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ABSTRACT

A non-linear inverse heat source identification problem is described
and solved. The inverse problem analysis is used in the design of an
embedded micro-heater array and to estimate the required control
settings, which are the input currents to each heating element, to
generate as close as possible to a prescribed temperature profile on
the surface of a thin copper film. The purpose of the micro-heater
array is to control the local copper microstructure through control
of the local temperature field. A finite element model of the micro-
heater system is used to define a discrete set of non-linear equations
used as a basis for the inverse problem solution. Two methods are
explored to solve the inverse problem, a direct minimization method
with Tikhonov regularization and a passivity-based feedback control
algorithm. A uniform and a linear temperature distribution could be
attained in the central region above the micro-heater array, but the
temperatures near the edges of the domain could not be controlled
due to heat loss at the edges. Thus, to control the temperature field
over the fullwidthof thedomain, theheater arraymust extendbeyond
the domain of interest. Both methods to solve the inverse problem
are found to perform well. The regularization method allows for a
smoother solution, while the feedback control method is simpler as
the coefficient matrix for which the update remains unchanged for
each iteration.
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1. Introduction

Defining the thermal–mechanical processing conditions to obtain desired microstruc-
tural characteristics and resulting material properties is a major priority for materials
manufacturers.[1,2] In thermal processing of metals, energy, in the form of dislocations
and grain boundaries, is released through recovery, recrystallization and grain growth
leading to a change in the microstructure.[3] The resulting grain size distribution is one
of the most important characteristics of the microstructure because it directly affects the
yield strength, ductility and fatigue resistance.[4–6] Thus, improvements in temperature
control during thermal processing can have a large impact on material performance. The
temperature field is normally controlled through manipulating the heat sources, and the
heat source parameters are typically obtained from an experience-based trial and error
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approach, leading to a long material development cycle. In order to better understand
the relationship between the local temperature field and microstructure and to provide a
means for locally controlling themicrostructure through controlling the local temperature
field, a micro-heater array has been proposed.[7] This paper presents and compares two
methods to define the input parameters to the micro-heater array to generate a prescribed
temperature profile on the surface of a thin copper film, which represents a first step in
ultimately controlling the microstructure during thermal processing. Specifically, this can
be thought of as a feed-forward control problem, where the goal is to find the required
current history that should be applied to each heater line in a heater array to generate a
desired temperature profile history that will drive the copper microstructure to, as close
as possible, some desired microstructure. The simulation tools developed are also used for
refining the design of the micro-heater array.

The problem of finding the heat source in each heating element in an embedded
micro-heater array to obtain as close as possible to a prescribed surface temperature
distribution represents an inverse problem. The problem is non-linear because of the
temperature-dependent material properties and the presence of a radiation boundary
condition. Several researchers have also considered the inverse heat source identification
problem for a variety of applications.Much of that work focuses on identifying the location
and strength of point sources based on measurements of surface temperatures.[8,9] Other
researchers have considered spatially dependent and time-dependent sources. A boundary
element formulation for solving the linear, two-dimensional steady-state problem with
both unknown boundary conditions and heat sources combined with a singular value
decomposition to handle the resulting ill-conditioned system was proposed by Martin
and Dulikravich [10]. In Yan et al. [11], a spatially dependent heat source is found
given interior temperature measurements using a finite difference approximation of the
governing equations and applying a singular value decomposition with regularization to
solve the inverse problem. The problem of determining a time-dependent heat source that
leads to a prescribed temperature field at a given time has been investigated by Jiang et al.
[12] using a modified conjugate gradient method. Chen et al. [13] use an extended
Kalman filter and weighted recursive least-squares estimator to solve for a time-varying
heat source. In Oden et al. [14], an adjoint finite element method is used to determine
the best combination of heating parameters to generate a prescribed temperature field.
Frackowiak et al. [15] studied the inverse heat source problem to find interior heat sources
from measured temperatures on the surface of a turbine blade. They used an iterative
optimization process based on polyharmonic functions to minimize the error functional
on the temperature at the outer boundary with respect to the heat source control. An
overview of the more general class of inverse source problems that discusses mathematical
issues of uniqueness, existence and stability of solutions can be found in Isakov [16].

In this work, two approaches to solve the optimal heater settings in an embedded
micro-heater array to drive the surface temperature profile towards a prescribed target
temperature field are described and compared. The two approaches investigated are: a
direct inverse method using Zeroth-order Tikhonov regularization and a passivity-based
feedback control algorithm. The micro-heater array is a linear array that generates a two-
dimensional temperature field through the volume of the device with a one-dimensional
temperature profile at the surface. Furthermore, as will be shown, a steady-state tempera-
ture profile is obtained in about 10ms, as compared to the grain growth experimental time
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Figure 1. Schematic of the heater array model (a) cross section and (b) top view showing titanium
resistive heater lines.

frame of minutes and hours. Thus, the time-dependent feed-forward control problem of
finding the current history that should be applied to each heater to achieve a temperature
profile history can be reduced to a sequence of steady-state inverse problems at discrete
times. The primary innovation in thework presented here is the application of themethods
to thedesignof anovelmicro-heater array, and the comparisonof thedirect inversemethod
to the feedback control approach.

The paper is organized as follows. A description of the proposed micro-heater array
design is presented first together with the forward transient model and finite element
formulation. The inverse problem is then defined. The twomethods for solving the inverse
problem are formulated next. Then, results from two examples are presented and the
performance of the two methods is discussed. Implications on the heater array design are
also considered. Finally, conclusions are made.

2. Methods

2.1. Model description

A micro-heater array that can be operated in a scanning electron microscope (SEM) is
proposed for local temperature control in order to study and control local grain growth.[7]
Micro-fabricated heater arrays to generate local temperature gradients, similar to that
describedhere, have beendemonstrated previously.[17,18]A schematic of the initial design
is shown in Figure 1. The device is to be fabricated on a standard 500µm thick silicon (Si)
substrate. Ten titanium (Ti) resistive heating strips will be used to generate a temperature
profile along x over a distance of 1mm in a 1µm thick copper (Cu) film. The heating
strips will be relatively long, 2.7mm, compared to the width, and thus, the temperature
field in the central section of the heater array will be essentially two-dimensional in the x–y
plane with little variation in the z direction except near the ends of the lines. The titanium
heater strips will be embedded in silicon dioxide (SiO2) to insulate the heaters from the Si
substrate and Cu film. The width w and thickness h of the Ti heating elements are design
parameters, and the thickness of the SiO2, d, and position of the Ti heaters in the SiO2,
denoted b, must also be prescribed. When current is delivered to the Ti heaters through
aluminium (Al) lines, the volumetric resistive heat generation rate Q in the Ti is
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Q = ρj2 in �4 (1)

where ρ(T) is the temperature-dependent electrical resistivity of the Ti, j(x) is the current
density, which can be different in each heater strip, and �4 is the region occupied by the
heater strips.

The usual forward problem is to find the resulting temperature field T(x, t), which
depends on position x ∈ � where � is the union of all regions in the domain, �1–�4, at
time t ∈ τ given prescribed current densities j in each of the Ti heater lines that satisfies
the following system,

∇ · (k∇T)+ Q = C
∂T
∂t

in �× τ (2)

T(x, 0) = T0(x) in � (3)
T(x, t) = Ť(x, t) on �1 (4)
q(x, t) · n(x) = εσ

(
T(x, t)4 − T4∞

)
on �2 (5)

q(x, t) · n(x) = 0 on �3 (6)

where k(x,T) and C(x,T) are the material and temperature-dependent thermal conduc-
tivity and volumetric heat capacity, respectively, q = −k∇T is the heat flux assuming
Fourier’s Law for heat conduction, ε(T) is the emissivity on the Cu surface, σ is the
Stefan–Boltzmann constant, n is the outward unit normal on the boundary �, and the
temperature-dependent heat source Q(T) is as defined in Equation (1). Equation (2)
represents conservation of energy. The initial condition on the temperature field is rep-
resented by Equation (3), and the boundary conditions are given in Equations (4)–(6).
The temperature is assumed prescribed on the bottom boundary �1 and a radiation
boundary condition on the top boundary �2, while the side boundaries, �3 are treated
as insulated. We note that since the micro-heater array is designed to operate in the
vacuum environment of an SEM, convection is not considered. The simulation domain
was made wide enough in the x direction, so that the boundary conditions on �3 did not
have a significant effect.

The temperature dependency of thematerial parameters k,C, ε and ρ are fit to quadratic
functions from experimental data in the literature.[19,20] The temperature dependency of
the parameters for each relevant material are as follows. The thermal conductivity k ( W

m·K)
is

k(T) = 405.7 − 0.05699T − (9.085 × 10−6)T2 in �1 (Cu) (7a)
k(T) = 24.24 − 0.06094T + (4.800 × 10−5)T2 in �2(SiO2) (7b)
k(T) = 295.9 − 0.5435T + (2.723 × 10−4)T2 in �3 (Si) (7c)
k(T) = 22.72 − 0.01653T + (1.375 × 10−5)T2 in �4 (Ti) (7d)

The volumetric heat capacity C ( J
m3·K) is

C(T) = 3.741 × 106 − 1544T + 1.615T2 in �1 (Cu) (8a)
C(T) = 1.034 × 106 + 3721T − 1.159T2 in �2(SiO2) (8b)
C(T) = 1.209 × 106 + 2318T − 1.497T2 in �3 (Si) (8c)
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C(T) = 3.212 × 106 − 2809T + 3.218T2 in �4 (Ti) (8d)

Copper emissivity ε is

ε(T) = 0.07681 + 0.0003696T − (1.932 × 10−7)T2 on �2 (9)

Titanium electrical resistivity ρ (�·m) is

ρ(T) = −1.893 × 10−7 + (2.462 × 10−9)T − (6.674 × 10−13)T2 in �4 (10)

The temperature T is in K in each of the relations given above.

2.2. Forward problem formulation – finite elementmodel

A standard finite element formulation is used to solve the non-linear forward problem
described in Equations (1)–(6), which is summarized here for completeness. The temper-
ature field is approximated in terms of finite element basis functions at a given time t such
that

T(x, t) ≈ T̂(t, x) = T̄α(t)ψα(x) , α = 1,NT (11)

where T̂ is a finite dimensional approximation of T , ψα are finite element basis functions,
and NT is the number of temperature degrees of freedom (DOF). Greek subscripts refer
to finite element basis function numbers, and overbar denotes coefficients of interpolating
functions, which are the values of the solution at the finite element nodes. Summation
is implied on the repeated index α. Substituting into the standard Galerkin formulation
yields the following equation for the temperature field T̂

∫
�

(
C
∂T̂
∂t

ŵ + k∇T̂ · ∇ŵ − Qŵ

)
d�+

∫
�2

εσ
(
T̂4 − T4∞

)
ŵ d� = 0 (12)

where ŵ is a finite dimensional weighting function, which is interpolated with the same
functions as the temperature. It should also be emphasized that k, C, Q and ε depend on
the solution T̂ . After substituting in the finite element interpolations (11), a non-linear
system of equations results of the form

a( ˙̄T , T̄ ) = 0 (13)

where T̄ represents the vector of nodal temperatures T̄α , α = 1,NT , and ˙̄T represents its
time derivative. This system is linear in ˙̄T and non-linear in T̄ . The system is integrated
in time using a backward difference approximation for the time derivative, and then the
resulting non-linear system is solved with a standard Newton–Raphson method at each
time. The procedure continues in time until a steady-state temperature is reached.

In simulations of typical micro-heater array designs, it is found that the temperature
reaches steady-state very fast relative to the rate atwhich themicrostructure evolves because
the domain is very small and thus has a very low thermal inertia. Specifically, steady-state
is reached in about 10ms while grain growth occurs on the scale of minutes and hours.
Thus, designing for steady-state (quasi-static) is valid.
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2.3. Inverse problem formulation

The inverse problem of interest here is to find the heat source Q that should be applied to
each heater strip to generate as close as possible to a desired temperature distribution Td

on the top surface�2. Because of the low thermal inertia, we treat the system as quasi-static.
The equations to solve for T and Q are then

∇ · (k∇T)+ Q = 0 in � (14)
T(x) = Ť(x) on �1 (15)
q(x) · n(x) = 0 on �3 (16)
q(x) · n(x) = εσ

[
(T(x))4 − T4∞

]
on �2 (17)

T(x) ≈ Td(x) on �2 (18)

We can see from this that we now have over-specified boundary conditions on �2 with
both the temperature Td and effectively the flux q̌ = q · n ≈ εσ (Td4 − T4∞) prescribed
approximately. We say approximately because it may not be possible to find a set of heat
sourcesQ that leads to exactly the desired temperature T = Td on �2, and thus, we do not
strictly enforce that condition. Also note that once the optimal heat source in each heater
strip Q is determined, since the temperature will also be known from the solution of the
governing equations, the current density j that should be applied in each heater strip may
then be backed out from Equation (1).

Since the heat source is only applied in each of the 10 heater strips and is uniform in
each strip, we can write

Q(x) = Q̄iφi(x) , i = 1,NH (19)

φi(x) =
{
1 if x ∈ �4i,
0 otherwise.

(20)

where Q̄i is the heat source in heater strip i, NH = 10 is the number of heater strips, and
�4i is the region occupied by heater strip i. Equation (12) can now be written as∫

�

(
k∇T̂ · ∇ŵ − Q̄iφiŵ

)
d�+

∫
�2

q̌ŵ d� = 0 (21)

or symbolically, after substituting in finite element interpolations (11), a system of the
following form results

b(T̄ , Q̄) = 0 (22)
which is linear in Q̄ and non-linear in T̄ because k and q̌ depends on T .

The inverse problem can be expressed as the following minimization problem

min
Q̄

1
2

(
RT̄ ( Q̄)− T̄d

)T (
RT̄ ( Q̄)− T̄d

)
(23)

where R is a matrix that extracts the components of T̄ that are at nodes on �2, T̄d are
the prescribed values of Td at the nodes on �2, and the dependency of T̄ on Q̄ is defined
through Equations (21) and (22).
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Because of the non-linear relationship between T̄ and Q̄, an iterative solution is
required. We linearize Equation (21) approximately by holding k(r) and q̌(r) fixed in terms
of the temperature from the rth inverse iteration leading to the following system after
substituting in the finite element interpolations∫

�

(
k(r)�T̄α∇ψα · ∇ψβ −�Q̄iφiψβ

)
d� = 0 (24)

or in matrix form
K (r)�T̄ = H� Q̄ (25)

where

K (r)βα =
∫
�

k(r)∇ψβ · ∇ψα d� (26a)

Hβi =
∫
�

ψβφi d� (26b)

�T̄ = T̄ (r+1) − T̄ (r), and � Q̄ = Q̄(r+1) − Q̄(r). Note that K (r) is a symmetric, positive
definite matrix.

The function to be minimized in Equation (23) to update to iteration (r + 1) can now
be rewritten as

m = 1
2

(
RT̄ (r+1) − T̄d

)T (
RT̄ (r+1) − T̄d

)
= 1

2

[
R(K (r))−1H� Q̄ −

(
T̄d − RT̄ (r)

)]T [
R(K (r))−1H� Q̄ −

(
T̄d − RT̄ (r)

)]
= 1

2

[
S(r)� Q̄ − δT̄ o(r)

]T [
S(r)� Q̄ − δT̄ o(r)

]
(27)

where S(r) = R(K (r))−1H is the sensitivity matrix evaluated at iteration (r) and δT̄ o(r) =
T̄d − RT̄ (r) is the distance the nodal temperatures are from the target value on �2 at
iteration (r).

Inverse problems are typically ill-posed, which is manifested by instabilities in the
solution. Overfitting of the prescribed temperature profile can lead to spatial oscillations
in the heat source solution. Here, zeroth-order Tikhonov regularization [21] is used to
limit the variability in the solution by augmenting the function to be minimized as follows

m = 1
2

[(
S(r)� Q̄ − δT̄ o(r)

)T (
S(r)� Q̄ − δT̄ o(r)

)
+ λ� Q̄T� Q̄

]
(28)

where λ is the regularization parameter. Finally, minimizingm with respect to� Q̄ yields
our update formula[

(S(r))T S(r) + λI
] (

Q̄(r+1) − Q̄(r)
)

= (S(r))TδT̄ o(r) (29)

that is used in our inverse analysis to update the heat supply vector Q̄(r+1) at iteration
(r + 1).
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In summary, our inverse analysis algorithm is as follows:

1. Set r = 0, specify an initial guess for T̄ (0) (for example, T̄ (0) = T̄0 the initial
conditions in Equation (3));

2. Calculate sensitivity matrix S(r) = R(K (r))−1H ;
3. Find Q̄(r+1) using Equation (29);
4. Solve forward problem (13) to steady-state for T̄ (r+1) with prescribed Q̄(r+1);
5. Calculate error norm E(r+1) = ||T̄d − RT̄ (r+1)||;
6. If E(r+1) < 10−5 or 0.98 < Ep+1

Ep < 1.0 (p = r − 4, . . . , r), stop and output Q̄(r+1);
else r = r + 1 and go to step 2.

2.4. Passivity-based quasi-static feedback control

Considering the system as an input-output relationship, the forward steady-state finite
element model can be represented as

H1 : T̄ o = F( Q̄) (30)

where F( ·) is amemory-less function representing themapping from applied heat sources
Q̄ to the output temperatures T̄ o related to T̄ . To retain the same dimension of input and
output, T̄ o is chosen as the average temperature in each of 10 evenly separated regions on
�2 above the 10 heater strips. In this way, the target temperature profile is reduced to a
description with only 10 parameters.

Inspired by the energy dissipating nature of this thermal system, passivity, a powerful
tool for stability analysis of non-linear systems, is first analysed. Thememory-less system in
Equation (30) is defined to be passive (in this case, positive semi-definite) if (T̄ o)T Q̄ ≥ 0. It
is input-strictly passive (positive definite) if (T̄ o)T Q̄ ≥ β Q̄T Q̄. whereβ is a positive scalar.
Similar concepts are defined for dynamical systems, e.g. with state space description as

H2 :
{

ẋ = f (x, u)
y = h(x, u) (31)

where x denotes the state, f (·, ·), h(·, ·) are non-linear functions, y and u are, respectively,
output and input. The system is passive if there exists a continuously differentiable positive
semidefinite function V(x) (called storage function) so that

yTu ≥ V̇ = ∂V
∂x

f (x, u). (32)

The Passivity Theorem states that if two passive systems are connected as a negative
feedback, (u = Q̄, y = −T̄ o), stability of the resulted system around the origin is
guaranteed [22]. Moreover, if the memoryless non-linearity H1 is input-strictly passive,
then the connected system is asymptotically stable.

Suppose the target output is T̄d and the corresponding input is Q̄d , then T̄d = F( Q̄d).
Denoting δT̄ o = T̄ o − T̄d , δ Q̄ = Q̄ − Q̄d , then the system can be shifted so that Q̄d , T̄d

is the origin:

δT̄ o = F( Q̄d + δ Q̄)− F( Q̄d) = g(δ Q̄) (33)
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where g( · ) is also a memory-less function. Passivity of g( · ) is verified by randomly
sampling δ Q̄ around numerous T̄d , input-strict passivity is found to hold for all the
samples.

Now, we connect this system with another passive integral controller as negative
feedback:

δ
˙̄Q = −K cδT̄ o (34)

where K c is a positive definite matrix. Then the origin is guaranteed to be asymptotically
stable. This means that it’s stable and Q̄ → Q̄d .

Applying this into a discrete control scheme, the integral controller can be transformed
into:

Q̄(r+1) = Q̄(r) − K c�tc(T̄ o − T̄d) (35)

where �tc is the time interval of the discrete system, which actually can be any value due
to the quasi-static nature of the plant. Equation (35) is the iterative formula used to update
Q̄, making the output T̄ o gradually approach the target T̄d .
Lastly, it remains to define the feedback control matrix K c and pseudo-time increment

�tc . We combine them into one matrixK = K c�tc . In practice,K can be specified as the
following form

K = Kdiag + L (36)

where Kdiag is a diagonal with positive entries (known as decentralized feedback). L
introduces an augmentation of consensus feedback [23]; it’s a weighted Laplacian of a
graph we construct so that every heater is connected to its first, second, third and fourth
neighbour. Specifically, L = DTW D where D is incidence matrix of the graph stated
above, and W is a diagonal weighting matrix. The augmentation of L allows the feedback
to penalize the difference between entries of (T̄ o− T̄d), so that in the process of converging
to T̄d , the shape of the intermediate profile is kept close to the desired one.

The iterative formula in Equation (35) is different from the one in the inverse problem
method, Equation (29), as the coefficient matrix K is fixed for all iterations while the
analogous coefficientmatrix [(S(r))T S(r)+λI] is updated at the beginning of each iteration
in the inverse analysis. The feedback control algorithm follows the same basic steps as those
in the inverse problemmethod listed at the end of Section 2.3, where Equation (35) is used
in place of Equation (29).

3. Results and discussion

3.1. Forwardmodel analysis and design

Before solving the inverse problem to determine the required heat input into each heater
strip in the micro-heater array, the geometric design parameters w, h, d and b must be
specified (see Figure 1(a)). Of these, the most critical are w and h defining the cross-
sectional dimensions of the heater strips. The cross section of the heater strips must be
such that they can carry enough power per unit length to generate sufficient heat to cause
grain growth in the Cu film while keeping the current density sufficiently small to avoid
electromigration-induced failure in the Al and Ti lines. The power per unit length P is

P = I2ρ
A

= Ijρ (37)
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where I is the current in a line and A = wh is a heater strip cross-sectional area. In
addition, the lines should be sufficiently wide, or the gap between the lines s = p − w
(pitch p = 100µm), sufficiently small, so that the temperature profile is smooth.

Grain growth in copper films occurs on a time scale of tens of minutes in the range
300–400◦C, which is on par with the time scale required for experimental observations.
Thus, the heater array should be able to bring the temperature in the copper to this range
and should allow for a gradient of at least 50◦Cmm−1 over the 1mm domain so that a
gradient in the microstructure may be created. To limit the required heat generation from
the micro-heater array, the device can be placed on a heating stage that can bring the
initial temperature to T0 = 200 ◦C and maintain this temperature on �1, i.e. Ť = 200 ◦C.
Then the micro-heater array only needs to raise the temperature 100 ◦C to cause grain
growth. From forward simulations, it was determined that the minimum required power
per unit length to achieve this is P > 20W cm−1. In the temperature range of interest,
ρ ≈ 100 × 10−6� cm, and thus from Equation (37) Ij > 2 × 105 A2 cm−2.

To avoid electromigration failure, the current density j must be limited and the sur-
rounding SiO2 should be sufficient to contain the line without cracking under stress due
to electromigration-induced diffusion of either the Al or Ti. While there have been many
studies of electromigration in Al conductor lines,[24,25] electromigration in Ti lines has
not been studied. Based on available Al data and estimating the electromigration behavior
in Ti, we estimate that electromigration will not be significant if the current density is kept
at j < 106 A cm−2 provided the SiO2 has a thickness of at least 1.5µm above the Ti lines.
To satisfy the power requirement P > 20W cm−1 and the current density requirement
j < 106 A cm−2,the current must be limited such that I > 0.2A and the cross-sectional area
must be A = wh > 20µm2. A design that satisfies all of these requirements is w = 70µm
(s = 30µm), h = 0.4µm, d = 5.9µm, and b = 2.5µm.

Now that the micro-heater array geometry is completely defined, it must be discretized
into a finite element mesh for both the forward and inverse finite element analysis. The
mesh must be sufficiently refined to maintain a satisfactory accuracy in the forward
solution. A mesh convergence study was performed, and a mesh with 1540 four-node
quadrilateral elements was found to be adequate to generate a solution accurate to within
3 ◦C. A gradedmeshwas used that is highly refined near the topwhere the heat is generated
and coarse near the bottom of the Si substrate. The uncertainty due to the finite element
approximation is relatively small compared to uncertainty in the physical model. For
example, there is uncertainty in the layer thicknesses because of the fabrication process,
and the resistivity in the Ti lines shows variability due tomicrostructure and imperfections.
Model calibration to experiments will be done as the experiments come on-line, and the
model uncertainty will be more precisely quantified.

Results from a transient forward simulation are shown in Figure 2 where a uniform
current of I = 0.24A is prescribed in each heater strip for a current density of j =
8.57× 105 A cm−2. From this plot, we see that steady-state is achieved in about 10ms, the
temperature is elevated by 100 ◦C to about 300 ◦C in the central part of the region above
the heater array, but drops off near the edges due to the heat conducting away on the sides.
We also see that the temperature profile is not completely smooth with small bumps in the
temperature above each heater and dips in between.
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Figure 2. Evolution of the temperature distribution on the top surface �2 for a uniform current of
I = 0.24 A in each heater strip.

Figure 3. Temperature distribution on the top of the copper thin film from inverse analysis with different
regularization parameters. The units for the regularization parameter are (K-mm3 W−1)2.

3.2. Inverse problem solution

In this section, we compare the two methods for solving the inverse heat transfer source
problem described in Sections 2.3 and 2.4, direct minimization and feedback control,
solving problems relevant to the micro-heater array design. Specifically, we consider
the cases of finding the required heater settings for generating a prescribed uniform
temperature of 300 ◦C and a linear gradient of 50 ◦Cmm−1, where part of the distribution
is above 300 ◦C.

The goal of the inverse problem is to find the heat source, and thus the current, thatmust
be applied to each micro-heater in the array to achieve a desired temperature distribution
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on the top surface. In the inverse analysis approach with regularization, the regularization
parameter λ must be selected large enough to generate a smooth, stable solution, but not
so large as to drive the solution away from satisfying the objective function. To show the
effect of the regularization parameter, we first solve the inverse problem for a prescribed
uniform temperature distribution of Td = 300 ◦C (573K) on the top surface with varying
values for λ. Since the regularization parameter is added on the diagonal to (S(r))T S(r)

in Equation (29), it should not be very large compared to those diagonal elements, which
in this case are on the order of 10−5 (K-mm3W−1)2. Thus, regularization parameters
considered were near this order of magnitude. The results are shown in Figures 3 and 4.
Figure 3 shows the resulting temperature profile on the surface. As the regularization
parameter λ increases, the temperature at both ends decreases, and the overall shape of the
temperature profile becomes smoother, though the small peaks with respect to the micro-
heaters remain.While it is possible to obtain a solution close to the prescribed temperature
near the centre of the domain, it is not possible near the edges. When the regularization
parameter is too high, the solution starts tomove further away from the target temperature
Td . There is almost no difference between the result without regularization and when the
regularization parameter is set at λ = 10−6 (K-mm3W−1)2.

In addition, we calculated the condition number of S at convergence and found it to
be 9.1, which indicates very weak instability of solution [26] and is consistent with the
relatively small oscillations observed even with no regularization. In Figure 4, the current
input I to each heater is plotted for the cases with λ = 0 and λ = 10−5(K-mm3W−1)2,
where I is computed from the heat source Q solved for in each heater using Equation (1)
and j = I/A. Without regularization, oscillations in the required current occur at the
ends with a large spike in the current predicted for the heaters at the ends. Such spikes
are undesirable from a practical point of view because high current densities may lead to
rapid failure of the lines. The current distribution near both ends becomes smoother as λ
changes from 0 to 10−5(K-mm3W−1)2.

We also wanted to see if we could get a good solution ignoring the non-linearity, and
instead, solve a linear system setting the material parameters at the target temperature of
300 ◦C.When we did this, we found the solution for the optimal current input to each line
deviated by as much as 30% from the value found including the non-linearity. Thus, for
an accurate solution, the non-linear material behaviour is very important.

To quantitatively evaluate the deviation of the solution T̄ s = RT̄ from the prescribed
temperature T̄d on the copper thin film surface, we set a metric σ ∗ by calculating the
standard deviation as

σ ∗ =
√∑ ‖T̄ s − T̄d‖2

N
(38)

Figure 5 shows the metric σ ∗ for varying regularization parameters. In addition, σ ∗ =
9.322K for the case with the regularization parameter λ = 0. It is shown that σ ∗ increases
with λ, which means the solution increasingly deviates from the prescribed temperature as
λ increases. Therefore, there is a trade-off between the smoothness of the profile and the
minimization of themetric σ ∗. However, we also see that σ ∗ does not increase significantly
until λ > 10−5(K-mm3W−1)2, and thus, this appears to be an optimal value. Solving the
inverse problem with λ = 10−5(K-mm3W−1)2 leads to a relatively small metric σ ∗ (≈10
K) and a relatively uniform temperature profile on the surface of the area of interest.
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Figure 4. Currents in the 10 heaters from the solution of inverse analysis for λ = 0 and λ = 10−5. The
units for the regularization parameter are (K-mm3 W−1)2.

Figure 5. Comparison of standard deviation of σ ∗ (K) as regularization parameter λ (K-mm3 W−1)2

varies.

To solve the inverse problem with the feedback control strategy, it remains only to
define the diagonal matrices Kdiag and W . Both of these matrices are set with constant
values on the diagonals, with the diagonal elements of Kdiag set at 200W/(mm3-K) and
those of W set at 30W/(mm3-K).

We now compare the results and performance for the inverse problem and feedback
control approaches for two cases, one with the objective of creating a uniform temperature
profile, as described earlier when investigating the effect of the regularization parameter,
and one with the objective of creating a linear temperature profile. Although the inverse
analysis and the feedback control approach both use an iterative scheme to find the optimal
solution for the heat sources, the difference in the update equations leads to dissimilarity
in their performance.
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Figure 6. Comparison of temperature distribution of nodes on the top of the copper thin film between
the inverse analysis and feedback control approachs.

Figures 6 and 7 present the results for the case with the target of a uniform temperature
profile. In Figure 6, the resulting temperature profiles are shown. The results in the central
region for both methods are nearly identical, and the results only deviate near the ends,
above the last two heaters at each end. The feedback control generates a higher peak at the
end, which is similar to the inverse analysis result without regularization shown in Figure 3.
In Figure 7, the current input I to each heater is plotted.We see that the twomicro-heaters
near both ends of the area of interest have relatively large values, especially for the solution
from the feedback control. As mentioned in Section 3.1, we would like to keep the current
density j < 106 A cm−2 to reduce the likelihood for failure by electromigration for the
given cross-section geometries, that corresponds to I < 280mA. We can see in Figure 7
that the currents exceed the recommended limit in the last heaters on the ends because
these heaters have to provide more heat to compensate for loses due to lateral conduction.
This may not be a major issue as the resistivity ρ in the Ti lines assumed here is a reported
value for bulk Ti, and the resistivity in the 400 nm thick heater strips is likely to be higher,
thus requiring less current to generate the same amount of heating. In fact, preliminary
experimental measurements of the resistance in the Ti lines for fabricated micro-heaters
shows a resistance of approximate twice the bulk value. In addition, a relatively thick layer
of SiO2 is used, which also will act to hinder electromigration.

As for the computational efficiency, the inverse analysis with regularization converges
to the solution faster than the feedback control method. Figure 8 shows that the inverse
analysis converges after five iterations, and for the feedback control it takes about eight
iterations. Most likely this is due to their difference in solving the iterative formula.
In Equation (29), e.g. the iterative formula of the inverse analysis, the coefficient matrix
(S(r))T S(r)+λI is updated in each iteration. However, for feedback control, Equation (35)
uses a predefined feedback matrixK, which is fixed in all iterations. Therefore, the inverse
analysis captures the temperature dependence of the model better than the feedback
control, speeding up the convergence. On the other hand, fewer computations are required
in each iteration for the feedback control strategy because K only needs to be evaluated
once.
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Figure 7. Comparison of currents in the 10 heaters between the inverse analysis and the feedback
control approachs.

Figure 8. Comparison of the standard deviation σ ∗ at different inverse analysis or feedback control
steps.

In addition, we compared the performance between the inverse analysis with regular-
ization and feedback control methods for reaching a linear temperature profile as shown
in Figure 9. Here, the prescribed temperature distribution is a linear distribution that
varies over the range 275–325 ◦C (547–598K), i.e. a temperature gradient of 50 ◦C across
the 1mm area of interest. The solution of the inverse analysis is regularized by the same
regularization parameter (λ = 10−5 (K-mm3W−1)2) as before. From Figure 9, both the
inverse analysis and feedback control are able to drive the temperature at the centre region
close to the prescribed temperature profile Td in the central region with peaks and a rapid
drop-off near the ends, similar to the results for the constant profile case. As in the previous
case, the feedback control method has larger spikes at the ends, which are smoothed with
regularization.
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Figure 9. Comparison between the inverse analysis results usingλ = 10−5 (K-mm3 W−1)2 and feedback
control results for reaching a linear temperature profile.

4. Conclusion

In this paper, we present two methods to solve the inverse heat source problem to find
the optimal current inputs to elements in a micro-heater array to achieve a prescribed
temperature field that may be used to control microstructure evolution. First, we show
that the micro-heater array reaches a steady-state temperature field in about 10ms, which
is negligible compared to the grain growth experiment time frame of minutes and hours.
Thus, the feed-forward control problem of finding the current as a function of time that
should be applied to each heater element to achieve a prescribed temperature profile
history, can be reduced to solving the steady-state problem at discrete times. A direct
inverse method with zeroth-order Tikhonov regularization and a passivity-based feedback
control method were developed, used to solve two cases of the inverse problem, and
compared. The methods are based on a non-linear finite element model of the micro-
heater array. Both methods performed well.

The accuracy of the finite element model in representing the actual physical system
must be tested. For example, early tests show that the resistivity in the Ti heater lines is
roughly twice that reported for bulk Ti used here. Thus, it is expected that the forward
finite element model will require refinement as data becomes available. The experimental
data can also be used to quantify the model uncertainty which may be used to estimate
uncertainty in the solution for the required heater settings using Bayesian methods.

Nevertheless, the model has proven useful in generating an initial design for a micro-
heater array, and the methods to solve the inverse problem can be applied to the refined
model to generate improved estimates for the required currents for different temperature
profiles for feed-forward control. The results show that both a uniform and a linear
temperature distribution can be attained near the central part of the region of interest,
but it is not possible to match the temperatures well at the edges of the region. If we want
to accurately control the temperature field over the full 1mm region, the heater array
must extend beyond this region with either more or wider heater elements. Comparing
the inverse analysis with the feedback control approach, we found that the inverse analysis
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generated a smoother distribution of current inputs and resulting temperature field due
to the regularization. The feedback control algorithm was relatively simpler because the
coefficient matrix used to solve for the heat source update was fixed for all iterations, but
required more iterations to converge.

Nomenclature

Q volumetric heat generation rate
T temperature
Q̄ vector of heat sources in each heater strip
ρ electrical resistivity
j current density in a heater strip

�1 Cu region
�2 SiO2 region
�3 Si region
�4 TiO2 region
� union of all regions
�1 bottom boundary
�2 top boundary
�3 side boundaries
q heat flux
k thermal conductivity
C volumetric heat capacity
ε emissivity
σ Stefan–Boltzmann constant
n outward unit normal on the boundary
w width of the Ti heating elements
h thickness of the Ti heating elements
d thickness of the SiO2 layer
b position of the Ti heaters in the SiO2 layer
T̂ finite dimensional approximation of temperature field
ψα finite element basis functions
NT number of temperature degrees of freedom
ŵ finite dimensional weighting function
T̄ vector of nodal temperatures
˙̄T time derivative of T̄

T̄d vector of prescribed nodal temperatures on �2
q̌ heat flux due to radiation on �2

NH number of heater strips
R matrix that extracts nodal temperature on �2 from T̄
S sensitivity matrix
λ regularization parameter

T∞ ambient temperature
I identity matrix

T̄ o vector of average temperature on �2 above each heater strip
K c feedback control matrix
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P power per unit length of a heater strip
A heater strip cross-sectional area
p pitch of heater strips

T0 initial temperature
I current in a heater strip
s gap between heater strips
r iteration number

K coefficient matrix in feedback control
y output variable in feedback control
x state variable in feedback control
u input variable in feedback control

T̄ s nodal temperature on �2 calculated from finite element model
σ ∗ metric to evaluate the deviation of T̄ s from T̄d
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