In the adaptive simulations, a coarse mesh is maintained when

the simulation is in the linear region (t < 3), and the mesh is refined at the place

that requires higher resolution when the simulation goes to the non-linear region.

104

(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 7.2: Toroidal current density in the tilt instability on the uniform
mesh with 6219 nodes.

It can be seen that the adapted mesh captures the non-linear behavior in terms of

the kinetic energy change with the mesh size smaller than 800 nodes. The adaptive

mesh shows the advantage in simulating the non-linear behavior of the tilt mode.

105

(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=6 (f) t=8

Figure 7.3: Toroidal current density on the adapted meshes at t=1, 2,
3, 4, 6 and 8. The number of mesh nodes are 200, 326, 664,
737, 665 and 675 respectively (also see the second row of
Figure 7.6).

106

(a) adapted 665 nodes (b) uniform 6219 nodes

(c) uniform 1544 nodes (d) uniform 409 nodes

Figure 7.4: U field at t=6 on the adapted mesh (mesh e in Figure 7.3)
and uniformly refined meshes (the contour plot shows the
structure of the streamline).

107

(a) adapted 674 nodes (b) uniform 6219 nodes

(c) uniform 1544 nodes (d) uniform 409 nodes

Figure 7.5: U field at t=8 on the adapted mesh (mesh f in Figure 7.3)
and uniformly refined meshes (the contour plot shows the
structure of the streamline).

108

Figure 7.6: Top: kinetic energy on the adapted mesh (Figure 7.3) and
the uniform meshes with 409, 1544, 6219 nodes; bottom: the
number of mesh nodes in the adapted mesh at each step. The
minimum mesh size in the adapted meshes are the same as
the mesh with 6219 nodes. The plots are marked every two
steps. The mesh is adapted every four steps.

109

7.3 Double Tearing Mode

The tearing mode [80] is a type of MHD instability in the plasmas due to the

radical gradient of the toroidal current density in the equilibrium and the finite elec-

trical resistivity [4]. Resistive layers in the form of the localized physics properties,

such as the perturbed current (Figure 7.9.a), are developed at the resonant surfaces

in the plasmas [4].

The physics of the tearing mode over the domain are characterized by two

sets of equations. The ideal MHD [81] is adequate to describe the plasma behaviors

outside the resistive layers. The plasmas in this area are equilibrated by the Lorentz

force and the pressure gradient [4] (also see Equation 2.10 by dropping the inertial

and η terms). Assume the perturbation takes the form as ei(mθ−nϕ), where θ is the

poloidal angle, ϕ is the toroidal angle, i is the imaginary unit, and m and n are the

poloidal and toroidal mode numbers, respectively. It is shown that the destabilizing

effect from the equilibrium governed by the ideal MHD is proportional to [4]

1

1− nq
m

, (7.5)

where q is the safety factor [4]. It can be seen that the destabilizing term goes to

infinity at the places where 1
1−nq

m
= 0 and the MHD model including the electrical

resistivity must be used at these places.

The linear instability of the tearing mode with two resistive layers is studied

by M3D-C1. The extended MHD equation with the finite electrical resistivity (see

Ohm’s law defined by Equation 2.7) is simulated over the whole domain.

The initial condition is obtained by solving the Grad-Shafranov equation which

defines an axis-symmetric equilibrium of the ideal MHD [81] by

∇2
GSψ = −R2dp(ψ)

dψ
− 1

2

dg2(ψ)

dψ
, (7.6)

where ψ is the poloidal magnetic flux field in the equilibrium and ∇2
GSψ = R2∇ ·(

1
R2∇ψ

)
. dp(ψ)

dψ
and dg2(ψ)

dψ
are defined analytically [3] such that there are two q = 2

surfaces in the equilibrium (Figure 7.7) and the profile of the current density is in

the form illustrated in Figure 7.8.

110

The resistive layers are localized at the two q = 2 surfaces for the test simu-

lated. From Equation 7.5, the instability is due to the growth of the (n,m) = (1, 2)

mode. Without losing the physics feature, the reduced MHD model is applied for

the double tearing mode. The perturbed magnetic field and the velocity field are

represented by

B̃ = ∇× ψ̃∇ϕ, (7.7a)

Ṽ = R2∇Ũ ×∇ϕ, (7.7b)

respectively. Note that ψ̃ and Ũ depend on ϕ as ∼ einϕ, where n = 1 is used in

the test studied. Since the solution is also a function of ϕ, the error indicator needs

to be extended to the 3D case. However, given that ψ̃ and Ũ vary smoothly with

regard to ϕ (∼ eiϕ) and the major physics feature happens on the RZ plane, the

error indicator that only considers the differential operators on the RZ plane still

provides useful information on the spatial discretization error.

The 2D differential operators in the cylindrical coordinate are defined on the

RZ plane with the constant ϕ as:

∇F ≡ ∂F
∂R
R̂ + ∂F

∂Z
Ẑ,

∇2F ≡ 1
R

∂
∂R

(
R∂F
∂R

)
+ ∂2F

∂Z2 ,

∇2
GSF ≡ R2∇ ·

(
1
R2∇F

)
≡ ∇2F − 2

R
∂F
∂R

,

< F,G >≡ −(∇F ×∇G) · ϕ̂.

The error indicator for the linearized reduced MHD model (only consider Ũ

and ψ̃, also see Section 3.2) in the cylindrical coordinate is defined as:

ε2UK = h4
K||RU

1 ||2L2(K) +
1

2

∑
Γ∈∂K\∂Ω

(
h3
K
∥∥[RU

2

]
Γ

∥∥2

L2(Γ)
+ hK

∥∥[RU
3

]
Γ

∥∥2

L2(Γ)

)
,

(7.8a)

ε2ψK = h4
K||R

ψ
1 ||2L2(K) +

1

2

∑
Γ∈∂K\∂Ω

(
h3
K

∥∥∥[Rψ
2

]
Γ

∥∥∥2

L2(Γ)
+ hK

∥∥∥[Rψ
3

]
Γ

∥∥∥2

L2(Γ)

)
,

(7.8b)

111

where

RU
1 =

1

δt
R2∇2(Ũn+1

h − Ũn
h) +

1

2

 −R4 < ∇2Ũn
h , U

0
h > −R2 < ∇2U0

h , Ũ
n
h >

+ < ∇2ψ̃nh , ψ
0
h > + < ∇2ψ0

h, ψ̃
n
h >


−µR2∇4Ũn+1

h , (7.9a)

Rψ
1 =

1

δt
∇2(ψ̃n+1

h − ψ̃nh)− 1

2
R2
{
∇2 < ψ̃nh , U

0
h > +∇2 < ψ0

h, Ũ
n
h >

}
−η∇4ψ̃n+1

h , (7.9b)

RU
2 =

1

2



R4∇2Ũn
h

(
∂U0

h

∂R
cos(γ) +

∂U0
h

∂Z
sin(γ)

)
+R4∇2U0

h

(
∂Ũnh
∂R
cos(γ) +

∂Ũnh
∂Z
sin(γ)

)
−∇2

GSψ̃
n
h

(
∂ψ0

h

∂R
cos(γ) +

∂ψ0
h

∂Z
sin(γ)

)
−∇2

GSψ
0
h

(
∂ψ̃nh
∂R
cos(γ) +

∂ψ̃nh
∂Z
sin(γ)

)


+ µR2∂∇2Ũn+1

h

∂n
, (7.9c)

Rψ
2 =

1

2
R2

{
∂

∂n
< ψ̃nh , U

0
h > +

∂

∂n
< ψ0

h, Ũ
n
h >

}
+ η

∂∇2
GSψ̃

n+1
h

∂n
, (7.9d)

RU
3 = −µR2∇2Ũn+1

h , (7.9e)

Rψ
3 = −η∇2

GSψ̃
n+1
h . (7.9f)

Note that (·)0 is the equilibrium solution, and (̃·) is the perturbation from the

equilibrium. Assume that the equilibrium solution is smooth compared with the

perturbed solution, terms of (·)0 is further eliminated. Also consider that µ =

10−6 � 1 and η = 10−7 � 1 (see the energy norms defined by Equation 3.24), the

approximation theory in H1 space is more suitable for the problem studied (setting

s = r = 2, l = 2 and m = 0 for Theorem 1.1 in [30]). The revised error indicator

for the linear instability study of the double tearing problem is

ε2UK = h2
K||RU

1 ||2L2(K) +
1

2

∑
Γ∈∂K\∂Ω

(
hK
∥∥[RU

2

]
Γ

∥∥2

L2(Γ)
+ h−1

K
∥∥[RU

3

]
Γ

∥∥2

L2(Γ)

)
,

(7.10a)

ε2ψK = h2
K||R

ψ
1 ||2L2(K) +

1

2

∑
Γ∈∂K\∂Ω

(
hK

∥∥∥[Rψ
2

]
Γ

∥∥∥2

L2(Γ)
+ h−1

K

∥∥∥[Rψ
3

]
Γ

∥∥∥2

L2(Γ)

)
,

(7.10b)

112

where

RU
1 =

1

δt
R2∇2(Ũn+1

h − Ũn
h)− µR2∇4Ũn+1

h , (7.11a)

Rψ
1 =

1

δt
∇2(ψ̃n+1

h − ψ̃nh)− η∇4ψ̃n+1
h , (7.11b)

RU
2 = µR2∂∇2Ũn+1

h

∂n
, (7.11c)

Rψ
2 = η

∂∇2
GSψ̃

n+1
h

∂n
, (7.11d)

RU
3 = −µR2∇2Ũn+1

h , (7.11e)

Rψ
3 = −η∇2

GSψ̃
n+1
h . (7.11f)

Figure 7.10 illustrates the initial and adapted meshes. The mesh is iteratively

adapted every 300 time steps (dt = 20, t = 6000), and the simulation loop goes back

to the step of calculating the equilibrium on the new mesh (see Equation 7.6). It

can be seen that the adapted mesh has the finest mesh elements at the two resistive

layers in the double tearing mode. Figure 7.11 illustrates the change of the kinetic

energy (Equation 7.4) on the uniformly refined meshes and the adapted mesh. The

smallest element in the adapted mesh is set to be the same as that in the uniform

mesh with 96,702 nodes. It shows that the adapted mesh captures the growth of

the eigen modes.

113

Figure 7.7: Profile of the safety factor (q) in the equilibrium. r is the
minor radius (see Figure 2.1).

Figure 7.8: Profile of the toroidal current density in the equilibrium over
the minor radius, r.

114

(a) j̃ (b) Ũ

Figure 7.9: Perturbed toroidal current density (j̃) and the perturbed U
component of the velocity field (Ũ) developed on a uniform
mesh with 96,703 nodes in the double tearing mode (η =
10−7).

(a) initial (579 nodes) (b) adapted mesh (10,396 nodes)

Figure 7.10: Initial mesh and the adapted mesh by eight processes for the
double tearing mode. The major radius, R (see Figure 2.1),
ranges in [2.2, 4.2]. The meshes are colored by the process
ranks.

115

Figure 7.11: Change of kinetic energy (Ek in Equation 7.4) on the
adapted mesh with 10,396 nodes (Figure 7.10) and the uni-
form meshes with 24,276, 37,050, 52,960, and 96,703 nodes.

116

7.4 Edge Localized Modes

The edge localized mode (ELM) is a type of MHD instability happening at

the plasma edge [82, 4]. An example on the linear instability of the ELM is studied

by M3D-C1 on the adaptive mesh.

Similar to the process of the linear instability example discussed by Section 7.3,

the initial equilibrium of the plasma is obtained by solving the the Grad-Shafranov

equation defined by Equation 7.6. The profiles of p(ψ) and g(ψ) are defined by the

spline-fitted data from [67]. Figure 7.12 illustrates the ψ and pressure fields in the

equilibrium state.

(a) ψ (b) pressure

Figure 7.12: Initial equilibrium of the ψ and pressure fields. The lines
show the structure of the magnetic flux surfaces (also see
Section 5.2.3.2).

In the linear instability simulation of ELM, the perturbed velocity and mag-

netic field are represented by the full model defined by Equation 2.12 [6]. Similar to

Section 7.3, the perturbation depends on ϕ in the form of einϕ, where n = 8 for the

test studied. The kinetic energy of the system (1
2
ρV 2) increases at the rate ∼ eγt

after the equilibrium is perturbed, where γ is the growth rate.

117

Compared with the reduced model applied in Section 7.3, the full model in-

cludes formulation of the variables, [ω, χ, f], for the velocity and magnetic fields in

addition to ψ and U . The estimated error contributed by the jump discontinuity

derived for the reduced model (Equation 7.11) is used as the indicator of the mesh

adaptation.

Figure 7.13 illustrates the initial mesh and the adapted mesh by eight pro-

cesses. The mesh is iteratively adapted when the kinetic energy reaches to 0.05.

Figure 7.14 and Figure 7.15 plot the toroidal current and poloidal magnetic flux

fields on the adapted mesh.

Figure 7.13: Initial mesh (1,469 nodes) and the adapted mesh (11,941
nodes) for edge localized mode by eight-process run.

Table 7.1 compares the growth rates of the kinetic energy on the uniform

meshes and the adapted mesh. It shows that the result on the adapted mesh with

11,941 nodes agrees with the result on the uniform mesh with 53,564 nodes.

118

Table 7.1: Growth rate of the kinetic energy (∼ eγt) on the uniform
meshes with 13,437, 23,399, and 53,564 nodes and the adapted
mesh with 11,941 nodes.

mesh uniform uniform uniform adapted
number of nodes 13,437 23,399 53,564 11,941
growth rate (γ) 0.1363 0.1425 0.1473 0.1474

(a) j̃ (b) Ũ

Figure 7.14: Toroidal current (j̃) and Ũ fields on the adapted mesh in
Figure 7.13.

7.5 2D Simulation to 3D Simulation

An example demonstrating the capability of switching the simulation loop

from the 2D mesh to the 3D mesh (see Section 4.1.3) is presented. The initial

axisymmetric solution is calculated on the 2D mesh by solving the Grad-Shafranov

equation defined by Equation 7.6. Figure 7.16 illustrates the profiles of the safety

factor (q), the toroidal current density (j), and the pressure (p) over the minor

radius (r) in the axisymmetric equilibrium by the 2D simulation. The axisymmetric

solution on the 2D mesh is mapped to the 3D mesh by the method defined by

Section 4.5.1 (Figure 7.17). The non-axisymmetric instability is developed on the

119

Figure 7.15: Close-up view of Ũ on the adapted mesh in Figure 7.13.

3D mesh. Figure 7.18 shows the structure of the magnetic islands on the planes at

ϕ = 0 and 1
2
π obtained from the 3D simulation, respectively.

120

(a) q (b) j

(c) p

Figure 7.16: Profiles of the safety factor (q), the toroidal current density
(j), and the pressure (p) over the minor radius (r) in the
axisymmetric equilibrium by the 2D simulation.

121

(a) axisymmetric solution (b) 3D mesh

Figure 7.17: 3D simulation that uses the axisymmetric solution calcu-
lated on the 2D mesh. The 2D mesh is a uniform mesh with
1159 nodes. There are 8 planes in the 3D mesh. Sub-figure
a is the Poincare plot of the magnetic flux surfaces.

(a) ϕ = 0 (b) ϕ = 1
2
π

Figure 7.18: Poincare plot of the magnetic flux surfaces on the planes
with ϕ = 0, 1

2
π.

CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

This thesis studies the methods and associated software for the automatic

and adaptive simulations of plasmas physics on high-performance parallel comput-

ers. A parallel adaptive infrastructure for the magnetically confined fusion plasma

simulations is developed and applied to M3D-C1.

In Chapter 2, the extended MHD equations and the finite element formulation

were reviewed. The fourth-order PDE from the reduced MHD model under large-

aspect-ratio approximation in the tokamak and its weak formulation were discussed

specifically.

In Chapter 3, an explicit a posteriori error estimator was derived for the model

problem discussed in Chapter 2. The error estimator provides an indication of the

numerical error from the spatial discretization (assuming the temporal discretization

error is controlled to be small). The mesh-dependent norm of the residual in the

strong form is calculated and it is shown to provide an upper-bound of the spatial

discretization error in the energy norm. The error estimator is applied to the problem

of the Hartman boundary layer. Although the global effectivity indices calculated

show that the true error is over estimated, the global effectivity indices are relatively

steady as the mesh is adaptively refined, and the distribution of the element level

estimated error is consistent with the true error measured by the energy norm.

In Chapter 4, an overview of the parallel adaptive simulation loop in M3D-C1

and the corresponding software tools were presented. The simulation loops on the

2D mesh and the 3D mesh, and the loop from 2D mesh to 3D mesh were discussed,

respectively. The initial mesh on the tokamak cross-section is generated by the

Simmetrix mesh generation tool [43]. PUMI [44] is applied as the unstructured mesh

infrastructure that provides the interface to the geometric model of the tokamak and

manages the distributed mesh. MeshAdapt [14] is used as the tool to adaptively

modify the mesh. SuperLU [45] and PETSc [48] are used by M3D-C1 to solve the

122

123

algebraic systems by the direct and iterative methods, respectively. Mesh adjacency

information is used to reduce the memory usage during setting up the global discrete

system.

In Chapter 5, a tokamak mesh definition procedure for the fusion plasma codes,

M3D-C1 and XGC1 was presented. The procedure employs a geometric model

definition of the domain that represents both the physical and physics components

that must be reflected in the resulting mesh. The needed mesh control information

is easily specified in terms of the geometric model. The mesh generation procedure

is component-based and it satisfies the constraints of the simulation procedures and

creates well controlled graded meshes at the same time.

In Chapter 6, a procedure to improve the numerical conditioning of the re-

sulting matrix systems in M3D-C1 was discussed. The physics that couple the

multi-scale components [6] and the fourth-order PDE solved that requires the usage

of the C1 finite elements lead to the ill-conditioning of the linear systems in M3D-C1.

A method that defines a new set of the shape functions is introduced. Three terms

are introduced to rescale the shape functions. The first term is to account for the

“element size” and “element size squared” introduced by using the first-order and

second-order derivatives as degrees of freedom in the finite element discretization.

The second is the physics-based scaling of the contributions to the multicomponent

set of equations based on the grouping of eigenvalues associated with the compo-

nents. The third accounts for integration over elements if the mesh size varies over

the domain. The C1 finite element is regularized and the procedure results in a

linear system with a smaller condition number.

In Chapter 7, examples of the parallel adaptive simulation in M3D-C1 were

presented.

8.2 Future Work

The explicit error estimator derived in the present work overestimates the error

with respect to the global effectivity indices. The effectiveness can be improved

by approximating the magnitude of the multiplicative constant used in the error

estimator (C in Equation 3.25). The constant depends on the specific set of the

124

shape functions, the shape of the mesh element and the parameters in the energy

norm (see Equation 3.24). The alternative way, perhaps more desired with respect

to the global effectivity indices, is applying the implicit error estimator that solves

the appropriate sub-domain residual problem [30, 42]. One challenge of defining such

an implicit error estimator lies in constructing a proper subspace to approximate

the sub-domain residual problem, given the fact that the original problem is solved

by the shape functions of fifth-order polynomials.

It is possible to extend the current error estimator for the anisotropic mesh

adaptation, if the directional property of the solutions from the problems with the

anisotropic transport coefficients, such as the gyro-viscosity [8], is considered.

It is also desired to estimate the temporal discretization error explicitly such

that both the temporal and the spatial discretization errors can be adaptively con-

trolled.

The present work applies a simple method to transfer the solutions associated

with local mesh modifications. The field values and its derivatives up to second order

are interpolated on the original mesh during the split operation and the DOF values

associated with the new vertex are assigned to be the area-weighted average values

interpolated over the adjacent elements. The DOF values are kept unchanged during

the swap and collapse operations. It is desired to investigate more sophisticated

solution transfer methods such as the superconvergent patch recovery (SPR) [55]

and compare with the currently applied method to see how the solution transfer can

affect the accuracy of the adaptive simulation.

A more scalable and efficient iterative solving method for the 3D problem in

M3D-C1 that combines the general preconditioning method [76, 77] with the fast

element routines developed in Chapter 6 is still to be investigated in the future.

REFERENCES

[1] W. Park et al., “Plasma simulation studies using multilevel physics models,”
Phys. Plasmas, vol. 6, no. 5, pp. 1796–1803, Jan. 1999.

[2] S. C. Jardin, Computational Methods in Plasma Physics. Boca Raton, FL,
USA: CRC Press, 2010.

[3] S. C. Jardin, “A triangular finite element with first-derivative continuity
applied to fusion MHD applications,” J. Comput. Phys., vol. 200, no. 1, pp.
133–152, Oct. 2004.

[4] J. Wesson, Tokamaks. Oxford, UK: Oxford Univ. Press, 2011.

[5] Princeton Plasma Physics Lab, “National Spherical Torus Experiment
(NSTX),” [Online]. Available: http://www.pppl.gov/nstx. Accessed on: 17
Aug. 2015.

[6] S. C. Jardin, N. M. Ferraro, J. Breslau, and J. Chen, “Multiple timescale
calculations of sawteeth and other global macroscopic dynamics of tokamak
plasmas,” Comput. Sci. Discov., vol. 5, no. 1, May 2012, Art.ID. 014002.

[7] S. C. Jardin, J. Breslau, and N. M. Ferraro, “A high-order implicit finite
element method for integrating the two-fluid magnetohydrodynamic equations
in two dimensions,” J. Comput. Phys., vol. 226, no. 2, pp. 2146–2174, Oct.
2007.

[8] N. M. Ferraro and S. C. Jardin, “Calculations of two-fluid
magnetohydrodynamic axisymmetric steady-states,” J. Comput. Phys., vol.
228, no. 20, pp. 7742–7770, Nov. 2009.

[9] S. C. Jardin, “Review of implicit methods for the magnetohydrodynamic
description of magnetically confined plasmas,” J. Comput. Phys., vol. 231,
no. 3, pp. 822–838, Feb. 2012.

[10] N. M. Ferraro et al., “Fluid modeling of fusion plasmas with M3D-C1,” Sci.
Discov. through Advanced Comput., Tech. Rep., Jul. 2011, [Online].
Available: http://www.mcs.anl.gov/
uploads/cels/papers/scidac11/final/ferraro nathaniel.pdf. Accessed on: 17
Aug. 2015.

[11] C. Chang et al., “Compressed ion temperature gradient turbulence in diverted
tokamak edge,” Phys. Plasmas, vol. 16, no. 5, Feb. 2009, Art.ID. 056108.

125

126

[12] C. Chang, S. Ku, and H. Weitzner, “Numerical study of neoclassical plasma
pedestal in a tokamak geometry,” Phys. Plasmas, vol. 11, no. 5, pp.
2649–2667, Apr. 2004.

[13] M. F. Adams et al., “Scaling to 150k cores: Recent algorithm and
performance engineering developments enabling XGC1 to run at scale,” J.
Phys. Conf. Ser., vol. 180, no. 1, Jun. 2009, Art.ID. 012036.

[14] M. S. Shephard, C. W. Smith, E. S. Seol, and O. Sahni, “Methods and tools
for parallel anisotropic mesh adaptation and analysis,” Proc. ADMOS, pp.
619–631, Jun. 2013.

[15] K. J. Weiler, “Topological structures for geometric modeling,” Ph.D.
dissertation, Dept. Comput. and Syst. Eng., Rensselaer Polytechnic Inst.,
Troy, NY, 1986.

[16] M. S. Shephard, “Meshing environment for geometry-based analysis,” Int. J.
Num. Methods Eng., vol. 47, no. 1-3, pp. 169–190, Jan. 2000.

[17] F. Zhang et al., “Mesh generation for confined fusion plasma simulation,”
Eng. with Comput., to be published.

[18] R. L. Panton, Incompressible Flow. Hoboken, NJ, USA: Wiley, 2006.

[19] J. D. Jackson, Classical Electrodynamics. Hoboken, NJ, USA: Wiley, 1962.

[20] J. A. Bittencourt, Fundamentals of Plasma Physics. New York, NY, USA:
Springer, 2013.

[21] T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Mineola, NY, USA: Dover Publications, 2012.

[22] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive
Mesh-refinement Techniques. Hoboken, NJ, USA: Wiley, 1996.

[23] R. Becker and R. Rannacher, “An optimal control approach to a posteriori
error estimation in finite element methods,” Acta Numerica, vol. 10, no. 1, pp.
1–102, May 2001.

[24] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a
posteriori error estimates. part 2: Error estimates and adaptivity,” Int. J.
Num. Methods Eng., vol. 33, no. 7, pp. 1365–1382, May 1992.

[25] H. Strauss and D. Longcope, “An adaptive finite element method for
magnetohydrodynamics,” J. Comput. Phys., vol. 147, no. 2, pp. 318–336, Dec.
1998.

127

[26] K. G. Powell, “A tree-based adaptive scheme for solution of the equations of
gas dynamics and magnetohydrodynamics,” Appl. Num. Math., vol. 14, no. 1,
pp. 327–352, Apr. 1994.

[27] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw, “A
solution-adaptive upwind scheme for ideal magnetohydrodynamics,” J.
Comput. Phys., vol. 154, no. 2, pp. 284–309, Sep. 1999.

[28] B. Philip, M. Pernice, and L. Chacón, “Solution of reduced resistive
magnetohydrodynamics using implicit adaptive mesh refinement,” in Domain
Decomposition Methods in Science and Engineering XVI. New York, NY,
USA: Springer, 2007, pp. 723–729.

[29] S. C. Jardin, “The nonlinear M3D-C1 code with application to disruptive
beta limits in NSTX,” 2013, [Online]. Available:
http://w3.pppl.gov/cemm/M3D-C1.pdf. Accessed on: 17 Aug. 2015.

[30] M. Ainsworth and J. T. Oden, “A posteriori error estimation in finite element
analysis,” Comput. Methods Appl. Mechanics Eng., vol. 142, no. 1, pp. 1–88,
Mar. 1997.

[31] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a
posteriori error estimates. part 1: The recovery technique,” Int. J. Num.
Methods Eng., vol. 33, no. 7, pp. 1331–1364, May 1992.

[32] R. Keppens, M. Nool, G. Tóth, and J. Goedbloed, “Adaptive mesh refinement
for conservative systems: multi-dimensional efficiency evaluation,” Comput.
Phys. Comm., vol. 153, no. 3, pp. 317–339, Jul. 2003.

[33] A. Van Dam and P. Zegeling, “A robust moving mesh finite volume method
applied to 1D hyperbolic conservation laws from magnetohydrodynamics,” J.
Comput. Phys., vol. 216, no. 2, pp. 526–546, Aug. 2006.

[34] R. Verfürth, “A posteriori error estimators for the stokes equations,”
Numerische Mathematik, vol. 55, no. 3, pp. 309–325, May 1989.

[35] R. Verfürth, “A posteriori error estimators and adaptive mesh-refinement for
a mixed finite element discretization of the Navier-Stokes equations,” in
Numerical Treatment of the Navier-Stokes Equations. New York, NY, USA:
Springer, 1990, pp. 145–152.

[36] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement
techniques,” J. Comput. Appl. Math., vol. 50, no. 1, pp. 67–83, May 1994.

[37] S. Prudhomme and J. Oden, “A posteriori error estimation and error control
for finite element approximations of the time-dependent Navier-Stokes
equations,” Finite Elements Analy. Des., vol. 33, no. 4, pp. 247–262, Nov.
1999.

128

[38] K. Segeth, “A comparison of a posteriori error estimates for biharmonic
problems solved by the FEM,” J. Comput. Appl. Math., vol. 236, no. 18, pp.
4788–4797, Dec. 2012.

[39] R. Verfürth, “A posteriori error estimators for convection-diffusion
equations,” Numerische Mathematik, vol. 80, no. 4, pp. 641–663, Oct. 1998.

[40] P. Clément, “Approximation by finite element functions using local
regularization,” RAIRO Anal. Num., vol. 9, no. R2, pp. 77–84, Aug. 1975.

[41] P. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge, UK:
Cambridge Univ. Press, 2001, vol. 25.

[42] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite
Element Analysis. Hoboken, NJ, USA: Wiley, 2011.

[43] Simmetrix Inc., “Simmetrix Inc. - Mesh Generation, Geometry Access,”
[Online]. Available: http://www.simmetrix.com/. Accessed on: 17 Aug. 2015.

[44] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, “PUMI: Parallel
unstructured mesh infrastructure,” ACM Trans. Math. Softw., submitted for
publication.

[45] X. Li et al., “SuperLU Users’ Guide,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-44289, Sep. 1999, [Online]. Available:
http://crd.lbl.gov/∼xiaoye/SuperLU/. Accessed on: 17 Aug. 2015.

[46] X. Li, M. S. Shephard, and M. W. Beall, “3D anisotropic mesh adaptation by
mesh modification,” Comput. Methods Appl. Mechanics Eng., vol. 194, no. 48,
pp. 4915–4950, Nov. 2005.

[47] O. Sahni, “Automated adaptive viscous flow simulations,” Ph.D. dissertation,
Dept. Mech. Aerospace and Nucl. Eng., Rensselaer Polytechnic Inst., Troy,
NY, 2007.

[48] S. Balay et al., “PETSc Web page,” 2013, [Online]. Available:
http://www.mcs.anl.gov/petsc. Accessed on: 17 Aug. 2015.

[49] M. Zhou, O. Sahni, M. S. Shephard, C. D. Carothers, and K. E. Jansen,
“Adjacency-based data reordering algorithm for acceleration of finite element
computations,” Sci. Program., vol. 18, no. 2, pp. 107–123, Apr. 2010.

[50] O. Sahni, C. D. Carothers, M. S. Shephard, and K. E. Jansen, “Strong scaling
analysis of a parallel, unstructured, implicit solver and the influence of the
operating system interference,” Sci. Program., vol. 17, no. 3, pp. 261–274,
Dec. 2009.

129

[51] S. Balay et al., “PETSc users manual,” Argonne National Laboratory, Tech.
Rep. ANL-95/11 - Revision 3.5, 2014, [Online]. Available:
http://www.mcs.anl.gov/petsc, Accessed on: 17 Aug. 2015.

[52] Valgrind, “Massif: a heap profiler,” [Online]. Available:
http://valgrind.org/docs/manual/ms-manual.html. Accessed on: 17 Aug.
2015.

[53] A. Ovcharenko et al., “Neighborhood communication paradigm to increase
scalability in large-scale dynamic scientific applications,” Parallel Comput.,
vol. 38, no. 3, pp. 140–156, Mar. 2012.

[54] National Energy Research Scientific Computing Center, “NERSC
computational systems,” [Online]. Available:
http://www.nersc.gov/users/computational-systems/. Accessed on: 17 Aug.
2015.

[55] J. Wan, “An automated adaptive procedure for 3D metal forming
simulations,” Ph.D. dissertation, Dept. Mech. Eng., Rensselaer Polytechnic
Inst., Troy, NY, 2006.

[56] Princeton Plasma Physics Lab, “Center for Edge Physics Simulation,”
[Online]. Available: http://epsi.pppl.gov/. Accessed on: 17 Aug. 2015.

[57] S. Ku, C. Chang, and P. Diamond, “Full-f gyrokinetic particle simulation of
centrally heated global ITG turbulence from magnetic axis to edge pedestal
top in a realistic tokamak geometry,” Nucl. Fusion, vol. 49, Sep. 2009, Art.ID.
115021.

[58] F. Chen, Introduction to Plasma Physics and Controlled Fusion. Volume 1:
Plasma Physics. New York, NY, USA: Springer, 1984.

[59] N. M. Ferraro et al., “Resistive wall model in M3D-C1,” presented at the Int.
Sherwood Fusion Theory Conf., San Diego, CA, USA, Mar. 24-26, 2014.

[60] M. W. Beall, J. Walsh, and M. S. Shephard, “A comparison of techniques for
geometry access related to mesh generation,” Eng. with Comput., vol. 20,
no. 3, pp. 210–221, Sep. 2004.

[61] C. M. Hoffmann, Geometric and Solid Modeling. Burlington, MI, USA:
Morgan Kaufmann, 1989.

[62] M. S. Shephard and M. K. Georges, “Reliability of automatic 3D mesh
generation,” Comput. Methods Appl. Mechanics Eng., vol. 101, no. 1, pp.
443–462, Dec. 1992.

130

[63] M. W. Beall and M. S. Shephard, “A general topology-based mesh data
structure,” Int. J. Num. Methods Eng., vol. 40, no. 9, pp. 1573–1596, Aug.
1997.

[64] R. Garimella, “Mesh data structure selection for mesh generation and FEA
applications,” Int. J. Num. Methods Eng., vol. 55, no. 4, pp. 451–478, Jul.
2002.

[65] W. Celes, G. Paulino, and R. Espinha, “A compact adjacency-based
topological data structure for finite element mesh representation,” Int. J.
Num. Methods Eng., vol. 64, no. 11, pp. 1529–1556, Sep. 2005. .

[66] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-spline Techniques.
New York, NY, USA: Springer, 2002.

[67] General Atomics. EFIT Equilibrium and Reconstruction Fitting Code.
[Online]. Available: https://fusion.gat.com/theory/Efit. Accessed on: 17 Aug.
2015.

[68] Princeton Plasma Physics Lab, “PSPLINE help,” [Online]. Available:
http://w3.pppl.gov/∼pshare/help/pspline.htm. Accessed on: 17 Aug. 2015.

[69] X. Li, M. S. Shephard, and M. W. Beall, “Accounting for curved domains in
mesh adaptation,” Int. J. Num. Methods Eng., vol. 58, no. 2, pp. 247–276,
Jul. 2003.

[70] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard, “Parallel anisotropic 3D
mesh adaptation by mesh modification,” Eng. with Comput., vol. 21, no. 3,
pp. 247–258, Jan. 2006.

[71] C. L. Bottasso, “Anisotropic mesh adaption by metric-driven optimization,”
Int. J. Num. Methods Eng., vol. 60, no. 3, pp. 597–639, May 2004.

[72] E. S. Seol and M. S. Shephard, “Efficient distributed mesh data structure for
parallel automated adaptive analysis,” Eng. with Comput., vol. 22, no. 3-4,
pp. 197–213, Nov. 2006.

[73] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,
USA: SIAM, 2003.

[74] W. W. Hager, “Condition estimates,” SIAM J. Sci. Stat. Comput., vol. 5,
no. 2, pp. 311–316, Mar. 1984.

[75] R. E. Barnhill and G. Farin, “C1 quintic interpolation over triangles: two
explicit representations,” Int. J. Num. Methods Eng., vol. 17, no. 12, pp.
1763–1778, Dec. 1981.

131

[76] J. H. Bramble and X. Zhang, “Multigrid methods for the biharmonic problem
discretized by conforming C1 finite elements on nonnested meshes,” Num.
Functional Anal. Optimization, vol. 16, no. 7-8, pp. 835–846, May 1995.

[77] S. Zhang and J. Xu, “Optimal solvers for fourth-order PDEs discretized on
unstructured grids,” SIAM J. Num. Anal., vol. 52, no. 1, pp. 282–307, Feb.
2014.

[78] E. Oñate and G. Bugeda, “A study of mesh optimality criteria in adaptive
finite element analysis,” Eng. Comput., vol. 10, no. 4, pp. 307–321, Dec. 1993.

[79] S. Lankalapalli, J. E. Flaherty, M. S. Shephard, and H. Strauss, “An adaptive
finite element method for magnetohydrodynamics,” J. Comput. Phys., vol.
225, no. 1, pp. 363–381, Jul. 2007.

[80] H. Furth, P. Rutherford, and H. Selberg, “Tearing mode in the cylindrical
tokamak,” Phys. Fluids, vol. 16, no. 7, pp. 1054–1063, May 1973.

[81] J. P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: with
Applications to Laboratory and Astrophysical Plasmas. Cambridge, UK:
Cambridge Univ. Press, 2004.

[82] H. Zohm, “Edge localized modes (ELMs),” Plasma Phys. Controlled Fusion,
vol. 38, no. 2, Feb. 1996, Art.ID. 105.

