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This paper presents a computational methodology for generating microstructure models of random com-
posites with cylindrical or sphero-cylindrical inclusions having high volume fraction and broad aspect
ratio distribution. The proposed methodology couples the random sequential adsorption (RSA) algorithm
and dynamic finite element (FE) simulations. It uses RSA to generate sparse inclusion assemblies of low
volume fraction and subsequently utilizes dynamic FE simulation for inclusion packing to achieve high
volume fractions. The method can generate RVEs with volume fraction as high as 50% depending on
the inclusion aspect ratio. Its capability is demonstrated by generating three distinct types of models with
different inclusion characteristics which are further characterized in terms of homogeneity and isotropy.
The results indicate that the proposed method is capable of generating models with low spatial variability
of the filler orientation and volume fraction. The method can be used to generate input configurations for
continuum and discrete representations of such random media.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Macroscopic properties of inclusion-reinforced composites pre-
dominantly depend on the material microstructure. Particulate
composites are usually random both in terms of the position of
inclusions and their orientation (if non-spherical). While the mean
filling volume fraction is defined, a non-uniform spatial distribu-
tion of inclusions may exist. Likewise, inclusions may have
different morphologies and/or spatial orientation. Such variability
has a rather small effect on the overall composite behavior, but
has a large influence on the local field fluctuations, hence being
of key importance for the prediction of damage nucleation and
evolution.

A number of analytical and experimental methods have been
developed in the literature to evaluate composite properties.
Relevant reviews are presented in Refs. [1–3]. Many analytical
models have been developed either based on Eshelby’s strain
tensor [4,5] or based on other micromechanics results [6,7].
Analytical methods were originally developed for unidirectional
fiber reinforced composites and then modified to take into account
random fiber orientation via tensor averaging [8] or classical
lamination theory [9]. These models provide only bounds of the
homogenized composite behavior because the microstructure of
the composite is not represented in detail [10].

For random inclusion composites of high volume fraction,
numerical modeling techniques, such as the finite element method
(FEM), provide clear advantages. Finite element models represent
microstructural details more effectively, and implicitly capture
the field-mediated interaction of inclusions, which is usually
represented only in the mean field sense in analytical models. Such
simulations are performed using a statistically representative
volume element (RVE) which is used to evaluate the average
(homogenized) material properties. The RVE is the smallest volume
over which a measurement can be made that yields a value repre-
sentative of the composite behavior [11]. In order for a sample to
be statistically representative, it should be large enough and
should contain sufficient number of inclusions. The minimum size
of the RVE is determined numerically by considering a sequence of
models of increasing size.

Numerical generation of 3D RVEs for random inclusion compos-
ites (RIC) is inherently a challenging task [12]. For composites with
periodic microstructure the periodic unit cell of the material can be
chosen as RVE and the size of the model is dictated by the period of
the microstructure. If no such internal characteristic length exists,
the RVE size has to be determined numerically. To be statistically



310 M. Islam et al. / Computational Materials Science 125 (2016) 309–318
representative, such RVEs should contain sufficient information
about the inclusion size, aspect ratio, orientation and spatial distri-
bution. As the filler volume fraction and/or their aspect ratio
increase, generating representative composite models becomes
progressively more difficult. The prevalent method to generate
such models is random sequential adsorption (RSA) [12–18]. In
RSA inclusions are sequentially deposited in a box of desired size
such that no two inclusions intersect and the distance between
any two inclusions is always larger than a pre-defined threshold.
The algorithm stops when the desired volume fraction is achieved
or when no more inclusions can be added due to overlaps. Bohm
et al. [16] implemented RSA to generate models of metal matrix
composites with cylindrical or spheroidal fillers. They used 15
identical fibers with constant aspect ratio (AR) of 5 and achieved
a volume fraction equal to 15%. Pan et al. [13] applied a modified
RSA algorithm for a random fiber composite with fiber AR = 10
and achieved 13.5% volume fraction. Kari et al. [17] used a similar
algorithm to generate models of randomly distributed short fiber
and transversely randomly distributed short fiber composites with
various volume fractions and aspect ratios.

The major issue with RSA-type methods is the existence of a
geometrical jamming limit beyond which no additional inclusions
can be added without overlap. This limits the volume fraction that
can be reached [19]. Kari et al. [17] reported that the RSA algorithm
cannot generate volume fractions larger than 25% for aspect ratios
in the range 1 < AR 6 10. Several other authors also discussed the
jamming limit, and the maximum achievable volume fraction has
been similarly reported to be 20–25%, depending on the aspect
ratio. To achieve higher volume fractions, Kari et al. [17] used dif-
ferent sizes of inclusions and deposited them in the descending
order of their size. With this approach, they could achieve volume
fractions up to 40%. However, this method is not applicable if all
inclusions have the same aspect ratio. It also imposes limitations
with respect to the distribution of filler size. Pan et al. [18] and
Baliakanavar et al. [14] introduced local filler curvatures at points
where sequentially deposited fillers overlap, in order to avoid their
intersection and to reduce the algorithmic rejection rate at the
same time. A volume fraction of about 35–45% has been reported
for models with planar filler orientation. However, the local curva-
ture introduced in the fillers leads to local stress concentration and
the algorithm is inherently computation expensive because
numerous filler intersection check-adjust loops must be executed.

This literature review indicates that currently available numer-
ical tools lack the capability of generating microstructure models
of RICs with high volume fraction at relatively low computational
cost. In addition, it is important to develop numerical tools capable
of generating models with realistic microstructural details. As
mentioned above, a predefined constant gap is introduced between
fillers in the RSA algorithm. This is arbitrary since in real materials
the gap between two neighboring inclusions is entirely random.
This limits the ability of the model to accurately predict the local
stress state. Pan et al. [13] studied the effect of the gap size
between two fillers embedded in a matrix. They found that the
local stress concentration increases as the gap between fillers
decreases and the effect becomes more pronounced at high volume
fractions. In the present work we address these key issues.

This article presents a novel numerical method for generating
RVEs of composites with randomly distributed inclusions. The pro-
posed approach efficiently integrates the widely used RSA algo-
rithm with dynamic FEM in order to generate composite models.
Integration of dynamic FEM with RSA provides two distinct advan-
tages. Firstly, it allows generate high volume fraction of inclusions.
Secondly, inclusions can be packed more efficiently using this
approach while satisfying the non-overlapping constraint. To over-
come the jamming limit characteristic for RSA, we avoided gener-
ating inclusions in the actual composite domain in the first
attempt. Rather we generate sparse and non-overlapping filler
assemblies with low volume fraction in six pseudo-composite
boxes surrounding the target box. Next, we perform a dynamic
FE simulation based on transient dynamic FEM to push all inclu-
sions into the target model box. Hence, all inclusions are packed
simultaneously, which differs from iterative packing methods. Fur-
thermore, a surface-to-surface based contact algorithm is used to
prevent inclusion overlapping during packing. Contacts between
inclusions are automatically detected and these are relocated
accordingly to avoid intersection. The proposed method offers
the following features that are superior to existing methods:

� It can generate composite models with volume fraction up to
50%, depending on the inclusion aspect ratio;

� Realistic microstructures can be produced by using specified
distributions of inclusion geometries;

� It effectively uses the surface-to-surface based contact algo-
rithm to prevent inclusion overlap instead of the computation-
ally expensive iterative approach;

� The microstructure does not have any predefined gap between
inclusions;

� The system is developed by integrating commercially available
computer aided engineering tools, which facilitates the further
extension and integration of this method with other systems.

The manuscript is organized as follows: a detailed description
of different components of the proposed numerical system is
presented in Section 2. Section 3 presents illustrative samples of
the generated RVEs and a discussion on their geometrical features.
In Section 4, we perform a microstructural characterization study
by investigating randomness, homogeneity and isotropy of the
generated RVEs.
2. Model generation framework

The proposed method for generating models with stochastic
microstructure consists of three distinct components: (1) a sparse
inclusion assembly generation step, (2) a packed inclusion assem-
bly generation step, and (3) a step in which a CAD model of the
problem domain is produced. The structure of this computational
framework is illustrated in Fig. 1. The three steps are taken sequen-
tially as suggested in the figure. This model generation concept is
inspired from numerical optimization schemes developed in Refs.
[20,21]. Details of the each system are discussed in the following
sub-sections.

2.1. Sparse inclusion assembly generation

The objective of this step is to generate multiple sparse random
inclusion assemblies with low volume fraction. These filler assem-
blies are generated using the RSA algorithm with an imposed min-
imum distance constraint between neighboring inclusions. We
assume that inclusions have circular cross-section and model them
as straight cylinders with a choice of aspect ratio and length. This
assumption does not limit the applicability of the method to com-
posites containing other types of inclusions. Inclusion axes are gen-
erated as line segments in a cubic box of size L, with random
spatial position of their centers and random orientation. The
dimension L coincides with that of the final, target model. For a
fiber of length l, we first choose the position vector of one of its
end points P0 as a random vector uniformly distributed on [0, L]
and two Euler angles h and c as shown in Fig. 2.

To ensure uniform random orientation over a unit sphere, two
random variables uniformly distributed on [0, 1], u and v, are used
and then the angles are calculated as [22]:



Fig. 1. Components of the stochastic model generation framework. The software tools used in each step are indicated.

Fig. 2. Definition of two angles (h, c) and orientation unit vector (~p) of an inclusion.
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h ¼ 2pu ð1Þ

c ¼ cos�1ð2v � 1Þ ð2Þ
Based on the two angles, the orientation unit vector ~p is deter-

mined. Then, the axis of the inclusion is generated by determining
the other end point P1 as:

~p ¼ cos h sin ce1 þ sin h sin ce2 þ cos ce3 ð3Þ

P1 ¼ P0 þ l~p: ð4Þ
Each newly generated inclusion is defined based on its axis and

is checked for intersection with others inclusions and with the box
boundaries. If an inclusion crosses any box boundary face, it is cut
at the boundary and the segment outside the box is transferred to
the opposite face, while retaining its original orientation. This pro-
cedure is usually implemented to introduce periodicity at model
boundaries. However, in our system, the periodicity is not
preserved during the second step of the model generation in order
to allow realistic random arrangements to be created both in the
middle of the box and in the vicinity of the box boundary. This pro-
cedure helps us reduce the inclusion rejection rate due to boundary
crossing.

Inclusion-to-inclusion intersection check is implemented by
computing the minimum distance between two inclusion axes
based on the algorithm proposed in Ref. [23]. It is based on the
principle of closest point of approach (CPA) method. Zhou et al.
[12] and Bailakanavar et al. [14] also implemented a similar algo-
rithm for intersection checking. Pan et al. [18] formulated a linear
two variable distance function for two arbitrary inclusion pairs and
solved a constrained nonlinear optimization problem to determine
the minimum distance between two inclusion. Although the CPA
method is computationally more efficient than solving an opti-
mization problem, the procedure is still computation intensive
especially when the number of inclusions to be generated is suffi-
ciently large. For example, to generate N inclusions, the number of
intersections to be checked is N(N � 1)/2 as for each inclusion we
need to check its intersections with all previously generated inclu-
sions. To expedite the intersection checking process, we imple-
mented a nearest neighbor search algorithm commonly used in
machine learning and pattern recognition [24]. This algorithm
identifies inclusions within a reasonable proximity of the target
inclusion and then the CPA method is used to check inclusion
intersections with the resulting set of neighboring inclusions.

A generated inclusion is accepted only when the shortest dis-
tance between its axis and the axis of any other inclusion is greater
than the sum of their corresponding radiuses and the predefined
minimum distance threshold. Otherwise, it is regenerated with a
new random orientation and location. In the present implementa-
tion, the minimum distance threshold is set at 10% of the inclusion
diameter. This loop is repeated until the desired inclusion volume
fraction is achieved or the number of attempts to generate a new
inclusion exceeds 106.

The RSA algorithm discussed so far has been implemented in
MATLAB�. It is to be noted that at this stage, we only generate
inclusion axes and consider the inclusion volume virtually in order
to define the minimum distance between inclusion axes and to test
intersections. A representative sample assembly of inclusion axes
is illustrated in Fig. 3(a) and the corresponding pseudo volume
inclusion assembly is shown in Fig. 3(b). Here, the cubic box con-
tains 376 cylindrical inclusions with identical aspect ratio of 8
and volume fraction equals to 5%. The volume fraction of inclusions
in this intermediate model is 1/6 of the desired volume fraction in
the final model. If we target a volume fraction of �50%, the inter-
mediate fraction of �8% can be easily achieved with the standard
RSA algorithm.
2.2. Packed inclusion assembly generation

To generate the final model, the inclusions contained in 6
intermediate models (the ‘‘pseudo-boxes”) of the type described
in Section 2.1 are allowed to simultaneously flow into an empty
cubic box of size L (the ‘‘target box”). The 2D projection of the
3D set-up for this step is shown schematically in Fig. 4. The target
box which will eventually contain the final model is placed in the
center and contains no inclusion at the beginning of this step. The
six other boxes containing the configuration produced in the first
step of the procedure (Section 2.1) are placed adjacent to the 6
faces of the target box. The six pseudo boxes are enclosed by rigid
impenetrable surfaces (continuous red lines in Fig. 4) on all faces
except the ones shared with the target box (dashed red lines in
Fig. 4). These rigid surfaces guide inclusions into the target box.
The transfer of inclusions from pseudo boxes into the target box



Fig. 3. Representative sparse inclusion assembly with (a) only inclusion axes shown and (b) with full inclusion volume shown.

Target 
Model 

Box

Fig. 4. 2D projection of the 3D set-up used to generate the model of high volume
fraction. The target box shown in the middle contains no fillers at the beginning of
this step. The lateral pseudo-boxes contain configurations produced in the first step
of the procedure (Section 2.1). The dashed/continuous red lines are penetrable/
impenetrable for moving inclusions. The arrows indicate the displacement direction
of surfaces to which the arrows point. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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is performed using Abaqus/Explicit as a dynamic simulation. We
impose displacement boundary conditions on the rigid surfaces
parallel to target box faces (shown by arrows in Fig. 4) such that
all inclusions are guided simultaneously towards the target box.
The dynamics of the process is controlled by choosing a sufficiently
large simulation time in order to prevent high speed impact or
crash of inclusions. A supplementary materials video demonstrat-
ing this procedure is provided.

Abaqus/Explicit is a robust FEM solver widely used to simulate
transient dynamic events such as automotive crashworthiness or
ballistic impact. To the best of authors’ knowledge, there is no pub-
lished report in the literature that utilizes dynamic FEM simulation
for inclusion packing during composite model generation. The abil-
ity of Abaqus/Explicit to effectively handle a large number of con-
tacts between surfaces makes it very attractive for this task [25]. In
this work, we utilize this capability in order to generate stochastic
composite models with high volume fraction of non-overlapping
cylindrical inclusions.

For the dynamic FE simulation each inclusion is discretized in
multiple 3D Timoshenko beam elements (element type B32 in Aba-
qus). Each element has three nodes and each node has six degrees
of freedom - three transitional and three rotational. Modeling the
inclusions as beam elements reduces the total number of degrees
of freedom and the simulation time, allowing the representation
of a large number of inclusions.

In order to prevent inclusion intersection during packing, we
implemented surface based contact constraint between inclusions
during the dynamic packing simulation. Specifically, we use the
general contact algorithm in Abaqus [25]. El-Rahman et al. [26]
also used the general contact algorithm to simulate compressive
behavior of random fiber assemblies. The contact between two
inclusion surfaces may occur in two directions- one normal to
the surfaces and one tangential to the surfaces. To capture normal
contact behavior, Abaqus requires the specification of a pressure-
overclosure relationship. In our model, a ‘hard’ contact relationship
is found to be the most suitable as it enforces zero penetration con-
dition and allows any contact pressure to be transmitted between
surfaces [25]. In addition, to model tangential contact behavior
that induces relative sliding of inclusion surfaces, frictional interac-
tion of inclusions is considered. This is modeled as Coulomb fric-
tion with a coefficient of friction l = 0.3.

We allow the solver to automatically choose the required stable
time increment to achieve convergence. The solver approximates
the minimum stable time in each increment based on the mini-
mum element dimension and current dilatational wave speed in
each element. We use a total physical simulation time of 10 s for
which the minimum stable time increment is on the order of
10�4 to 10�5 depending on the aspect ratio. Furthermore, to cap-
ture the contacts between inclusion pairs accurately, it is also
important to discretize the inclusions with sufficient number of
elements. We observe that for inclusions with aspect ratio
(AR 6 5), one element per inclusion is sufficient if the desired vol-
ume fraction is relatively small (/ 6 20%). However, for higher vol-
ume fractions, inclusions should be discretized with element
aspect ratios smaller or equal to 3. This condition is related to
the probability of having multiple contacts per inclusion. For
higher aspect ratios (AR > 5), inclusions discretized with elements



M. Islam et al. / Computational Materials Science 125 (2016) 309–318 313
of aspect ratio equals to 3 also provided satisfactory convergence
up to volume fraction approximately 50%.

To avoid initial overlap between rigid surfaces and inclusions, a
predefined clearance of 5% of the box length (L) is introduced as
shown in Fig. 4. In addition, only the rigid surface placed on the
opposite face of free face is displaced towards the target box. The
displacement has been applied by means of a smooth amplitude
Fig. 5. (a) 3D packed inclusion assembly of 43% volume fraction, (b) side view of the confi
in (c), and (e) final RVE with chopped fiber assembly embedded in matrix.
curve to prevent excessive rotation of inclusions. The general con-
tact algorithm automatically imposes contact constraint between
rigid surfaces and inclusions and we specifically instruct the solver
to exclude contacts between rigid surfaces by defining correspond-
ing surface pairs. A representative 3D packed inclusion assembly is
shown in Fig. 5(a) and the corresponding side view is shown in
Fig. 5(b).
guration in (a), (c) 3D chopped inclusion assembly, (d) side view of the configuration
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2.3. RVE CAD model generation

The packed fiber assembly contains inclusions in the form of
beam elements that needs to be transformed into a 3D CAD model;
which can be further used to perform numerical analysis of com-
posite behavior. In this step, the 3D volume of a cylindrical inclu-
sion is constructed by sweeping the circular cross-sectional fiber
profile along the trajectory defined by the fiber centerline. While
it is fairly straightforward to generate a CAD model of a single
inclusion, the process becomes tedious when the number of inclu-
sions is large. To automate the CAD modeling process, we have
developed a SolidWorks API script within the VBA programming
environment. The script automatically reads the inclusion coordi-
nates from a text file and generates individual inclusions by solid
sweeping. We found that inclusion distribution near the box
boundary is relatively non-uniform. To eliminate such nonunifor-
mity, the box is truncated by 2.5% of L from each edge. In addition,
inclusions located in the close vicinity of the box faces are observed
to create distorted or poorly shaped elements in the final model
mesh. To address this problem these inclusions are removed in a
post-processing step using a MATLAB code developed for this
purpose.

Previous researchers have indicated the requirement of a mini-
mum distance between inclusions in order to avoid the generation
of distorted elements. Since the distance between inclusions is not
Fig. 6. Representative inclusion assemblies of models of (a) Type I (/ = 43%), (b) Ty
distributions.
explicitly controlled in the current algorithm, meshing the gener-
ated composite geometry may become a challenging task. In this
study, we used Simmetrix Inc. meshing tool called MeshSim [27]
for mesh generation. MeshSim has the capability to generate con-
forming meshes for multi-material models with several mesh sizes
and mesh quality control attributes. Specifically, we used curva-
ture based mesh refinement and curved mesh generation capabil-
ities to ensure reasonable mesh quality. A discussion on mesh
generation is beyond the scope of the current article; further
details are presented in Refs. [28–30].

The CAD model of a representative chopped fiber assembly is
shown in Fig. 5(c) and the corresponding side view is shown in
Fig. 5(d). As the final step, we generate the matrix material by gen-
erating a cube of size L from which the inclusion assembly is sub-
tracted through a Boolean operation. A representative CAD model
with inclusions embedded in matrix is shown in Fig. 5(e).

3. Results and discussion

Three distinct types of models are generated to demonstrate the
procedure described in Section 2:

� Type I: this model contains inclusions of identical aspect ratio.
For demonstration purpose we select AR = 5, 8 and 10 in sepa-
rate models.
pe II (/ = 42.2%), (c) Type III (/ = 42.4%) and (d) the corresponding aspect ratio



Table 1
Characteristics of generated representative inclusion assembly samples.

Sample # Imposed aspect ratio (AR) Number of
inclusions (nI)

Mean aspect

ratio ðARÞ
Std. deviation
of aspect ratio (rAR)

Initial volume
fraction (/0, %)

Final volume
fraction (/, %)

1 5 867 4.699 0.672 4 39.9
2 5 971 4.650 0.726 5 44.3
3 5 1165 4.536 0.840 8 51.8

4 8 1603 7.550 1.101 4 38
5 8 1954 7.570 1.081 5 43
6 8 2490 7.196 1.491 8 52

7 10 1238 9.247 1.584 4 33
8 10 1501 8.435 2.303 5 36
9 10 1534 9.929 0.595 6 44.3

10 AR � N(l, r2) 5 6 AR 6 10 1740 7.045 1.125 4 35
11 2137 6.893 1.247 5 42.2
12 2476 6.583 1.396 6 44.9

13 AR � N(l, r2) 3 6 AR 6 15 (bi-modal dist.) 1524 8.154 3.550 4 36.1
14 1729 8.428 3.461 5 42.4
15 1876 8.379 3.449 6 45.7

Fig. 7. Dependence of the final volume fraction, /, on the initial volume fraction, /0,
and the inclusion aspect ratio (AR). Symbols indicate / resulting from the actual
simulations and the dotted line represents the predictions of Eq. (5).
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� Type II: this model contains inclusions with AR sampled from a
truncated normal distribution of mean AR ¼ 7:5 and standard
deviation rAR = 0.83. Note that 99.7% of the samples taken from
this distribution are in the interval (5,10).

� Type III: this model contains inclusions with AR sampled from a
bimodal distribution defined by two Gaussian peaks centered at
4.5 and 11.5, both with a coefficient of variation of 0.11, i.e. the
standard deviation of the Gaussian centered at 4.5 is 0.5 while
that of the Gaussian centered at 11.5 it is 1.26.

Representative inclusion assemblies of each model type are
shown in Fig. 6.

3.1. Geometric characterization

Multiple samples have been generated for each type of
microstructure. Table 1 shows the relevant parameters of all these
composites. An initial volume fraction /0 within the range 4–8%
has been used to generate sparse inclusion assemblies using the
RSA algorithm as described in Section 2.1. The number of inclu-
sions in each model is specified in Table 1. Representative aspect
ratio distributions for three types of samples are shown in Fig. 6
(d). The final packing reproduces the target AR distribution approx-
imately. The error is due to the truncation of inclusions close to the
boundaries. Columns 4 and 5 of Table 1 indicate the actual aspect
ratio mean and standard deviation of each realization. The final
volume fraction is also indicated.

For constant aspect ratio (AR 6 8), the proposed method gener-
ates maximum volume fractions up to approximately 50%. For
example, for aspect ratio AR = 5, the maximum volume fraction
achieved is 51.8%. For aspect ratio AR = 10, we achieved a maxi-
mum volume fraction of 44.3%. On the other hand, a maximum vol-
ume fraction of 44.9% is achieved for composites of Type II having
inclusions with broad distribution of AR values. For composites of
Type III the maximum achieved volume fraction is 45.72%. These
values are much larger than can be obtained with the conventional
RSA algorithm.

The final volume fraction, /, is controlled by the initial volume
fraction in the pseudo-boxes, /0, by the inclusion aspect ratio and
by the computational time of the dynamic simulation. We have
found that for a given /0, the final volume fraction, /, is approxi-
mately between 7/0 and 9/0. Note that in principle, the final vol-
ume fraction should be 6/0. The difference is introduced by the
trimming of the model, which amounts to approximately 5% of
the box length L, in order to eliminate the model boundaries which
are more non-uniformly packed, as discussed above. More quanti-
tatively, we have observed that for /0 6 5% and 5 6 AR 6 10;/
can be expressed in terms of /0 and AR as:

/ ¼ 0:61/3
0 � 6:7/2

0 þ 28/0 � 8:6þ f ðARÞ ð5Þ

f ðARÞ ¼ 0:37AR2 þ 4:3AR� 5:34 ð6Þ
Eq. (5) shows that the final volume fraction, /, is a third order

polynomial function of /0 with the constant term depending on
the inclusion aspect ratio (AR) as defined by Eq. (6). A comparison
of the measured / for different combination of control parameters
(/0, AR) with the prediction of Eq. (5) is shown in Fig. 7.

A sufficiently small time step and refined mesh are required to
capture the contacts between inclusion surfaces at arbitrary loca-
tions during the dynamic simulation. This increases the computa-
tion time considerably. Since model generation should be rather
fast (the generation of all models discussed in this article require
less than 30 min on a 2.60 GHz Intel� Core), one should consider
selecting reasonable simulation time and time increment for this
step. As discussed in Section 2.2, a simulation time of 10 s and time
increment on the order of 10�4 to 10�5 was observed to be opti-
mum for current work.

3.2. Statistical characterization

We perform a detailed statistical characterization of the sam-
ples listed in Table 1 in order to demonstrate the capability of
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the proposed method to generate models with random orientation
of inclusions and with small spatial variability of the filling fraction
evaluated over sub-domains.

Isotropy: to evaluate the isotropy of the microstructures we
calculated the orientation order parameter (Herman’s orientation
Fig. 8. Statistical parameters for all samples listed in Table 1: (a) orientation order index
and (b) chi-square statistic (v2). The insets show the zoom-in view of the data in the main
is referred to the web version of this article.)

Fig. 9. Representative inclusion center density distributions for: (a) Type I (sample #6),
lines correspond to distributions for binning along the X, Y and Z axes respectively. The h
size, L. The green dashed lines show the average density of the models. (For interpretatio
version of this article.)
function) P2, which is one of the diagonal entries of the orientation
tensor:

P2 ¼ 1
2
h3 cos2 a� 1i ð7Þ
P2 with respect to the X axis (black star), Y axis (blue square), and Z axis (red circle)
figure. (For interpretation of the references to colour in this figure legend, the reader

(b) Type II (sample #11) and (c) Type III (sample #14). The black, blue and red solid
orizontal axis shows the position along the respective axis normalized by the model
n of the references to colour in this figure legend, the reader is referred to the web
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Here, a is the angle between a specified direction and the long axis
of a cylindrical inclusion and hi indicates ensemble averaging of the
respective quantity over the population of inclusions. This parame-
ter takes values of 0, 1 and �1 for randomly oriented assemblies of
vectors, and for perfect alignment in the parallel and perpendicular
directions to the reference axis, respectively. We compute P2 with
respect to the three global coordinate axes X, Y and Z. For all cases,
the calculated values are less than 0.1, which indicates that the
inclusion distribution is isotropic. Fig. 8(a) shows P2 values for
several samples.

Homogeneity: to examine the homogeneity, we apply the chi-
square statistical hypothesis test as implemented by He et al. [31].
We divide the box into 64 equal cubic sub-domains and compute
the volume fraction of inclusions in each such sub-domain. Then,
the validity of the hypothesis that the inclusions are uniformly
distributed is tested by calculating the v2 statistics:

v2 ¼
Xi¼k

i¼1

Oi � Eið Þ2
Ei

ð8Þ

where Oi is the observed density value in subregion i, Ei is the
expected density value in subregion i and k is the total number of
subregions in the given model. According to the v2 test, the hypoth-
esis is to be rejected if the calculated value is greater than the
critical value for a given significance level (a). At a = 0.05 level,
the critical value is v2

0:05;63 ¼ 82:53 for 63 degrees of freedom [32].
The calculated v2 values are much smaller than the critical value
for all samples, as shown in Fig. 8(b). This implies that the inclusion
distribution is homogenous.

In addition, the homogeneity of the inclusion distribution is
tested by computing the distribution of inclusions centers. For this
purpose, the model is divided in 10 equal sized bins of width L/10,
and the number of inclusion centers in each bin is calculated. Rep-
resentative inclusion center density (number of inclusion centers
per unit bin volume) distributions along the three coordinate
directions are shown in Fig. 9. As shown, the distribution is suffi-
ciently uniform throughout the model volume, with small variabil-
ity of approximately 10% with respect to mean model density. It is
to be noted that larger density fluctuations are introduced near the
model boundaries as we have intentionally removed some inclu-
sions located close to the boundaries in order to facilitate meshing
of the model in the last step of the model generation procedure.
These boundary layers can be easily trimmed, as a final step of
the process.

4. Conclusion

A novel computational tool for generating models of stochastic
composites has been developed. The presented method efficiently
uses dynamic FE simulations to produce models of high volume
fraction and broad inclusion aspect ratio distribution. The method
is more efficient than the standard RSA algorithm, especially for
higher volume fractions. The performance of the developed tool
has been demonstrated by generating several models for different
inclusion aspect ratio distributions.

The resulting models are isotropic and homogeneous. To
demonstrate this, the orientation index of inclusions axes as well
as the v2 test are used to evaluate three types of composites: Type
I models containing inclusions of identical aspect ratio, Type II
composites containing inclusions with aspect ratio sampled from
a truncated Gaussian distribution, and Type III models with inclu-
sions have aspects ratios sampled from a bi-modal distribution.
These measures indicate the isotropy and homogeneity of the
resulting models. Therefore, the method can be used to generate
representative volume elements of stochastic composites with
minimal dimensions.
Furthermore, the method can be extended to generate models
of composites with inclusions of other shapes, such as ellipsoids
and spheres, by representing the inclusions in the first step of
the method as two dimensional surface elements in lieu of beam
elements.
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