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Interlocking-induced stiffness in stochastically microcracked materials
beyond the transport percolation threshold
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We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of
crack densities close to, and above, the transport percolation threshold. We show that these materials retain
stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking
of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes
nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect
is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
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I. INTRODUCTION

Most materials in use today contain randomly distributed
microcracks or pores which are introduced by overloads or
are due to the presence of weak interfaces such as grain
boundaries. If the crack density is small, the sample modulus
is close to the modulus of the virgin material and methods
to predict the softening effect of such distributed damage
exist (e.g., [1]). As the crack density increases, the transport
percolation threshold, Pt , is reached and a continuous path
linking microcracks across the sample can be found. Pt

has been found using lattice and continuum models, in two
dimensions (2D) [2,3] and three dimensions (3D) [4]. It is
generally believed that 3D samples preserve stiffness at crack
densities above the transport percolation limit; however, in
the 2D case the transport and stiffness percolation thresholds
coincide and hence samples with crack densities above Pt

cannot carry loads [5,6]. Here we revisit this concept and show
that, even in the 2D case, stiffness percolation is reached at
crack densities significantly larger than those corresponding to
Pt , and that this is due to the topological interlocking of sample
subdomains resulting during the fragmentation process. We
refer to stiffness percolation as the threshold below which the
sample carries loads at infinitesimal or finite strains.

Topological interlocking represents a potential avenue
towards a conceptually different class of materials whose
behavior is dominated by the large number of internal
nonbonded interfaces. The concept has been studied recently in
the context of material design [7–10]. In these works, bodies
are assembled from identical parts whose shape is designed
such to allow interlocking. The integrity of the resulting object
is insured by the shape of the constituent elements or/and
by a confining pressure applied along the boundaries. These
structures are interesting due to a number of reasons: (a)
in case of damage, cracks are trapped at interfaces between
components [11], (b) penetration of projectiles leaves only
localized damage [12], (c) such structures have interesting
vibration-absorbing properties [13], etc.

Interlocking occurs in living and nonliving natural materials
leading to increased toughness. An example is the interaction
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of mineralized collagen regions in turtle shells [8]. In brittle
materials, such as bone, a toughening mechanism is crack
bridging by ligaments left behind the crack front, which are
connected to the two crack faces by well-bonded interfaces
or by interlocking [14]. Also, nanoscale interlocked materials
have been created by the self-assembly of octopod-shaped
nanocrystals into 3D porous superlattices [15]. A particularly
interesting example in which interlocking dominates the
mechanical behavior is that of itacolumite, known also as
the “flexible sandstone” [16,17]. This rock is composed from
quartz grains grouped in well-bonded small clusters. The
clusters are separated by gaps of approximately 1 μm width.
The rock exhibits spectacular flexibility, with plates of 2–3 cm
thickness and several tens of cm length having deflections on
the order of several cm when loaded in bending with small
forces [17]; see Supplemental Material [18]. This behavior
has inspired the development of flexible man-made ceramics
[19,20], which, however, are not used broadly due to their
reduced strength and stiffness relative to the corresponding
monolithic ceramics.

In a polycrystal which fractures along grain boundaries,
interlocking of the two crack faces may result if the grains are
very irregular in shape or if the grain boundaries are rough.
In this work we show that these features are not required
to produce interlocking. We also emphasize that constructing
materials with periodic microstructures such as in [7,9,10,13]
is inefficient and that topologically interlocked materials
with stochastic microstructure can be easily manufactured by
bringing the system close to, but above, the critical point of
transport percolation.

We focus on the 2D problem for which it is generally con-
sidered that the transport and stiffness percolation thresholds
coincide [5,6]. Besides the theoretical interest, the 2D version
of the problem represents brittle films, and layered quasi-2D
structures such as the sedimentary rock itacolumite and most
artificial interlocked materials described above.

II. MODEL AND SIMULATION PROCEDURE

To study the interlocking problem we consider structures
with stochastic microstructure such as that shown in Fig. 1.
The geometry is constructed in two steps. First, a set of grains
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FIG. 1. Crack pattern in a model with f = 0.67 fraction of
cracked boundaries. The cracked boundaries are shown in black and
the uncracked boundaries are not shown. This model contains a single
percolated path (red thick line).

(not shown in Fig. 1) is defined using a Voronoi tessellation of
the square problem domain of size L. The grains are equiaxed
and of mean size, d̄. The grain boundaries are straight lines. In
the second step, cracks are introduced at random at a fraction
f of the grain boundaries. Each crack spans the entire grain
boundary and may connect with a neighboring crack at grain
triple junctions. All grains are made from the same isotropic
and linear elastic material of Young’s modulus E0 and Poisson
ratio ν0.

The model is loaded in uniaxial tension by applying
imposed displacements on the right and left faces, while
keeping the top and bottom faces traction free. The effective
modulus of the sample, Eeff , is computed based on the
resulting tractions and the imposed global strain. The solution
is obtained by discretizing the structure into finite elements.
The cracks are represented using surface interactions (contact
and cohesive elements) which act in opening, overclosure, and
shear. The opening and shear stiffness is 10−4E0, while the
overclosure stiffness is equal to E0 and acts once the over-
closure displacement is larger than 10−5L (or 3.2 × 10−4 d̄).
We consider models containing 103,104,105, and 106 grains
(L = 31.6d̄, 102d̄, 316.2d̄, 103d̄ , respectively).

III. RESULTS AND DISCUSSION

A. Modeling results

Transport percolation occurs at a fraction of fractured
boundaries, fc1 = 0.667 [2,3] (bond percolation threshold on
2D Voronoi lattices). In models of finite size, the percolation
transition is not sharp. To mitigate the finite size effect, we
generate a large number of structures for each f and L/d̄

and, for f > fc1, retain only structures in which at least
one percolated path is found. To identify such structures,
the crack geometry is treated as a graph and the largest
connected component (in terms of vertical span) is determined.
The largest span is the same as the vertical span of the
largest cluster of connected bonds, which is what is used in
the Hoshen-Kopelman algorithm. If the largest span is suitably
close to L, the structure is considered percolated.

The structures with f > fc1 are characterized using a
geometric measure, m, indicating the likelihood to encounter
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FIG. 2. Variation of the measure of overhangs, m̄ − 1, with f ,
for f > fc1 and for two model sizes, L/d̄ = 31.6 and 103. The inset
shows that m̄ − 1 ∼ (fc2 − f )2 in the vicinity of fc2. Bars represent
standard deviation based on 100 replicas and, for L/d̄ = 103 and
f � 0.69, are of the size of the symbols.

overhangs on a percolated path. m is computed for the
“shortest” percolated path of a structure with f > fc1 as
follows: (i) a weight is defined for each line segment (or grain
boundary) via its vertically projected length, converting the
crack structure into a undirected, weighted graph; (ii) nodes
close to the top and bottom surfaces are collapsed into two
nodes, respectively; (iii) the shortest path between the top
node and bottom node is computed using Dijkstra’s algorithm,
and the length of this path is assigned to m. If the path has no
overhangs preventing the free relative motion of the two parts
of the sample, m = L, while m > 1 indicates the presence of
overhangs. m̄ − 1 = m/L − 1 represents the fraction of grains
forming overhangs, out of all the L/d̄ grains aligned along the
vertical edge of the model.

We study first the geometry of the structure described by
m̄ − 1 which, as discussed below, is directly relevant to the
body preserving stiffness for f > fc1. Figure 2 shows the
variation of m̄ − 1 with f for f > fc1 and for two models with
L/d̄ = 31.6 and 103. For f close to the transport percolation
critical point fc1 (at f = 0.67), m̄ − 1 increases as the model
size increases: m̄ − 1 ∼ (L/d̄)1.2. This is associated with the
roughness of the percolation path which is characterized by a
fractal dimension D = 1.14 (evaluated using the box counting
method). This fractal dimension agrees with the value reported
in the literature [21]. For larger f values the effect of the model
size on m̄ − 1 is not observable within the accuracy of the
present data set. In this regime, m̄ − 1 is only a function of f

and vanishes at f = fc2. The inset to Fig. 2 shows the variation
of m̄ − 1 obtained with the largest model considered (L/d̄ =
103) with (fc2 − f ), where the value of fc2 used, fc2 = 0.78,
results by fitting the function m̄ − 1 ∼ (fc2 − f )α to the data.
This power law variation is an adequate representation of the
data for f � 0.69 and the exponent is α = 2.0 ± 0.1.

The effective stiffness of samples with a broad range of f

values was evaluated numerically and the results are reported
in Fig. 3. As f increases from zero (f < fc1), only small
modulus variations are observed. This regime was extensively
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FIG. 3. Variation of the normalized effective stiffness with f .
The vertical dashed line indicates the transport percolation threshold,
fc1. The horizontal dashed line indicates the largest stiffness of a
model with at least one percolated path with no interlocking. The
continuous line shows the prediction of the model in [24] valid
in the limit f → 0. The shade indicated the range of f in which
interlocking controls the mechanical behavior. The shape and color
of symbols indicates the three regimes: nonpercolated (blue circles),
percolated with interlocking (black filled circles), and percolated
without interlocking (red open diamonds). The inset shows the power
law variation of the effective stiffness in the vicinity of fc2 = 0.78.
All data obtained with model with L/d̄ = 103.

studied and several mean field theories exist for the low f end
of the curve (e.g., [22,23]). The line represents the prediction
of the theory developed in [24] based on the assumption of
weak interaction of microcracks, Eeff/E0 = 1/(1 + πf ). The
mean field model works reasonably well up to large f values
(e.g., [25]). The behavior close to, but below, the critical
point (f � fc1) was also studied and it is reported that in this
regime Eeff ∼ (fc1 − f )τE . Different models predict different
exponents τE (e.g., 4.67 [6], 6.67 [26]). This critical point
formulation obviously implies that the stiffness vanishes at the
transport percolation threshold. The data in Fig. 3 (obtained
with the model with L/d̄ = 103) indicate the opposite:
Samples preserve stiffness at f much larger thanfc1. Let us
reemphasize that, in order to eliminate the finite size effect
in the vicinity of fc1, all data points for f > fc1 (right of the
vertical line in Fig. 3) correspond to samples containing at least
one percolated path. The horizontal line in Fig. 3 corresponds
to the stiffness expected for a sample with a percolated path
with no overhangs. This limit results from the stiffness of the
opening mode of the interface elements modeling the cracks
and is the largest stiffness that can be obtained for percolated
structures with no overhangs. Smaller values result if multiple
percolated paths are present. The inset to Fig. 3 shows that in
the vicinity of fc2 the effective stiffness can be approximated as
Eeff/E0 ∼ (fc2 − f )β , where β = 2.0 ± 0.1. Data obtained
with the model with L/d̄ = 103 are used in the inset and
fc2 = 0.78 results from fitting.

This discussion indicates the existence of a stiffness
percolation threshold, fc2, with fc2 significantly larger than
fc1. The observation that fc2 > fc1 in 2D is the main result of
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FIG. 4. Variation of the normalized effective stiffness with the
geometric parameter m̄ − 1 indicating the presence of overhangs and
hence interlocking. The inset shows the variation of function g defined
in text with the model size, with different symbols indicating different
f values. The line of slope–1 was added to guide the eye.

this article. This result is known in 3D [27], but the stiffness
percolation threshold is not available [28].

The relation between Eeff/E0 and m̄ − 1 is shown in
Fig. 4 for the model with L/d̄ = 103; the two quantities are
proportional for f → fc2. However, Eeff/E0 is more sensitive
to the size of the model than m̄ − 1. As the model size
increases, Eeff/E0 increases for all f > fc1 and one can write
Eeff/E0 = (m̄ − 1)(f )g(L/d̄) for fc1 < f < fc2. The inset to
Fig. 4 shows function g for four values of f = 0.69,0.71,0.73,
and 0.75 and for L/d̄ from 31.6 to 103. For L/d̄ > 31.6 the
data collapse on a line of slope–1 indicating g ∼ (L/d̄)γ with
γ = 0.25.

It is necessary to put the present discussion in the perspec-
tive of the literature on transport vs stiffness percolation in
networks and network-based representations of continua. A
significant body of literature is dedicated to the question of
whether the two thresholds are identical or not (in 2D and 3D)
for various types of networks and fiber-to-fiber connectors
(e.g., [29–33]). If fibers carry only strain energy associated
with the axial deformation mode, or if fibers deform both in
bending and axial modes but the connectors are rotating pins
(do not transmit moments), the two thresholds are different.
Transport percolation occurs at a smaller fraction of bonds
present in the structure than stiffness percolation. This can be
rationalized in terms of the coordination number which repre-
sents the number of bonds emerging from the given node. The
critical coordination number that ensures the elimination of
all floppy modes for central force networks can be determined
using Maxwell’s criterion (see [34] for a review). If fibers
deform both in the bending and axial modes, the transport and
stiffness percolation thresholds coincide, but the conductivity
and stiffness problems do not belong to the same universality
class [33]. The present discussion is qualitatively different
from this body of literature. The mechanics of interlocked
materials is controlled by the contacts between the component
blocks and hence stiffness percolation in such cases is related
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to the topology of the percolating cracks. The blocks forming
the contacts are stiff, mechanically stable continua. Hence, this
present problem is not immediately amenable to the random
network case.

B. Comparison of modeling and experimental results

It is of interest to discuss the stress-strain response of
samples with various f and to compare the behavior of
structures with f above and below fc1. For f < fc1, the
samples contain microcracks, but the response is linear elastic
with effective stiffness predicted by the data in Fig. 3.
For fc1 < f < fc2, the response becomes nonlinear. The
effective stiffness essentially vanishes at small strains. As
the strain increases, the stress-strain curve asymptotes to a
straight line of slope equal to the effective modulus reported
in Fig. 3. This modulus is controlled by the stiffness of
overhangs along the percolation path, while the deformation
during the small strain regime is controlled by the gradual
engagement of these overhangs. The nonlinearity originates
from the distribution of gap sizes. Figure 5 shows two stress-
strain curves corresponding to samples with f = 0.63 < fc1

and f = 0.75 > fc1. The vertical axis is normalized with
Eeff (Fig. 3) and hence the asymptote at large strains has
slope 1.

Such behavior is observed in other material systems close
to the stiffness percolation threshold. An example is provided
by random fiber networks, as discussed above. It has been
shown that a floppy network can be rendered mechanically
stable, with finite stiffness, if subjected to strain [35,36]. This
is due to the preferential alignment of fibers which changes
the architecture of the material.

Itacolumite is an example of material with topologically
interlocked structure. As previously shown, the grains are
separated by gaps which form a percolated network of channels
[37]. The material of the grains (quartz) is brittle and has
high modulus (E0 = 72 GPa) under ambient conditions, but

FIG. 5. Uniaxial tension stress-strain curves for 2D samples with
f = 0.75 (continuous line) and 0.63 (dashed line) and for a 3D sample
of itacolumite (symbols). The vertical axis is normalized with Eeff

(Fig. 3) and, for the itacolumite, with the slope of the asymptote at
larger strains.

the rock is flexible and deforms under small loads (see
Supplemental Material [18]). This behavior does not depend on
the grain geometric irregularity [16,38]. Furthermore, the rock
is sedimentary and has a quasilayered structure. This allows
comparing the present 2D results with test results obtained with
the 3D rock. We have tested samples of itacolumite originating
from the North Carolina deposit in uniaxial tension and under
strain rates of 10−3 s−1. Samples were cut from the rock mass
with the strata oriented in the loading direction. A thin section
was prepared and observed with an optical microscope (Fig. 5
shows a view perpendicular to the strata). The width of the gaps
between grains is approximately 3% of the grain size (which
is 140 μm, as measured by the line intercept method) and
is uniform across the sample. This indicates that the sample
preserves mechanical stiffness due to the interlocking of the
grains. Samples have a rectangular cross section of 10 × 5 mm,
both dimensions being much larger than the grain size. The
resulting stress-strain curve is shown in Fig. 5 (symbols). The
ratio Eeff/E0, with Eeff evaluated from the straight branch after
the initial, small strain range, is approximately 10−3. These
structural and mechanical observations, along with similar
results reported in the literature [17], indicate that itacolumite
is a microcracked topologically interlocked material with
stochastic microstructure, with a density of cracks larger than
the transport percolation threshold, of the type discussed in
this article.

IV. CONCLUSIONS

Increasing the crack density in randomly microcracked
materials above the density corresponding to transport per-
colation leads to a topologically interlocked structure which
preserves stiffness. This demonstrates that the transport and
stiffness percolation thresholds are different even in two
dimensions. The density of microcracks corresponding to
stiffness percolation is estimated to be fc2 = 0.78 (compared
to the transport percolation which occurs at fc1 = 0.667) and
in the vicinity of the threshold the effective stiffness of the
sample varies as Eeff/E0 ∼ (fc2 − f )2.0±0.1. In the range of
crack densities bounded by fc1 and fc2, the effective material
behavior is nonlinear. The initial part of the stress-strain curve
exhibits stiffening, which is due to the gradual engagement
of interlocks. At larger strains the stress-strain curves become
linear. This behavior is analogous to that of itacolumite, a
sandstone with high density of grain boundary cracks. This
rock exhibits macroscopic flexibility highly unusual for a
brittle material; see the Supplemental Material movie [18].
These findings provide a recipe for creating topologically
interlocked materials with stochastic microstructure which
can be used in a variety of applications, as discussed in the
Introduction.
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