
A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE ∗

DAN IBANEZ†

Abstract. We present a minimal set of C functions which form an interface for dynamic
sparse exchange built on an MPI interface. Such exchanges can effectively handle the complex
communication patterns of unstructured parallel codes. By allowing gradual packing and unpacking
of messages, we simplify user-level source code. By implementing a scalable exchange algorithm
and having the interface reflect the structure of that algorithm, we make it easier to create scalable
programs. Example uses including source code and performance results are also presented.

Key words. MPI, nonblocking, massively parallel, parallel programming

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Since the largest supercomputers to date are designed as dis-
tributed memory architectures, message passing between processes is the program-
ming model of choice for programs which run at this large scale.

MPI is a standard interface for message passing which has simplified parallel
programming for years by providing a consistent API across all machines of interest.
The capabilities built into MPI continue to develop along with its specification, but
the most complex communication patterns of real applications continue to require
significant boilerplate code for MPI users, and often less-than-optimal algorithms are
implemented by users for complex tasks.

We present a very simple API that gives users access to a powerful exchange mech-
anism, reducing code size, increasing readability, and improving scalability. This API
(with trivial variations) has been used successfully to build several complex codes
including the PUMI [10] set of tools for parallel unstructured mesh simulations, in-
cluding adaptive finite element simulations. The interface was inspired in part by the
IPComMan interface which used to provide the same functionality [13].

Programmers should have a very easy to use interface backed by the most scal-
able algorithms for common and difficult parallel programming tasks. Hand-coding a
communication pattern with non-blocking sends and receives is more error prone that
using a higher-level collective functionality [5]. The interface presented here should
be ideal for applications engaged in dynamic sparse exchange as defined in Section
2.1.

2. Background.

2.1. Definition of Exchange. An Exchange is a parallel operation in which a
set of processes send messages to one another.

The first restriction that defines an exchange will be that each process must have
ready all the messages it is going to send; they cannot depend upon data to be received
during the exchange. Thus if one message will affect the contents of another message,
those messages must be part of different exchanges.

Hoefler et al. define a Sparse Exchange as one in which each process sends to and
receives from O(log(P)) neighbors, where P is the total number of processes [8]. The

∗ This material is based upon work supported by the U.S. Department of Energy Office of Sci-
ence, Office of Advanced Scientific Computing Research, under award DE-SC00066117 (FASTMath
SciDAC Institute).

†Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, New York, 12180
(ibaned@rpi.edu).

1

2 D. IBANEZ

critical part of this definition is that the neighborhood size is asymptotically much
smaller than P , and hence sparse.

A Dynamic Sparse Data Exchange (DSDE) is one in which each process knows
only the processes it will send data to, not the ones it will receive data from. Thus the
difficult part of such an exchange is detecting when all messages have been received.

The MPI standard is starting to include higher-level functionality for collective
exchanges, most notably the neighborhood collectives [9]. These can efficiently execute
non-dynamic sparse exchanges, but require pre-defined communication graphs. Our
API is designed to be much easier to use, at the cost of deriving the communication
graph and not performing any complex optimizations [7]. However, we automatically
do message coalescing as explained in Section 3.2.

2.2. Nonblocking Consensus. Hoefler et al. further propose a highly scalable
algorithm for carrying out a DSDE, which they term “non-blocking consensus”. Their
algorithm is repeated here because it is so fundamental to our work.

Algorithm 1 Non-blocking Consensus

function exch(List I of destinations and data)
Empty list O for received data
done=false
barr act=false
for i ∈ I do

start nonblocking synchronous send to process dest(i)
end for
while not done do

msg = nonblocking probe for incoming message
if msg found then

allocate buffer, receive message, add buffer to O
end if
if barr act then

comp = test barrier for completion
if comp then

done=true
end if

else
if all sends are finished then

start nonblocking barrier
barr act=true

end if
end if

end while
return O

end function

In short, what Algorithm 1 does is execute two things concurrently: a loop that
continuously probes for and accepts incoming messages, and a termination detection
process for sent messages. The termination detection algorithm is quite natural. All
outgoing messages are sent using a “synchronous” protocol, which will acknowledge
receipt of the message back to its sender. Once a process receives acknowledgements
about all messages it sent (meaning they were all received), it enters a barrier. Once

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 3

the barrier is complete, by definition, all messages sent by all processes have been
received. Such proofs of termination detection can be explained by the basic causality
of message passing described by Mattern [12] and others. The trick is to execute
these concurrently, which requires nonblocking synchronous sends and a nonblocking
barrier.

2.3. Importance of Guarantees. The reason non-blocking consensus is so
important is that it solves the DSDE problem with a guaranteed Θ(log(P)) runtime
and constant memory requirements. The DSDE problem shows up very frequently
in unstructured parallel programs, and there is great risk of sub-optimal algorithms
being used because they are closer within reach in several ways.

For example, several packages in the popular Trilinos framework [6], including
STK [3] and Zoltan [2] solve the DSDE problem using the equivalent of the algorithm
termed “personalized consensus” by Hoefler et al., which has Θ(P) memory and time
requirements. This is usually implemented by using MPI REDUCE on an array of
size P to compute the number of messages each rank will receive based on how many
it will send to each rank, then using MPI SCATTER to redistribute that information
to the ranks.

STK does this in the

comm_recv_procs_and_msg_sizes

function of their CommSparse system, which has an API quite similar to the one
presented here, with the added benefit of C++ type safety but the non-scalability of
length P arrays.

Zoltan does it in the

Zoltan_Comm_Invert_Map

function of their communication utilities.
The PETSc package [1] actually has important communication functions which

can use either personalized consensus or non-blocking consensus, including

PetscCommBuildTwoSided

and certain vector and matrix assembly functions. Although the scalable algorithm is
implemented for these functions, it is not as readily available even for cases in which
it runs faster.

Personalized consensus is not scalable in theoretical terms, but it is used in many
codes as a solution to the DSDE problem because it has reasonable runtime for small
values of P and it simply comes to mind more readily given the basic tools of MPI-1,
specifically reduction. Non-blocking consensus is a large creative leap from there,
especially since non-blocking barriers are not yet a familiar concept.

As machines such as Argonne National Laboratory’s Mira IBM Blue Gene/Q are
reaching core counts in the millions, we should prepare for parallel programming with
P in the millions. In this case, storing and transmitting arrays of size P becomes
very costly and will soon become impossible: as P increases and memory per core
decreases, there may not even be room for P integers per core.

3. The Programming Interface.

3.1. Function Signatures. There are nine total functions in our exchange sys-
tem. Two of them, COMM INIT and COMM FINALIZE, are used to set up the
underlying implementation before and after all communication takes place:

4 D. IBANEZ

void comm_init(MPI_Comm comm);

void comm_finalize(void);

Notice that the system is initialized with an MPI communicator, and will use dupli-
cates of this communicator for all its work. The next two functions are convenient
access for the common queries of rank and size on that communicator:

int comm_rank(void);

int comm_size(void);

Then we have the functions which actually comprise the DSDE operation. COMM PACK
adds some data to the buffer that will be sent to a particular neighbor, and has a C
macro form which automatically provides the size argument.

void comm_pack(void const* data, unsigned size, int to);

#define COMM_PACK(o,to) comm_pack(&(o),sizeof(o),to)

After packing is complete, the entire non-blocking consensus exchange is triggered by
COMM EXCH:

void comm_exch(void);

Non-blocking consensus requires that messages be received until termination is de-
tected. Thus there is COMM RECV, which returns nonzero until termination is
detected:

int comm_recv(void);

Messages are received, unpacked, and discarded as a stream until termination. The
COMM UNPACK function extracts data from this stream and has a macro form just
like COMM PACK:

void comm_unpack(void* data, unsigned size);

#define COMM_UNPACK(o) comm_unpack(&(o),sizeof(o))

It is also useful to know the sender of the message currently being unpacked, this can
be queried at any time using COMM FROM:

int comm_from(void);

3.2. Benefits. The key benefit of this API is the ability to gradually pack and
unpack messages, in the same way that complex file formats are gradually read and
written throughout a portion of code. This can be contrasted, for example, with
APIs that are moving into the MPI standard for making use of sparse exchange, for
example MPI INEIGHBOR ALLTOALLW, which requires more boilerplate code to
use [4]. In fact, one can see our API as one level higher; COMM EXCH could be
implemented based on the neighborhood MPI calls.

We don’t use MPI3 functions in our implementation. We implement non-blocking
consensus directly, using a custom implementation of non-blocking barriers which calls
only non-blocking point to point functions. This means our implementation can be
compiled using most MPI installations as opposed to the most recent ones.

Note that COMM INIT takes an MPI communicator argument, which is du-
plicated (not used directly) and the duplicate(s) are used for all message passing
in the implementation. In addition, the implementation is such that one may call
COMM INIT after COMM FINALIZE, essentially changing the underlying communi-
cator. This makes it easy to implement algorithms based on changing communicators,
something which will be emphasized in Section 5.2.

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 5

Finally, note that by a lack of mechanism for specifying otherwise, there is a single
message going to each destination. A call to COMM PACK just appends data to this
message, creating it if necessary. This is actually a benefit in that we can avoid large
numbers of non-blocking point-to-point MPI requests being created for large numbers
of small messages. It has been measured that performance is greatly improved by
sending a few large messages instead of many small ones [13]. Seeing this message as
more of a continuous data stream simplifies programming, at least in all our use of
this API.

3.3. Criticisms. The void pointer and size integer convention for passing arbi-
trary data is sometimes criticized as an unsafe idiom encouraged by the C language.
It should be noted that the MPI standard chose this convention and enhanced it with
MPI Datatype descriptors of the content [4]. Adding MPI Datatype descriptors to
our API would not invalidate any of the described benefits, except perhaps ease of use,
given that the descriptor would also have to be gradually built up. Our assumption
of homogeneity with respect to things like byte ordering and integer widths has so far
held up on several leadership-class supercomputers.

The function names listed here may also be seen as excessively terse for global
identifiers. This is fair criticism, and if the API had a larger user group all functions
could be given an additional and more original prefix without affecting any stated
benefits.

4. Implementation.

4.1. Buffers. In order to support gradual packing of messages efficiently, we
implement growing buffers to contain each message. All data packed to the same des-
tination goes in one contiguous buffer which, when it reaches capacity, is reallocated
to capacity (3(c + 1))/2, where c is the previous capacity and integer arithmetic is
used.

COMM PACK has to find the right buffer, and create one if none exists. In
choosing algorithms for doing that, we should keep in mind that per Section 2.1 there
should be O(log(P)) total destinations. As such, it is acceptable to use a linear time
algorithm to find the right buffer. Otherwise, a sorted list or balanced tree may be
used to look it up in O(log(log(P))) time. This also helps in case users bend the rules
of sparsity and occasionally a process has many destinations.

4.2. Determinism. One important contribution made here is to note that the
only source of parallel non-determinism in this dynamic sparse exchange algorithm
is the order of messages received. If Algorithm 1 is extended by simply sorting the
received messages O by their sender, the result is that the contents of all O lists on
all processors , including order, are directly determined by the contents of all I lists
on all processors, and not at all by the unavoidable randomness of a parallel machine
and network.

This is important because the exchange algorithm itself is typically the main
source of parallel non-determinism in many applications. The other communication
work tends to use only collectives such as MPI ALLREDUCE and MPI SCAN, whose
outputs are also deterministic in parallel. Serial sources of non-determinism such as
using random data streams or time values as input can generally be avoided, although
we will see a trade-off in Section 5.1.

As such, although the implementation in Section 3 was described as though it
directly executes non-blocking consensus, it can be modified such that COMM EXCH

6 D. IBANEZ

waits for all messages to arrive, sorts them by sender, and then COMM UNPACK
simply traverses the sorted list of messages.

Note that there are drawbacks to sorting, namely the loss of overlapping commu-
nication and computation that naturally arises in the use of non-blocking consensus.
However, parallel determinism was judged to be a greater benefit, and our imple-
mentation currently defaults to this sorting behavior. Determinism becomes very
important when debugging or measuring the performance of a large parallel program.
Having the guarantee that, for the same input data and partitioning, the computa-
tional states and output will be the same, makes such debugging tractable. Otherwise,
a combinatorial explosion results in O(log(P)P) possible outcomes for each exchange,
making certain behavior not reproducible.

4.3. Race Condition. In addition to the deterministic modification discussed
in Section 4.2, there is the subtle possibility of a race condition in our implementation.
Specifically, when repeated exchanges are executed, there is a chance that process A
receives notification that exchange i is complete much earlier than process B does. In
this case, process A may begin sending messages for exchange (i+1) while process B
is still receiving messages for exchange i.

We choose to add a barrier to the beginning of the exchange algorithm. An-
other possible solution is to use a non-blocking barrier, which a process starts after it
completes the exchange, and which it waits for before sending messages for the next
exchange. One can also detect such issues by tagging messages with the exchange
number.

4.4. State Machine. The implementation also simulates a finite state machine
as users call API functions. The purpose of this state machine is to verify that users
call the API correctly. The possible states are these:

• UNINIT: not initialized
• IDLE: no send or receive buffers allocated
• PACK: send buffers only allocated
• UNPACK: receive buffers only allocated
• BOTHPACK: send and receive buffers allocated

Figure 4.1 shows the states and allowed transitions based on which API functions
are called. Which transition a function takes depends on implementation logic, for
example COMM RECV goes to IDLE when all received buffers have been unpacked.

Common errors detected by the state machine include calling functions before
calling COMM INIT, starting a new exchange before the previous received buffers are
unpacked, and so on. Although it may seem unnecessary to do such verification, the
mistakes detected would otherwise result in very subtle and hard-to-debug symptoms
at large scale.

Being able to simultaneously unpack messages from the previous exchange and
pack messages for the upcoming exchange is a very useful feature. As mentioned in
Section 2.2, an exchange is defined such that no message can depend on others. Real
complex programs have protocols with “conversation”, where messages depend on
previous messages. Simultaneous packing and unpacking allows a very natural style
of composing such programs without setting up temporary storage between exchanges
(the communication buffers replace this temporary storage).

4.5. Final Algorithm. These modifications described in Sections 4.2 and 4.3
show up as single-line changes to Algorithm 1 and result in Algorithm 2. To demon-
strate that this algorithm can be well represented in code, Listing 1 shows our current

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 7

UNINIT

IDLE

comm_init comm_finalize

PACK

comm_pack

UNPACK

comm_exch

comm_pack

comm_exch

comm_recv

comm_recv, comm_unpack

BOTHPACK

comm_pack

comm_recv

comm_pack, comm_recv, comm_unpack

Fig. 4.1. The state machine for the exchange system

COMM EXCH implementation verbatim. Although some of the specific functions
may be unfamiliar, the general outline of Algorithm 2 is clearly present. Notably,
we have wrapped functions such as MPI ISSEND with lower-case variants that have
simplified signatures. If nothing else, it seems to increase the readability of these
listings.

5. Example Uses. Our communication API is used in a wide variety of algo-
rithms, all of which contribute towards an unstructured mesh simulation. To avoid
introducing the full complexity of such a system, we have chosen two example al-
gorithms which can be understood on their own and are important parts of the full
simulation. Performance data from both algorithms is retrieved from a scaling study
performed on the full set of tools. In this study, a tetrahedral mesh is partitioned over
the cores of an IBM BlueGene/Q, reaching a maximum of 16K cores on 1K nodes.
Every time the number of cores is doubled, the number of elements is also doubled, re-
sulting in 100K elements per process on average. The algorithm which adds elements
also perturbs the partitioning, such that some processes have up to 120K elements
(20% imbalance). The RIB algorithm described in Section 5.2 is used to restore a
balance of elements before doubling the number of processes again.

5.1. Luby’s Maximal Independent Set. Luby’s randomized algorithm for
finding maximal independent sets is notable for being well-suited to parallel imple-
mentation [11]. We will consider the simplest algorithm outlined in Luby’s original
work, which is based on assigning random numbers to graph nodes. It is repeated in
condensed form as Algorithm 3. In our case, the graph nodes are MPI ranks, and our
intention is to use this algorithm as a building block to develop a coloring algorithm
to assign a color to the mesh part held by each MPI rank, such that no two adjacent
mesh parts have the same color.

Listing 2 shows the C code that executes Luby’s algorithm. This demonstrates
the use of our API functions and their effectiveness in producing concise parallel code.
We use the variable in Vp to denote whether the local MPI rank is part of set V ′, and

8 D. IBANEZ

Algorithm 2 Modified Non-blocking Consensus

function exch(List I of destinations and data)
Empty list O for received data
done=false
barr act=false
run blocking barrier ▷ Race condition fix (Section 4.3)
for i ∈ I do

start nonblocking synchronous send to process dest(i)
end for
while not done do

msg = nonblocking probe for incoming message
if msg found then

allocate buffer, receive message, add buffer to O
end if
if barr act then

comp = test barrier for completion
if comp then

done=true
end if

else
if all sends are finished then

start nonblocking barrier
barr act=true

end if
end if

end while
sort O by sender process ▷ Determinism fix (Section 4.2)
return O

end function

so on for the other relevant sets of vertices. The result of the function is whether or
not the local rank is in the independent set I. A simple seed (comm rank() + 1) is
used for the random number generator to make the code deterministic in parallel. If
one wants better randomness guarantees, a more sophisticated seed can be used, and
choosing one is beyond the scope of this paper. The algorithm continues until no rank
is in the set V ′, which is accomplished by our wrapper mpi max int and comm mpi,
which returns the current communicator. Most of the communication rounds pack
information about the local rank to neighboring ranks, and then reducing the incoming
data from neighboring ranks to compute whether the local rank is in one of the sets.

Since we assume the graph is symmetric, neighbors being received from are known
and the exchange is not strictly dynamic. However, the code will only increase in size
if we try to account for this explicitly.

In our scaling study, we measure the time required to choose colors for each of
the processes based on mesh connectivity. This process executes Luby’s algorithm
multiple times. All the processes not yet colored are run through Luby’s algorithm
to obtain an independent set of processes, which are then given a previously-unused
color. This continues until all processes are colored. Figure 5.1 shows the time for
the full coloring algorithm as a function of the number of processes. We expect a

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 9

Listing 1
COMM EXCH code

void comm_exch(void)

{

msgs* o;

unsigned i;

if (!(global_state == PACK || global_state == IDLE))

die("%d called exch in state %d\n", comm_rank(), global_state);

/* prevents race condition of sending next phase while

stragglers still receiving in previous phase */

mpi_barrier(global_mpi);

o = &global_out;

/* the heart: non-blocking consensus algorithm */

for (i = 0; i < o->n; ++i)

o->m[i].r = mpi_issend(global_mpi,

o->m[i].data, o->m[i].s.n, o->m[i].peer);

while (!out_done())

try_recv();

free_msgs(&global_out);

ibarrier_begin(global_ibarrier_mpi);

while (!ibarrier_done())

try_recv();

/* end non-blocking consensus algorithm */

/* sort for parallel determinism */

sort_msgs(&global_in);

global_state = UNPACK;

global_idx = 0;

}

Algorithm 3 Luby’s Maximal Independent Set algorithm

function luby(Graph G)
Initialize independent set I ← Φ
Initialize active vertices V ′ ← V , edges E′ ← E
while V ′ ̸= Φ do

choose random integers π(i) for i ∈ V ′

I ′ ← {i ∈ V ′|π(i) < min{π(j)|(i, j) ∈ E′}}
I ← I ∪ I ′

Y ← I ′ ∪ {i ∈ V ′|(i, j) ∈ E′, j ∈ V ′}
remove Y from V ′ and associated edges from E′

end while
return I

end function

near-constant number of calls to Luby at each data point, so the runtime should be
Θ(log(P)), which would be a straight line in this plot.

5.2. Point Cloud Bisection. When partitioning a dataset such as a mesh, one
can use a Recursive Inertial Bisection (RIB) algorithm. RIB really operates on point
clouds, i.e. a set of points in 3D space where each point represents some simulation
object. A cutting plane is computed, which we call the median plane (mp). One side

10 D. IBANEZ

Listing 2
LUBY MIS code

int luby_mis(unsigned nneigh, int const neigh[], int in_V)

{

mersenne_twister_seed((unsigned)(comm_rank() + 1));

int in_I = 0;

int in_Vp = in_V;

while (mpi_max_int(comm_mpi(), in_Vp)) {

unsigned pi = mersenne_twister();

for (unsigned i = 0; i < nneigh; ++i) {

COMM_PACK(in_Vp, neigh[i]);

COMM_PACK(pi, neigh[i]);

}

comm_exch();

int is_min = 1;

while (comm_recv()) {

int neigh_in_Vp;

COMM_UNPACK(neigh_in_Vp);

int neighpi;

COMM_UNPACK(neighpi);

if (neigh_in_Vp && (!(pi < neighpi)))

is_min = 0;

}

int in_Ip = in_Vp && is_min;

in_I = in_I || in_Ip;

for (unsigned i = 0; i < nneigh; ++i)

COMM_PACK(in_Ip, neigh[i]);

comm_exch();

int in_Y = in_Ip;

while (comm_recv()) {

int neigh_in_Ip;

COMM_UNPACK(neigh_in_Ip);

if (in_Vp && neigh_in_Ip)

in_Y = 1;

}

in_Vp = in_Vp && (!in_Y);

}

return in_I;

}

of the cutting plane forms a half-space, and points are either “in” this half-space or
“out” of it. We omit the cutting plane computation here because there are many
variations of this algorithm, some with more sophisticated decision methods, but all
of them require the data bisection operation we discuss [14].

The communication-intensive part of recursive bisection is sending all points in-
side the space to one half of the ranks, and all the points outside the space to the other
half of the ranks. Initially the points are distributed over the ranks in a way that
places roughly the same number of points per rank, but there are no real guarantees
about whether the points on a rank are on one side or the other of the plane.

The way we bisect points is by first establishing a global numbering for the points
on the left, and likewise for the points on the right. This can be done by using a parallel

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 4 16 64 256 1024 4096 16384

s
e
c
o
n
d
s

processes

Luby coloring time

Fig. 5.1. Time to color mesh parts

prefix sum, also known as an exclusive scan. We then distribute the points in the half-
space to the first half of the ranks by simple division, giving (tin / ranks in) points
to each rank, where tin is the total number of points in the half-space and ranks in

is half the number of ranks. The remainder from this division is given to the last “in”
rank, and the whole process is repeated for the ranks and points which are “out” of
the half-space.

Listing 3 contains the code for bisecting a point cloud, with somewhat compact
formatting such that it fits on one page. The function modifies the arguments n,
o, and rc which contain the number of points on-rank, the point coordinates array,
and the identifier array, respectively. The identifiers relate a point in space back to
the simulation object it originally represents, such that the code can output a useful
description of where simulation objects should go.

The actual process of sending the points to their respective destinations is dwarfed
by the integer arithmetic to compute the new distribution of points across the ranks,
which speaks in part to the ease of use of our API. The real benefit of using the
exchange API here is that there is no a priori knowledge of which ranks will receive
points from which, making this very much a dynamic exchange. The fact that we
actually compute the number of points arriving to each part (using Θ(log(P)) runtime
algorithms like scans and reductions) means that we could detect termination by
counting points, but we would still need the rest of the exchange system.

In our scaling study, each mesh element is converted into a point and given to
an RIB algorithm to partition. The bisection function described here is run ⌈log(P)⌉
times to complete a partitioning, and we expect roughly constant runtime for each
call to bisect. Figure 5.2 the runtime of the full RIB partitioning as a function of
the number of processes. Once again, we expect runtime to be Θ(log(P)), which is a
straight line.

It is important to note that we do not time the movement of actual mesh elements,
this is only timing the movement of “point” objects by the RIB algorithm. The points
are coordinates and a reference to the element they represent, so that the elements
can be moved just once based on the final partitioning of points.

6. Conclusions. We have presented a C API for performing Dynamic Sparse
Exchanges on massively parallel architectures, and included both theoretical and prac-
tical evidence that such an interface upholds code quality and program scalability.

12 D. IBANEZ

Listing 3
BISECT code

static void bisect(unsigned* n, point** o, rcopy** rc, plane mp) {

unsigned nn, i; unsigned long quo, rem, dest_i; int dest_rank;

unsigned rank = comm_rank(); unsigned size = comm_size();

unsigned pn = *n; point* po = *o; rcopy* prc = *rc;

unsigned lin = count_local_in(pn, po, mp);

unsigned lout = pn - lin;

unsigned long tin = mpi_add_ulong(comm_mpi(), lin);

unsigned long tout = mpi_add_ulong(comm_mpi(), lout);

unsigned ranks_in = size / 2;

int rank_is_in = (rank < ranks_in);

unsigned ranks_out = size - ranks_in;

if (rank_is_in) {

quo = tin / ranks_in; rem = tin % ranks_in;

nn = (rank == ranks_in - 1) ? quo + rem : quo;

} else {

quo = tout / ranks_out; rem = tout % ranks_out;

nn = (rank == size - 1) ? quo + rem : quo;

}

point* no = malloc(sizeof(point) * nn);

rcopy* nrc = malloc(sizeof(rcopy) * nn);

unsigned long in_i = mpi_exscan_ulong(comm_mpi(), lin);

unsigned long out_i = mpi_exscan_ulong(comm_mpi(), lout);

for (i = 0; i < pn; ++i) {

if (plane_has(mp, po[i])) { /* is point in half space ? */

dest_i = in_i++;

dest_rank = MIN((dest_i / quo), (ranks_in - 1));

} else {

dest_i = out_i++;

dest_rank = MIN((dest_i / quo + ranks_in), (size - 1));

}

COMM_PACK(dest_i, dest_rank);

COMM_PACK(po[i], dest_rank);

COMM_PACK(prc[i], dest_rank);

}

comm_exch();

while (comm_recv()) {

COMM_UNPACK(dest_i);

if (rank_is_in)

i = dest_i - (rank * quo);

else

i = dest_i - ((rank - ranks_in) * quo);

COMM_UNPACK(no[i]);

COMM_UNPACK(nrc[i]);

}

free(po); free(prc);

*n = nn; *o = no; *rc = nrc;

}

A SIMPLE C API FOR DYNAMIC SPARSE EXCHANGE 13

 0

 2

 4

 6

 8

 10

 1 4 16 64 256 1024 4096 16384

s
e
c
o
n
d
s

processes

RIB runtime

Fig. 5.2. Time to fully partition point cloud

Developers of non-trivial MPI programs may consider using our reference im-
plementation directly, which is available at http://github.com/ibaned/comm. Our
work can more likely be used as a guideline for other APIs, and if nothing else develop-
ers should know about the availability of these more scalable algorithms for non-trivial
communication.

Acknowledgments. The author would like to thank Daniel Zaide, Cameron
Smith, Mark Shephard, and Chris Carothers for providing feedback on early drafts.

REFERENCES

[1] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschel-
man, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong
Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

[2] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and Isorropia par-
allel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring.
Scientific Programming, 20(2):129–150, 2012.

[3] H Carter Edwards, Alan B Williams, Gregory D Sjaardema, David G Baur, and William K
Cochran. Sierra toolkit computational mesh conceptual model. Sandia National Labora-
tories SAND Series, SAND, 1192:2010, 2010.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.0, 09
2012. Chapter author for Collective Communication, Process Topologies, and One Sided
Communications.

[5] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of message passing. ACM
Transactions on Programming Languages and Systems (TOPLAS), 26(1):47–56, 2004.

[6] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu,
Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps,
et al. An overview of the trilinos project. ACM Transactions on Mathematical Software
(TOMS), 31(3):397–423, 2005.

[7] Torsten Hoefler and Timo Schneider. Optimization principles for collective neighborhood com-
munications. In High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, pages 1–10. IEEE, 2012.

[8] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. Scalable communication protocols
for dynamic sparse data exchange. ACM Sigplan Notices, 45(5):159–168, 2010.

[9] Torsten Hoefler and Jesper Larsson Träff. Sparse collective operations for mpi. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8.
IEEE, 2009.

[10] Daniel A Ibanez, E Seegyoung Seol, Cameron W Smith, and Mark S Shephard. PUMI: Parallel

14 D. IBANEZ

unstructured mesh infrastructure. ACM Transactions on Mathematical Software (submit-
ted), 2015.

[11] Michael Luby. A simple parallel algorithm for the maximal independent set problem. In
Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
1–10. ACM, 1985.

[12] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel and
Distributed Algorithms, 1(23):215–226, 1989.

[13] Aleksandr Ovcharenko, Daniel Ibanez, Fabien Delalondre, Onkar Sahni, Kenneth E Jansen,
Christopher D Carothers, and Mark S Shephard. Neighborhood communication paradigm
to increase scalability in large-scale dynamic scientific applications. Parallel Computing,
38(3):140–156, 2012.

[14] Horst D Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2):135–148, 1991.

