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Effect of Fiber Crimp on the
Elasticity of Random Fiber
Networks With and Without
Embedding Matrices
Fiber networks are assemblies of one-dimensional elements representative of materials
with fibrous microstructures such as collagen networks and synthetic nonwovens. The
mechanics of random fiber networks has been the focus of numerous studies. However,
fiber crimp has been explicitly represented only in few cases. In the present work, the
mechanics of cross-linked networks with crimped athermal fibers, with and without an
embedding elastic matrix, is studied. The dependence of the effective network stiffness on
the fraction of nonstraight fibers and the relative crimp amplitude (or tortuosity) is stud-
ied using finite element simulations of networks with sinusoidally curved fibers. A semi-
analytic model is developed to predict the dependence of network modulus on the crimp
amplitude and the bounds of the stiffness reduction associated with the presence of crimp.
The transition from the linear to the nonlinear elastic response of the network is rendered
more gradual by the presence of crimp, and the effect of crimp on the network tangent
stiffness decreases as strain increases. If the network is embedded in an elastic matrix,
the effect of crimp becomes negligible even for very small, biologically relevant matrix
stiffness values. However, the distribution of the maximum principal stress in the matrix
becomes broader in the presence of crimp relative to the similar system with straight
fibers, which indicates an increased probability of matrix failure.
[DOI: 10.1115/1.4032465]

1 Introduction

Fiber networks are assemblies of one-dimensional elements
that can be used to model the mechanics of fibrous materials. The
first such models were developed for paper and paper products,
and a large literature exists on the subject (see Ref. [1] for a
review). In the last two decades, random fiber networks have been
used to represent assemblies of semiflexible filaments, i.e., fila-
ments in which the bending stiffness of fibers is not negligible,
encountered in biological materials. The structural element of all
connective tissues contains as the primary element a network of
collagen and elastin. This pervasiveness of network structures in
biomaterials and biological structures stimulated an intense activ-
ity in this area, activity which continues today. A review of these
efforts is provided in Ref. [2].

The central goal of these efforts has been to understand the rela-
tionship between the network structure and its mechanical behav-
ior. When subjected to uniaxial tension or shear, a cross-linked
random fiber network exhibits an initial linear elastic deformation
regime, followed at larger strains by a nonlinear elastic response
[3–5]. The initial regime is characterized by the elastic modulus,
EN . In the nonlinear range, the tangent stiffness is related to the
stress through a power law function [3]. The strain range in which
the power law applies is bounded by the strain at which the non-
linear range begins and by another critical strain at which other
processes, such as failure, activation of unfolding in cross-linking
proteins, or full fiber alignment, are triggered [3,5].

The small-strain elastic modulus EN was related to the network
parameters in a number of studies [1,6,7]. It is now well-
established that in networks made from the same type of fibers, an
important role is played by a parameter with units of length,

lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEIÞf =ðEAÞf

q
, where ðEAÞf and ðEIÞf are parameters that

determine the axial and bending stiffness of fibers, ðEAÞf =l and

ðEIÞf =l3 (here l is the length of an individual fiber). When lb � l,

where l is the mean fiber segment length, the network modulus is
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proportional to ðEAÞf , while in networks with lb � l, the network

modulus is proportional to ðEIÞf . These limits are denoted as the

axial- and bending-dominated regimes, respectively. The network
modulus, EN , is proportional to the density of the network, q, in
the axial-dominated regime and scales as qa in the bending-
dominated range. Various values of a between 2 and 8 have been
reported depending on the network structure and the dimensional-
ity of the embedding space (2D versus 3D) [8,9].

Most networks of interest, such as the collagen networks in
connective tissue or fibrin networks in blood clots, are embedded
in a matrix. The effect of the matrix on the mechanics of the com-
posite has been studied recently [10,11]. The usual modeling pro-
cedure in the biomechanics literature is to decouple the two
components and consider that the matrix and network are sub-
jected to the same boundary conditions but deform independently
[12,13]. A coupled model was developed by Zhang et al. [11], in
which the compatibility of the deformation field is ensured at all
points of each fiber of the model. This study indicates that in soft
tissue, the matrix and network interact strongly, with the matrix
reducing the degree of nonaffinity of the deformation field of the
network. In turn, this leads to a highly heterogeneous stress field
in the matrix material.

Curved (crimped) athermal fibers are encountered in both bio-
logical and synthetic unloaded networks. For example, different
levels of crimp/tortuosity have been reported for in vivo collagen
fibrils, depending on age [14] and anatomical location [15]. Also,
fiber tortuosity is ubiquitous in nonwovens used for various con-
sumer products such as absorbent and insulating materials. Vari-
ous models have been developed to account for the crimp effect in
fibrous networks [5,16–18]. The simplest models assume that
fibers are straight, but their response to stretch is modified and

includes an initial regime, the crimp pull-out regime, in which the
deformation takes place at zero or very small axial force
[12,16,18]. This effective constitutive behavior of the fibers can
be derived based on the response of the actual, crimped fibers to
stretch [4,17]. The prediction of the behavior of the network of
curved fibers can then be made either using the assumption of
affine deformation of the network, and hence the fiber end-to-end
vectors [12,18], or using a detailed network model.

Kabla and Mahadevan [17] performed experiments on synthetic
polyester felts, in which the majority of fibers are crimped, and
related the fiber and network behaviors using a reduced-order rep-
resentative network model with six fibers. They explicitly account
for fiber crimp statistics, which is used to evaluate the constitutive
behavior of the fibers in the representative model. Onck et al. [5]
and Huisman et al. [18] studied cross-linked networks of curved
athermal fibers numerically. They introduce fiber initial curvature
by using thermal statistical chain models and by controlling the
chain persistence length. It is observed that at small strains, fiber
crimp leads to softer responses while the stress–strain curves con-
verge to the same asymptote at larger strains when the fiber undu-
lations are straightened.

Motivated by the observations of significant deformation nonaf-
finity in the mechanics of biopolymers [19], this work addresses
the effect of crimp on the nonaffine deformation of athermal
cross-linked networks with and without matrix. Networks with
different crimp amplitudes and fractions of crimped fibers are con-
sidered and a quantitative relationship is established between
these two parameters and EN . To the best of our knowledge, this
is the first analytical model to explain the reduction of stiffness in
the presence of crimp for a network without any assumption about
the deformation field. The response to large deformations of net-
works of crimped fibers is also studied. Additionally, the effect of
the matrix is accounted for by explicitly imposing the fiber-matrix
deformation compatibility in the spirit of the model of Zhang
et al. [10]. Section 2 outlines the model and solution procedure,
while the results and discussion are presented in Sec. 3 for both
nonembedded and embedded networks.

2 Model and Simulation Method

Random fiber networks are generated using the Voronoi algo-
rithm. A large number (6000) of seed points are randomly posi-
tioned in a cube of edge length equal to 1. This volume is then
tessellated using the Voronoi procedure. Fibers are defined along
all edges of the resulting polyhedra. The vertices of the polyhedra
are the cross-links of the network, and the coordination number is
4 at all network interior points. This leads to a network of straight
fibers. To introduce crimp, a fraction f of the total number of
fibers are selected and their shape is modified into a sinusoidal
curve having the same end points as the initial, straight fiber. Only
the longest fibers of the model are selected for this purpose. The
curve describing a crimped fiber has wavelength 2l and amplitude
cl, both proportional to the end-to-end distance l. Each crimped
fiber belongs to a plane P containing the end-to-end vector of the
filament and having random azimuthal angle. In a Cartesian coor-
dinate system with x1 in the direction of the fiber end-to-end vec-
tor and x2 contained in plane P, the fiber shape is defined by
x2 ¼ cl sinðpx1=lÞ, as shown schematically in Fig. 1(a) for a fiber
with c ¼ 0:2. The tortuosity, defined as the contour length divided
by the end-to-end length, is evaluated as s ¼ 2E2ð�cpÞ=p, where
E2 is the complete elliptic integral of the second kind. This rela-
tion gives s ¼ 1:14 for the normalized amplitude c ¼ 0:2. It can
be noted that the resulting length of individual fibers l is exponen-
tially distributed, as previously seen in other types of networks [6]
and observed in experiments performed on actin gels [20]. Figure
1(b) shows a snapshot of such networks with f ¼ 1 and c ¼ 0:2
(s ¼ 1:14Þ. It should be noted that the use of the ratio of
amplitude-to-wavelength (parameter c, here) as the only parame-
ter capturing the effect of crimp on fiber behavior has been also

Fig. 1 (a) Individual crimped fiber and (b) snapshot of an unde-
formed 3D Voronoi network of 1331 naturally curved fibers. A
normalized fiber crimp amplitude c 5 0:2 (s 5 1:14) is used in
both panels.
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suggested in Ref. [21] in the context of a composite with crimped,
nonbonded fibers.

Although crimp is induced using a wavelength of 2l in all cases,
it should be noted that for small values of c, in the axially domi-
nated networks, the configuration shown in Fig. 1(a) is also repre-
sentative of fibers of length nl and crimp amplitude cl, for
arbitrary positive integers n. This point is revisited in Sec. 3.1.

In models with matrix, the network is embedded in a continuum
which fills the volume of the cubic material domain. The fibers
have no associated volume and are represented by beams of axial
and bending stiffnesses EA=l and EI=l3, respectively. The fibers
are considered well-bonded to the matrix, and this compatibility
condition is imposed along all interfaces. It is important to
observe that this structure is different from a regular composite
material since the fibers form a percolated cross-linked three-
dimensional network within the matrix.

The fibers are represented either as trusses of axial stiffness
ðEAÞf =l or as two-noded Timoshenko beams, as specified. The
fiber material is considered linear elastic. The fiber elastic strain
energy is computed as

U ¼
ðls

0

EIð Þf
dw sð Þ

ds

� �2

þ EAð Þf
du sð Þ

ds

� �2
"

þ GAð Þf
dv sð Þ

ds
� w sð Þ

� �2

þ GJð Þf
d/ sð Þ

ds

� �2
#

ds (1)

where ls is the fiber contour length and E, G, A, I, and J are the
Young’s and shear moduli, cross-sectional area, and the axial and
polar moments of inertia, respectively. The beam cross section is
considered circular, so the moment of inertia of the cross section,
I, is not direction-dependent. Functions vðsÞ, wðsÞ, /ðsÞ, and
duðsÞ=ds represent the transverse displacement, rotation, torsional
rotation, and the normal axial strain at position s along the fiber
axis, respectively. The use of Timoshenko beams in place of the
Euler–Bernoulli model more frequently used in the literature is
determined by the superior convergence properties of these mod-
els, as discussed in Ref. [8]. In the case of trusses, only the second
term remains in the integral. The matrix is considered linear elas-
tic, with Young’s modulus Em and Poisson’s ratio �m.

This model is discretized using finite elements. All fibers are
discretized with four straight beam elements connecting points
positioned along the fiber contour. It is verified that using more
beam elements per fiber does not modify the results reported here.
In the case of the network with matrix, the matrix is considered
linear elastic and the matrix and fibers are meshed together, such
that the end nodes of a fiber element are shared with the adjacent
3D tetrahedral solid elements. The modeling procedure is identi-
cal to that used by Zhang et al. [10]. The 3D and beam/truss ele-
ments have the same nodal displacement variables. When using
trusses to represent fibers, the interpolation functions used for
fibers and matrix elements are of the same order, and hence, the
compatibility is ensured everywhere. When using beams to repre-
sent fibers, the compatibility is ensured only at the nodal sites.
However, the convergence studies for the overall network proper-
ties mentioned above indicate that the presence of multiple nodes
along each fiber imposes the compatibility of the fiber-matrix de-
formation to a sufficient degree in all cases studied.

The model is deformed by imposing displacement boundary con-
ditions. A uniaxial strain is applied in the x1 direction, e11 ¼ �,
while the faces perpendicular to the x2 and x3 axes are kept traction
free. Displacement is prescribed for the nodes on the model faces
with the minimum and maximum x1 coordinates. The small defor-
mation simulations are performed up to � ¼ 0:05% applied strain,
while larger strains are used in the other cases, as specified, to
investigate the nonlinear deformation range. Shear deformation
was also applied in several cases and the results for small deforma-
tions (linear elasticity) are in agreement with those obtained from
uniaxial tests, as also reported broadly in the literature [3,6,8,9].

The overall Cauchy stress is evaluated based on the reactions
computed on the face of normal in the x1 direction and the current
area of the respective model boundary segment. In the case with
matrix, these include reactions from fiber and matrix elements.
Alternatively, the stress components can be calculated using the
strain energy stored in the matrix and network elements.

The solution is obtained using either the commercial finite
element solver ABAQUS/STANDARD 6.9-2 or an in-house developed
Cþþ code, which has been extensively tested in previous studies
(e.g., see Refs. [10,11]).

3 Results and Discussion

3.1 Fiber Networks Without a Nonfibrillar Matrix.
Networks with various values of the two parameters, the fraction
of fibers crimped, f , and the crimp amplitude, c, are generated,
and multiple realizations are tested for each case. The density,
which is controlled by the number of seeds in the Voronoi proce-
dure, is kept constant. The small-strain network modulus, EN , is
evaluated as described in Sec. 2. The case with straight fibers
(f ¼ 0) is taken as reference and its modulus is denoted by EN0.
The axial and bending stiffness parameters of fibers, ðEAÞf and
ðEIÞf , are chosen such that the network of straight fibers is in the
axial deformation regime. This does not imply that networks with
f > 0 are deforming in the same mode since bending is engaged
under any type of local loading in presence of crimp.

Figure 2(a) shows a map of EN normalized by EN0 versus pa-
rameters f and c (the corresponding tortuosity, s, is also indi-
cated). As expected, the modulus decreases monotonically with
increasing f and c. Figure 2(b) shows several horizontal sections
through the map in Fig. 2(a), each corresponding to constants
c ¼ 0, 0:25, 0:5, 0:66, and 1 (from top to bottom). This corre-
sponds to tortuosity values of s ¼ 1; 1:17; 1:32; 1:40, and 1:56,
respectively. Note that the level of tortuosity relevant for collagen
networks is on the order of 1.21 [22]. The continuous curve in
Fig. 2(b) represents a lower bound for the reduction of networks
stiffness. It is obtained by considering that all crimped fibers are
actually removed from the model (the limit c!1) and do not
contribute to the global strain energy. The derivation of this ana-
lytical bound is provided in the Appendix. This bound is inde-
pendent of the density and fiber stiffness. The solid curve
corresponds to stable networks that are deforming in the axially
dominated regime.

In order to provide an approximation of the numerical results
presented in Fig. 2, it is useful to establish a connection with our
previous results [9]. In this reference, composite networks of
straight fibers were considered, in which ðEAÞf (or ðEIÞf ) of each

fiber was selected from a distribution function of mean ðEAÞf and

standard deviation rðEAÞf . Upon considering multiple realizations

of such structures, the resulting network moduli formed a distribu-

tion of mean EN and standard deviation rEN
. It was shown that EN

decreases as rðEAÞf increases. The upper bound is the value of the

modulus corresponding to rðEAÞf ¼ 0, i.e., the case in which all

fibers of the network have the same axial stiffness, equal to ðEAÞf .

It was further discussed in Ref. [9] that rEN
increases linearly with

rðEAÞf , but decreases as N�0:5
f with increasing the number of fibers

in the model, Nf .
It is possible to link the case discussed here to that analyzed in

Ref. [9]. To this end, consider networks that are axially domi-
nated. In these cases, the bending behavior of the fibers is inconse-
quential for the overall system response. If all fiber segments are
straight, ðEAÞf is identical for all fibers. In the presence of crimp,
the effective axial stiffness decreases with increasing c (or s). The
change in equivalent ðEAÞf can be computed analytically using el-
ementary methods for slender curved beams [23]. To this end,
Castigliano’s second theorem can be used to find the resulting
displacement, d, from the application of an axial unit load p to a
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curved beam. The equivalent axial parameter ðEAÞeq can be
evaluated as ðEAÞeq ¼ l=ðd=pÞ.

The distribution of ðEAÞeq values for fibers of different lengths
can then be evaluated considering the distribution of cl. The
resulting distribution is characterized by its mean, ðEAÞeq , stand-
ard deviation, rðEAÞeq

, and third central moment M3.
This observation maps the present case to that of a composite

network of straight fibers. The discussion below is an extension of
the derivation in Ref. [9] establishing a connection between EN

and the distribution of fiber properties. While the fibers considered
in this study have identical material properties and cross sections,
a distribution of fiber properties emerges as a result of crimp
when explicitly accounting for the distribution of fiber lengths in
the network.

If the considered network is in the axial deformation regime af-
ter imposing the crimp, EN is only a function of the parameter,
ðEAÞeq [6,7,9]. For brevity, ðEAÞeq of fiber i is denoted by ki and k
represents the respective fiber stiffness values ki for the entire net-
work. In the special case where all fibers have the same stiffness
k0, k ¼ k0 ¼ k0 1 and EN0 ¼ ENðk0Þ. With this notation, one can
write the departure, d, of a generic case where all fibers have dif-
ferent stiffness from the case in which fibers have identical stiff-
ness as d ¼ k � k0. EN can be written as a Taylor series
expansion about k0

EN kð Þ ¼ EN0 þ d:rkð ÞEN kð Þ þ 1

2
d:rkð Þ2EN kð Þ

� �
k¼k0

þ � � � (2)

In the general case of a random network, k is a stochastic pa-
rameter. At small deformations, the variation d can be expressed
in terms of parameter c (or s) and is statistically defined by the
distribution function of fiber stiffness values. k can be character-

ized by its mean shift, dk , and its second and third central

moments, r2
k and M3, respectively. Taking the average of Eq. (2),

the mean network stiffness results in

EN �EN0þdkC1þðdkÞ2C2þr2
kC3þðdkÞ3C4þdkr2

kC5þM3C6

(3)

where C1 to C6 are constants for a specific network structure.
They are related to the derivatives of EN with respect to ki. For
example, C1 is the scaling prefactor in the relation EN � ðEAÞf
known to be valid in the axial deformation regime. If the changes

in k are small, one may approximate EN � EN0 þ dkC1. Since EN

is linear in dk , this resembles the previously observed scaling

laws EN � ðEAÞf established for networks of straight fibers. So,

coefficient C1 can be obtained from the variation of the network
modulus with ðEAÞf in the equivalent network of straight fibers.

Figure 3 shows the comparison of this approximation with the
numerical results. The symbols correspond to the variation of
EN=EN0 with c for f ¼ 1 (Fig. 2(b)), and the curves correspond to
the approximation of Eq. (3) using terms up to the first-order (con-
tinuous line) and third-order (dotted line), respectively. The con-
tinuous curve is predicted using a C1 value obtained from the
calculation of EN versus ðEAÞf for the network in the absence of
crimp, so the continuous line is predicted. The additional con-
stants in the expansion required to plot the dotted line are fitted.
The first-order approximation provides a good fit up to c ¼ 0:17
or s ¼ 1:12. This extends the predictive power of the known

Fig. 2 (a) Contour map of the normalized overall network stiffness, EN , function of the crimp
amplitude, c, and fraction of crimped fibers, f , for networks which are not embedded in matrix.
The network stiffness values are normalized by the stiffness of the same network with straight
fibers, EN0. (b) Data selected from (a) for four values of parameter c: 0 (filled circles), 0.25 (filled
squares), 0.5 (triangles), 0.66 (open squares), and 1 (open circles), corresponding to tortuosity
values of s 5 1; 1:17; 1:32; 1:40, and 1:56, respectively. The solid curve represents a lower
bound for EN=EN0 predicted for networks in the axially dominated regimes (Appendix).

Fig. 3 Estimations for the normalized overall stiffness of a net-
work as a function of the normalized crimp amplitude or tortu-
osity for the case f 5 1. The symbols represent data from Fig. 2
for a 3D Voronoi network in the axially dominated regime. The
solid line represents the prediction of Eq. (3) truncated to the
first-order, while the dashed line represents the fit of Eq. (3)
truncated to the third-order. The inset shows the normalized
network stiffness of a 2D Voronoi, bending-dominated network
(symbols), with the curve being the prediction of Eq. (3) trun-
cated to the first-order.
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results for networks of straight fibers to networks of crimped
fibers with small and moderate crimp (c � 0:17 or s � 1:12).

In order to study the bending-dominated case, we test 2D ver-
sions of the same system. To this end, we construct 2D Voronoi
networks using a procedure similar to that described in Sec. 2 for
3D models. The advantage of using 2D models is that the plane of
bending is well-defined, while the bending-dominated cases in 3D
are difficult to fit in this framework since a crimped beam sub-
jected to bending has different bending stiffnesses in various
planes that share the fiber end-to-end vector. Due to the stochastic
loading of the filaments, it is not clear that in all situations, the
crimped beams deform in the direction of the smallest ðEIÞeq, and
hence, the actual effective bending stiffness of individual fibers is
not known. The inset of Fig. 3 shows the results for 2D bending-
dominated Voronoi networks. The predictive power of the anal-
ogy described above is again obvious, since the continuous line
provides a good fit of the numerical data up to c ¼ 0:25
(s ¼ 1:17).

The solution for a curved slender beam shows that in the axially
dominated case, ðEAÞeq � ðEAÞf . On the other hand, for an axially

dominated network, EN varies with fiber density and stiffness
according to the scaling laws EN � q and EN � ðEAÞf . So, the

suggested series estimate for the variation of EN=EN0 due to crimp
is independent of density and fiber stiffness for the axially domi-
nated networks. The same argument holds for the bending-
dominated series estimate by noting the scaling laws
ðEIÞeq � ðEIÞf , EN � ðEIÞf , and EN � qa with a depending on the

network type.
Next, the nonlinear response of networks of crimped fibers is

tested. It has been previously shown using simulations and experi-
ments that the response of fibrous networks and similar networks
of collagen to uniaxial tension and shear is characterized by an
initial linear regime followed by power law hardening [3,24]. The
variation of the tangent stiffness, Et, with stress is then described
by an initial, small stress/strain regime in which the stiffness is
constant, followed by a power law variation of the large strain tan-
gent stiffness with stress. The small stress/strain stiffness depends
on the material properties of the fibers. However, all networks
have the same tangent stiffness versus stress asymptote at large
stresses. It has been shown [9] that composite networks in which
each fiber has different material properties behave qualitatively in
a similar manner. Here, the same behavior is observed when test-
ing networks of crimped fibers with various c and f values.
Figure 4 shows results for systems with f ¼ 1 and c ¼ 0, 0:3, 0:5,

and 0:75 (s ¼ 1:00; 1:20; 1:32, and 1:45, respectively), and a case
with f ¼ 0:5 and c ¼ 0:5 (s ¼ 1:32).

Despite their initial differences, the stiffness against stretch
curves converge to a single characteristic curve at large strains.
This is in agreement with previous observations of Onck et al. [5]
where fiber crimp was also considered explicitly. It can be noted
that differences between these systems persist even in the nonlin-
ear range to a fairly large strain before convergence to the asymp-
tote is achieved. The stiffening response of the fiber networks has
been characterized by power law dependences of the form
Et � Ta. a values ranging from 1/2 to 3/2 have been reported
depending on network architecture and cross-link properties
[3,25]. The stiffening behavior of the tested Voronoi networks is
similar to the experimental observations using collagen networks
showing a ¼ 1 [3]. The data in Fig. 4 indicate further that the crit-
ical strain marking the onset of nonlinear behavior, ec, is inde-
pendent of the crimp parameters, and the stress–strain curve in the
nonlinear range is described by T � expðe=ecÞ. The critical strain,
ec, can be evaluated using curves such as those presented in Fig. 4
as the strain corresponding to the intersection of the two asymp-
totes for the two regimes of constant stiffness and strain stiffening
(marked by a star sign in Fig. 4 for the curve c¼ 0.75).

3.2 Networks Embedded in an Elastic Matrix. In many
practical cases such as in connective tissue, fiber networks are em-
bedded in a matrix. Hence, it becomes important to determine to
what extent the features discussed for the nonembedded networks
remain valid in the presence of the matrix. A prominent example
of such situations is that of soft tissue composed from collagen
fibers and an embedding medium. The mechanics of such materi-
als was studied using explicit, coupled network–matrix models in
Refs. [10,11,13]. Here, similar models are used to investigate the
effect of crimp. It should be noted that, as for the rest of this study,
the results of this section only apply to networks of athermal
fibers.

Simulation parameters suggested by Lake et al. [13] calibrated
using experimental data for soft tissue collagen are adopted here.
Ef ¼ 6:5 MPa is used to reproduce stress values observed in
experiments using collagen networks. A diameter of 70 nm and a
volumetric mass density of 1.34 g/ml are assumed for the individ-
ual fibers, and a collagen concentration of about 1 mg/ml is con-
sidered for the network. Cubic models with these parameters and
with edge sizes of about 26 lm are constructed. To render the
model relevant for connective tissue, Em values in the range 10�4

to 102 kPa are considered, while a Poisson’s ratio of 0.3 is used in
all cases. In these models, the parameters c and f are varied from
0 to 0.5 (s varies from 1.00 to 1.32).

The system taken as most representative for the soft tissue case,
with Em ¼ 10 kPa, has almost an affine deformation field. The
contribution of the network to the overall stiffness is approxi-
mately 20%. As Em increases to 102 kPa and above, the network
contributes less to the overall traction and effective stiffness. In
this regime, the matrix confines the network deformation and the
effect of crimp is minimal. For f ¼ 0:5 and c ¼ 0:5 (s ¼ 1:32),
EN of the crimped network is only 2% different from the stiffness
of the network of straight fibers of the same parameters embedded
in the same matrix. Further tests indicate that the effect stays
negligible even for collagen network concentrations as high as
50 mg/ml.

To reach a regime in which the network signature is visible in
the overall behavior, the matrix modulus has to be reduced to
Em ¼ 10�4 kPa, which is significantly smaller than the stiffness of
soft tissue [26] and structural biomaterials [27]. In this case, the
deformation becomes more nonaffine. Consequently, the effect of
crimp is significantly stronger than seen in the systems with larger
Em. The normalized EN from these tests is shown in Fig. 5(a). For
f ¼ 0:5 and c ¼ 0:5 (s ¼ 1:32), EN of the crimped network is
about 5% smaller than the stiffness of the network of straight
fibers of same parameters. Clearly, the effect of crimp on modulus

Fig. 4 Normalized tangent stiffness, Et ; against normalized
true stress, T , for networks with crimped fibers. Stress and stiff-
ness values are normalized by the stiffness of the network with
straight fibers. In all cases, f 5 1, except as indicated in the
legend. The star marks the approximate strain of transition to
the hardening regime.
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is much smaller in presence of the matrix compared to the case of
the network without matrix (Fig. 2(a)).

As discussed, the matrix forces the network to deform more
affinely. This constraint leads to large interaction forces which
lead to an increase of the stress in the matrix. The effect is more
pronounced in the presence of crimp. This is shown for a system
with Em ¼ 10�2 kPa in Fig. 5(b), showing the probability distri-
bution function of the maximum principal stress in the matrix
(all elements of the matrix have been sampled) for a system
with straight fibers and the same system with crimped fibers with
c ¼ 0:25 (s ¼ 1:17) and f ¼ 1. The distribution corresponding to
the crimped fiber system is much broader than the reference distri-
bution (continuous line), which quantifies the statement made
above. Therefore, it is concluded that the crimp does not signifi-
cantly change the stress–strain curve of the network–matrix system,
but makes damage nucleation in the matrix more probable.

4 Conclusions

The effect of fiber crimp on the linear and nonlinear elasticity
of fiber networks is investigated. Both networks embedded in ma-
trix and networks without matrix are considered. In the case of the
networks without matrix, the small-strain elastic modulus
decreases rapidly with the crimp amplitude and the fraction of
crimped fibers in the model. This decrease is approximated using
a model based on an equivalence between a network of crimped
fibers and a network of straight fibers, in which the material prop-
erties of each fiber are different. This semi-analytic approximation
allows predicting the effect of crimp up to crimp amplitudes as
high as c ¼ 0:17 based exclusively on results from fiber network
theory. The effect of crimp disappears gradually under large
deformations, but persists into the nonlinear range up to signifi-
cant strains.

An embedding matrix confines the network to deform more
affinely. This renders the effect of fiber crimp very small relative
to the network of straight fibers case, even when very small matrix
stiffnesses are considered. However, large stresses result in the
matrix due to the network–matrix interaction and their magnitude
increases with increasing crimp. This indicates that matrix dam-
age initiation should be easier in embedded networks with crimp
compared with the same systems without crimp. The understand-
ing gained in this work is relevant for many physical systems,
including the deformation of connective tissue, carbon nanotube-
based 2D and 3D network structures, and various types of
nonwovens.
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Appendix: Lower Bound Estimation for the Effect of Crimp
on the Small-Strain Modulus. A lower bound can be established
for the fiber networks modulus based on removing the curved
fibers. The change in the density of fibers, q, is calculated due to
the removal of a certain fraction of the fibers that are longer, f .
Then, the asymptotic scaling laws relating the overall stiffness to
q are used to estimate the change in EN as a function of f . This
estimation is expected to be accurate in dense networks where
removing fibers would not result in loss of percolation.

Fig. 5 (a) Contour map of the normalized sample stiffness, EN , for different normalized crimp
amplitudes, c, and fractions of crimped fibers, f , for network of fibers embedded in an elastic
matrix. The network stiffness values are normalized by the stiffness of systems with straight
fibers. The matrix stiffness is Em 5 1024 kPa. The network parameters are indicated in the text.
(b) Section of the probability density function of the normalized maximum principal stress in
the matrix, r1. The full range of this distribution is shown in the inset. This set of data corre-
sponds to a network with c 5 0:25 (s 5 1:17) and f 5 1. These values are normalized by the ma-
trix stiffness of 10 22 kPa.

Fig. 6 Scaling of normalized network stiffness against curving
threshold length, lp , divided by the average fiber length, l using
the fiber removing model. The network stiffness values are nor-
malized by the stiffness of networks with straight fibers. The
inset shows the exponential normalized fiber length distribu-
tion in a network. The fiber length is normalized by the dimen-
sion of the simulated networks, L.
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Exponential distribution of fiber length is considered as shown

in the inset of Fig. 6, pðlÞ ¼ l
�1

expð�l=lÞ, where l is the average
fiber length. Removing a fraction of fibers f results in the removal
of fibers longer than a threshold length, lp. The fiber length distri-

bution relates lp to f as lp ¼ �llnðf Þ. If all fibers longer than lp are
removed, the new average fiber length can be calculated using a
truncated form of the fiber length distribution as

l
	 ¼ l½1� ð1� lnðf ÞÞf 
 (A1)

Hence, the new total fiber length is ð1� f Þl	. On the other
hand, it is observed that EN � qa with a ¼ 1 and 2 in the stretch-
and bending-dominated Voronoi beam networks. Using the rela-
tions between q and f and assuming stretch-dominated deforma-
tion yield

EN � ð1� f Þ½1� ð1� lnðf ÞÞf 
 (A2)

This estimate is shown using the solid line in Fig. 2(b). Assum-
ing a bending-dominated fiber deformation squares, the estimated
EN considering the exponent a ¼ 2 for the Voronoi network.

Additionally, rewriting Eq. (A2) in terms of lp yields

EN � ð1� e�lp=lÞ½1� e�lp=lð1þ lp=lÞ
 (A3)

Figure 6 shows normalized EN plotted for different lp=l ratios
calculated using Eq. (A3) at values lying on the two sides of

lp=l ¼ 1. A power law scaling EN � ðlp=lÞ3 is observed for lp < l

in the vicinity of lp=l ¼ 1.
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