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When discretizing equations with second-order derivatives, like the Navier-Stokes equa-
tions, the boundary and interior penalties play a critical role in terms of the conservation,
consistency, energy stability, and adjoint consistency of summation-by-parts (SBP) meth-
ods. While interior penalties for tensor-product SBP operators have been studied, they
have not been investigated in the context of multidimensional SBP operators. This paper
presents a general discretization for analyzing interior penalties for multidimensional SBP
operators that can be used to obtain several favorable properties. Under this discretiza-
tion, we construct a stable and adjoint consistent high-order finite difference scheme for
linear elliptic equations with a constant diffusion coefficient. Specifically, the equations are
first discretized using multidimensional SBP operators with interior and boundary penalty
matrices to be determined. Then, taking advantage of the properties of SBP operators,
the analyses are generalized from those in the finite element literature and become entirely
algebraic in nature. That is, the analyses give rise to explicit conditions on the penalty
matrix coefficients and these conditions are free of integral. To validate these conditions
numerically, several test cases are conducted.

I. Introduction

High-order methods are well suited for simulations with complex physics requiring high resolution, like
turbulent flows and acoustics. High-order methods are also able to generate more accurate solutions for a
given cost than low-order methods, at least for sufficiently smooth problems. Among high-order methods,
finite element (FE) methods are recognized as possessing several desirable properties, including a priori and
a posteriori estimates of discretization errors and convergence rate, modularity, compact stencils, and hp
adaptation.

Summation-by-parts (SBP) finite-difference methods share many of these properties with FE methods,
but they also offer their own unique traits. The stability and high-order accuracy of SBP discretizations make
them attractive for simulating conservation laws over long time periods. Additionally, FE methods must
employ cubature rules to evaluate non-linear terms, in general, which leads to an aliasing error. Aliasing
errors may degrade the accuracy of the solution and, in the worst case, can lead to numerical instability
if the physics are not adequately resolved.1,2 SBP methods, on the other hand, account for the inexact
integration from the beginning and can be devised to avoid such problems. Indeed, it was recently shown
how to construct entropy-conservative and entropy-stable SBP discretizations of the Euler and Navier-Stokes
equations.3–5

The classic SBP operators6–8 are based on tensor products of one-dimensional SBP operators and can
only be used with structured and multi-block grids. Hence, their application to problems with complex
geometry has been limited. Recently, Hicken, Del Rey Fernández, and Zingg9 introduced multidimensional
SBP operators by generalizing the SBP definition to arbitrary bounded domains. They showed that a degree
p diagonal-norm SBP operator can be constructed on any given domain provided a degree 2p− 1 cubature
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exists whose nodes produce a full-rank Vandermonde matrix. Multidimensional SBP operators inherit the
advantages of FE methods mentioned above.

When discretizing second-order derivatives, like the viscous terms in the Navier-Stokes equations, the
main difficulty for high-order SBP operators in discontinuous space is the stable and accurate enforcement of
boundary conditions and inter-element coupling. A common approach is to introduce so-called simultaneous
approximation terms (SATs), which are also known as interior penalties in the FE community. Generally
speaking, sufficiently large penalties are able to ensure the stability of solutions. However, the conditioning
of the resulting linear system significantly deteriorates as the penalties increase in magnitude. Hence, it is
important to find the smallest possible (computable) bound for these penalties.

In addition to their critical role in stability, the SAT penalties make it possible to obtain adjoint consis-
tency and achieve continuity toward C0 or even C1 on the discontinuous elements.10 Adjoint consistency is
a favorable property first introduced and analyzed in the FE community, where the conditions necessary for
adjoint consistency have been intensively studied; see the review [10] and the references therein.

Given the strong connection with FE discretizations, it should not be surprising that SBP discretizations
also require careful treatment of SATs to ensure stability and accuracy. SATs for multidimensional SBP
discretizations of the linear advection were recently studied in [11, 12], and SATs for tensor-product SBP
discretizations of second-order PDEs have been investigated by a number of authors; see, e.g., [13] and the
review[14]. Multidimensional SATs for discretizations of elliptic equations, to the best of our knowledge,
have not been studied.

The current work presents the requirements on dense SAT penalties to obtain multidimensional SBP-
SAT discretizations that are simultaneously consistent, conservative, adjoint consistent, and stable. The
significance of this study is threefold: we introduce a general discretization with a linear combination of
penalties; we show that the methodology facilitates and generalizes the analysis processes; we derive rigorous
computable bounds on the penalties that yield robustness and optimal errors in L2 norms.

The remainder of the paper is organized as follows. The multidimensional SBP discretization is given
in Section II; in Section III we analyze adjoint consistency and present corresponding restrictions on the
penalties; in Section IV, the conditions from adjoint analysis are utilized to simplify the energy-stability
analysis which further constrains the SAT penalties. Numerical test cases are carried out in Section V, and
conclusions are provided in Section VI.

II. Multi-dimensional SBP discretization of elliptic PDEs

A. Notation

Matrices are represented with an uppercase sans-serif type, for example A ∈ Rn×m. Functions are denoted
with capital letters in calligraphic font; for example U ∈ L2(Ω) is a square-integrable function on the domain
Ω. The space of polynomials of total degree p in x and y on Ω is denoted by Pp(Ω). A function evaluated
on a node set is denoted by a lowercase letter in bold font. For example, the function U evaluated at the
nodes of S = {(xi, yi)}ni=1 is given by

u =
[
U(x1, y1) U(x2, y2) · · · U(xn, yn)

]T
.

As with generic functions, a polynomial that is evaluated at the points of S will be represented using its
corresponding lowercase letter in bold font; for example, for P ∈ Pp(Ω) we would have

p ≡
[
P(x1, y1) P(x2, y2) · · · P(xn, yn)

]T
.

B. SBP definition and face operators

The definition for an SBP operator approximating ∂/∂x on a two dimensional domain is provided below.

Definition 1. Two-dimensional summation-by-parts operator: Consider an open and bounded do-
main κ ⊂ R2 with a piecewise-smooth boundary ∂κ. The matrix Dx is a degree p SBP approximation to the
first derivative ∂

∂x on the nodes Sκ = {(xi, yi)}nκi=1 if

1. For all P ∈ Pp(κ), the vector Dxp is equal to ∂P/∂x at the nodes Sκ;
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2. Dx = H−1Qx, where H is symmetric positive-definite, and;

3. Qx = Sx + 1
2 Ex, where STx = −Sx, ETx = Ex, and Ex satisfies

pTExq =

∮
∂κ

PQnxdΓ, ∀ P,Q ∈ Pr(κ),

where r ≥ p, and nx is the x component of n = [nx, ny]
T

, the outward pointing unit normal on ∂κ.

The definition for the SBP operator approximating ∂/∂y is analogous.
In this paper we consider only diagonal norm SBP operators, that is, SBP operators for which H is a

diagonal matrix with positive entries. In [9] it was shown that, for a diagonal-norm SBP operator, the nodes
Sκ and diagonal entries of H define a cubature rule that is exact for polynomials of total degree 2p − 1 (at
least).

To facilitate the definition of the SAT penalties, we follow [11] and introduce interpolation/extrapolation
operators from the SBP element nodes to cubature nodes on the faces of the elements; in some cases the face
cubature nodes may be a subset of the SBP volume nodes, in which case the interpolation/extrapolation
operators become trivial. Consider an element κ with a piecewise smooth boundary ∂κ, and let γ ⊂ ∂κ
denote one of its faces. Let Sγ = {(xj , yj)}

nγ
j=1 ⊂ γ be a set of cubature nodes, and let {bj}

nγ
j=1 be a

corresponding set of positive cubature weights that is exact for polynomials of degree 2r, where r ≥ p. The
matrix Rγκ ∈ Rnγ×nκ is a degree r interpolation/extrapolation operator from the SBP nodes Sκ to the face
nodes Sγ if

(Rγκpk)j =

nκ∑
i=1

(Rγκ)jiP(xi, yi) = P(xj , yj), ∀j = 1, 2, . . . , nγ ,

and for all P ∈ Pr(κ).
Using the above interpolation/extrapolation operators and face cubature rules, it was shown in [12] that

there exists at least one SBP operator whose corresponding matrix Ex has the decomposition

Ex =
∑
γ⊂∂κ

RTγκNx,γBγRγκ, (1)

where Bγ = diag
(
b1, b2, . . . , bnγ

)
is an nγ × nγ diagonal matrix holding cubature weights for γ along its

diagonal, and Nx,γ = diag
(
nx,1, nx,2, . . . , nx,nγ

)
is an nγ × nγ diagonal matrix holding the x component of

the outward unit normal with respect to κ at the cubature points of γ. The following analysis assumes that
the SBP operators are such that Ex has the decomposition (1), and that the operators in the y direction
have analogous decompositions.

C. The model PDE

Let Ω be a polygonal domain in R2. The boundary of Ω, ∂Ω = Γ, is partitioned into a Dirichlet boundary ΓD

and a Neumann boundary ΓN , which are disjoint. Let n̂ = [nx, ny]T be the outward pointing unit normal
on ∂Ω. The following linear parabolic problem is considered in this work:

∂U
∂t
− λ∇ · (∇U) = F , in Ω,

U(0, x, y) = U0(x, y), in Ω,

U(t, x, y) = UD(t, x, y) on ΓD,

n̂ · (λ∇U(t, x, y)) = UN (t, x, y) on ΓN ,

(2)

where F ∈ L2(Ω × [0, T ]) is a given source term; UD ∈ L2(ΓD × [0, T ]) and UN ∈ L2(ΓN × [0, T ]) are
Dirichlet and Neumann boundary conditions, respectively; the diffusion coefficient λ is a positive constant.
We assume that the Dirichlet boundary is nonempty, namely, ΓD 6= ∅, so that the problem is well-posed.

3 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 (

B
E

R
K

E
L

E
Y

) 
on

 J
un

e 
7,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

44
95

 



D. Strong-form Discretization

By Ωh we denote a polygonal approximation of the domain Ω; let Th =
⋃K
κ=1 κ be a triangulation of the

domain Ωh into K SBP elements, where κ denotes the domain of an element. The discrete solution on κ
is given by the vector uκ ∈ Rnκ whose entries are the discrete solution at the SBP nodes Sκ. The global
discrete solution, denoted uh, is the concatenation of all elementwise solutions.

The SBP-SAT discretization of (2) on element κ is given by

duκ
dt

= Dκuκ + fκ − H−1
κ sIκ (uh)− H−1

κ sBκ (uh,uD,uN ) , (3)

where fκ is F evaluated at the nodes of element κ and

Dκ = λ(DxDx + DyDy) (4)

is the SBP approximation of λ∇ · ∇ on element κ. More generally, the subscript notation ()κ indicates a
vector or operator on element κ.

The vectors sIκ and sBκ are the interface and boundary SAT penalties, respectively. For element κ these
penalties are defined by

sIκ (uh) =
∑
γ⊂ΓI

κ

[
RTγκ DT

γκ

] [Σ
(1)
γκ Σ

(3)
γκ

Σ
(2)
γκ Σ

(4)
γκ

][
Rγκuκ − Rγνuν
Dγκuκ + Dγνuν

]

and

sBκ (uh,uD,uN ) =
∑
γ⊂ΓD

κ

[
RTγκ DT

γκ

] [ ΣDγ
−Bγ

]
(Rγκuκ − uγD) +

∑
γ⊂ΓN

κ

RTγκBγ(Dγκuκ − uγN ),

respectively. The discretization (3) is consistent, since both interface and boundary penalties vanish for
the exact smooth solution. The set Γκ = ∂κ represents the boundary of element κ, while the set of faces
that coincide with Dirichlet and Neumann boundaries are denoted as ΓDκ = Γκ ∩ ΓD and ΓNκ = Γκ ∩ ΓN ,
respectively. ΓIκ is the union of all interfaces of κ. The index ν is used to denote a generic element sharing
face γ with the element κ, i.e., γ = κ ∩ ν. The vectors uγD and uγN in the boundary penalties denote the
functions UD and UN , respectively, evaluated at the cubature nodes of face γ.

For future use, we note that the normal derivative operators on face γ that discretize ~n ·(λ∇) for elements
κ and ν, respectively, are given by

Dγκ = λ(Nγ,xRγκDx,κ + Nγ,yRγκDy,κ),

Dγν = −λ(Nγ,xRγνDx,ν + Nγ,yRγνDy,ν).

Recall that Nγ,x (resp. Nγ,y) is a diagonal matrix holding the x (resp. y) component of the unit outward
normal, with respect to κ, at the cubature nodes of face γ. Thus, the matrix Dγν must be negated.

The objective of the subsequent analysis is to determine the matrices Σ
(i)
γκ =

(
Σ

(i)
γκ

)T
∈ Rnγ×nγ , i =

1, 2, 3, 4, which denote the symmetric SAT coefficient matrices for element κ on face γ. Similarly, ΣD
γ is the

coefficient matrix for the SAT on a boundary face of κ. Note that Σ
(i)
γκ 6= Σ

(i)
γν in general; that is, we do not

assume that the coefficient matrices of two adjacent elements are necessarily equal.

E. Weak forms of the discretization

The discretization (3) is the element-based strong form. For the subsequent analysis, two equivalent face-
based weak forms will prove more useful. Before deriving these weak formulations, we introduce two identities
that will be helpful.

Let Dκ be defined as in (4). Then, ∀ uκ,vκ ∈ Rnκ ,

vTκ HκDκuκ = −vTκ Mκuκ +
∑
γ⊂Γκ

vTκ RTγκBγDγκuκ, (5)

and − vTκ Mκuκ = vTκ DT
κHκuκ −

∑
γ⊂Γκ

vTκ DT
γκBγRγκuκ, (6)
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where Mκ is the symmetric semi-definite matrix

Mκ = λ(DT
xHDx + DT

y HDy), (7)

Identities (5) and (6) follow from straightforward application of the properties of SBP operators. They
are the SBP analogs of applying integration by parts to

∫
κ
V∇ · (λ∇U) dΩ once (the first identity) and twice

(the second identity).
To obtain the element-based weak formulation, we first left multiply (3) by vTκ Hκ, where vκ ∈ Rnκ is an

arbitrary vector, and then apply (5). This produces the following weak form of the discretization: for all
κ = 1, 2, . . . ,K, find uκ ∈ Rnκ such that, ∀vκ ∈ Rnκ ,

vTκ Hκ
duκ
dt

= −vTκ Mκuκ +
∑
γ⊂Γκ

vTκ RTγκBγDγκuκ + vTκ Hκfκ − vTκ s
I
κ (uh)− vTκ s

B
κ (uh,uD,uN ) .

Next, we sum the element-based weak form over all elements κ. After rearrangement, this gives the first
of two face-based weak formulations: find uh ∈ R

∑
nκ such that∑

κ∈Th

vTκ Hκ
duκ
dt

= Bh(uh,vh), ∀ vh ∈ R
∑
nκ ,

where the bilinear form Bh is defined by

Bh(uh,vh) :=−
∑
κ∈Th

vTκ Mκuκ +
∑
κ∈Th

vTκ Hκfκ

−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Dγκvκ

Dγνvν


T 

Σ
(1)
γκ −Σ

(1)
γκ Σ

(3)
γκ − Bγ Σ

(3)
γκ

−Σ
(1)
γν Σ

(1)
γν Σ

(3)
γν Σ

(3)
γν − Bγ

Σ
(2)
γκ −Σ

(2)
γκ Σ

(4)
γκ Σ

(4)
γκ

−Σ
(2)
γν Σ

(2)
γν Σ

(4)
γν Σ

(4)
γν




Rγκuκ
Rγνuν
Dγκuκ

Dγνuν


−
∑
γ⊂ΓD

[
Rγκvκ
Dγκvκ

]T [
ΣDγ −Bγ

−Bγ 0

][
Rγκuκ − uγD

Dγκuκ

]
+
∑
γ⊂ΓN

vTκ RTγκBγuγN .

(8)

The bilinear form (8) will be useful in the energy stability analysis presented later.
A second, equivalent face-based bilinear form is obtained by using (6) in (8). This produces

Bh(uh,vh) ≡
∑
κ∈Th

vTκ DT
κHκuκ +

∑
κ∈Th

vTκ Hκfκ +
∑
γ⊂ΓD

vTκ DT
γκBγuγD

−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Dγκvκ

Dγνvν


T 

Σ
(1)
γκ −Σ

(1)
γκ Σ

(3)
γκ − Bγ Σ

(3)
γκ

−Σ
(1)
γν Σ

(1)
γν Σ

(3)
γν Σ

(3)
γν − Bγ

Σ
(2)
γκ + Bγ −Σ

(2)
γκ Σ

(4)
γκ Σ

(4)
γκ

−Σ
(2)
γν Σ

(2)
γν + Bγ Σ

(4)
γν Σ

(4)
γν




Rγκuκ
Rγνuν
Dγκuκ

Dγνuν


−
∑
γ⊂ΓD

[
Rγκvκ

]T [
ΣDγ −Bγ

] [Rγκuκ − uγD

Dγκuκ

]
+
∑
γ⊂ΓN

[
Rγκvκ
Dγκvκ

]T [
BγuγN
−BγRγκuκ

]
.

(9)

The bilinear form (9) will be useful for the adjoint analysis, which we present in the next section.

III. Adjoint consistency analysis

Adjoint consistency is a desirable property that we would like our multi-dimensional SBP discretizations
to satisfy. It is well known in the finite-element community that adjoint, or dual, consistency of discretizations
ensures optimal error rates in the L2-norm of O(hp+1)15 while inconsistent discretizations result in an
suboptimal O(hp) measured in L2. More generally, adjoint consistency leads to superconvergent (integral)
functional estimates,16 which can significantly improve the accuracy of outputs like lift and drag when
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using high-order methods. Given the close connection between SBP finite-difference methods and the FE
methods, it is perhaps not surprising that SBP discretizations also exhibit functional superconvergence when
discretized in a dual consistent manner.17

In the following section, we investigate the constraints on the SAT penalties in (3) that guarantee adjoint
consistency. We begin by briefly reviewing the dual problem associated with the steady version of (2).

A. A generic adjoint PDE

An adjoint PDE is defined by the primal PDE and a particular functional of interest. For the following
adjoint consistency analysis, we consider the linear functional

J (U) =

∫
Ω

GU dΩ +

∫
ΓN
VNU dΓ−

∫
ΓD
VDn̂ · (λ∇U) dΓ, (10)

where G ∈ L2(Ω), VD ∈ L2(ΓD) and VN ∈ L2(ΓN ). One can show that the adjoint PDE corresponding to
the primal problem (2) and (10) is18

−∇ (λ∇V) = G, ∀ x ∈ Ω,

V = VD, ∀ x ∈ ΓD,

n̂ · (λ∇V) = VN ∀ x ∈ ΓN .

(11)

B. Functional and adjoint discretization

We discretize the functional (10) as

Jh(uh) :=
∑
κ∈Th

gTκ Mκuκ +
∑
γ⊂ΓN

vTγNBγRγκuκ −
∑
γ⊂ΓD

vTγDBγDγκuκ +
∑
γ⊂ΓD

vTγDΣDγ (Rγκuκ − uγD), (12)

where, similar to the primal problem, vγN and vγD denote the function value of VN and VD, respectively,
evaluated at the cubature nodes of the generic face γ, while gκ is the value of G evaluated at the cubature
nodes of the element κ.

The first three terms in (12) are direct discretizations of the first three terms in (10), whereas the last
term is necessary for recovering adjoint consistency on the Dirichlet boundary.19 Given that the interpola-
tion/extrapolation operators are exact for degree r ≥ p polynomials, namely, Rγκuκ = uγD + O(hr+1), the
fourth term in (12) is of order hr+1.

We employ the discrete Lagrangian to find the discrete adjoint equation. Specifically, we first add the
face-based weak form (9) to Jh and, after some algebraic manipulationa, we get the Lagrangian

Lh(uh,vh) = Jh(uh) +Bh(uh,vh) = J∗h(vh) +B∗h(vh,uh),

where the dual form of the functional is defined by

J∗h(vh) =
∑
κ∈Th

vTκ Hκfκ +
∑
γ⊂ΓN

uTγNBγRγκvκ +
∑
γ⊂ΓD

uTγDBγDγκvκ +
∑
γ⊂ΓD

uTγDΣDγ (Rγκvκ − vγD),

and the adjoint bilinear form is given by

B∗h(vh,uh) =
∑
κ∈Th

uTκHκDκvκ +
∑
κ∈Th

uTκHκgκ

−
∑
γ⊂ΓI


Rγκuκ
Rγνuν
Dγκuκ

Dγνuν


T 

Σ
(1)
γκ −Σ

(1)
γν Σ

(2)
γκ + Bγ −Σ

(2)
γν

−Σ
(1)
γκ Σ

(1)
γν −Σ

(2)
γκ Σ

(2)
γν + Bγ

Σ
(3)
γκ − Bγ Σ

(3)
γν Σ

(4)
γκ Σ

(4)
γν

Σ
(3)
γκ Σ

(3)
γν − Bγ Σ

(4)
γκ Σ

(4)
γν




Rγκvκ
Rγνvν
Dγκvκ

Dγνvν


−
∑
γ⊂ΓD

[
Rγκuκ
Dγκuκ

]T [
ΣDγ
−Bγ

]
(Rγκvκ − vγD)−

∑
γ⊂ΓN

uTκRTγκBγ(Dγκvκ − vγN ).

aIn particular, note that the functional and bilinear form are scalars, so Jh(uh)T = Jh(uh) and Bh(uh,vh)T = Bh(uh,vh).
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Next, we set the first variation of Lh(uh,vh) with respect uh to zero. Since the primal variable is
finite dimensional here, taking the first variation is equivalent to finding the gradient of Lh with respect
to uh. Furthermore, we see that J∗h(vh) does not depend on uh, so we only need to consider the gradient
of B∗h(vh,uh). Taking the gradient of B∗h(vh,uh) with respect to uκ, multiplying by H−1

κ , and setting the
result to zero (i.e. setting the first variation to zero), gives the following element-based strong form of the
adjoint equation:

H−1
κ

∂B∗h
∂uκ

= Dκvκ + gκ − H−1
κ (sIκ)∗(vh)− H−1

κ (sBκ )∗(vh,vD,vN ) = 0, (13)

where the adjoint SAT penalties for the interfaces are

(sIκ)∗ (vh) =
∑
γ⊂ΓI

κ

[
RTγκ DT

γκ

] [ Σ
(1)
γκ −Σ

(1)
γν Σ

(2)
γκ + Bγ −Σ

(2)
γν

Σ
(3)
γκ − Bγ Σ

(3)
γν Σ

(4)
γκ Σ

(4)
γν

]
Rγκvκ
Rγνvν
Dγκvκ

Dγνvν

 .
and the penalties for the boundaries are

(sBκ )∗ (uh,uD,uN ) =
∑
γ⊂ΓD

κ

[
RTγκ DT

γκ

] [ ΣDγ
−Bγ

]
(Rγκvκ − vγD) +

∑
γ⊂ΓN

κ

RTγκBγ(Dγκvκ − vγN )

C. Adjoint consistency

The spatial derivatives and the boundary SATs in (13) are consistent with the continuous dual problem
(11). To see this, note that the sum Dκvκ + gκ in (13) is an order hp+1 discretization of the continuous
adjoint problem (11) on Ω. Indeed, the operator ∇ · (λ∇) is self-adjoint, so Dκ is the same operator used
in the primal discretization. Similarly, the boundary SAT, (sBκ )∗, also introduces an error O(hp+1). To
see this, recall that Rγκ and Dγκ are exact for polynomials of degree p, and vγD and vγN are the exact
boundary values evaluated at the nodes of γ. Thus, the differences Rγκvκ − vγD and Dγκvκ − vγN vanish
for polynomial solutions of degree p or less. Only the interface SATs require further scrutiny to determine
adjoint consistency.

Theorem 1. The primal discretization (3) and functional discretization (12) are adjoint consistent of order
hp+1 provided the exact solution V is Cp+1 continuous on Ω, and the SAT penalty matrices satisfy

Σ(1)
γκ = Σ(1)

γν , Σ(2)
γκ + Σ(2)

γν = −Bγ ,

Σ(4)
γκ = Σ(4)

γν , Σ(3)
γκ + Σ(3)

γν = Bγ .
(14)

The proof of Theorem 1 is given in Ref. [20].
The conditions (14) automatically give rise to an elementwise conservative discretization. To see this,

first we define a union of any collection of elements Sh ⊂ Th. Let vκ = 1 for all κ ∈ Sh. By the SBP
operator properties we have Rγκvκ = 1 and Dγκvκ = 0. Then, making use of these two identities and (14),
the bilinear form (9) without source terms is reduced to

Bh(uh,1) = −
∑

γ⊂∂Sh

[
1

1

]T [
Σ

(1)
γκ −Σ

(1)
γκ Σ

(3)
γκ − Bγ Σ

(3)
γκ

−Σ
(1)
γν Σ

(1)
γν Σ

(3)
γν Σ

(3)
γν − Bγ

]
Rγκuκ
Rγνuν
Dγκuκ

Dγνuν


The above equation only includes a sum over the boundary of Sh, and it is independent of interface terms
interior to Sh. Therefore, the conservation property is satisfied in that no artificial source is introduced into
the computational domain Sh through interface SATs.
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IV. Energy analysis

In this section we further constrain the SAT penalty matrices based on the conditions for discrete energy
stability. Before presenting the conditions for energy stability, we simplify the penalty matrices based on the
adjoint consistency conditions (14). First, we will drop the dependence of the Σ(1) and Σ(4) matrices on the
elements:

Σ(1)
γκ = Σ(1)

γν ≡ Σ(1)
γ , and Σ(4)

γκ = Σ(4)
γν ≡ Σ(4)

γ .

Second, we will also assume that Σ
(2)
γκ = Σ

(2)
γν and Σ

(3)
γκ = Σ

(3)
γν , although this is not strictly required by

the adjoint-consistency analysis; see [20] for a more general analysis. This assumption together with the
conditions in (14) gives

Σ(2)
γκ = Σ(2)

γν = −1

2
Bγ , and Σ(3)

γκ = Σ(3)
γν =

1

2
Bγ .

In addition to simplifying the stability analysis, our motivation for this assumption is that Σ(2) and Σ(3) do
not help control the coercivity of the bilinear form, that is, the positive definiteness of the system matrix.

We will need the following lemma for the stability analysis. The purpose of the lemma is to shift the
volume terms in the bilinear form Bh to the faces, so that these terms can contribute to the semi-definiteness
of the interface terms.

Lemma 1. For each face γ of element κ, let a face-weight coefficient αγκ > 0 be given such that
∑
γ⊂Γκ

αγκ =
1. Then the bilinear form corresponding to the SBP-SAT discretization of the homogeneous version of the
PDE (2) can be written as

Bh(uh,vh) =−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Gκvκ
Gνvν


T 

Σ
(1)
γ −Σ

(1)
γ −Cγκ Cγν

−Σ
(1)
γ Σ

(1)
γ Cγκ −Cγν

−CTγκ CTγκ λ−1αγκH̃κ

CTγν −CTγν λ−1αγνH̃ν




Rγκuκ
Rγνuν
Gκuκ
Gνuν


−
∑
γ⊂ΓI

[
Dγκvκ

Dγνvν

]T [
Σ

(4)
γ Σ

(4)
γ

Σ
(4)
γ Σ

(4)
γ

][
Dγκuκ

Dγνuν

]

−
∑
γ⊂ΓD

[
Rγκvκ
Gκvκ

]T [
ΣDγ −2Cγκ

−2CTγκ λ−1αγκH̃κ

][
Rγκuκ
Gκuκ

]
(15)

where we have introduced the matrices

Gκ = λ

[
Dx

Dy

]
κ

, Gν = λ

[
Dx

Dy

]
ν

,

Cγκ =
1

2
Bγ
[
Nx,γRγκ Ny,γRγκ

]
, Cγν = −1

2
Bγ
[
Nx,γRγν Ny,γRγν

]
,

and

H̃κ =

[
Hκ

Hκ

]
, H̃ν =

[
Hν

Hν

]
.

The full proof follows from straightforward algebra and is omitted; see [20].
Next, we introduce the conditions that ensure energy stability.

Theorem 2. For each face γ of element κ, let face-weight coefficient αγκ ≥ 0 be given such that
∑
γ⊂Γκ

αγκ =
1. Then, the bilinear form corresponding to the SBP-SAT discretization of the homogeneous version of the
PDE (2) is energy stable provided

Σ(1)
γ − λ(α−1

γκCγκH̃κCTγκ + α−1
γν CγνH̃−1

ν CTγν) � 0 (16)

ΣDγ − 4λα−1
γκCγκH̃−1

κ CTγκ � 0 (17)

and Σ
(4)
γ � 0, where A � 0 indicates A is positive semi-definite.

Proof. The proof is provided in the Appendix.
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V. Test cases and results

In this section several test cases are presented in order to verify the theory developed in Sections III and
IV. For all test cases we employ SBP operators defined on simplex elements, specifically the SBP-Γ operators
introduced in [11]. In addition, although many choices of the penalty matrices satisfy the requirements of
Theorem 1 and 2, a straightforward choice that is adopted for the following experiments is

Σ(1)
γ = λ(α−1

γκCγκH̃κCTγκ + α−1
γν CγνH̃−1

ν CTγν),

Σ(4)
γ = 0,

ΣDγ = 4λα−1
γκCγκH̃−1

κ CTγκ,

with face-weight coefficients based on the face area:

αγκ =


A(γ)

A(ΓIκ) + 2A(ΓDκ )
, γ ∈ ΓI

2A(γ)

A(ΓIκ) + 2A(ΓDκ )
, γ ∈ ΓD

,

where the function A(γ) denotes the size of face γ.

A. Accuracy study

The first test is to verify primal and adjoint consistency by examining the convergence rates of a discrete
solution and an associated functional. We use a manufactured solution on the unit square Ω = [0, 1]2 with
λ = 10 and the exact solution given by

u = ex+y sin(4πx) sin(4πy), (18)

to derive the source term F . The functional is defined as

J =

∫
Ω

UdΩ, (19)

which is a special case of (10) with G = 1, VN = 0 and VD = 0. We use a sequence of uniformly refined
meshes consisting of K = 128, 512, 2048, and 8192 triangular elements in order to estimate the asymptotic
convergence rates. The coarsest mesh is shown in Figure 1a. The nominal element size is given by h ≡
1/
√
K/2, which is the element edge length along the domain boundaries.

Figure 2a shows the solution error measured in terms of the L2-norm , which in this paper is approximated
using the cubature defined by the SBP operator. We see that, under the uniform mesh refinement, the
solution errors behave asymptotically like O(hp+1), which is in agreement with design accuracy.

Figure 2b shows the error in the functional value given in (19). A convergence rate of approximately 2p
is achieved for all the degrees, which is also in agreement with the theoretical order of convergence.16,17

B. Tightness of the stability bound

In the second test we evaluate the tightness of the stability conditions. Since the stability conditions in
Theorem 2 are sufficient but not necessary, a relaxation factor α ∈ (0, 1] acting on Σ(1) and ΣD may still
yield a stable bilinear form. We use this relaxation factor as a measure of the tightness of the bound on the
penalties. Overly conservative SAT penalties will allow for a relaxation factor that is much smaller than 1,
while a necessary and sufficient stability conditions would only permit α ≥ 1.

Energy stability is equivalent to a negative definite bilinear form, so we consider the effect of the relaxation
factor on the largest eigenvalue of the linear system, i.e., the eigenvalue with the smallest magnitude. Once
this largest eigenvalue becomes positive, the corresponding relaxation factor value is referred as the “allowable
relaxation factor”; finding this allowable relaxation factor is the objective of this experiment. Due to the
expense of computing the smallest magnitude eigenvalue of large matrices, the solutions are solved on the
coarse 8× 8 randomly perturbed mesh shown in Figure 1b. The manufactured solution given in (18) is used
again.
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(a) Coarsest uniform mesh (b) Perturbed mesh, 8× 8 (c) Perturbed mesh, 16× 16

Figure 1: Different meshes used for test cases

(a) Convergence rate of solution (b) Convergence rate of functional

Figure 2: Convergence rate study
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The eigenvalues with the smallest magnitude are plotted in Figure 3. The allowable relaxation factors
are less than one for all degrees, which verifies Theorem 2. Furthermore, the smallest allowable relaxation
factor is between 0.45 and 0.6, which suggests that the bound is relatively tight (i.e., the allowable relaxation
factor is not � 1).

Figure 3: Relaxation effect on SATs

C. Energy stability

To complement the preceding investigation, we solve an unsteady problem with homogeneous Dirichlet
boundary conditions and no source term using two different relaxation factors: α = 1 and α = 0.45. The
choice α = 1 produces a stable solution while α = 0.45 produces an unstable solution (based on the results in
Figure 3). The PDE solution “energy” should be monotonically decreasing as time evolves. The solution of
the SBP-SAT discretization will also have a decreasing energy, provided the stability conditions of Theorem
2 are satisfied.

For this study, the time derivative is discretized using the second-order backward differentiation formula
(BDF2) with a time step ∆t = 1.0 × 10−4. Since the penalties are mesh-dependent, this experiment is
performed on a structured triangular mesh that is randomly perturbed, as shown in Figure 1c. As can be
seen, the mesh is extremely nonsmooth and almost tangled; indeed, the largest angle in the mesh is 179.90°.

Figure 4 shows the energy evolution. As can be seen, the energy for solutions of the unscaled discretiza-
tions (i.e., α = 1) is monotonically decreasing, as expected. In contrast, all solutions based on scaled penalties
(α = 0.45) diverge after a short period of time; note the logarithmic time scale. The results further verify
that conditions in Theorem 2 are not only valid but also quite tight.

VI. Conclusion

We described a general framework to facilitate the analysis of interior penalty methods arising in mul-
tidimensional SBP discretizations of second-order linear PDEs. In this framework, we considered a general
form of SAT that uses dense penalty coefficient matrices on each face of the SBP elements. We then derived
the conditions upon which the discretizations are simultaneously conservative, consistent, adjoint consistent
and energy stable. These conditions are entirely algebraic and do not depend on exact integration.

Finally, several test cases were carried out to verify the analysis using a particular SBP operator. Specif-
ically, the convergence rate study confirmed that the discretizations achieved design order for both solution
and functional. Furthermore, the numerical results on extremely skewed mesh suggested that our stability
bound is relatively tight in the sense that a scaling factor applied to one of the SATs could not be reduced
below one order of magnitude without causing instability.
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(a) α = 1 (b) α = 0.45

Figure 4: Energy history of homogeneous problem

Appendix: Proof of Theorem 2

In this section we give the proof of energy stability, i.e., Theorem 2. For convenience, Theorem 2 is
reprinted here:

Theorem. For each face γ of element κ, let face-weight coefficient αγκ ≥ 0 be given such that
∑
γ⊂Γκ

αγκ =
1. Then, the bilinear form corresponding to the SBP-SAT discretization of the homogeneous version of the
PDE (2) is energy stable provided

Σ(1)
γ − λ(α−1

γκCγκH̃κCTγκ + α−1
γν CγνH̃−1

ν CTγν) � 0 (20)

ΣDγ − λα−1
γκCγκH̃−1

κ CTγκ � 0 (21)

and Σ
(4)
γ � 0, where A � 0 indicates A is positive semi-definite.

Proof. The SBP-SAT discretization of the homogeneous equation is given by∑
κ∈Th

vTκ Hκ
dwκ

dt
= Bh(wh,vh),

where Bh(wh,vh) is defined in (15). If Bh(vh,vh) in (15) is guaranteed to be nonpositive for arbitrary vh,
the discretization is energy stable. This can be realized if the symmetric matrices in the three sums of (15)
are positive semi-definite. We begin by considering the matrix that appears in the sum over the Dirichlet
boundary faces: [

ΣDγ −Cγκ

−CTγκ λ−1αγκH̃κ

]
� 0.

Since, λα−1
γκ H̃κ is positive definite, the above matrix is positive semi-definite if the associated Schur comple-

ment is positive semi-definite:
ΣDγ − λα−1

γκCγκH̃−1
κ CTγκ � 0,

which is precisely the condition (21).

Next, consider the matrix involving Σ
(4)
γ in (15):[

Σ
(4)
γ Σ

(4)
γ

Σ
(4)
γ Σ

(4)
γ

]
=

[
1 1

1 1

]
⊗ Σ(4)

γ ,
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where ⊗ denotes the Kronecker product. Since the eigenvalues of [ 1 1
1 1 ] are zero and two, it follows from the

spectral theory of Kronecker products that the eigenvalues of the above matrix are 2 times the eigenvalues

of Σ
(4)
γ and nγ zeros. Thus, we require that Σ

(4)
γ � 0.

Finally, we analyze the matrix containing Σ
(1)
γ . Similar to the matrix in the boundary-face sum, we make

use of the fact that λ−1αγκH̃κ and λ−1αγνH̃ν are positive definite to conclude that the 4 × 4 block matrix
is positive semi-definite if the Schur complement is also positive semi-definite, i.e.[

1 −1

−1 1

]
⊗
{

Σ(1)
γ − λ(α−1

γκCγκH̃κCTγκ + α−1
γν CγνH̃−1

ν CTγν)
}
� 0.

The eigenvalues of
[

1 −1
−1 1

]
are zero and two; thus, to ensure that the above Kronecker product is positive

semi-definite, we must require that

Σ(1)
γ − λ(α−1

γκCγκH̃κCTγκ + α−1
γν CγνH̃−1

ν CTγν) � 0,

which is condition (20).
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