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Abstract
We show in this work that the mechanical properties of molecular crystals are
strongly affected by the flexibility of the constituent molecules. To this end,
we explore several kinematically restrained models of the molecular crystal
cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gra-
dually removing the flexibility of the molecule on various crystal-scale para-
meters such as the elastic constants, the lattice parameters, the thermal
expansion coefficients, the stacking fault energy and the critical stress for the
motion of a dislocation (the Peierls–Nabarro stress). The values of these
parameters evaluated with the fully refined, fully flexible atomistic model of
the crystal are taken as reference. It is observed that the elastic constants, the
lattice parameters and their dependence on pressure, and the thermal expan-
sion coefficient can be accurately predicted with models that consider the NO2

and CH2 groups rigid, and the N–N bonds and the bonds of the triazine ring
inextensible. Eliminating the dihedral flexibility of the ring leads to larger
errors. The model in which the entire molecule is considered rigid or is
mapped to a blob leads to even larger errors. Only the fully flexible, reference
model provides accurate values for the stacking fault energy and the Peierls–
Nabarro critical stress. Removing any component of the molecular flexibility
leads to large errors in these parameters. These results also provide guidance
for the development of coarse grained models of molecular crystals.

S Online supplementary data available from stacks.iop.org/MSMS/25/
015006/mmedia
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1. Introduction

While most engineering crystalline materials, such as metals, ceramics and semiconductors
are monatomic, a large and diverse class of crystals exist in which the repeat unit is an entire
molecule. Examples of molecular crystals are ice, sugar, most pharmaceuticals and energetic
materials.

The importance of the mechanical behavior of pharmaceutical molecular crystals is
related to powder processability and to the stability of the desired phases of the active
substance. It is know that certain phases of given substance have better bio-availability than
others [1] and some phases are toxic [2].

Energetic materials are substances that release large amounts of energy at very high rates
when decomposing. They are mixed with polymers to form composites used as explosives
(polymer-bonded explosives, PBX) or with oxidizers to produce solid propellants. Their
performance is related to the energy released per unit mass and per unit time. The mechanical
behavior of these materials is of importance since the chemical reaction leading to detonation
may be initiated by deformation. Furthermore, the need to reduce the sensitivity of the
material to unintentional detonation requires gaining control on the fundamental processes
that link mechanics with chemical decomposition.

In this work we investigate the role of molecular flexibility in the mechanics of molecular
crystals, with focus on one of the most common energetic materials, cyclotrimethylene tri-
nitramine (RDX). Molecules take certain conformational states in the crystal. For example,
the RDX molecules in vacuum sample a broad range of configurations, with the nitro groups
(NO2) wagging about the central triazine ring. The ring itself may flip between the chair and
boat configurations. In the crystal, the molecule is in the Caae conformational state, i.e. two of
the nitro groups are oriented in the axial direction of the ring, while the third is oriented
equatorially [3]. The ring is in the chair configuration. Conformational changes are difficult in
the condensed phase due to packing, but not impossible. It has been shown that conforma-
tional changes can take place in the core of dislocations, at stacking faults [4, 5] and at free
surfaces, including those of voids [6]. Hence, evidence exists that lower energy states can be
reached if the molecules are allowed to relax. However, to what extent this intra-molecular
relaxation contributes to defining the key parameters of the mechanics of the crystal is not
entirely clear. The present work aims to clarify this issue for the case of the α phase of RDX,
which is the stable phase of RDX in ambient conditions.

The study of the role of molecular flexibility in mechanics is also important for devel-
oping coarse grained (CG) models of these materials. Coarse-graining is a process by which
an existing model is reconfigured to operate on larger spatiotemporal scales by a reduction of
the set of degrees of freedom (DOFs) of the system. This usually entails loss of information
and a decrease of the system entropy. Whether this information loss is acceptable depends on
the scale and type of physical phenomena that the CG model aims to reproduce. Coarse
graining can be applied at the sub-molecular level, where a group of atoms within a molecule
is represented as a bead (united atom), or at the supra-molecular level, where one or multiple
molecules are represented by a supra-molecular ‘bead’. This is typically done for polymers
[7] and bio-macromolecules [8].

Although the above-mentioned methods have proved to be suitable for systems lacking
long-range order, such as polymeric melts, the extension of these ideas to molecular crystals
is not straightforward. The symmetry of the crystal poses limitations on the shape and nature
of the CG particles and potentials, as they may not be able to accurately reproduce the space
group and hence the packing of the condensed phase. Furthermore, a clear separation of
frequencies between the coarsened DOF and atomic DOF may not exist. This is especially
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true for energetic molecular crystals as the lattice modes are coupled to the wagging of the
nitro-groups (intra-molecular vibrations) [9] and the distortion of the heterocyclic ring, and
hence taking the most obvious coarsening step, i.e. representing a molecule by a bead or a set
of beads may not be ideal. Also, the properties that are often of interest in the crystalline
phase, such as formation and migration of defects (vacancies, dislocations, twins, grain
boundaries) are very different in nature from those in melts (glass transition, diffusion) and
rely heavily on the accurate representation of the crystalline environment. Even if such model
were designed to represent accurately a particular molecular crystal in the context of the
properties discussed above, it is not clear whether it would be transferable to another
molecular crystal of similar chemical composition.

In order to tackle these challenges, the field of CG modeling in energetic molecular
crystals has garnered recent attention. A CG model was developed for PETN [10] via
experimental fitting, which reproduces well lattice constants, sublimation energy, and pres-
sure-volume curves. A dissipative particle dynamics (DPD) CG model was developed for
TATB [11] to model the kinetics of energy transfer between intramolecular (vibrons) and
extra-molecular (lattice phonons) DOFs. Recent studies on nitromethane [12] and RDX
[13, 14] have investigated the applicability of the force matching-based multiscale coarse-
graining (MS-CG) method [15, 16]. In [12], a density dependent MS-CG potential was

Figure 1. Schematic representation of the models used in this study. The full RDX
molecule is shown in the upper left panel, with C atoms shown in black, N in blue, O in
red and H silver. Model I is fully flexible (in the following panels gray indicates
‘flexible’) while Model V is a fully rigid body (in the following panels red indicates
‘rigid’). In Model II, the triazine ring is flexible, while the NO2 and CH2 groups are
rigid bodies and N–N bonds are inextensible (thin red lines). The nitro groups are free
to rotate about the N–N bond. Model III preserves all features of Model II and, in
addition, the length of the bonds of the ring is constrained. The ring is deforming via
dihedral/angle motions in this model. Model IV is similar to Model III except that now
the triazine ring and the CH2 groups belong to a single rigid body. Model V is fully
rigid.
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developed for nitromethane which accurately reproduced shock Hugoniot curves. The MS-
CG potential for RDX reproduces crystal structure, elastic constants, melting point, and
pressure–volume isotherms [13] and was recently modified to improve energy conserva-
tion [14].

In this work we construct a series of RDX crystal models in which the molecules have
decreasing degrees of flexibility and we investigate the effect of such constraints on (i) the
elasticity of the crystal, (ii) the crystal symmetry and lattice constants, (iii) thermal expansion,
and (iv) the stacking fault energy and critical stress for dislocation motion (the Peierls–
Nabarro (PN) stress). We deem these parameters central to the proper representation of the
elastic-plastic behavior of a crystal. The inter-atomic interactions are described by the force
field relevant for the fully refined atomistic model. The study indicates which components of
the molecular flexibility are of importance with respect to each of the parameters listed above.
It also provides guidance for developing CG representations of the crystal by indicating the
acceptable coarse graining level if certain level of performance is desired.

2. Methods

The RDX molecule has 21 atoms and hence 63 DOFs. If the flexibility of the molecule is
entirely restricted, the resulting rigid object has 6 DOFs which are required in order to
preserve the crystal space group. To study the effect of molecular flexibility on the
mechanical properties of the crystal, we develop a set of five models (figure 1). Model I
represents the fully refined, fully flexible molecule in which all 63 DOFs are present as
independent variables. This model is used in regular models of RDX [17, 18] and represents
the reference for the present study. In Model II, the NO2 and CH2 groups are made internally
rigid (C–H, N–O bonds and H–C–H, O–N–O angles frozen) and the N–N bonds are rendered
inextensible, but the wagging motion of the NO2 groups relative to the ring as well as the
rotation of the nitro group about the N–N bond are allowed. In Model III we preserve all
features of Model II and also render the bonds of the triazine ring essentially inextensible,
while preserving the angular/dihedral flexibility of the ring. The nitro groups are still free to
wag relative to the ring in this representation. Model IV preserves all these features and, in
addition, the angular/dihedral motion of the ring is restricted. In this model, the molecule is
composed from a rigid ring and three rigid nitro groups that are free to move relative to the
ring. Model V is that of a fully rigid RDX molecule. In all cases, the groups of atoms
constrained to be rigid are held in the configuration they have in the perfect crystal at 0 K. The
structure of the various models is summarized in figure 1.

This procedure differs from a regular CG method in two regards. The parts of the
molecule whose structure is not allowed to change during motion are not replaced by ‘blobs’,
i.e. spherical or ellipsoidal entities. Furthermore, since all atoms of the fully refined model are
present in all models of figure 1 (although parts of the molecule are rendered rigid), the
interactions are evaluated with the full force field used for the reference model (Model I).

The force field used for all models is the Smith–Bharadwaj (SB) potential [19], which
was developed using quantum chemistry calculations to reproduce structural properties for
cyclotetramethylene tetranitramine (HMX) and dimethyl dinitro methyldiamine (DDMD).
This potential can reproduce elastic and thermal properties of RDX [17, 20], and has been
used to study crystal nanomechanics [18], high pressure states [17], melting [21], vibrational
properties [9], absorption spectra [22], phase transformations during shock [23], dislocations
[4, 24–27], and rotational defects [5].
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Each of these five models was subjected to various tests to determine which model
provides the best balance between accuracy and computational efficiency. The models are
compared in terms of their prediction of lattice constants, elastic constants of the perfect
crystal, coefficient of thermal expansion, the PN stress and stacking fault energies. For the
elastic, pressure–volume (P–V ) and thermal expansion calculations, a 5×5×5
(66.4 Å×56.7 Å×51.8 Å) periodic supercell aligned with the orthogonal principal crys-
tallographic axes x1≡[100], x2≡[010], x3≡[001] was used. In these models the mole-
cules were arranged as in the perfect crystal structure obtained from neutron diffraction data

Figure 2. Unit cell of α-RDX with lattice parameters a=13.37 Å, b=11.33 Å, and
c=10.35 Å after relaxation to 1 atm, 0 K using the SB potential.

Figure 3. Schematic of the setup used for computing PN stress including a dipole of
positive and negative 1/2 [100](010) partials separated by a stacking fault. The far field
is applied as shown in the figure, pushing the two partials toward each other.
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[28] (figure 2) and relaxed with the SB potential using the fully flexible model. To calculate
the orthotropic elastic moduli, the supercell was deformed affinely in three orthogonal and
three shear modes by 0.5% strain and relaxed to 0 K, using NVT integration and viscous
damping. To compute P–V curves, the molecular dynamics of the supercell was integrated at
finite temperatures using a constant pressure (NPT) barostat [29], and the volume at 0 K was
estimated after slow cooling via viscous damping. The coefficient of thermal expansion was
estimated similarly by measuring the mean supercell dimensions at 1 atm pressure and various
target temperatures, within the NPT ensemble. For the above cases, dynamics of the rigid
bodies was integrated using special thermostats which regulate both their translational and
rotational DOFs [30], and the inextensible N–N bonds were implemented via SHAKE [31]
constraints. Further details on these models and simulation procedures are presented in the
supplementary material.

A larger system of 50×25×2 (671.4 Å×434.0 Å×21.4 Å, in the [100], [010],
[001] directions respectively) unit cells containing a partial edge dislocation dipole (figure 3),
each of the partials of the dipole having Burgers vector b=1/2[100](010), was used for the
PN stress calculations. The dipole was inserted by translating the centers of mass (COM) of
the molecules by the Volterra displacement field. These models were periodic in the direction
of the dislocation line (direction [001]) and in the [100] direction. A free surface boundary
condition (vacuum padding) was applied on the boundaries parallel to the glide plane, (010).
This slip system has been reported to have the lowest PN stress and hence is expected to be
the most active in RDX [24]. The full Burgers vector edge dislocation in this crystal direction
is not stable [24] and dissociates in two pure edge partials of equal Burgers vector, 1/2[100]
(010). Considering a dipole (as opposed to a single partial) reduces the image effects and
allows containing the stacking fault separating the two partials within the simulation cell. The
distance between partials is selected such that the dipole is in equilibrium in the unloaded
configuration. Note that the attractive interaction of the two partials and the effect of the
stacking fault are balanced by the interaction with images across the periodic boundaries.

This model was used instead of the more usual dipole of full dislocations due to the
observations made in MD simulations of RDX crystals subjected to shock [4] that individual
partials move across entire grains leaving long stacking fault trails behind. This deformation
mode is similar to that observed in molecular simulations of nanocrystalline materials [32],
although the physics in the two cases is somewhat different. Therefore, the PN stress of a
partial is of importance for the plastic deformation of these crystals.

In models containing dislocation cores, using rigid interactions for models II–V created
dynamic stability problems. Therefore, we replaced the rigid interactions with interactions 50
times stiffer than in Model I. This reduces the deformation of the respective bonds and angles
by an order of magnitude relative to the fully refined model and hence the intended rigid
behavior is reasonably reproduced. The penalty for this approximation is integration with a
smaller time step. Constant shear stress simulations (σ12) were performed using this setup at
0.01 K, with the simulation cell volume kept fixed. The free surfaces (vacuum padding)
ensured that there was no normal stress on the glide plane. The far field was gradually
increased and the critical stress at which stability was lost during relaxation was recorded and
used to compute the PN stress. The other interactions balance each other in the unloaded
configuration and should not be considered in this estimate. This method is similar to that
used in previous work [24].

Stacking fault energies (SFE) were obtained using a fully periodic 3×24×3
(40.1 Å×272.0 Å×31.05 Å) supercell. To create the stacking fault, the upper half of the
supercell containing 3×12×3 cells was displaced by the stacking fault vector of 1/2 [100]
(010) relative to the lower part, resulting in the creation of two stacking fault surfaces (one in
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the middle and one at the top/bottom periodic boundary). This system was relaxed using
isobaric-isothermal (NPT) integrators at 1 atm and finite temperatures, followed by slow
cooling (viscous damping), after which the energies were recorded. Vibrational DOS were
computed using the velocity autocorrelation function, whose Fourier Transform was used to
compute the density of states [33]. All simulations were performed using LAMMPS [34].
Further information regarding the set-ups used to perform these simulations is provided in the
Supplementary material.

3. Results and discussion

In this section we compare the five models presented in figure 1 based on their ability to
predict various material and structural parameters.

3.1. Elastic, structural and thermal properties

Figure 4 shows the variation of the 0 K elastic moduli (Voigt notation) evaluated in the
principal crystal directions for each model. The values are normalized by the elastic constants
predicted by the fully refined Model I, which are reported in table 1. The coefficients of
thermal expansion in the principal directions evaluated with Model I are also reported in
table 1. Similar results have been reported in literature based on experimental [35–40] and
computational [17, 41, 42] studies. Table 1 include values computed using dispersion-cor-
rected density functional theory (DTF-D3) and reported in [42] and experimental values
obtained from measurements performed at 300 K by Brillouin spectroscopy [35]. Good
agreement of these experimental values with data obtained from other experiments
[37, 38, 40] is reported. The results of this work should be compared with the DFT calcu-
lations since both correspond to 0 K. The table also presents thermal expansion coefficients
computed with the fully refined model. These are compared with similar values obtained
computationally [17] and corresponding to the temperature range 250–350 K. Experimental
values are also presented [36, 39].

Figure 4. Elastic moduli (Voigt notation) at 0 K computed in the coordinate system
aligned with the principal crystallographic directions and predicted using Models I–V
(vertical bars). Values are normalized with the prediction of the fully flexible Model I.
In each stack the columns from left to right correspond to Models I–V.
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The elastic constants predicted by Models II and III agree to within 10% with those
predicted using Model I (figure 4). Model V predictions are within 16% of those of Model I,
and Model IV shows significant deviations. The agreement of C11, C22, and C33 is of
importance because these constants determine the longitudinal wave speed in the crystal. We
conclude that Models II and III are adequate for representing the dynamics of the perfect
crystal. The agreement indicates that coarse graining the nitro and methylene groups does not
noticeably affect the longitudinal wave speed. The fact that Model IV does not agree with
Models I–III indicates that ring flexibility is important for wave propagation. This was also
demonstrated in the context of the crystal vibrational behavior [9] where the rigid molecule
approximation could account for only 48 of the 72 observed lattice phonon bands, and the
remaining phonon bands had some degree of coupling to intra-molecular modes of defor-
mation, specifically the N–N bonds. For the shear moduli the picture is similar except for
Model IV which differs significantly from the Model I predictions. This has implications for
the long-range field of screw dislocations oriented parallel to the principal crystal axes. C12,
C13, and C23 predicted with Models I–III agree well, but the departure is significant for
models IV and V, which perform the poorest.

Further, we study the variation of the lattice constants with pressure. We limit the
analysis to pressures below 3.5 GPa, which is smaller than the experimental α−γ phase
transition pressure of 3.9 GPa [43]. (Although the α−γ phase-transition, using the SB
potential, has not been computationally reproduced up to 10 GPa, the γ−α transition has been
shown to occur at 2.1 GPa [17]). This variation is shown in figure 5. All models, except
Model V, exhibit a similar trend and although lattice constants are different, deviations are
smaller than 3%. The bulk moduli computed based on the data in figure 4 are in agreement
with the variation of the lattice constants with pressure at small elastic perturbations.

There is some disagreement in literature about the compressibility behavior of α-RDX
[41, 42]. Some studies [38, 41, 44] report nearly isotropic compressibility in the (001) plane
(directions [100] and [010]), while others [37, 40] indicate higher compressibility in the [010]
direction compared to the [100] direction. However, all reports agree that the [001] direction

Table 1. Orthotropic elastic constants obtained using the fully flexible model (Model I)
at 0 K. Also shown are the coefficients of thermal expansion (CTE) obtained using
Model I, averaged over the temperature range 250–350 K. These constants are used to
normalize the data in figures 4 and 6. Computational and experimental results from
literature are shown for comparison.

Elastic constants (GPa)
Coefficients of thermal expansion

(10−5 K−1)

This
work
(0 K)

DFT
(0 K)
[42]

Expt.
(300 K)
[35]

This
work

Atomistic
[17]

Expt.
[36]

C11 29.5 25.7 25.8 α[100] 3.34 3.03 2.70
C22 28.1 20.8 20.1 α[010] 6.32 6.16 8.70
C33 29.6 21.9 18.9 α[001] 6.36 7.19 8.00
C12 14.0 7.74 8.3
C13 8.6 4.42 6.4
C23 10.9 7.02 6.4
C44 3.8 5.86 5.3
C55 6.5 4.62 4.2
C66 10.3 7.29 7.2
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Figure 5.Variation of lattice constants with pressure as predicted by the various models
at 0 K. The three panels correspond to the three lattice constants, (a)–(c) measured in
principal crystallographic directions (figure 1).
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is the most compressible. Our calculations indicate that for Models I–IV, the compressibility
in directions [100] and [010] is almost identical, while the [001] direction is the most
compressible. For Model V, the behavior changes, with the [010] direction becoming most
compressible, followed by [001] and then [100] directions.

Thermal expansion stems from the anharmonicity of the crystal potential [45]. Since the
total crystal potential used here is not harmonic, although comprising interaction terms may
be harmonic (such as bonds, angles, dihedrals), the system is expected to exhibit a finite
thermal expansion coefficient. In the quasi-harmonic approximation (QHA), the thermal
expansion coefficient is related to the variation of vibrational frequencies with volume,
through the Grüneisen parameters [46], which depend non-trivially on the individual inter-
action terms present in the crystal Hamiltonian. Figure 6 shows the coefficient of thermal
expansion (CTE) computed in the principal crystallographic directions for the various models
and averaged over the temperature range 250–350 K. The coefficients remain approximately
constant in this temperature range (vary by less than 9%) for given model realization. The
values are normalized by the prediction of Model I (table 1). As before, the agreement of
models I to III is favorable and the disparity of models IV and V is again encountered.
Thermal expansion in molecular crystals can depend acutely and non-trivially on molecular
structure and flexibility, as demonstrated by recent work [47] where large positive and
negative anisotropic thermal expansion coefficients in a diyn-diol crystal was attributed to
molecular tilting during heating. The dihedral and angular flexibility of the triazine ring is
reduced in models III, IV and V suggesting that ring flexibility contributes significantly to
the CTE.

3.2. Crystal defects

The properties discussed so far reflect the perfect crystalline lattice environment, devoid of
defects. The effect of molecular flexibility on the structure, stability and motion of disloca-
tions is important for understanding the plastic deformation of such crystals. This was
investigated in detail previously with the fully refined model (Model I) [24]. In this reference,
dislocations residing on various glide systems were considered and their stability and PN

Figure 6. Normalized coefficients of thermal expansion in the three principal directions
of the crystal and at zero pressure. The values reported here are averages over the
temperature range 250–350 K and are normalized with the respective coefficients
predicted using Model I (shown in table 1). In each stack, the columns from left to right
correspond to Models I–V.
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stresses were computed. Here we consider only the dislocation with the lowest PN stress—the
partial pure edge dislocation of Burgers vector 1/2 [100](010)—which is considered in the
literature to contribute significantly to plasticity in this material. Plastic activity in the (010)
plane has been observed experimentally [48–51] and in computer simulations [4]. We use the
five models of figure 1 to represent this type of dislocation.

The simulation setup used in this part of the investigation is described in section 2. It
contains two partials of same Burgers vector and opposite sign, separated by a stacking fault
(figure 3). We compute the PN stress (shear stress resolved in the direction of the Burgers
vector) required to put the partials in motion. It is also relevant to see how the stacking fault
energy is affected by restricting molecular flexibility. Figure 7 shows the values of these two
quantities predicted with the various models.

The PN stress (τPN) is observed to be very sensitive to molecular flexibility. The applied
stress at which either partial starts moving predicted with Models II–IV increases drastically
relative to the reference Model I. The stacking fault energy increases 3 times upon coarse
graining (models II–IV). τPN drops for Model V but stays above the reference, while the
stacking fault energy drops below the value predicted with the fully flexible Model I.

The steep rise of the PN stress and the stacking fault energy appear to be associated with
the limited flexibility of the molecules. Preventing molecular distortion limits the ability of the
system to reach low energy states in the process of overcoming the Peierls barrier. The
stacking fault energy is computed as the difference between the energy of the crystal with a ½
[100](010) stacking fault, ESF, and the energy of the corresponding perfect crystal, E0. The
PN stress for the partial is computed as the critical applied stress minus the stress resulting
from the action of the stacking fault on the dislocation. The decrease of the PN stress in the
case of Model V is due to a lower stacking fault energy. The lower gSF in this case is due to
the poor packing of the rigid molecules in the perfect crystal, which results in a larger E .0 At
the same time, ESF is not substantially affected and hence the difference g = -E ESF SF 0

decreases relative to Model I. For Models II–IV, both the PN stress and gSF are larger than the
values corresponding to Model I. The change of PN stress from one model to the other is not
associated with core distortions in the unloaded state. The unloaded core profiles evaluated
with the five models overlap to a very good approximation.

The large discrepancy in the prediction of basic dislocation-related quantities demon-
strated by the data in figure 7 brings into doubt the usefulness of any level of this type of

Figure 7. Peierls stress (orange) for a partial edge dislocation of Burgers vector 1/2
(010)[100] and the associated stacking fault energy (black) computed with Models I–V.
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coarse graining in models used to study dislocation activity in RDX. This agrees with the
conclusion of a previous study [26], where allowing for molecular flexibility and reorientation
was found to be necessary to accurately capture dislocation nucleation and partial core
structures in α-RDX.

The simple models presented above qualitatively indicate the DOFs that should be
present in a coarse-grained model for accurate representation of the elastic–plastic behavior.
To summarize, the agreement of the elastic moduli with the reference Model I is good for
Models II and III and poor for Models IV and V. Pressure–volume curves display similar
trends for Models I–IV but Model V stands out. Thermal expansion coefficients are also
within acceptable limits for Models II and III. For slip on the most active slip system, i.e. ½
[100](010), all models display egregious differences.

3.3. Vibrational density of states

The above analysis has focused on gradually limiting the primary modes of deformation of
the molecule (stretching of N–N bonds, wagging of NO2 groups, ring flexibility, etc) and
assessing the impact of such constraints on the elastic, thermal and plastic properties of the
crystal. It is also of interest to determine how restricting molecular flexibility changes the
vibrational density of states (VDOS).

In relation to coarse graining, in order to simulate longer physical times, it is necessary to
use larger time-steps during integration, which is typically enabled by coarsening out the
intra-molecular features that are associated with the highest frequencies observed in VDOS.
We computed the VDOS of the α-RDX crystal, which is shown in figure 8. This is similar to
the VDOS previously reported for the same crystal [9, 52]. The major molecular deformation

Figure 8. Phonon density of states for Models I–V, indicating the effect of limiting
molecular flexibility on the phonon spectrum. The peaks are associated with specific
bonds and angles, as indicated in red and blue, respectively [9]. The peaks near 2940,
2865, 2110 and 1760 cm−1 disappear for Models II and III (denoted by MII and MIII).
For Model IV (MIV), the highest frequency is at 635 cm−1. For the completely rigid
Model V (MV), the spectrum is flat above 100 cm−1. The spectrum is shown from 50
to 3200 cm−1.
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modes (bond and angle deformations) that contribute to the peaks in the VDOS plot are
indicated in figure 8 (referred from [9]).

Figure 8 shows a comparison of the VDOS computed with Models I–V. Rendering the
CH2 group rigid eliminates the twin peaks located in the vicinity of ω=2900 cm−1; these
correspond to a time period of ∼11.5 fs. The peak at 2100 cm−1 is associated with the
vibration of N–O bonds and N–N–O angles, so making the NO2 groups rigid and freezing the
N–N–O bond will dispel this peak. This corresponds to Model II, which, because of the loss
of the 1760 cm−1 peak as well, represents a crystal with highest frequency ω∼1600 cm−1.
The corresponding time period is 20.8 fs and hence Model II can be integrated with a time
step approximately twice larger than that used for Model I. Note that in this model the wag
mode of the NO2 groups is preserved, but the associated frequency is that of the N–C–N angle
which is in the range 300–800 cm−1.

Restricting further the molecular flexibility renders the C–N bonds of the ring rigid. This
reduces the highest frequency peaks to ω»1500 cm−1, dependent only on N–C–H angle
vibrations as all other contributing modes have been removed. If we proceed further and make
the entire ring rigid, but with the NO2 groups still free to wag (Model IV), the highest
frequency becomes ω=635 cm−1, which corresponds to a time period of ∼52.5 fs. Note that
the frequency spectrum is truncated at 50 cm−1 as lower frequencies cannot be sampled
accurately within the time window of the simulation procedure (see supplementary material).

In conclusion, corroborating the results of this section with those of sections A and B, as
long as one is concerned with perfect crystals, Models II or III should be used, which would
allow increasing the time step of the integration from ∼1 fs (for the fully refined Model I) to
2 fs. Larger time steps can be used for Models IV and V, but the accuracy with which these
models predict the elastic constants and the thermal expansion coefficient is lower. In order to
properly capture crystal defect mechanics one needs to use the fully refined model (I) which
has to be integrated with a time step of 1 fs.

3.4. Computational aspects and implications for developing CG models

The central objective of developing coarse-grained models is the minimization of the asso-
ciated computational costs in order the maximize the range of spatial-temporal scales that can
be represented, while still capturing properly the physics of interest. In this context, it may be
useful to take a closer look at the computational costs associated with the force-field used in
this work.

Let us evaluate the computational expense associated with computing the various
interatomic interactions represented in the reference Model I. To this end we use the IBM
BlueGene/Q super-computer with 512 processors. For a system of 5×5×5 unit cells of α-
RDX with N=21 000 atoms and a 15 Å pair-wise cutoff, the average number of neighbors
per atom is approximately 1100. Non-bonded pairwise force computations are responsible for
about 71% of the computation time while the K-space long-range solver takes 19% of the
time. The bond, angular, and dihedral interactions take less than 1% of the time, and they
scale linearly with N. Since total pairwise computations scale as N*Nn (Nn=number of
atoms within neighbor list), lowering the number of variables by a factor of r can lead to an
r-fold reduction in the number of force computations. For the long-range solver which scales
as N*log(N), a coarser charge grid can produce a super-linear speed-up.

The RDX molecule has 21 atoms. The six hydrogen atoms can be trivially CG by
replacing the methylene groups by dipoles owing to their small size and lack of hydrogen-
bonding ability. If we look at the candidate models presented so far, the nitro groups may also
be replaced by dipoles, as they have a significant net moment. This removes three more
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atoms. The ring flexibility is important (especially its dihedral and angular DOFs) as judged
by the poor performance of models IV and V in predicting elastic moduli and thermal
expansion, and since these interactions do not take much computational time, they should not
be removed. The pair-wise force interactions comprise Coulomb interactions and short-range
van der Waals interactions. The short ranged van der Waals interactions must be represented
explicitly among nearest neighboring molecules to ensure that molecules do not overlap. The
other computationally expensive interactions are the Coulomb interactions; these are pro-
portional to Q2, where Q is the number of charge centers. Since the RDX molecule is
electrically neutral, intermolecular Coulombic interactions can be reasonably approximated
by dipoles and higher moments.

Table 2 shows the atomic charges [53] on the RDX molecule. If we use a first order
charge approximation for the atomic groups, the CH2 units become electrically neutral, but
they have a net moment. Similarly, the NO2 groups are approximately neutral (net charge of
−0.0056e) but preserve a moment. So if the three CH2 and three NO2 groups are replaced
with six dipoles, the new number of pairwise Coulombic force computations within the
molecule is reduced by a factor of 21C2/

6C2=14. The number of DOFs will still have to be 6
for each dipole to account for displacements and rotations. This can also allow a higher time-
step as the C–H vibrations are no longer considered (see section C).

Let us summarize the above discussion. In sections 3.1 and 3.2 we studied the molecular
DOFs that must be allowed in order to accurately capture the elastic–plastic behavior. In the
previous paragraph, we looked at the problem in terms of computation time, and concluded
that allowing for molecular flexibility does not impose a huge cost. However, the non-bonded
pair-wise interactions and long-range solvers cost about 90% of the computation time, and we
proposed several ways to reduce that cost. Instead of allowing for 21 charge centers, six
dipoles can be considered. Whether these dipoles are rigid or flexible or simply mapped from
the full atomic representation is a detail, but the number of pairwise Coulombic force com-
putations can be reduced this way by about 14. The pair-wise van der Waals interactions can
be cut-off beyond the nearest neighbor molecules leading to linear scaling. The long-range K-
space solver which scales as Nlog(N) can be reduced 21*log(21)/(12*log(12))=2.1 times,
with the 12 charge centers around the six dipoles. There may be alternate and better dipole
representations that represent the charge multipole expansion of the molecule to a greater
accuracy, but this requires further investigation.

Table 2. Charges [53] and moments on the RDX molecule.

Atom Charge (e)

Carbon (black) −0.54
Nitrogen (blue, ring) 0.056 375
Nitrogen (blue, NO2) 0.860 625
Oxygen (red) −0.4585
Hydrogen (silver) 0.27

Atom group Dipole moment magnitude (D)

CH2 (centered at C) 1.652
NO2 (centered at N) −2.671
N-NO2 (centered at NO2 N) −2.306
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4. Conclusion

In this work we evaluate the effect of gradually rendering the RDX molecule rigid on various
material parameters. This provides insight into the role of molecular flexibility in the
mechanics of the crystal and provides guidance for the development of CG representations of
such crystals. We focus on the elastic constants, lattice parameters, thermal expansion
coefficients, the PN stress and the stacking fault energy. The fully refined and fully flexible
atomistic model of the molecule, Model I, is taken as reference. It is concluded that Models II
and III provide reasonably accurate predictions of the elastic constants, lattice parameters and
their dependence on pressure, and of the thermal expansion coefficients. This indicates that
these properties do not depend in an essential way on the axial deformation of the bonds of
the ring and N–N bonds. CG models of this type are acceptable as long as crystals with no
defects are considered. The model in which the flexibility of the molecule is entirely removed,
Model V, leads to large errors even for perfect crystals. The evaluation of the PN stress of
dislocations and the stacking fault energy with all models considered leads to large errors. It
results that all components of molecular flexibility are important when the lattice is subjected
to large distortions as in the core of dislocations. The effect is more pronounced as the
dislocation moves across Peierls barriers and the core distorts. The analysis indicates that no
CG model that restricts molecular flexibility can capture accurately the motion of dislocations,
which is the physical basis of plasticity.

It should be noted in relation to coarse graining that the present analysis is performed
without modifying the force field, which is a necessary step when developing reduced
models. Therefore, the errors discussed are due entirely to limiting the flexibility of the
molecule and are necessarily present in any model in which effective interactions between CG
groups of atoms are implemented. The data indicates in which conditions and for which
crystal-scale parameters it is worth developing CG potentials and hence a full CG model.

Acknowledgments

Support from the Army Research Office through grant W911NF-09-1-0330 is gratefully
acknowledged. All simulations were performed at the Centre for Computational Innovations
(CCI) and the Scientific Computations Research Center (SCOREC) at Rensselaer Polytechnic
Institute.

References

[1] Thakkar A L, Hirsch C A and Page J G 1977 Solid dispersion approach for overcoming
bioavailability problems due to polymorphism of nabilone, a cannabinoid derivative J. Pharm.
Pharmacol. 29 783–4

[2] Lin S-Y, Hsu C-H and Ke W-T 2010 Solid-state transformation of different gabapentin
polymorphs upon milling and co-milling Int. J. Pharm. 396 83–90

[3] Mathew N and Picu R C 2011 Molecular conformational stability in cyclotrimethylene
trinitramine crystals J. Chem. Phys. 135 024510

[4] Cawkwell M J, Ramos K J, Hooks D E and Sewell T D 2010 Homogeneous dislocation nucleation
in cyclotrimethylene trinitramine under shock loading J. Appl. Phys. 107 063512

[5] Pal A and Picu R C 2014 Rotational defects in cyclotrimethylene trinitramine (RDX) crystals
J. Chem. Phys. 140 044512

[6] Boyd S, Murray J S and Politzer P 2009 Molecular dynamics characterization of void defects in
crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane) J. Chem. Phys. 131 204903

Modelling Simul. Mater. Sci. Eng. 25 (2017) 015006 A Pal and C R Picu

15

http://dx.doi.org/10.1111/j.2042-7158.1977.tb11468.x
http://dx.doi.org/10.1111/j.2042-7158.1977.tb11468.x
http://dx.doi.org/10.1111/j.2042-7158.1977.tb11468.x
http://dx.doi.org/10.1016/j.ijpharm.2010.06.014
http://dx.doi.org/10.1016/j.ijpharm.2010.06.014
http://dx.doi.org/10.1016/j.ijpharm.2010.06.014
http://dx.doi.org/10.1063/1.3609769
http://dx.doi.org/10.1063/1.3305630
http://dx.doi.org/10.1063/1.4862997
http://dx.doi.org/10.1063/1.3265986


[7] Müller-Plathe F 2002 Coarse-graining in polymer simulation: from the atomistic to the mesoscopic
scale and back Chem. Phys. Chem. 3 754–69

[8] Riniker S, Allison J R and Gunsteren W F van 2012 On developing coarse-grained models for
biomolecular simulation: a review Phys. Chem. Chem. Phys. 14 12423–30

[9] Kraczek B and Chung P W 2013 Investigation of direct and indirect phonon-mediated bond
excitation in α-RDX J. Chem. Phys. 138 074505

[10] Gee R H, Wu C and Maiti A 2006 Coarse-grained model for a molecular crystal Appl. Phys. Lett.
89 021919

[11] Kroonblawd M P, Sewell T D and Maillet J-B 2016 Characteristics of energy exchange between
inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene
(TATB) with implications for coarse-grained simulations of shock waves in polyatomic
molecular crystals J. Chem. Phys. 144 064501

[12] Izvekov S, Chung P W and Rice B M 2010 The multiscale coarse-graining method: assessing its
accuracy and introducing density dependent coarse-grain potentials J. Chem. Phys. 133 064109

[13] Izvekov S, Chung P W and Rice B M 2011 Particle-based multiscale coarse graining with density-
dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine)
J. Chem. Phys. 135 044112

[14] Moore J D, Barnes B C, Izvekov S, Lísal M, Sellers M S, Taylor D E and Brennan J K 2016 A
coarse-grain force field for RDX: density dependent and energy conserving J. Chem. Phys. 144
104501

[15] Noid W G, Chu J-W, Ayton G S, Krishna V, Izvekov S, Voth G A, Das A and Andersen H C 2008
The multiscale coarse-graining method: I. A rigorous bridge between atomistic and coarse-
grained models J. Chem. Phys. 128 244114

[16] Noid W G, Liu P, Wang Y, Chu J-W, Ayton G S, Izvekov S, Andersen H C and Voth G A 2008
The multiscale coarse-graining method: II. Numerical implementation for coarse-grained
molecular models J. Chem. Phys. 128 244115

[17] Munday L B, Chung P W, Rice B M and Solares S D 2011 Simulations of high-pressure phases in
RDX J. Phys. Chem. B 115 4378–86

[18] Weingarten N S and Sausa R C 2015 Nanomechanics of RDX single crystals by force–
displacement measurements and molecular dynamics simulations J. Phys. Chem. A 119
9338–51

[19] Smith G D and Bharadwaj R K 1999 Quantum chemistry based force field for simulations of
HMX J. Phys. Chem. B 103 3570–5

[20] Sewell T D and Bennett C M 2000 Monte Carlo calculations of the elastic moduli and pressure–
volume–temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine J. Appl. Phys.
88 88–95

[21] Zheng L and Thompson D L 2006 Molecular dynamics simulations of melting of perfect
crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine J. Chem. Phys. 125 084505

[22] Pereverzev A, Sewell T D and Thompson D L 2013 Molecular dynamics study of the pressure-
dependent terahertz infrared absorption spectrum of α- and γ-RDX J. Chem. Phys. 139 044108

[23] Bedrov D, Hooper J B, Smith G D and Sewell T D 2009 Shock-induced transformations in
crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study
J. Chem. Phys. 131 034712

[24] Mathew N, Picu C R and Chung P W 2013 Peierls stress of dislocations in molecular crystal
cyclotrimethylene trinitramine J. Phys. Chem. A 117 5326–34

[25] Mathew N and Picu R C 2013 Slip asymmetry in the molecular crystal cyclotrimethylenetrini-
tramine Chem. Phys. Lett. 582 78–81

[26] Munday L B, Mitchell R L, Knap J and Chung P W 2013 Role of molecule flexibility on the
nucleation of dislocations in molecular crystals Appl. Phys. Lett. 103 151911

[27] Ramos K J, Hooks D E, Sewell T D and Cawkwell M J 2010 Anomalous hardening under shock
compression in (021)-oriented cyclotrimethylene trinitramine single crystals J. Appl. Phys. 108
066105

[28] Choi C S and Prince E 1972 The crystal structure of cyclotrimethylenetrinitramine Acta
Crystallogr. B 28 2857–62

[29] Shinoda W, Shiga M and Mikami M 2004 Rapid estimation of elastic constants by molecular
dynamics simulation under constant stress Phys. Rev. B 69 134103

[30] Kamberaj H, Low R J and Neal M P 2005 Time reversible and symplectic integrators for
molecular dynamics simulations of rigid molecules J. Chem. Phys. 122 224114

Modelling Simul. Mater. Sci. Eng. 25 (2017) 015006 A Pal and C R Picu

16

http://dx.doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
http://dx.doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
http://dx.doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
http://dx.doi.org/10.1039/c2cp40934h
http://dx.doi.org/10.1039/c2cp40934h
http://dx.doi.org/10.1039/c2cp40934h
http://dx.doi.org/10.1063/1.4790637
http://dx.doi.org/10.1063/1.2221878
http://dx.doi.org/10.1063/1.4941332
http://dx.doi.org/10.1063/1.3464776
http://dx.doi.org/10.1063/1.3607603
http://dx.doi.org/10.1063/1.4942520
http://dx.doi.org/10.1063/1.4942520
http://dx.doi.org/10.1063/1.2938860
http://dx.doi.org/10.1063/1.2938857
http://dx.doi.org/10.1021/jp112042a
http://dx.doi.org/10.1021/jp112042a
http://dx.doi.org/10.1021/jp112042a
http://dx.doi.org/10.1021/acs.jpca.5b04876
http://dx.doi.org/10.1021/acs.jpca.5b04876
http://dx.doi.org/10.1021/acs.jpca.5b04876
http://dx.doi.org/10.1021/acs.jpca.5b04876
http://dx.doi.org/10.1021/jp984599p
http://dx.doi.org/10.1021/jp984599p
http://dx.doi.org/10.1021/jp984599p
http://dx.doi.org/10.1063/1.373628
http://dx.doi.org/10.1063/1.373628
http://dx.doi.org/10.1063/1.373628
http://dx.doi.org/10.1063/1.2238860
http://dx.doi.org/10.1063/1.4813795
http://dx.doi.org/10.1063/1.3177350
http://dx.doi.org/10.1021/jp401368t
http://dx.doi.org/10.1021/jp401368t
http://dx.doi.org/10.1021/jp401368t
http://dx.doi.org/10.1016/j.cplett.2013.07.057
http://dx.doi.org/10.1016/j.cplett.2013.07.057
http://dx.doi.org/10.1016/j.cplett.2013.07.057
http://dx.doi.org/10.1063/1.4824711
http://dx.doi.org/10.1063/1.3485807
http://dx.doi.org/10.1063/1.3485807
http://dx.doi.org/10.1107/S0567740872007046
http://dx.doi.org/10.1107/S0567740872007046
http://dx.doi.org/10.1107/S0567740872007046
http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1063/1.1906216


[31] Ryckaert J-P, Ciccotti G and Berendsen H J C 1977 Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes J. Comput.
Phys. 23 327–41

[32] Van Swygenhoven H and Weertman J R 2006 Deformation in nanocrystalline metals Mater.
Today 9 24–31

[33] Kohanoff J 1994 Phonon spectra from short non-thermally equilibrated molecular dynamics
simulations Comput. Mater. Sci. 2 221–32

[34] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys.
117 1–19

[35] Bolme C A and Ramos K J 2014 The elastic tensor of single crystal RDX determined by Brillouin
spectroscopy J. Appl. Phys. 116 183503

[36] Cady H H 1972 Coefficient of thermal expansion of pentaerythritol tetranitrate and hexahydro-
1,3,5-trinitro-s-triazine (RDX) J. Chem. Eng. Data 17 369–71

[37] Haussühl S 2009 Elastic and thermoelastic properties of selected organic crystals: acenaphthene,
trans-azobenzene, benzophenone, tolane, trans-stilbene, dibenzyl, diphenyl sulfone, 2,2
´-biphenol, urea, melamine, hexogen, succinimide, pentaerythritol, urotropine, malonic acid,
dimethyl malonic acid, maleic acid, hippuric acid, aluminium acetylacetonate, iron
acetylacetonate, and tetraphenyl silicon Z. Für Krist.—Cryst. Mater. 216 339–53

[38] Schwarz R B, Hooks D E, Dick J J, Archuleta J I and Martinez A R 2005 Resonant ultrasound
spectroscopy measurement of the elastic constants of cyclotrimethylene trinitramine J. Appl.
Phys. 98 056106

[39] Sun J, Shu X, Liu Y, Zhang H, Liu X, Jiang Y, Kang B, Xue C and Song G 2011 Investigation on
the thermal expansion and theoretical density of 1,3,5-trinitro-1,3,5-triazacyclohexane
Propellants Explos. Pyrotech. 36 341–6

[40] Sun B, Winey J M, Hemmi N, Dreger Z A, Zimmerman K A, Gupta Y M, Torchinsky D H and
Nelson K A 2008 Second-order elastic constants of pentaerythritol tetranitrate and
cyclotrimethylene trinitramine using impulsive stimulated thermal scattering J. Appl. Phys.
104 073517

[41] Taylor D E 2014 Pressure dependent elastic constants of alpha and gamma cyclotrimethylene
trinitramine: a quantum mechanical study J. Appl. Phys. 116 053513

[42] Hooks D E, Ramos K J, Bolme C A and Cawkwell M J 2015 Elasticity of crystalline molecular
explosives Propellants Explos. Pyrotech. 40 333–50

[43] Davidson A J, Oswald I D H, Francis D J, Lennie A R, Marshall W G, Millar D I A, Pulham C R,
Warren J E and Cumming A S 2008 Explosives under pressure—the crystal structure of γ-RDX
as determined by high-pressure x-ray and neutron diffraction Cryst. Eng. Commun. 10 162–5

[44] Haycraft J J, Stevens L L and Eckhardt C J 2006 The elastic constants and related properties of the
energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering
J. Chem. Phys. 124 024712

[45] Barron T H K 1998 Generalised theory of thermal expansion of solids Thermal Expansion of
Solids ed C Y Ho vol 1–4 (New York: ASM) pp 1–108

[46] Grüneisen E 1912 Theorie des festen zustandes einatomiger elemente Ann. Phys. 344 257–306
[47] Das D, Jacobs T and Barbour L J 2010 Exceptionally large positive and negative anisotropic

thermal expansion of an organic crystalline material Nat. Mater. 9 36–9
[48] Connick W and May F G J 1969 Dislocation etching of cyclotrimethylene trinitramine crystals

J. Cryst. Growth 5 65–9
[49] Halfpenny P J, Roberts K J and Sherwood J N 1984 Dislocations in energetic materials J. Mater.

Sci. 19 1629–37
[50] Ramos K J, Hooks D E and Bahr D F 2009 Direct observation of plasticity and quantitative

hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation
Phil. Mag. 89 2381–402

[51] McDermott I T and Phakey P P 1971 A method of correlating dislocations and etch pits:
application to cyclotrimethylene trinitramine J. Appl. Crystallogr. 4 479–81

[52] Izvekov S, Chung P W and Rice B M 2011 Non-equilibrium molecular dynamics simulation study
of heat transport in hexahydro-1,3,5-trinitro-s-triazine (RDX) Int. J. Heat Mass Transf. 54
5623–32

[53] Bedrov D, Ayyagari C, Smith G D, Sewell T D, Menikoff R and Zaug J M 2001 Molecular
dynamics simulations of HMX crystal polymorphs using a flexible molecule force field
J. Comput.—Aided Mater. Des. 8 77–85

Modelling Simul. Mater. Sci. Eng. 25 (2017) 015006 A Pal and C R Picu

17

http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1016/S1369-7021(06)71494-8
http://dx.doi.org/10.1016/S1369-7021(06)71494-8
http://dx.doi.org/10.1016/S1369-7021(06)71494-8
http://dx.doi.org/10.1016/0927-0256(94)90103-1
http://dx.doi.org/10.1016/0927-0256(94)90103-1
http://dx.doi.org/10.1016/0927-0256(94)90103-1
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1063/1.4901461
http://dx.doi.org/10.1021/je60054a040
http://dx.doi.org/10.1021/je60054a040
http://dx.doi.org/10.1021/je60054a040
http://dx.doi.org/10.1524/zkri.216.6.339.20342
http://dx.doi.org/10.1524/zkri.216.6.339.20342
http://dx.doi.org/10.1524/zkri.216.6.339.20342
http://dx.doi.org/10.1063/1.2037865
http://dx.doi.org/10.1002/prep.201000026
http://dx.doi.org/10.1002/prep.201000026
http://dx.doi.org/10.1002/prep.201000026
http://dx.doi.org/10.1063/1.2981044
http://dx.doi.org/10.1063/1.4891999
http://dx.doi.org/10.1002/prep.201400282
http://dx.doi.org/10.1002/prep.201400282
http://dx.doi.org/10.1002/prep.201400282
http://dx.doi.org/10.1039/B715677B
http://dx.doi.org/10.1039/B715677B
http://dx.doi.org/10.1039/B715677B
http://dx.doi.org/10.1063/1.2141958
http://dx.doi.org/10.1002/andp.19123441202
http://dx.doi.org/10.1002/andp.19123441202
http://dx.doi.org/10.1002/andp.19123441202
http://dx.doi.org/10.1038/nmat2583
http://dx.doi.org/10.1038/nmat2583
http://dx.doi.org/10.1038/nmat2583
http://dx.doi.org/10.1016/0022-0248(69)90077-3
http://dx.doi.org/10.1016/0022-0248(69)90077-3
http://dx.doi.org/10.1016/0022-0248(69)90077-3
http://dx.doi.org/10.1007/BF00563061
http://dx.doi.org/10.1007/BF00563061
http://dx.doi.org/10.1007/BF00563061
http://dx.doi.org/10.1080/14786430903120335
http://dx.doi.org/10.1080/14786430903120335
http://dx.doi.org/10.1080/14786430903120335
http://dx.doi.org/10.1107/S0021889871007490
http://dx.doi.org/10.1107/S0021889871007490
http://dx.doi.org/10.1107/S0021889871007490
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.040
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.040
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.040
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.040
http://dx.doi.org/10.1023/A:1020046817543
http://dx.doi.org/10.1023/A:1020046817543
http://dx.doi.org/10.1023/A:1020046817543

	1. Introduction
	2. Methods
	3. Results and discussion
	3.1. Elastic, structural and thermal properties
	3.2. Crystal defects
	3.3. Vibrational density of states
	3.4. Computational aspects and implications for developing CG models

	4. Conclusion
	Acknowledgments
	References



