
Investigation of Stabilization Methods for

Multi-Dimensional Summation-by-parts

Discretizations of the Euler Equations

Jared Crean∗, Kinshuk Panda∗, Anthony Ashley∗, and Jason E. Hicken†

Rensselaer Polytechnic Institute, Troy, New York, 12180

We present an extensible Julia-based solver for the Euler equations that uses a summation-
by-parts (SBP) discretization on unstructured triangular grids. While SBP operators have
been used for tensor-product discretizations for some time, they have only recently been
extended to simplices. Here we investigate the accuracy and stability properties of simplex-
based SBP discretizations of the Euler equations. Non-linear stabilization is a particular
concern in this context, because SBP operators are nearly skew-symmetric. We consider an
edge-based stabilization method, which has previously been used for advection-diffusion-
reaction problems and the Oseen equations, and apply it to the Euler equations. Addi-
tionally, we discuss how the development of our software has been facilitated by the use of
Julia, a new, fast, dynamic programming language designed for technical computing. By
taking advantage of Julia’s unique capabilities, code that is both efficient and generic can
be written, enhancing the extensibility of the solver.

I. Introduction

High-order accurate discretizations have the potential to be more efficient than low-order methods in
the numerical solution of partial differential equations [1, 2]. Among such methods, summation-by-parts
(SBP) operators [3] are an attractive option for computational fluid dynamics (CFD), because they are high-
order accurate and time stable for linear equations. However, classical SBP operators are one-dimensional
finite-difference methods, so most of the previous work using high-order SBP operators has been limited to
tensor-product discretizations on structured or multi-block grids [3–9].

Recently, Hicken, Del Rey Fernández, and Zingg [10] proposed a theoretical framework for multi-
dimensional SBP operators that is suitable for discretizations on unstructured grids. The framework was
illustrated by constructing SBP operators for triangular and tetrahedral elements. These simplex SBP
operators produce discretizations that are similar to the mass-lumped spectral-element method [11,12].

SBP-based discretizations, while time stable, may still suffer from aliasing errors that arise in the dis-
cretization of non-linear partial differential equations (PDEs). Stabilization methods to control these errors
have been studied extensively over the last half century, particularly in the context of advection-dominated
problems [13–17]. In this work, we focus on continuous SBP discretizations and draw upon stabilizations
suitable for continuous Galerkin (CG) methods that are high-order accurate and locally conservative [18,19].

Among the most popular stabilizations for finite-element methods is the streamwise-upwind Petrov-
Galerkin (SUPG) method, which established the effectiveness and accuracy of artificial dissipation when
consistency is maintained [14]. Although popular, it suffers from several limitations including non-physical
coupling of velocity and pressure in the stabilization term and dual inconsistency [20].

∗Graduate Student, Department of Mechanical, Aerospace, and Nuclear Engineering, Student Member AIAA
†Assistant Professor, Department of Mechanical, Aerospace, and Nuclear Engineering, Member AIAA

1

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

 54th AIAA Aerospace Sciences Meeting

 4-8 January 2016, San Diego, California, USA

 AIAA 2016-1328

 Copyright © 2015 by Jared Crean, Kinshuk Panda, Anthony Ashley, Jason E. Hicken. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2016-1328&domain=pdf&date_stamp=2016-01-02

Instead, we investigate a stabilization based on penalizing jumps in the gradient, which has been shown
to be effective, and in some cases optimal, in stabilizing advection-dominated problems [16]. The gradient-
jump penalty of Burman and Hansbo was shown to bound the energy norm of the discrete solution of the
convection-diffusion-reaction and Oseen equations [21,22], and we adapt it here to the Euler equations.

In addition to studying stabilization of multi-dimensional SBP methods, one of our motivations for the
present work is to develop a versatile multi-physics code for PDE-constrained optimization. PDE solvers used
for optimization have several requirements beyond traditional analysis codes, most importantly the ability
to calculate derivatives. To this end, we have implemented our solver in a new, fast, dynamic programming
language called Julia, which enables the use of abstraction while retaining computational efficiency. We
elaborate on the Julia implementation further below.

The remainder of the paper is organized as follows. The SBP discretization is discussed in Section II,
and Section III describes edge stabilization. The use of abstractions in Julia and the computational benefits
are detailed in Section IV. Numerical results for both steady and unsteady cases are given in Section V, and
conclusions are provided in Section VI.

II. Summation-by-parts Discretization of the Euler Equations

Our discretizations use the multi-dimensional SBP simplex operators recently proposed in Ref. [10]. To
keep the presentation self contained, the definition of a two-dimensional SBP first-derivative operator in the
ξ direction is provided below for a generic reference element Ωe. The definition for the derivative operator in
the η direction is analogous and uses the same norm/mass matrix H. In the definition, we make use of the
monomials Pk(ξ, η) ≡ ξiηj−i, where i, j, and k are related by k = j(j + 1)/2 + i+ 1, for all j ∈ {0, 1, . . . , p}
and i ∈ {0, 1, . . . , j}.

Definition 1. Two-dimensional summation-by-parts operator: Consider an open and bounded do-
main Ωe ⊂ R2 with a piecewise-smooth boundary Γe. The matrix Dξ ∈ Rn×n is a degree p SBP approximation
to the first derivative ∂

∂ξ on the nodes S = {(ξi, ηi)}ni=1 if

1. Dξpk = p′k, ∀ k ∈ {1, 2, . . . , (p+ 1)(p+ 2)/2},
where pk ∈ Rn and p′k ∈ Rn denote Pk and ∂Pk/∂ξ, respectively, evaluated at the nodes in S;

2. Dξ = H−1Sξ, where H is symmetric positive-definite, and;

3. Sξ = Qξ + 1
2 Eξ, where QT

ξ = −Qξ, ETξ = Eξ, and Eξ satisfies

pTk Eξpm =

∮
Γe
PkPmnξdΓ, ∀ k,m ∈ {1, 2, . . . , (τ + 1)(τ + 2)/2},

where τ ≥ p, and nξ is the ξ component of n = [nξ, nη]
T

, the outward pointing unit normal on Γe.

The simplex-based SBP operators that we consider in this work were constructed with diagonal norm/mass
matrices whose entries define a cubature rule with positive weights. Unlike most finite-difference methods,
SBP discretizations approximate the weak form when integrated using their mass matrix. Unlike finite-
element methods, SBP methods do not have unique shape functions. They only specify basis values and
derivatives at the nodes (property 1 above) and require the matrix operators to obey properties 2 and 3.

In the following sections, we illustrate how multi-dimensional SBP operators are used to discretization the
Euler equations, and we highlight the close connection between SBP discretizations and the finite-element
method.

A. Conservative Variable Formulation

The two-dimensional Euler equations are discretized in space using SBP operators on a simplex mesh. The
equations in conservation form are

∂q

∂t
+∇ · F = S, (1)

2

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

where q = [ρ, ρu, ρv, E]
T

denotes the conservative variables, S is the source term, and the Euler fluxes are

F =

ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p

(E + p)u (E + p)v

 =
[
Fx Fy

]
.

The calorically perfect ideal gas law is used to close the system. The semi-linear weak form of the Euler
equations is derived below, in order to illustrate some particular details. Readers familiar with the derivation
can proceed directly to Equation (3).

Consider an arbitrary element Ω with boundary Γ, and let x = (x(ξ, η), y(ξ, η)) be a mapping from

the reference element Ωe to Ω, where (ξ, η) are the reference element coordinatesa. Let J =
(
∂ξ
∂x

)
be the

mapping Jacobian, and let |J | denote its determinant. Transforming the fluxes in Equation (1) to reference
space and multiplying the entire equation by 1

|J| , we obtain

1

|J |
∂q

∂t
+∇ξ · Fξ =

S

|J |
, (2)

where the transformed fluxes are

Fξ ≡
1

|J |

(
Fx

∂ξ

∂x
+ Fy

∂ξ

∂y

)
, and Fη ≡

1

|J |

(
Fx

∂η

∂x
+ Fy

∂η

∂y

)
.

If the metric invariants are satisfied — they are for the affine transformations considered here — the 1
|J|

factor can be moved inside the divergence operator to maintain conservative form in reference space [23].

Next, we introduce a weighting function w ∈ [V]
4
, where the weighting space V is an appropriate Hilbert

space. Multiplying element-wise by the vector w, integrating over the reference element Ωe, and applying
integration by parts to the flux term, yields∫

Ωe
w
∂q

∂t

1

|J |
dΩe =

∫
Ωe
wS

1

|J |
dΩe +

∫
Ωe
∇ξw · [Fξ,Fη] dΩe −

∫
Γe
w [Fξ,Fη] dΓ,

where dΓ = ndΓ and n = (nξ, nη) is the outward unit vector normal to the boundary Γe.
On each element we introduce a finite dimensional approximation q ≈ Nb(ξ)q̂b ∈ δh, where δh is the trial

space. In addition, the non-linear fluxes are projected onto the finite-dimensional space via∫
Ωe
w
[
Nb(ξ)

(
F̂ξ

)
b
− Fξ(Nb(ξ)q̂b)

]
dΩe = 0.

A similar projection is used to define Ŝb. Note that all quantities with hats are coefficients that are functions
of time only, and all spatial dependence is contained in the shape functions Nb(ξ). The subscript b indicates
the basis function index, and repeated indices are summed.

Using the Bubnov-Galerkin approach, we can express w = Naŵa ∈
[
Vh
]4

, and therefore δh = Vh.
Requiring the weak-form to be satisfied for all choices of ŵa, results in∫

Ωe
NaNb

∂q̂b
∂t

1

|J |
dΩe =

∫
Ωe
NaNbŜb

1

|J |
dΩe +

∫
Ωe
∇ξNa ·

[
Nb

(
F̂ξ

)
b
, Nb

(
F̂η

)
b

]
dΩe

−
∫

Γe
NaNb

[(
Ĝξ

)
b
,
(
Ĝη

)
b

]
dΓ ∀ Na ∈ Vh.

(3)

In order to impose the boundary conditions weakly, the fluxes in the boundary integrals have been replaced
with numerical flux functions, specifically Roe flux functions, denoted Ĝξ; see, for example, [24].

aIn this work, we consider only affine mappings between reference elements and physical elements.

3

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

We now replace all operations on shape functions with the SBP matrix operators. Defining J−1 ≡
diag(1/|J1|, 1/|J2|, . . . , 1/|Jn|), we can replace the first integral on the right hand side of Equation (3) with

HJ−1Ŝ, where H is the diagonal mass matrix. The second term is the volume integral contribution to the
element stiffness matrix, which is approximated by STξ = ∂Na

∂ξ Nb [10]. Note that the element stiffness matrices

in the parametric coordinate directions can be expressed as STξ = (HDξ)
T

; see Definition 1. As a result,
a single matrix multiplication performs the action of integrating the stiffness contribution over an element.
The final integral in Equation (3) can be expressed using the boundary integration matrices, Eξ and Eη.

Applying these simplifications to the weak form gives

HJ−1 ∂q̂

∂t
= HJ−1Ŝ + STξ F̂ξ + STη F̂η − EξĜξ − EηĜη. (4)

The SBP weak form (4) can be rearranged into its conventional finite-difference strong form by multiplying
from the left by the inverse norm matrix, H−1:

∂

∂t

(
J−1q̂

)
= J−1Ŝ + H−1

[
STξ F̂ξ + STη F̂η − EξĜξ − EηĜη

]
= J−1Ŝ − DξF̂ξ − DηF̂η − H−1Eξ

[
Ĝξ − F̂ξ

]
− H−1Eη

[
Ĝη − F̂η

]
,

where we have used properties 2 and 3 from Definition 1. Note that the two terms multiplied by H−1

on the right-hand side, the so-called simultaneous approximation terms, represent penalties with vanishing
truncation errors that impose the boundary conditions weakly [25,26].

B. Entropy Variable Formulation

The formulation above uses SBP operators to discretize the Euler equations based on the conservative
variables. The resulting semi-discrete system is not entropy stable and may not be suitable for long-time
simulations. On the other hand, Hughes et al. proved that a Galerkin discretization of the symmetrized Euler
and Navier-Stokes equations in entropy variables would satisfy the discrete Clausis-Duhem inequality [27,
28]. Entropy stability has been shown to improve the robustness of high-order discretizations involving
turbulence [29].

Motivated by the results in [29], we consider an SBP discretization of the symmetrized Euler equations in
order to take advantage of the proven “energy” stability in the physically significant entropy norm. However,
in this preliminary work we have not implemented a skew-symmetric discretization of the derivative, so our
semi-discrete scheme is not provably entropy stable. Provable entropy stability will be the focus of future
work.

We discretize the entropy variable formulation using SBP operators starting with Equation (2). Intro-
ducing a change of variables from q to v, where v are the so-called entropy variables, defined in [28], we
have

∂q

∂t
=
∂q

∂v

∂v

∂t
= A0

∂v

∂t
,

and

∇ · F =
∂Fi
∂xi

=
∂Fi
∂q

∂q

∂xi
= Ai

∂q

∂xi
= ASi

∂q

∂v

∂v

∂xi
= ASi A0

∂v

∂xi
= ASi

∂v

∂xi
= ∇ · F S

where F S are the Euler fluxes and the ASi are the flux Jacobians with respect to entropy variables. The
definitions of these quantities in terms of entropy variables are given in the appendix of [28]. Thus the Euler
equations become

A0
∂v

∂t
+∇ · F S = S. (5)

The derivation of the SBP weak form follows in the same fashion presented in Subsection II.A. The result is

HJ−1

(
A
∂v̂

∂t

)
= HJ−1Ŝ + STξ F̂

S
ξ + STη F̂

S
η − EξĜ

S
ξ − EηĜ

S
η , (6)

4

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

where A is a block-diagonal matrix holding the A0 matrices evaluated at the nodes.

III. Edge Stabilization

As discussed in the introduction, SBP operators do not provide the dissipation necessary to prevent
aliasing errors. To address this, we consider the edge stabilization originally presented by Douglas and
Dupont [30] (see also [21] and [16]). It is obtained by adding the term

J(w, q) = −1

2

∑
ν

∫
Γν

γstabh
2
ν [∇q] · [∇w] dΓ = −1

2

∑
ν

∫
Γν

γstabh
2
ν [n · ∇q] [n · ∇w] dΓ

to Equation (3), or the entropy-variable equivalent, where Γν denotes an interior edge, hν is the nominal edge
length, and γstab is a chosen constant. Square brackets denote the jump operator on the element boundary:
[u] = limδ→0 u(x + δn) − u(x − δn) for x ∈ Γν . The jump-stabilization term acts at the interface between
two elements, penalizing differences in the normal derivative.

Our solver is intended for compressible flow problems, so we have adapted the original edge-stabilization
method. In particular, we use the spectral radius of the normal flux Jacobian as a scaling term to ensure the
stabilization is dimensionally consistent with the Euler equations, and we consider the jump in all solution
variables across the element boundaries. The adapted form of the stabilization term used in the solver can
be seen in Equation (7).

J(w, q) = −1

2

∑
ν

∫
Γν

(|u · n| + a)γstabh
2
ν [n · ∇q] [n · ∇w] dΓ, (7)

where a is the local speed of sound. We will explore the effects of γstab in Section V.
To implement edge stabilization within an SBP discretization, we use the following approximation to the

normal-derivative jump operator.

[n · ∇] ≈ Dν ≡ (Bξ,L,νLνDξ,L + Bη,L,νLνDη,L) + (Bξ,R,νRνDξ,R + Bη,R,νRνDη,R) .

Here, Dξ,L and Dη,L denote the SBP derivative operators on the nominal left side of the interface, and Dξ,R

and Dη,R denote the corresponding operators on the right side of the interface. The operators Lν and Rν are
binary matrices that select the boundary nodes on Γν for the left and right elements, respectively; Lν and Rν
are nν ×n rectangular matrices, where nν is the number of nodes on Γν . The matrices Bξ,L,ν , Bη,L,ν , Bξ,R,ν ,
and Bη,L,ν contain geometric information that accounts for the transformation from reference to physical
space. They are nν × nν diagonal matrices given by

Bξ,L,ν = diag [(∇ξ · ∇ξ)nξ + (∇ξ · ∇η)nη]L , Bη,L,ν = diag [(∇ξ · ∇η)nξ + (∇η · ∇η)nη]L ,

Bξ,R,ν = diag [(∇ξ · ∇ξ)nξ + (∇ξ · ∇η)nη]R , Bη,R,ν = diag [(∇ξ · ∇η)nξ + (∇η · ∇η)nη]R ,

where (nξ, nη) is the normal to Γν in reference space.
Using the edge mass matrix Mν to approximate integration over Γν , the SBP form of edge stabilization

is
Jh(wi, qj) = −γ

2

∑
ν

h2
ν (Dνwi)

T MνΥDνqj ,

where wi, qj ∈ Rn for i, j = 1 : 4 are components of thew and q vectors at the nodes, and Υ = diag(|u·n|+a)
contains the fastest acoustic wave speeds at each node on Γν . For SBP discretizations, the test function wi
is a binary unit vector taking the value of 1 for one node and zero otherwise. Thus, by considering each
node in turn, the above form becomes the vector

Jh(I, qj) = −γ
2

∑
ν

h2
νDT

ν MνΥDνqj ,

5

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

where I is the n× n identity.
If |u ·n|+ a is constant over Γν , then edge stabilization does not interfere with entropy stability, because

the operator is negative semi-definite. Proving entropy stability in the case of a spatially varying |u · n|+ a
is also possible, but requires interpolation to cubature nodes on Γν ; see, for example, [31].

IV. Solver Abstraction and Implementation

A. Implementation in Julia

Having described the SBP discretization, we now pause to discuss our implementation and solution of the
resulting non-linear algebraic equations using the programming language Julia. One of the main features of
Julia is a generic, type optional, programming style where type information can be specified by the user or
inferred by the compiler. When a function is called with a particular set of values as arguments, the Just
In Time (JIT) compiler uses the types of the values to compile a version of the function specialized to those
types, as if the programmer had specified the datatype of every variable. This gives Julia the efficiency
of statically typed languages like C (without vectorization), but with the flexibility to call functions with
different argument types [32], and permits the use of abstraction in a natural and readable syntax, even in
low-level numerical routines.

The evaluation of the Euler equations in the form of Equation (4) is implemented as a system of non-
linear algebraic equations. Using Julia’s parametric type system, the entire calculation is parameterized on
the types of the input variables q̂, the type of the result ∂q̂

∂t , and the type of the mesh Jacobian terms ∂ξ
∂x .

As a result, it is possible to differentiate with respect to either the solution variables or the mesh variables.
One use of the parameterization is to calculate the Jacobian for Newton’s method, which we use to solve

steady problems. An abstract form of algorithmic differentiation (AD) is implemented, taking in a seed
vector whose elements can be of any datatype. Because of Julia’s type inference capability and the JIT
compiler, when the evaluation function is called with complex-perturbed solution variables, every function is
compiled with datatypes of all the variables known to the compiler. If a different AD datatype is used, such
as hyper-dual numbers [33], all the numerical routines are recompiled, generating efficient machine code to
operate on dual numbers. The result is a highly efficient mechanism for algorithmic differentiation, with the
full range of compiler optimization available and no source code duplication.

One of the benefits of the parameterization is its extensibility. For example, in order to implement entropy
variables, an additional type parameter is introduced. This parameter enables the use of Julia’s multiple
dispatch system to call the correct methods for the variables being used. For example, methods to calculate
pressure and the Euler flux at a node are defined for both variables, and the compiler chooses between them
based on the type parameter during method dispatch at compile time. Thus, the implementation of entropy
variables required only defining the node-based operations and the transformation matrices described in
Section II.B. This ease of extensibility for low-level routines demonstrates the utility of the multiple dispatch
paradigm in designing numerical software.

B. Algebraic Equation Solvers

Steady flow problems are solved using Newton’s method. To solve the linear systems that arise in Newton’s
method, a sparse multi-frontal LU factorization from UMFPACK is employed [34]. For unsteady problems,
we use the classical 4th-order explicit Runge-Kutta method.

In order to calculate the Jacobian for Newton’s method with as few (complex) residual evaluations as
possible, mesh coloring and an element-based data structure are used. In the element-based data arrays, the
solution and residual values are stored for every node on each element, duplicating the values for nodes that
are shared between elements. This enables perturbation of the q̂ variables on one element without affecting
neighboring elements.

For the unstabilized equations a distance-0 coloring (i.e. all elements are the same color) is sufficient
to ensure there is a one-to-one mapping from residual perturbations to perturbations in q̂. Each degree of
freedom on an element must be perturbed independently, therefore the Jacobian can be calculated in m = 4n

6

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

(a) Mesh (b) Contours of ρ

Figure 1: Steady isentropic vortex solution

residual evaluations, where m is the number of degrees of freedom on an element.
For edge stabilization, where perturbations to a degree of freedom affect all neighboring elements that

share an edge, a distance-2 graph coloring is necessary, where graph vertices correspond to mesh elements
and graph edges connect elements that share a mesh edge. We use Algorithm 3.1 from Ref. [35] to perform
this coloring, which has an upper bound of ∆2 + 1 colors, where ∆ is the maximum number of neighboring
elements. Considering only edge neighbors for triangular elements, the maximum number of colors is 10,
and the maximum number of residual evaluations is 10m. The graph-based Parallel Unstructured Mesh
Interface [36] was used for all meshing, and it facilitated the implementation of the coloring algorithm by
allowing querying of the topological adjacencies of mesh elements.

V. Results

A. Isentropic Vortex

An isentropic vortex problem was used to verify the asymptotic convergence rates of the discretizations. The
vortex problem consists of a quarter circle domain with an inner radius rin = 1 and outer radius rout = 3.
An example of the expected computational solution can be seen in Figure 1(b), in which density is plotted.
Here, the problem was solved with degree p = 2 elements, with 20 elements along each boundary edge; see
Figure 1(a) for the corresponding mesh.

The analytical solution of this problem is known to be

ρ(r) = ρin

[
1 +

γ − 1

2
M2

in

(
1− r2

in

r2

)] 1
γ−1

.

We have set the inner-radius density to ρin = 2 and inner-radius Mach number to Min = 0.95. The specific
heat ratio γ = 1.4 is used for all problems. All other flow variables can be calculated using the isentropic
relations. Note that the analytical solution is imposed (weakly) along all boundaries.

To determine the convergence rates of the discretizations, the steady vortex problem was solved on a
sequence of meshes, using the analytic solution as the initial guess. Newton’s method was run until an
absolute residual tolerance of 10−12 was achieved, or the residual was reduced by ten orders relative to the
residual for a uniform flow. The SBP approximation to the continuous L2 norm,

√
uTHJu, is used for all

error-norm calculations.
Figure 2 shows the convergence rates for the unstabilized and edge-stabilized discretizations. As in [10]

for the linear advection equation, the p = 2 and p = 4 discretizations show suboptimal convergence rates of

7

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

2e-2 6e-2 1e-1
h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L
2
 e

rr
or

1.8:1

2:1

3.8:1

p = 1
p = 2
p = 3
p = 4

(a) No stabilization

2e-2 6e-2 1e-1
h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L
2
 e

rr
or

1.9:1

3:1

3.7:1

4.4:1
p = 1
p = 2
p = 3
p = 4

(b) Edge stabilization

Figure 2: Effect of mesh refinement upon L2 error

Degree Convergence: No Stabilization Convergence: Edge Stabilization γstab

p = 1 1.8 1.9 0.01

p = 2 2.0 3.0 0.9

p = 3 - 3.7 7.35

p = 4 3.8 4.4 25.0

Table 1: Convergence rates observed in the steady-vortex problem

8

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

order p. The odd-order discretizations show oscillatory convergence, especially the p = 3 discretization. In
contrast, the edge-stabilized discretizations exhibit well-behaved convergence.

For edge-stabilization, values of the stabilization parameter that produce optimal p+1 convergence rates
were easily found for the p = 1 and p = 2 elements. A range of values was found to produce optimal
convergence rates, so the value corresponding to the minimal error norm is reported here. For the higher
order elements, a Golden-Section optimization was performed to find the parameter value that maximized
convergence rate. Despite this optimization, the p = 3 and p = 4 elements exhibit sub-optimal convergence
rates, although the p = 2 and p = 4 convergence rates are improved relative to the unstabilized case. The
convergence rates are estimated using a least-squares analysis of the five finest meshes and are listed in
Table 1.

B. Unsteady Vortex

We now investigate the conservative- and entropy-variable formulations on an unsteady problem with and
without edge stabilization. Specifically, we consider the unsteady isentropic vortex problem; see, for exam-
ple, [37]. The analytical solution is known to be [38]

u =1− εy

2π
exp

(
f(x, y, t)

2

)
, v =

ε((x− x0)− t)
2π

exp

(
f(x, y, t)

2

)
ρ =

(
1− ε2(γ − 1)M2

8π2
exp (f(x, y, t))

) 1
1−γ

, p =
ργ

γM2
, (8)

where f(x, y, t) = 1− (((x− x0)− t)2 + y2), the Mach number is set to M = 0.5, ε, the vortex strength, is
set to 1, and x0, the x coordinate of the center of the vortex at t = 0, is 5. The y coordinate of the vortex’s
center is zero. We solve the problem on a rectangular domain x ∈ [0, 20] and y ∈ [−5, 5]. The analytical
solution is imposed for both the initial condition and boundary conditions. The simulation was run to a
maximum time of 2 seconds.

A mesh defined by 50 elements along each edge was used for the p = 1 discretization, corresponding
to 10,404 degrees-of-freedom. For the higher order elements, meshes with the closest number of degrees-of-
freedom possible were used, subject to the constraint that the number of elements along each edge is equal;
see Table 2.

The maximum stable CFL number was determined to be 0.0001 for the p = 4 stabilized discretization
and was used for all runs. The use of edge stabilization significantly reduced the maximum stable CFL
number compared to the unstabilized case. In calculating the CFL number, the minimum distance between
nodes for each degree element was used as the mesh spacing.

For the p = 1 discretization, the same stabilization constant was used as for the steady vortex problem.
For high-order elements, γstab = 0.5 proved to be sufficient to maintain stability. For reasons of computational
economy, higher values of γstab were not studied. Table 2 lists the value of the edge stabilization parameter
γstab used for all degree operators.

Degree CFL γstab DOFs

p = 1 0.0001 0.01 10,404

p = 2 0.0001 0.5 10,560

p = 3 0.0001 0.5 10,804

p = 4 0.0001 0.5 10,644

Table 2: CFL and edge stabilization parameter values used for the unsteady vortex problem. The p = 4
stabilized elements dictated the maximum stable timestep used for all discretizations.

Figure 3 shows the solution field at the final time. Density is plotted for the p = 2 discretization with and
without stabilization. Qualitatively, one can see the effects of adding stabilization; Figure 3(a) demonstrates

9

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

(a) p = 2, no stabilization (b) p = 2, stabilized

Figure 3: Density at final time of the unsteady vortex problem

slight oscillations around the vortex that indicate instability, whereas Figure 3(b) shows significantly fewer
oscillations.

Because the exact solution is isentropic, it is desirable for a numerical method to retain this property.
The results in Figure 4 indicate that both the conservative and entropy formulations increase entropy over
time. The unstabilized formulations generate similar amounts of entropy, but for p = 1 through p = 3
the stabilized entropy variable formulation generates less entropy than the stabilized conservative formula-
tion. This suggests the entropy formulation is effective in reducing non-physical entropy generated by the
stabilization.

While increasing entropy is expected for the unstabilized conservative case, Hughes et al. proved that the
finite-element discretization of the Euler equations in entropy variables will inherit the continuous equation’s
property of conserving entropy [28]. As noted in Section II.B, a skew-symmetric discretization is necessary
to realize provable entropy stability and will be the focus of future work.

VI. Conclusion

High-order simplex SBP methods show promise as a means to efficiently solve PDEs numerically on
unstructured grids; however, they require stabilization for non-linear problems. To this end, we have in-
vestigated edge stabilization for simplex SBP operators, examining both the convergence rate and entropy
stability of the spatial discretizations. Retaining high-order convergence in the stabilized scheme is neces-
sary in order to realize the computational efficiency of high-order methods. Additionally, entropy stability
is important for long-time simulations, such as those used for unsteady turbulence simulations.

We have shown that edge stabilization is effective in stabilizing a simplex-based SBP discretization of the
Euler equations for all orders of simplex SBP elements, although it significantly increases the cost of using
algorithmic differentiation to compute the Jacobian and, more significantly, imposes a restriction on the
CFL number for unsteady problems using explicit time marching. For unsteady problems, entropy variables
increase the solution accuracy of the stabilized scheme with respect to entropy, but does not render the
discretization entropy stable without a skew-symmetric derivative approximation. Further investigation is
required into a skew-symmetric SBP formulation for entropy stability.

Acknowledgements

A. Ashley and J. Hicken gratefully acknowledge the support of the Air Force Office of Scientific Research
Award FA9550-15-1-0242 under Dr. Jean-Luc Cambier.

10

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

0.0 0.5 1.0 1.5 2.0
t

-10-2

-10-3

-10-4

-10-5

-10-6

0

10-6

10-5

10-4

10-3

∆
S

Cons. Vars.
Entropy Vars.
Cons. Vars., stab.
Entropy Vars., stab.

(a) p = 1

0.0 0.5 1.0 1.5 2.0
t

-10-2

-10-3

-10-4

-10-5

-10-6

0

10-6

10-5

10-4

10-3

∆
S

Cons. Vars.
Entropy Vars.
Cons. Vars., stab.
Entropy Vars., stab.

(b) p = 2

0.0 0.5 1.0 1.5 2.0
t

-10-2

-10-3

-10-4

-10-5

-10-6

0

10-6

10-5

10-4

10-3

∆
S

Cons. Vars.
Entropy Vars.
Cons. Vars., stab.
Entropy Vars., stab.

(c) p = 3

0.0 0.5 1.0 1.5 2.0
t

-10-2

-10-3

-10-4

-10-5

-10-6

0

10-6

10-5

10-4

10-3

∆
S

Cons. Vars.
Entropy Vars.
Cons. Vars., stab.
Entropy Vars., stab.

(d) p = 4

Figure 4: Change in entropy over solution time

11

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

References

1Kreiss, H.-O. and Oliger, J., “Comparison of accurate methods for the integration of hyperbolic equations,” Tellus,
Vol. 24, No. 3, 1972, pp. 199–215.

2Swartz, B. and Wendroff, B., “The Relative Efficiency of Finite Difference and Finite Element Methods. I: Hyperbolic
Problems and Splines,” SIAM Journal on Numerical Analysis, Vol. 11, No. 5, 1974, pp. pp. 979–993.

3Kreiss, H.-O. and Scherer, G., “Finite element and finite difference methods for hyperbolic partial differential equations,”
Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by C. de Boor, Mathematics Research Center,
the University of Wisconsin, Academic Press, 1974.

4Strand, B., “Summation by Parts for Finite Difference Approximations for d/dx,” Journal of Computational Physics,
Vol. 110, No. 1, 1994, pp. 47 – 67.

5Hicken, J. E. and Zingg, D. W., “A parallel Newton-Krylov solver for the Euler equations discretized using simultaneous
approximation terms,” AIAA Journal , Vol. 46, No. 11, Nov. 2008, pp. 2773–2786.

6Nordström, J., Gong, J., van der Weide, E., and Svärd, M., “A stable and conservative high order multi-block method
for the compressible Navier–Stokes equations,” Journal of Computational Physics, Vol. 228, No. 24, 2009, pp. 9020–9035.

7Mattsson, K. and Carpenter, M. H., “Stable and accurate interpolation operators for high-order multiblock finite difference
methods,” SIAM Journal on Scientific Computing, Vol. 32, No. 4, 2010, pp. 2298–2320.

8Svärd, M. and Nordström, J., “Review of summation-by-parts schemes for initial-boundary-value-problems,” Journal of
Computational Physics, Vol. 268, No. 1, 2014, pp. 17–38.

9Del Rey Fernández, D. C., Hicken, J. E., and Zingg, D. W., “Review of summation-by-parts operators with simultaneous
approximation terms for the numerical solution of partial differential equations,” Computers and Fluids, 2014.

10Hicken, J. E., Del Rey Fernández, D. C., and Zingg, D. W., “Multidimensional summation-by-parts operators: general
theory and application to simplex elements,” SIAM Journal on Scientific Computing, September 2015, Submitted (in revision).

11Cohen, G., Joly, P., Roberts, J. E., and Tordjman, N., “Higher Order Triangular Finite Elements with Mass Lumping
for the Wave Equation,” SIAM Journal on Numerical Analysis, Vol. 38, No. 6, 2001, pp. pp. 2047–2078.

12Giraldo, F. X. and Taylor, M. A., “A diagonal-mass-matrix triangular-spectral-element method based on cubature points,”
Journal of Engineering Mathematics, Vol. 56, No. 3, 2006, pp. 307–322.

13Von Neumann, J. and Richtmyer, R. D., “A Method for the Numerical Calculation of Hydrodynamic Shocks,” Journal
of Applied Physics, Vol. 21, No. 3, 1950.

14Brooks, A. N. and Hughes, T. J. R., “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows
with particular emphasis on the incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engi-
neering, Vol. 32, No. 1–3, 1982, pp. 199 – 259.

15Rice, J. G. and Schnipke, R. J., “A monotone streamline upwind finite element method for convection-dominated flows,”
Computer Methods in Applied Mechanics and Engineering, Vol. 48, No. 3, 1985, pp. 313 – 327.

16Burman, E., Fernández, M. A., and Hansbo, P., “Continuous Interior Penalty Finite Element Method for Oseen’s Equa-
tions,” SIAM Journal on Numerical Analysis, Vol. 44, No. 3, 2006, pp. pp. 1248–1274.

17Hughes, T. J. R. and Brooks, A., “A multidimensional upwind scheme with no crosswind diffusion,” Finite element
methods for convection dominated flows, Vol. 34, 1979, pp. 19–35.

18Hughes, T. J. R., Engel, G., Mazzei, L., and Larson, M. G., “The Continuous Galerkin Method Is Locally Conservative,”
Journal of Computational Physics, Vol. 163, No. 2, 2000, pp. 467–488.

19Venkatakrishnan, V., Allmaras, S., Kamenetskii, D., and Johnson, F., chap. Higher Order Schemes for the Compressible
Navier-Stokes Equations, Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics,
Jun 2003.

20Collis, S. S. and Heinkenschloss, M., “Analysis of the streamline upwind/Petrov Galerkin method applied to the solution
of optimal control problems,” Tech. Rep. TR02-01, Houston, Texas, 2002.

21Burman, E. and Hansbo, P., “Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems,”
Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 15–16, 2004, pp. 1437–1453, Recent Advances in
Stabilized and Multiscale Finite Element Methods.

22Burman, E., Fernández, M. A., and Hansbo, P., “Edge stabilization for the incompressible Navier-Stokes equations: a
continuous interior penalty method,” 2004, CMCS-ARTICLE-2004-006.

23Pulliam, T. H., “Efficient Solution Methods for the Navier-Stokes Equations,” Lecture Notes for the Von Karman Institute
for Fluid Dynamics Lecture Series.

24Laney, C., Computational Gas Dynamics, Cambridge University Press, 1998, pp. 71–105.
25Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-stable boundary conditions for finite-difference schemes solving

hyperbolic systems: Methodology and application to high-order compact schemes,” Journal of Computational Physics, Vol. 111,
No. 2, 1994, pp. 220–236.

26Carpenter, M. H., Nordström, J., and Gottlieb, D., “Revisiting and Extending Interface Penalties for Multi-domain
Summation-by-Parts Operators,” Journal of Scientific Computing, Vol. 45, No. 1-3, 2010, pp. 118–150.

27Harten, A., “On the symmetric form of systems of conservation laws with entropy,” Journal of Computational Physics,
Vol. 49, No. 1, 1983, pp. 151–164.

12

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

28Hughes, T. J. R., Franca, L. P., and Mallet, M., “A New Finite Element Formulation for Computational Fluid Dynamics:
I. Symmetric Forms of hte Compressible Euler and Navier-Stokes Equations and the Second Law of Theromdynamics,” Computer
Methods in Applied Mechanics and Engineering, 1985.

29Diosady, L. T. and Murman, S. M., chap. Higher-Order Methods for Compressible Turbulent Flows Using Entropy
Variables, AIAA SciTech, American Institute of Aeronautics and Astronautics, Jan 2015.

30Douglas, J. and Dupont, T., “Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods,” Computing
Methods in Applied Sciences, edited by R. Glowinski and J. Lions, Vol. 58 of Lecture Notes in Physics, Springer Berlin
Heidelberg, 1976, pp. 207–216.

31Hicken, J. E., Del Rey Fernández, D. C., and Zingg, D. W., “Simultaneous Approximation Terms for Multidimensional
Summation-by-parts Operators,” Aviation 2016 (under review), Dallas, Texas, June 2016.

32Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., “Julia: A Fresh Approach to Numerical Computing,”
November 2014.

33Fike, J. A., Jongsma, S., Alonso, J. J., and van der Weide, E., “Optimization with Gradient and Hessian Information
Calculated Using Hyper-Dual Numbers,” AIAA, 2011.

34Davis, T. A., “An Unsymmetric-Pattern Multifrontal Method,” ACM Transactions on Mathematical Software, Vol. 30,
No. 2, 2004.

35Gebremedhin, A. H., Manne, F., and Pothen, A., “What Color Is Your Jacobian? Graph Coloring for Computing
Derivatives,” SIAM Review , Vol. 47, No. 4, 2005.

36Seol, S., Smith, C. W., Ibanez, D. A., and Shephard, M. S., “A Parallel Unstructured Mesh Infrastructure,” High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:, Nov 2012, pp. 1124–1132.

37Mattsson, K., Svärd, M., Carpenter, M., and Nordström, J., “High Order Accurate Computations for Unsteady Aerody-
namics,” Computers and Fluids, Vol. 36, No. 3, 2007, pp. 636–649.

38Erlebacher, G., Hussaini, M. Y., and Shu, C.-W., “Interaction of a shock with a longitudinal vortex,” Journal of Fluid
Mechanics, Vol. 337, Apr 1997, pp. 129–153.

13

D
ow

nl
oa

de
d

by
 J

as
on

 H
ic

ke
n

on
 F

eb
ru

ar
y

8,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
13

28

	Introduction
	Summation-by-parts Discretization of the Euler Equations
	Conservative Variable Formulation
	Entropy Variable Formulation

	Edge Stabilization
	Solver Abstraction and Implementation
	Implementation in Julia
	Algebraic Equation Solvers

	Results
	Isentropic Vortex
	Unsteady Vortex

	Conclusion

